
Karlsruher Institut
für Technologie (KIT)

Institut für Prozessrechentechnik,
Automation und Robotik (IPR)

der Fakultät für Informatik

Path Planning for Contact Based
Safe Human-Robot Cooperation

Bachelorthesis

by

José Carlos González Dorado

State: October 2, 2012

Advisor:

Prof. Dr.-Ing. Heinz Wörn

Dipl.-Inform. Stephan Puls

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288499995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1

1.1 Abstract . 1

1.2 Motivation . 1

1.3 Task description . 2

2 State-of-the-art 5

2.1 Human-robot cooperation . 5

2.2 Path planning . 7

3 Background 9

3.1 Risk quantification . 9

3.1.1 Fuzzy logic . 9

3.1.2 Double threaded . 10

3.2 Path Planner . 13

3.2.1 A* algorithm . 13

3.2.2 Current Path Planner . 17

4 Implementation 20

4.1 Risk quantification . 20

4.1.1 Considerations of the original fuzzy system 20

4.1.2 New fuzzy variables and rules 22

4.1.3 The expectation delay processing 26

4.2 Task planner and target paths for cooperation 28

4.3 Velocity control . 29

4.3.1 Considerations over the original path planner 30

4.3.2 Obtaining the instant velocity of the TCP 31

i

ii CONTENTS

4.3.3 Limit the maximum speed in a cooperative mode 31

4.3.4 Calculate the maximum node speed 32

4.4 Other modifications . 33

5 Experimental Analysis 34

5.1 Risk quantification . 35

5.2 Path planner . 38

5.3 Velocity control . 40

5.4 Full system . 42

6 Summary 45

6.1 Conclusions . 45

6.2 Future work . 46

Bibliography 47

Chapter 1

Introduction

1.1 Abstract

This work improves a human-robot cooperation system using the research framework
MAROCO. There are already implemented many essential parts needed to provide this
cooperation, but some of them work independently of each other. The main goal is to
join all these parts to conform a system that allows contact based cooperation.

1.2 Motivation

Since the seventies, industry has been using robots to automate certain parts of their
industrial processes and reduce their production costs. The automotive industry was
the great launcher of this technology, expanding it and diversifying it in different ways,
but very especially in robotic arms. Currently these robots are part of the daily routine
in the big industries, accelerating and perfecting their production.

In this environment, robots have been replacing human workers and have brought a
huge amount of advantages like more precision, more strength, no fatigue or the fact
that they can be used in very dangerous tasks for humans. In industry they can be
used to solder, mount, cut, mechanization, inspection, etc., but out of the industrial
use the applications are also abundant. Among them it is worth mentioning their use
in surgery and helpers for disabled people. Nowadays, research in this field is very
active and each year robotics can solve more problems.

Non teleoperated robots normally need very systematic tasks to work well. In assembly
lines, usually this is not a problem, but it limits the capabilities of this technology. Also,
robots usually work separately from humans due to collision danger. The robot follows
preprogrammed paths and behaviors and usually lacks of sensors to avoid collisions
with a person.

1

2 CHAPTER 1. INTRODUCTION

Considering the meaning of cooperation, in the future it can arrive as far as humanoid
robots freely interacting in the society, but nowadays, even in very “basic” levels like
a robotic arm giving an object to a human, this cooperation has not been achieved in
practice. Normally this cooperation consists only in disabling the robots or inducing
them a “safe” working mode for a person that needs to manipulate something in the
working area of the robots. It does not exist real contact based cooperation between
human and robot. Research in this area opens a wide range of potentially exploitable
applications.

The best way to perform this cooperation is when the human does not carry any special
devices. This implies that sensors to detect the human pose are needed and that a
computer processes the information from the sensors to determine what should be
done by the robot to cooperate. A first step after detecting the human pose is avoiding
the human at every time to continue working alone. However, the key point is to have
a contact based cooperation with the human. For this, in addition to the human pose
detection, it is important to anticipate its intentions with a proactive behavior, so that
the robot can approach the human safely. The underlying complexity of a system with
these characteristics, the added cost of the sensors, the potential risks that can appear
and the lack of confidence of the people to work with these non teleoperated devices
cause that contact based human-robot cooperation needs more research to handle the
vast amount of possibilities that this young field has to offer.

1.3 Task description

The target of this project consists in perfecting a contact based cooperation system
between a human and a robot. The robot is a Reis RV6L arm and its movements have
to be planned to cooperate with a human safely. There is a 3D sensor installed at the
ceiling to detect the human pose inside the working area as shown in Figure 1.1.

These devices are integrated into the research framework MAROCO [Puls et al. 2012].
The main modules to allow the cooperation are already implemented in the framework,
but some of them work without connection with each other which currently prohibits
contact based cooperation.

• Human pose reconstruction: It uses an Optical Flow Field that is computed using
the XCLG method with multigrid solvers [Graf et al. 2010]. With the 3D sensor
installed at the ceiling, this module is able to reconstruct the human pose and
translate it into a 3D model inside the framework. It focuses in head, shoulders
and arms position. Also, it can determine the direction where the person is
looking. There is no need to modify this module because the human pose is
translated directly to a 3D model. This model has all the necessary parameters
like position, etc., so the method used to set it is totally transparent for this
work.

1.3. TASK DESCRIPTION 3

Figure 1.1: Real and simulated working area in MAROCO.

• Situation awareness: Using the provided data by the 3D sensor, this module is
able to determine the human intentions and the situation, like start the coop-
eration, transmit orders, take a rest, etc. It makes use of Description Logics to
represent knowledge [Puls et al. 2011]. Currently this system is not connected to
any other module, so the detected situations have no effect in the perceived risk
nor in the behavior of the robot. There is no need to modify this module because
only its output is important to know how to do the cooperation. In addition, the
situation awareness does not work in real time, so there will not be a detection
of the situation for each cycle.

• Risk quantification: In the MAROCO framework there are different risk esti-
mation techniques implemented. The best one uses a knowledge base built with
two-threaded fuzzy logics [Graf et al. 2010b]. These logics allow positive and neg-
ative fuzzy rules into the knowledge base. Also it uses a custom hyperinference
operator which is a trade-off in comparison to the typical strong and weak veto.
In essence, this system takes into consideration the position of the robot and the
human and establishes a risk value according to their distance and the relative
speed between them. Part of the work of this project consists in modifying this
module to calculate the risk depending on the output of the situation awareness
system. The addition of new fuzzy rules is needed to give a useful meaning to
the risk to allow contact based cooperation.

• Path planning: The path planning for the robotic arm is based on a preemptive

4 CHAPTER 1. INTRODUCTION

A* algorithm, allowing the program to work in real time [Graf et al. 2009]. If
the path recalculation takes too much time, it pauses and it will be resumed in
the next cycle. This module uses the risk estimation to move the arm without
exceeding a certain risk threshold. If it is exceeded, the robot stops. The speed
of the robot arm is always the same. Currently this system is effective avoiding
collisions with the human. Modifications in this module to allow contact based
cooperation are also part of this project.

Sensor

Human

Pose Reconstruction

Risk

Quantification

Motion / Path

Planning

Robot

Situation

Awareness

Sensor

Human

Pose Reconstruction

Risk

Quantification

Motion / Path

Planning

Robot

Situation

Awareness

Current

Desired

MAROCO framework

Figure 1.2: Current and desired flow among the modules of the MAROCO framework.

So, the main goal is to use all the information of these modules to achieve effective
contact based human-robot cooperation. To do it is necessary to connect the situation
awareness module with the risk quantification module (reducing the risk or increasing
the risk threshold if the robot arm has to cooperate physically with the user, giving
him an object, for example) and connect it with the path planning module to alter
the path according to the situation. All these modifications have to be implemented
in C++ for Windows in the research framework MAROCO. The solution has to work
in real time and guarantee the safety at all costs.

Chapter 2

State-of-the-art

2.1 Human-robot cooperation

The word cooperation has a very wide meaning. In essence the main purpose of any
autonomous robot is to cooperate with a human in some way to achieve a goal: directly
through contact, or indirectly without human intervention during its operation. Almost
all the current development is focalized on indirect cooperation because it is vastly
easier to develop.

There are numerous familiar autonomous robots in service robotics and especially
household robotics that prove that this field is interesting. Maybe the best example
is Roomba, the popular robotic vacuum cleaner that is able to clean the floor without
human intervention. Although its utility is out of doubt, its technological complexity
is not too high because it has almost no concern about safety or contact cooperation.
In fact many more complex prototypes like the dishwasher robot KAR [Mizuuchi et
al. 2009] are not designed to work in a direct cooperative mode with a person. Only
some prototypes like the Care-O-bot of the Fraunhofer Institute [Reiser et al. 2009]
have achieved a certain level of contact based cooperation, in this case using a tray to
rest objects and a tactile screen where the human can give him orders.

But even in the industrial area, where the situations should be some more predictable
than at home, there are neither many contact based cooperation tries. Some of them
use markers that the human must wear to ease its detection by the sensors [Sax 2004].
Its use undermines the concept of pure human-robot cooperation because the idea is
that the human should interact with the robot without depending on any other tool
or extern device.

A simple commercial markerless approximation has been developed by MRK Systeme
[1]. Using tactile and capacitive proximity sensors and a soft surface, the robot arm
stops when it detects a collision with the human or when it is about to occur. It is
true that these types of solutions allow a person to interact in some way in the robot
working area, but with the lack of a camera based vision system it cannot have a

5

6 CHAPTER 2. STATE-OF-THE-ART

situation awareness module to vary its behaviour nor a path planning algorithm to
adapt itself to the human.

Another very specific solution without cameras is used in [Edsinger et al. 2007]. The
hands of a humanoid robot are able to detect when a human has placed an object on
them to grasp it and put it in another place. The system requires that the human gets
used to manipulate the robot in this way to increase the grasping success. The com-
munication with the robot is made in the contact phase, which prohibits the proactive
part of the cooperation.

The most sophisticated systems use to include some sort of camera to determine the
position of the human and its pose inside the working area. The company Pilz [2]
commercializes a human-robot cooperation system based on safety fences and stereo
cameras. This solution divides the working area in various 3D safety zones. However
it is only able to detect if something strange is inside the predefined areas or not, no
matter if it is a human worker, a machine or any other element. It is impossible to
detect any meaningful situation because it cannot distinguish the human from other
object types. Again, this system can only have reactive behaviours. Another similar
work was developed by the Fraunhofer Institute. They use a time-of-flight camera in
the robot working area [Winkler 2008] to handle three predefined region types and
limit the maximal velocity of the robot, reducing the risk for the human.

In [Thiemermann 2005] the author uses CCD-cameras to follow the human hands
through colour segmentation and uses a classic fuzzy logic system to determine the
risk. Also, the maximum speed of the robot can be limited. The main problem is that
it only takes the human hands into account, so this system could be already limited by
design. Also, CCD-cameras are too sensitive to illumination conditions and probably
are not the best type of sensor for a system that prioritizes safety.

But implement too many sensors can affect the costs negatively. More sensors can lead
to more detection capacity and precision, potentially improving the general safety, but
it has no sense if costs are too high. An example of this can be found in [Kulic 2005]. It
uses a PUMA robot which includes a stereo colour vision system, an electrocardiograph
and an electromyography. Independently of the success in the cooperative work that
this robot could achieve, people probably find little profitable to spend all this effort
integrating all these different sensors. The solution has to be as simple as possible to
be useful.

Also, some authors employ a certain type of markers that are not necessarily artificial,
like for example the skin colour, with all the disadvantages that this carries with it.
This is the case of the VooDoo system [Lösch et al. 2009] that tries to reproduce the
human pose through hand skin colour detection. Although this solution does not care
about the occlusions between the sensors and the objective, it has a very slow response
time so it is not adequate for a safety critical industrial robotic cell.

In [Heinrich et al. 2008] the authors use a system that identifies the pixels that belong
to the robot, some foreground objects and the background. It also has a path planning

2.2. PATH PLANNING 7

module that uses the wave propagation algorithm, however this system does not try to
reproduce human kinematics so it is restricted to the avoidance of obstacles.

There are only a few works that deal with contact based cooperation, and many of
them lack important parts like a situation awareness module or even a path planner.
Also, only a few of them try to work with human kinematics to improve their chances of
success. Some works use pseudo-markers like the hand colour and others use insecure
type of sensors. Most of the works that have been developed are designed for a limited
cooperation and do not try to provide a more global solution to the problem.

2.2 Path planning

There are many works over path planners applied to robotic arms. The path planner
is responsible for planning a path for the robot between two positions, taking certain
optimizations into account. It can be designed for two different types of environments.
Dynamic environments are always changing and have some unknown variables, like
objects in unknown positions or with unpredictable movements (a human in the case
of this project). On the other hand, fixed environments are always stable and perfectly
known.

Recently, probabilistic roadmaps (PRM) methods have been in the scope of the re-
searchers in this area. PRMs are appropriated to be used in stable environments
because they are based in the idea that the robot will be working in the same environ-
ment during large periods of time. A good example of this method appears in [Amato
et al. 1998]. They use an offline phase to preprocess a roadmap in the configuration
space of the robot using randomization. Each node in this graph is a collision free con-
figuration. After that, the path is found in an online phase connecting the initial and
final points with the roadmap and finding a course in it between these two connection
points. Preprocessing requires high execution times but it does not matter because is
done in an offline phase and the resulting representation will be used to find paths very
quickly.

However PRMs are not effective in dynamic environments because in these situations
it is not possible to extrapolate past solutions to the present, so Dynamic roadmaps
(DRM) have been developed [Leven et al. 2002]. These methods are mainly based on
PRMs but they also rely in a precomputed workspace mapping for fast invalidation of
blocked roadmap parts. This provide a quick response to environment variations. This
work affirms that its response time is less than a second, but according to [Kunz et
al. 2010] an algorithm should work at 180ms at the most to consider that is real time,
because that is the average reaction time of a person. To speed up the original DRM,
they identify possible bottlenecks and apply some very specialized optimizations to get
it run in less than 100ms per cycle.

But out of the roadmap solutions, there have been a number of path planning ap-

8 CHAPTER 2. STATE-OF-THE-ART

proaches in dynamic environments. The Ariadne’s Clew algorithm [Mazer et al. 1998]
operates generating landmarks in an exploration phase and connecting them to a ex-
isting network in the search phase. It can be tuned by changing the search phase or
using different criteria to select candidate landmarks. In [Kindel et al. 2000] follow the
idea of expanding a network from the start and the goal positions, making it grow until
both positions are connected. Also, in [Vallejo et al. 1999] an adaptable approach that
uses multiple local planners is described. At run time, characteristics of the problem
are used to determine which combination of local planners is the best at each moment.

Chapter 3

Background

This chapter shows the fundamentals of the work. It is divided in two main sections:
the risk quantification part and the path planner part. These modules have received
the most of the modifications and its knowledge is essential to understand the following
sections of this work.

3.1 Risk quantification

To allow the robot moving with a human in its working area it is necessary to control
the risk of each movement in every instant. Several solutions can be done to get a risk
value to evaluate the motion safety, but the best method implemented in MAROCO is
the one that use a fuzzy logics system [Graf et al. 2010b]. All the changes in the risk
quantification part have been done in this solution.

3.1.1 Fuzzy logic

The fuzzy systems allow working with graduated variables in which the limits of each
degree are not exactly defined.

Unlike the traditional logic, where there can be only conclusions which are fully true
or false, in the fuzzy logic is allowed a certain range of truth between 0 and 1 for each
grade [Zadeh et al. 1996]. There can be partial truths. In this way it is possible to
have a value considered true and false at the same time, but with different truth levels
each one. This kind of logic is also many-valued. A numeric variable can be described
in linguistic terms to use more than two grades. For example, temperature can be
graded as cold, warm and hot. These values can be controlled by specific functions.

In Figure 3.1 the black vertical bar represents a certain temperature. It can be consid-
ered as no hot, lightly warm or very cold. This process of converting a crisp temperature

9

10 CHAPTER 3. BACKGROUND

cold warm hot

temperature

1

0

Figure 3.1: Fuzzy variable temperature example.

into membership values for each grade of a fuzzy variable is called fuzzification.

Fuzzy logics are based in heuristic rules with the form IF (antecedent) THEN (conse-
quence), where the antecedent and the consequence are also fuzzy variables.

The inference methods for these rules must be simple, fast and efficient. The results
of these methods are a final area, which is the result of a group of overlapped areas
among them (each area is the result of an inference rule). To choose a certain output
among all of these fuzzy premises, the most used method is the centroid, in which the
final output is the centre of gravity of the resulting total area. This process is called
deffuzification (Figure 3.2).

These rules of a fuzzy system can be formulated by experts or learned, using neuronal
networks in this case to make the future decisions better.

Input data are normally collected by sensors, which measure the input variables of a
system. The inference engine sometimes is based in fuzzy chips, which are increasing
their processing capacity exponentially each year.

3.1.2 Double threaded

But in this work, the risk quantification module is a double threaded fuzzy system. It
means that it has two rule groups: positives and negatives. This allows reducing the
amount of rules and simplifies the rule set. Positive rules are the classical ones and are
always in any fuzzy system. An example of positive rule could be:

• IF Temperature = Medium

THEN Fan speed = Low

And this could be a negative rule.

• IF Temperature = Very cold

THEN Fan speed = High OR Medium UNWANTED

3.1. RISK QUANTIFICATION 11

Crisp inputs

Fuzzy inputs

Crisp output

Fuzzification

Defuzzification

Fuzzy output

Inference rules

Figure 3.2: Fuzzy system flow.

To take both kinds of rules into account a new hyperinference step is used to limit the
fuzzy output values depending on the negative inference rules. There are several ways
to do this. The veto operators represent the core of the hyperinference. The classical
ones are the strong veto and the weak veto. The strong veto operator is formally
defined in the Equation 3.1.

μ(u) =

{
μ+(u), if μ−(u) = 0

0, otherwise.
(3.1)

Figure 3.3: Response characteristic of the strong veto operator.

The strong veto operator does not respond to the area under the activated positive rule
(Figure 3.3). For this reason, the area under the negative rule is weighted too much,

12 CHAPTER 3. BACKGROUND

which means that when the area is not small enough a veto will be generated.

One great advantage of the two threaded fuzzy logics lies in its great flexibility, but it
is ignored with the strong veto operator, showing a suboptimal performance when is
connected to a path planning module or controlling the robots velocity.

µ(u) =

{
µ+(u), if µ+(u) ≥ µ−(u)

0, otherwise.
(3.2)

Figure 3.4: Response characteristic of the weak veto operator.

The weak veto is another classical operator which behaves differently. The area under
the positive rule in Figure 3.4 is smaller in comparison to the area under the negative
rule. For this reason, a veto is applied, which is desired for this special case. The
positive rule generates a greater area compared to the negative rule, independent to
the difference of both areas. The output is equivalent to the area under the positive rule
for all possible cases. This means that the negative rule does not have any influence
on the output for this special case, which is really not desired.

µ(u) =

{
µ+(u)− β−(u), if µ+(u) > µ−(u)

0, otherwise.
(3.3)

To solve this suboptimal approximations, the fuzzy system used in this work imple-
ments a novel hyperinference veto, which is formally described in Equation 3.3. As is
shown in Figure 3.5, this veto subdivides the area under µ− into three parts. At first,
the cut of the curve is determined according to the output of the activated negative
rule. Then, an orthogonal line is generated (bottom row). This defines three parts of
the area under the operator. The outer area elements are identical due to the sym-
metric characteristic of the operator and described by β−. The adequate output of the
veto operator is then generated by µ+ − β−.

3.2. PATH PLANNER 13

Figure 3.5: Response characteristic of the novel veto operator.

3.2 Path Planner

The task of the path planner is to find a path for the robot to move it from a starting
point to another. In this case, the path planner must allow the system working in real
time, so a method to pause and resume the path search is a good idea. There are many
different systems that try to solve this problem, normally in the configuration space of
the robot (the rotation angles of each degree of freedom). A* is an algorithm widely
used for its performance and accuracy.

3.2.1 A* algorithm

The family of the informed algorithms against the uninformed ones or by brute force
are those that have an extra information about the structure of the studied object,
which they exploit to reach their final objective faster, with a minimum cost path from
the start point until the end point.

Informed search use the specific knowledge beyond the problem definition itself, which
can find solutions more efficiently than a non informed strategy, very inefficient in the
majority of the cases.

The problem of some informed search algorithms in complex structures, like the greedy
algorithm, is that they are guided exclusively by the heuristic function, which could
not indicate the path with lowest cost, or just by the real cost to move from one node
to another (like the hill climbing algorithm), so sometimes is needed to do a higher cost
movement to reach the solution. Because of that, a good informed search algorithm
should take both factors into account, the heuristic value of the nodes and the real cost
of the path.

The most widely known form of the Best-First search is called A* (A star search) [Hart
et al. 1968]. It evaluates the nodes combining g(n), the cost to reach that node, and

14 CHAPTER 3. BACKGROUND

h*(n), the estimated cost to the objective node: f*(n) = g(n) + h*(n).

Having g(n) that is the cost of the path from the initial node to the node n, and h*(n)
that is the estimated cost of the cheapest path from n to the objective, f*(n) is the
cheapest cost of the solution through n.

In this way, to find the cheapest solution, is reasonable to try first with the node
with the lowest value of g(n) + h*(n). If the heuristic value of h*(n) satisfies certain
conditions, A* search is complete and optimum.

Figure 3.6: A* finding path in a robot motion planning problem.

In Figure 3.6, A* finds a path in a robot motion planning problem. The empty circles
represent the nodes in the open set, and the filled ones are in the closed set. The colour
on each closed node indicates the distance from the start (greener means farther). A*
starts moving in a straight line in the direction of the goal, then when hitting the
obstacle, it explores alternative routes through the nodes from the open set.

The optimality of A* is easy to analyze if it is compared with the tree search. In
this case, A* is optimal if h*(n) is an admissible heuristic, which means that h*(n)
never overestimates the cost to reach an objective. Admissible heuristics are optimistic
by nature, because they think that the cost to solve the problem is lower than in
reality. g(n) is the exact cost to reach n, so as an immediate consequence g(n) never
underestimates the real cost of a solution through n.

An obvious example of an admissible heuristic is the distance in a straight line h* that
is used to go to the destination of a travel. The distance in a straight line is admissible
because the shortest path between two points is a straight line, so the straight line
cannot be an underestimation.

The performance of the heuristic search algorithms depends on the heuristic function
quality. Good heuristics can be constructed sometimes relaxing the definition of the
problem, by precalculated solution costs for sub problems in a data base model, or by
learning from the experience with these classes of problems.

Also, while the admissibility criterion guarantees an optimal solution path, it also
means that A* must examine all equally meritorious paths to find the optimal path.
It is possible to speed up the search at the expense of optimality by relaxing the
admissibility criterion [Pearl 1984]. By bounding this it is possible to guarantee that

3.2. PATH PLANNER 15

the solution path is no worse than 1 + ε times the optimal solution path. This new
guarantee is referred to as ε - admissible (Figure 3.7).

Figure 3.7: A* with a bounded relaxation (ε = 5).

The formalized algorithm for A* is in Algorithm 1. Algorithm 2 recreates the optimal
path using the information of the nodes.

16 CHAPTER 3. BACKGROUND

Algorithm 1: A*

Input: start node
Input: goal node
Output: solution path
closedset ← the empty set // Nodes already evaluated

openset ← start // Tentative nodes to be evaluated

came from ← the empty map // Map of navigated nodes

g score[start] ← 0 // Cost from start along best known path

f score[start] ← g score[start] + heuristic cost(start, goal)
while openset is not empty do

current ← the node in openset having the lowest f score[] value
if current = goal then

return reconstruct path(came from, goal)

remove current from openset
add current to closedset
foreach neighbor in neighbor nodes(current) do

if neighbor in closedset then
continue

tentative g score ← g score[current] + dist between(current,neighbor)
if neighbor not in openset or tentative g score < g score[neighbor] then

if neighbor not in openset then
add neighbor to openset

came from[neighbor] ← current
g score[neighbor] ← tentative g score
f score[neighbor] ← g score[neighbor] + heuristic cost(neighbor, goal)

return failure

Algorithm 2: reconstruct path

Input: came from
Input: current node
Output: path
if came from[current node] is set then

p ← reconstruct path(came from, came from[current node])
return (p + current node)

else
return current node

3.2. PATH PLANNER 17

3.2.2 Current Path Planner

The path planner is divided in an initial offline phase and an subsequent online phase
[Graf et al. 2009]. The offline phase takes place at the beginning of the process. During
this, a graph in the robot configuration space is constructed. Some discrete positions
in the configuration space will serve as vertices of the graph. Vertices are connected
between them using a k-nearest neighbour algorithm. After that, a path between the
start node and the goal node is found using the A* search algorithm.

During the online phase the path is traversed. In each execution step, the path planner
creates the new intermediate configuration of the robot by the interpolation of the path
found. Later, this is sent to the robot for its execution. The planner reactivity is done
in this phase too.

It is needed to do constant checks to evaluate if there are imminent collisions, and
if there are, a new path replan is triggered. It is not safe to check only the next
interpolated configuration, although it is not necessary to interpolate the full path
each time to check every possible collision. The look-ahead function checks only some
of the next nodes. These collision tests are done discretely along the full path, so the
discretization can cause the missing of an obstacle that is too small for the discrete
steps (Figure 3.9). To avoid this problem a collision is detected if the obstacle is into
a safety clearance zone. Due to the human pose modelization, the size of the obstacle
is known and the safety clearance can be set empirically.

The online path planning uses the graphs constructed in the offline phase. To not
exceed the time thresholds and allow the system working in real-time, is needed to
modify the default behaviour of A* to take this restriction into account, because the
original algorithm uses as much time as is needed to find the optimal path. The
modification is the pre-emptive A* algorithm. If the search takes more time than a
predefined threshold, it pauses and can be resumed in the next program cycle. The A*
algorithm classifies the graph nodes in two separated lists: the open list and the closed
list. It is necessary to save these lists in order to continue the searching (Algorithm 3).

Due to the online phase, the person can move freely and without restrictions. As a
result, the search space can be very limited, because the new freed configurations are
not considered but the new colliding ones are discarded. The search can be slow. The
resulting path is pruned to not adjusting perfectly to the actual search space. In these
cases, the search is aborted after a predefined timeout and restarted again.

The Euclidean distance is used as a metric to calculate the heuristic value and the cost
of each configuration. This is done for each node during its parent node expansion.
Also, this is extended to a risk check in each evaluated node. In this way, configurations
that have a wide separation distance can be rejected because are considered unsafe.
When the person is approximating fast, it is possible that the current robot pose
is considered risky, in this case, it is senseless to do a path replanning because any
movement could mean danger for the person. The robot continues in its pose until the

18 CHAPTER 3. BACKGROUND

Start

reachedGoal

searchInterrupted

 getNewPose()

End

 getNewPose()

searchInterrupted

 keepCurrentPose()

 getNextPoseFromPath()

 lookAhead()

isColliding

No

No

No

Yes

Yes

No

Yes

Figure 3.8: Path traversing with pre-emptive search.

human is out the risk area.

The search space is restricted to three dimensions, that are the main degrees of freedom,
which are the first three joints. The rest of the configuration space dimensions do not
have a major impact in the ability to avoid collisions between the robot and the human.

In addition, the first configuration space dimension can be extended cyclically. Doing
this, the robot can move more than 360 degrees around the joint of its base. The
opposite side of the human is always the safest in this case.

3.2. PATH PLANNER 19

Robot

Pose 1

Obstacle

collides

Pose 2

d

Safety clearance

for look-ahead

Robot

Pose 1

Obstacle

Pose 2

Pose during

path execution

Robot

Pose 1

Obstacle

Discrete step of

look ahead

Pose 2

Figure 3.9: Look-ahead with the safety clearance.

Algorithm 3: preemptiveAStar

Input: start node
Input: goal node
Input: isNewSearch
Output: hasFoundGoal
Data: closedset
Data: openset
Data: node
if isNewSearch then

init(openset, closedset, start)
else

load(openset, closedset)

startTime ← Now()
hasFoundGoal ← false
while openset is not empty do

if Now() - startTime > threshold then
save(openset, closedset)
break

node ← best (openset)
if node = goal then

hasFoundGoal ← true
break

expandNode(openset, cloasedset, node)

return hasFoundGoal

Chapter 4

Implementation

The work is divided in three main parts. The first one consists in a modification of
the risk fuzzy logic system to get a reduced risk value when the robot has to cooper-
ate with the human. The second part is the changes and improvements to the path
planning module to plan the robot behaviour according to certain situations provided
by the situation awareness module. The last part consists in the addition of a velocity
control to the path planner to allow reaching some dangerous nodes that otherwise
were inaccessible.

4.1 Risk quantification

The original fuzzy system risk quantification [Graf et al. 2010b] demonstrated that it
is useful avoiding the human, but it cannot manage situations that require physical
cooperation. The path planner takes the risk (a value between 0 and 1) and evaluates
if a node is safe or not to go through. Giving an object to a human, for example,
raises the risk value in the original risk quantification when the distance gets near to
the human. The path planner interprets that it is impossible to traverse through these
nodes because the risk is too high, stopping the robot motion or replanning its path.
It is needed to modify this system to have a meaningful risk that allows doing all the
necessary actions for a cooperative work, always guaranteeing the safety.

4.1.1 Considerations of the original fuzzy system

The technical report of this system [Czapiewski et al. 2010] has just a little information
about the nature of the implemented fuzzy variables and sometimes does not match
exactly with the provided graphs. These are the current graphs of the fuzzy variables
based in the display of the MAROCO framework.

20

4.1. RISK QUANTIFICATION 21

Distance:

Represents the minimum distance between the robot and the human. Is measured in
meters.

Velocity:

Represents the relative velocity between the robot TCP and the human. It is measured
by deriving the distance to the human with respect to time in each cycle. It assumes
that the time lapse between each cycle is 1/20 of a second and does not consider the
angular velocities of the robot axis.

Head orientation:

Measured in degrees between the human head and the robot. Useful to determine if
the human is looking to the robot or not.

Body orientation:

22 CHAPTER 4. IMPLEMENTATION

Measured in degrees between the human body and the robot.

Risk:

Is the fuzzy output value of the risk, from 0 to 1.

The inference rules are well documented except three. This positive rule is omitted:

• Rule 19: IF Head orientation = ‘frontwards’

AND Distance = ‘faraway’ OR ‘average’ OR ‘pressing’

THEN Risk = ‘outOfDanger’ AND ‘safe’.

This rule is the only one that applies two different risk values. The other different
negative two rules are the 16 and 18. Both have ‘unsafe’ as an additional unwanted
risk value.

So the positive rules are from 0 to 14 and the number 19. The negative ones are from
15 to 18. For this work it has been assumed that this system works well and it has
been tried to modify it as little as possible to achieve the new functionality.

4.1.2 New fuzzy variables and rules

To make the robot working cooperatively, it is needed to analyze which parts of the
original system are useful or not. The previous fuzzy system works well avoiding
the human if the robot has to move without physical cooperation. This behaviour
will continue being necessary in some cases, so for these moments it is interesting to
maintain the same functionality that has been tested and gave good results.

In a first moment, the addition of two more degrees to the relative velocity fuzzy vari-
able to control the cooperative work was considered, but finally this was discarded
because the values posSmall, zero and negSmall are slow enough to allow cooperation.
Also this is a relative velocity measure, so it is not convenient to have too fine granu-
larity on it because the human also moves and varies this value. If the relative speed
varies too fast, the risk could be constantly fluctuating and neither the path planner
could have time to finish its calculations nor the robot to traverse the path before a
forced replan.

The original negative rules are interesting because they could be used to manage a
certain cooperative behaviour, but the current ones are not enough to control it com-

4.1. RISK QUANTIFICATION 23

pletely. There are more data to be considered to achieve the cooperation, so it was
needed to program two new fuzzy input variables.

• Variable to indicate if a cooperative behaviour is needed or not: with it, the
risk can be reduced only if the robot has to cooperate. The situation awareness
module and the path planner will be responsible to modify its crisp value.

• Situation awareness delay time: the situation awareness module does not work
as fast as the rest of the framework, so its output about the current expectation
can be outdated. When the last detection is too old, the risk should raise.

As will be shown in the Experiments section, these additional two fuzzy variables are
enough to reduce the final risk depending on the current situation.

Cooperation mode:

Off indicates that cooperation with the human is not needed.
Unattended means that the robot can cooperate with the human without need to be
looking directly at it (leave a beverage near a human that is reading something).
Attended means that the human must look to the robot to cooperate (give an object
to a human)

Situation delay:

The milliseconds that have been passed since the last output of the situation awareness
module.

To make the fuzzy system to consider these variables it is necessary to add new inference
rules and/or modify the original ones. To do this, two preliminary ideas were developed
before reach the third and definitive one. In each idea evolution, the original code has

24 CHAPTER 4. IMPLEMENTATION

been more respected and the risk has been modified in a more indirect and abstract
way. The identifier numbers of the new rules are from 20 and on.

Discarded idea 1: Modification of the original rules.

It consists in adding new positive rules and modifying slightly the original ones to allow
the cooperative use. It was necessary to add the condition that when the cooperation
mode is off, the original rules behave as before. This condition was added to the rules
7, 8, 9, 12, 13.

Excepting the previous condition, the new rules coincide in everything with the original
ones but they reduce the risk level when the cooperative mode is on.

• Rule 07b: ...THEN Risk = ‘safe’

• Rule 08b: ...THEN Risk = ‘safe’

• Rule 09b: ...THEN Risk = ‘moderate’

• Rule 12b: ...THEN Risk = ‘safe’

The rule 13 was divided in two. One for the case when the relative velocity is negBig so
that the risk continues being dangerous. The other was for the case when the velocity
is negBig or negSmall to reduce the risk to safe.

Technically this solution was correct and in the practice worked well, although it only
took into account the cooperation mode fuzzy variable. However it forced to use too
many rules (six more just for this functionality). It would be necessary to add even
more rules and change the original ones in order to expand this proposal to control the
situation delay. With this idea implemented, the average speed of the MAROCO was
not affected too much but at that time, a better second idea was planned.

Discarded idea 2: Addition of new negative rules.

The second idea was very convenient because it takes advantage of the double threaded
fuzzy system to economize rules and maintain the original ones unmodified. It consisted
in adding negative rules to limit the risk if the cooperative mode was on. Each new
negative rule had conditions to control the cooperation mode; if the human was looking
or not, etc. With just two rules was possible to achieve all the previous functionality
in a much more indirect way, just by limiting the risk.

However, this idea had also some problems. Sometimes the applied veto of the hy-
perinference did not prioritize the cooperation mode variable and, in consequence, the
risk sometimes was too high to allow an efficient cooperation. At this point the last
solution was planned, the double output.

4.1. RISK QUANTIFICATION 25

Current solution: The double output.

The previous ideas modified the original risk value and even the original rules. Adding
future conditions could ruin the balance achieved by the original author and disadvan-
tage the functionality. The best solution was to leave the original risk value as it was
designed.

In fact, the basic modification in the fuzzy system needed to allow the cooperation is
a risk reduction. Taking this premise, it is possible to develop a simple parallel fuzzy
system to generate another output variable, a risk reduction factor. This solution was
the chosen one. The reduction factor is a value between 0 and 1 that is multiplied to
the original risk. A lower multiplier value leads to a lower risk value. If the cooperative
behaviour rules are activated, the multiplier approaches to 0.25, reducing the original
risk.

The minimum value of the multiplier has been set in 0.25 to avoid cancelling the risk
completely and maintain always some information about the original risk system. If
there is no need to cooperate, the value will be 1 and the original risk will be fully
applied. This method is totally independent of the original fuzzy system, maintaining
it unmodified and working only in the reduction factor.

Risk reduction:

The fuzzy output risk reduction value, from 0 to 1.

Three positive new rules had to be implemented in the parallel fuzzy system:

• Rule 20: IF Cooperation mode = ‘unattended’

THEN Risk factor = ‘cancelled’

• Rule 21: IF Cooperation mode = ‘attended’

AND Head orientation = ‘frontwards’

THEN Risk factor = ‘cancelled’

• Rule 22: IF Situation delay = ‘delayed’

THEN Risk factor = ‘full’

And three negative rules:

• Rule 23: IF Situation delay = ‘old’

THEN Risk factor = ‘cancelled’ OR ‘reduced’ UNWANTED

26 CHAPTER 4. IMPLEMENTATION

• Rule 24: IF Cooperation mode = ‘off’

THEN Risk factor = ‘cancelled’ OR ‘reduced’ UNWANTED

• Rule 25: IF Velocity = ‘negBig‘ OR ‘posBig’

THEN Risk factor = ‘cancelled’ OR ‘reduced’ UNWANTED

Distance

Velocity

Head Or.

Body Or.

Coop. mode

Exp. delay

Risk Multiplier

Reduced risk

Figure 4.1: Flow diagram of the double output risk fuzzy system.

The diagram of the Figure 4.1 represents the fuzzy variables and how the two outputs
are calculated. Having the risk and the risk multiplier factor, the reduced risk is
obtained by multiplying both values. A* and the motion planner will use the reduced
risk value. With all of these modifications, the fuzzy engine was completed, but there
is one more improvement to make it working well.

As can be seen, the risk reduction depends on the cooperation factor, the relative speed,
and the expectation delay. In the experiments, the cooperation factor and the relative
speed worked well, but the expectation delay needed more development.

4.1.3 The expectation delay processing

Discarded idea: Instant expectation delay.

The first way to get the expectation delay was to measure the age of the last prediction
it in each cycle and send it to the fuzzy risk quantification module. Although it seems
reasonable, this solution has a very big problem as is shown in Figure 4.2.

The Figure 4.2 shows how the risk multiplier factor is affected by the latency of the
situation awareness module (the expectation delay). If the last situation prediction
becomes too old (more than 250ms), the risk is less reduced by the risk multiplier
factor. This Figure shows the risk multiplier changing too fast because the delay takes
the immediate value, not the average.

4.1. RISK QUANTIFICATION 27

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

D
el

ay
 (m

s)

R
is

k
m

ul
tip

lie
r v

al
ue

Time (s)

Expectation delay
Risk multiplier in unattended

Figure 4.2: Risk multiplier depending on the instant expectation delay.

It is true that with a faster computer the expectation delay can be always updated, but
this is a nonsense because if it never moves from updated there is no need to use this
variable in a parallel fuzzy system. Also it is absurd that A* depends on a risk value
calculated using an instant delay value because the path which it will plan will take
much longer to be traversed that this amount of milliseconds. The instant delay will
change completely while the robot is moving to the goal node.

Current solution: Average expectation delay.

The current form to calculate the expectation delay is to do the average of the previous
10 maximums. This allows a much more stable risk reduction value with more meaning.
Additionally, A* can construct its paths using this value because the expectation delay
tends to be always the same for a certain computer. The value of 10 was deduced
empirically in the Experiments section.

There is only one exception: sometimes the situation awareness takes too much time
to do a detection and this delay is not taken into account to do the average because it
has not reached its maximum yet. So, if the instant delay is higher than the average
value, the instant value is passed to the risk quantification module. This method
allows minimizing the expectation delay variations and also considers always the most
dangerous value of the delay. The graph of this solution is in the Figure 5.3.

28 CHAPTER 4. IMPLEMENTATION

These are the all the modifications in the risk quantification system. In the following
sections will be explained how the speed is considered and limited according to the co-
operation mode. This makes intensive use of the described risk quantification module.
Also, there are more changes involving the file CRiskQuantification.cpp but all of
them are part of the Velocity Control section.

4.2 Task planner and target paths for cooperation

In the original system, the robot path was always the same, just moving in one direction
and another (see Figure 5.4). In this work, this behaviour has been considered the
default task, the main job that the robot has to do. But the situation awareness
module has several outputs, and some of them are very interesting for the cooperation
purposes. Especially the expectation output is the most useful. In this work, two of its
values have been considered, requiring different cooperation levels: Get Beverage and
Get Object.

• Get Beverage: When this expectation is detected, the human normally is sat on
a chair, near a table. He can be reading something, or just doing some other
operation, not looking at the robot. The robot has to leave on the table a glass
of beverage, for example water, and near to the human. When the beverage has
been leaved, the robot should continue doing its job, which is the default task.

• Get Object : When this expectation is detected, the human wants that the robot
gives him an object or tool. The robot has to give this object to the human,
doing a very deep movement inside the human working area while the human is
looking at it. When the human gets the object gripped by the robot, the arm
has to return to its default motion.

It is clear that the cooperation mode is different in the two situations, in one the human
do not have to be looking but the other requires it. That is why the cooperation mode
has three fuzzy values. In fact, the current fuzzy risk system supports cooperation
values between off and unattended, or between unattended and attended, reducing the
risk in a more soft way. This can be useful for future works which want to program
the behaviour for other situations that require different cooperation levels than 0, 0.5
and 1, respectively. But this is out of the scope of this work.

In both cases the required task cannot be done in the original MAROCO system. The
risk constraint is too strong and A* will never find a path safe enough. With the
updated risk quantification module it is necessary to program these tasks to cooperate
with the human. This work is focused on the motion planning, so the programmed
behaviour is just a simulation. It does not consider the real object positions, just
limits to the robot and human using the distance and the risk as a guide to evaluate

4.3. VELOCITY CONTROL 29

nodes. But in despite of everything, some very basic intelligence has been developed
too. These are the programmed tasks for each expectation:

• Behaviour for Get Beverage: (Figure 5.5) The robot aborts any previous task
and moves to simulate the beverage gripping in a static point situated on a table.
This point is always the same. After that, the robot moves to the other table
and leave the beverage in a static point, near the human. This movement is done
with the unattended cooperation mode. The points are always the same, but it is
sufficient to see if the movements to do the cooperation continue being forbidden
or not. After that, the robot returns to the default task with the cooperation
mode off.

• Behaviour for Get Object : (Figure 5.6) As in the other task, the robot aborts any
previous task and moves to simulate the object gripping in a static point situated
on a table. The next step is to give the object to the human, moving the arm in
a fixed point of the space, comfortable and safe for the human to grip it. This
movement is done with the attended cooperation mode, so the human should
be looking at the robot. When the object is gripped by the human, the robot
returns to its default task, without cooperation mode. The robot and MAROCO
have not any form to guess if the human has gripped an object, so this sensor
is simulated by pressing a key (this is the only “manual” action that has to be
done in the final system).

The programmed tasks take also into account if the robot has already gripped the
beverage or the object. If the robot has already gripped the required object, goes
directly to leave it or give it depending on the task. On the other hand, if the robot
has an object that is not required, it moves to the gripping point to put it again in the
same place where the robot gripped it. These two situations can occur if the task is
aborted or restored again during its execution.

At this point, the programmed system has many tools to allow the cooperation, but
has a very big handicap too: the speed is always the same. With this problem in mind,
before this point there have been some tries to control it, but all of them are going to
be explained in the next section for clarity reasons.

4.3 Velocity control

The robot speed is a critical value in any contact based cooperative system between a
human and a robot. It is determinant for the global safety and the original MAROCO
system does not consider any change in it. The speed is always the maximum allowed
in the configuration of the MAROCO and in the AStar.cpp file.

The lack of a velocity control leads to missing useful paths that could be traversed at
lower speeds. It is true that the risk quantification module takes the relative speed into

30 CHAPTER 4. IMPLEMENTATION

account, but there is no way to reduce it or guess the maximum allowed value for a node.
Also, the measured speed is the relative between the robot and the human, which means
that the robot can be moving fast if the human is moving with it. Before explaining
how these problems have been solved, it is important to remark some peculiarities of
the original path planner.

4.3.1 Considerations over the original path planner

First of all, A* and the motion planner works independently. A* designs the path
depending on the environment in the moment in which the path is being planned. The
motion planner follows the path planned by A* and triggers a path replanning if the
current Look Ahead function considers that the rest of the path is not safe enough.
This works well, but if the human moves away and there is a safer environment, the
path will be the one previously planned by A* in every case, even if with the new
environment there are faster and more optimized paths that A* could find.

Second, in the path planner implemented in the used MAROCO version, the Look
Ahead function does not work well. The purpose of this function is to check if a
certain number of nodes after the current one are safe or not. To do that, it evaluates
a safety clearance for each node considering the distance and the risk. It works perfectly
for the distance, but there are problems if the risk is considered.

The motion planner asks for a replan if the Look Ahead function detects that a fu-
ture node exceeds the distance threshold or the risk threshold. The original system
sometimes freezes because the planned path is generated always inside the safety clear-
ance of the Look Ahead. This can occur because there are nodes with a “controlled
approach” flag activated. Between them the path is not generated by A*, is just a
straight line. This path section could be prohibited by A* and, in consequence, by the
Look Ahead function. In this case the motion planner asks constantly for a replan,
and the replanned path is always the same, in a loop.

But even without nodes with this flag activated, in the original system the path some-
times is replanned without apparent reason. This was tested experimentally with a
static human, always in the same position. With this situation, the risk in the follow-
ing nodes should be the same that A* calculated, because there was not any change.
The risk factor of the safety clearance had to be disabled to allow an effective motion.
In despite of everything, with the new additions to the system, the robot can move
with safe paths and replan the path if the human moves too near.

Taking the risk into account in the Look Ahead can be very good, but some factors
considered in the risk evaluation can vary very quickly (head orientation and expecta-
tion delay for example) causing unnecesary path replans and undermining a successful
cooperation. As a first approach, considering just the distance in the Look Ahead
function is sufficient as is showed in the Experiments section.

4.3. VELOCITY CONTROL 31

4.3.2 Obtaining the instant velocity of the TCP

The ISO10218-1 rules indicate that a robot working in “reduced speed mode” cannot
exceed the speed of 250mm/s in its TCP. To comply with these rules, the main problem
is that the risk quantification system only uses the relative velocity between the robot
and the human, and there is no place in the MAROCO framework to get this value.

The calculations to obtain this velocity are not trivial. One way is to check the angular
velocity of every degree of freedom and use trigonometry to obtain the instant speed
in m/s. This solution is valid, although is difficult to program it.

The author of the fuzzy risk system calculates the relative velocity by deriving the
distance between the robot and the human with respect to time in each cycle. This
is a very easy calculation and a similar method can be used to calculate the instant
speed because the MAROCO can give the coordinates of the TCP. With two points it
is possible to calculate the distance which divided by the elapsed time gives the instant
velocity. Also, in the risk quantification system is assumed that the time elapsed
between each cycle is 1/20 of a second. This makes sense because the risk will be
considered in A* too, and the time between each cycle have to be extrapolated into
future nodes. The calculation of the instant velocity uses also this method.

So to calculate the instant velocity is necessary to have the previous and the current
node, get the distance between them and divide it by the 1/20s approximation, as is
done with the relative velocity in the risk quantification module.

4.3.3 Limit the maximum speed in a cooperative mode

Once the instant speed has been obtained, the maximum velocity of the robot can
be limited. Following the ISO rules, this speed cannot be higher than 250mm/s in a
“reduced speed mode”. In this work, the unattended and attended cooperation modes
have been considered “reduced speed modes”.

Discarded idea: Instant velocity as a fuzzy variable.

A first approach to solve this problem was to consider the instant velocity in the risk
quantification module and later process the obtained risk to calculate the maximum
speed. So it was needed to program a new fuzzy variable.

Robot velocity:

The linear velocity of the robot TCP in meters per second.

32 CHAPTER 4. IMPLEMENTATION

One negative rule can achieve all the required functionality by limiting the risk to
‘dangerous’. The target here is to increase the base risk at maximum if the speed is
higher than the mentioned in the ISO rules. This rule has to be implemented in the
original fuzzy system because the new small parallel system can only do risk reductions.

• Rule: IF Cooperation mode = ‘unattended’ OR ’attended’

AND Instant velocity = ‘medium’ OR ’fast’

THEN Risk factor = ‘outOfDanger’ OR ‘safe’

OR ‘moderate’ OR ‘unsafe’ OR ‘risky’ UNWANTED

The problem with this solution is that is too complex, and sometimes the hyperinference
veto does not give the sufficient priority to the negative rule, causing that the risk have
not the maximum value when the velocity exceeds 250mm/s in a cooperative mode.
The current solution is much simpler.

Current solution: Set the speed to 250mm/s.

If the speed is higher than 250mm/s when a cooperation mode is activated, the target
speed is set to this maximum allowed value. The risk quantification module does not
need more considerations about the TCP speed, so consider new fuzzy variables and
rules just complicate the system. Also, with the current solution the base risk value
remains unaltered.

To do this, it is important to remark that the instant velocity is calculated in m/s, but
the motion planner works with angular velocity measured in degrees/s. If, for example,
the speed in m/s has to be reduced by a half (k = 2), then the angular speed have to
be reduced also by a half as shows the Equation 4.1.

v =
2πrω

360
−→ v

k
=

2πrω
k

360
(4.1)

With this method the reduced speed motion of the robot complies with the ISO rules.

4.3.4 Calculate the maximum node speed

The robot is capable to limit its maximum speed according to the cooperation mode.
This simple functionality allows to do a much safer cooperation, and A* can find many
more paths near the human. But there are more paths that A* can obtain if the speed
is more reduced. In a cooperation mode, a speed of 250mm/s can be too high for some
nodes but if it is slower, the robot can move along these nodes safely. Even without
cooperation mode, the speed can be reduced to find a better path. This dynamic speed
control can limit the risk much more, allowing to find new potential paths.

A* gives to the motion planner a vector of nodes that the robot has to cross to reach
the final goal. The developed solution consists in the addition of a new attribute to

4.4. OTHER MODIFICATIONS 33

each node which can take values from 0 to 1 to represent the speed reduction factor.
It works like the risk multiplier; the speed is multiplied by this factor and reduced in
consequence. The motion planner multiplies the target velocity by the speed reduction
value indicated in the current node. The 250mm/s limit is also considered in this speed
reduction factor.

The speed values of these nodes are calculated when A* checks the risk for them. If the
risk is over the threshold, it repeats the calculation at a lower speed until it is about
to reach 0. If the risk is always over the threshold, the node is closed. But if the risk is
reduced under the threshold, the calculated speed reduction is associated to this node.

The experiments showed that sometimes only one node needs to reduce its speed. The
robot has a maximum deceleration value, so sometimes between node and node the
robot did not have time to decrease its velocity. To solve this problem, an interpolation
function for the speed multiplier values was developed. The lowest speed should be in
the node to be interpolated, increasing linearly in the previous and next nodes. So if
after doing the interpolation the resulting speed value is smaller than in the node to
be interpolated, the new value is not applied for that previous or next node.

Also, A* must know that a node with a slower speed is worse than other equal at full
speed. To take this into consideration the node score system has been modified. In
the original A*, the score of a node is the sum of the previous node score plus its own
score. To take the speed into account, the own score of a node is increased depending
on the speed reduction value until is almost the double if the speed is near 0.

With all these implementations, the MAROCO framework now has its modules joined
together and have all the basic tools to achieve a contact based cooperation.

4.4 Other modifications

There have been programmed two other interesting modifications that are not directly
related with the cooperation system.

• There is a new MFC event to recognize the joystick buttons. This is useful to
connect a remote controller and simulate that the human grips the object given
by the robot. This function has been fully tested with a Super Nintendo gamepad
connected as the first joystick.

• There is another modified behaviour in the fuzzy risk module. In the original
code, every time that A* or the motion planner called to it, all the visualizations
of the fuzzy variables, rules and outputs were updated, causing a huge impact in
the global performance. Now the visualizations are only updated when the risk
quantification module is called from the motion planner, and all the windows are
disabled by default.

Chapter 5

Experimental Analysis

This chapter presents different experiments to test and calibrate every part of the
implemented system. The idea here is to show groups of isolated tests to check each
functionality independently. There are many different modules that can affect to these
experiments and much information that can be gathered, so it is necessary to have an
environment as much stable as possible to have meaningful and measurable results.

There are four groups of experiments:

• Risk quantification modifications, especially the risk reduction factor.

• Path planning and tasks of the robot depending on each situation. Also check
how the system reacts to changes in the environment.

• Velocity control, checking the effects in the planned path and the risk.

• The full system in a real situation, checking its behaviour and comparing the
execution speed with the old system.

As has been explained in the Implementation section, in this phase some variables have
been calibrated and changed from the original MAROCO version. The following values
are used in all the tests and the final system:

• The variable risk threshold now is 0.8 (originally 0.95). This allows to the system
to be much more reactive and dynamic to risk variations.

• The variable dist threshold now is 0.4 (originally 0.05). This allows to A* to
design paths avoiding the human with a much more reasonable safety margin.

• The maximum speed is increased to 200. In the practice, the robot normally
will not reach this velocity because its acceleration takes time, but increases the
freedom of the speed control system.

34

5.1. RISK QUANTIFICATION 35

Also it was necessary to modify the original system to compare it with the new one. As
has been explained in the Implementation section, the original system tends to freeze
because sometimes A* always creates paths inside the Look Ahead risk safety range.
To solve this problem, the path re-planning is triggered only when the human intersects
the planned path or enters in its safety distance margin.

5.1 Risk quantification

These tests show the behaviour of the modified fuzzy risk system. All of them have
these characteristics in common unless another thing is indicated:

• The task of the robot arm is to move itself about 180 degrees crossing the human
action area. This is its default task in MAROCO.

• The human is very near to the robot, does not move, and does not look at it.

• The expectation delay is set to 0 to have a static environment.

• The cooperation mode is changed manually for each test to see how the risk
quantification system reacts in the same environment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160
Time (s)

Original and reduced risk
Risk multiplier

Figure 5.1: Risk without cooperative mode.

36 CHAPTER 5. EXPERIMENTAL ANALYSIS

When the cooperative mode is off (Figure 5.1), the risk is exactly equal to the original
system. The path taken can be a little different because of the new velocity considera-
tions, but in this mode the fuzzy risk module behaves the same way as before. As can
be seen, the final risk is always under the threshold along the full path.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160
Time (s)

Reduced risk
Original risk

Risk multiplier

Figure 5.2: Risk with unattended cooperative mode.

If the cooperative mode is set unattended (Figure 5.2), the original risk fluctuates
much more because the robot is nearer to the human. In this mode, the risk multiplier
reduces the final risk value, maintaining it under the risk threshold and allowing the
robot to approximate much more to the human. The risk multiplier value is constant
because the environment, including the situation awareness delay, is static for these
experiments. Without the risk reduction the final risk exceeds the allowed threshold
and the cooperation cannot be done.

In this situation can be seen that when the robot is moving in the farthest end of the
path (relative to the human) the original risk is next to 0 and when it moves in the
nearest end, the original risk approaches to 1. This is because in both ends of the target
path there are nodes with the controlled approach flag activated. The path between
these nodes is not generated by A*, they are linked with a straight line. These parts
of the path are not optimized taking the distance and risk into account, so the current
risk fluctuates in consequence when the robot traverses these path sections.

The longer periods in the graph are also interesting. This is because when there is a
cooperative mode on, the maximum speed of the TCP is always reduced at 250mm/s

5.1. RISK QUANTIFICATION 37

as is indicated by the ISO10218-1 rules.

When the cooperation mode is set to attended, the risk is reduced only when the human
is looking at the robot. Depending on the deviation of the human head with the robot,
the risk is more reduced or less. If the human is looking directly to the robot, the risk
reduction behaves exactly like in unattended mode. In this case, the base risk is also
reduced in respect to the previous experiments. Of course, if the human is looking at
the robot the situation is less risky in the original fuzzy system too.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 40 50 60 70 80 90 100 110 120
 0

 0.2

 0.4

 0.6

 0.8

 1

D
el

ay
 (m

s)

R
is

k
m

ul
tip

lie
r v

al
ue

Time (s)

Expectation delay
Risk multiplier in unattended

Figure 5.3: Risk multiplier depending on the average expectation delay.

In Figure 5.3 the expectation delay is changed manually to ilustrate the dynamism
of the fuzzy risk multiplier value in the unattended cooperation mode. When the
expectation delay exceeds a certain threshold, the risk is less reduced. As can be seen,
the minimum multiplier value is 0.25 when there is an updated situation detection. As
it gets older, the risk multiplier increases dynamically to avoid reducing the final risk
too much.

This shows that the inclusion of the situation awareness delay restriction modifies the
final risk value and, potentially, the planned path. So it is important to execute the
framework in a fast machine to get always updated expectations and have paths as
optimized as possible.

38 CHAPTER 5. EXPERIMENTAL ANALYSIS

5.2 Path planner

In the previous section the target path was always the default of the MAROCO, but
in this one the path is changed depending on the current task. The next experiments
check the correct functions of the path planner and if the system allows a contact based
cooperation with the human in a controlled environment. The expectation is changed
manually, forcing the robot to change the task and behave according to the situation.

Figure 5.4: Target path for the default MAROCO task.

The Figure 5.4 shows the original path of the MAROCO. This is the default task, so
when any other task is finished the robot continues doing this one until it receives a
new expectation that forces him to change it. The robot TCP moves about 180 degrees
crossing the human working area in one direction and the opposite, in a loop. At both
ends of the path there are controlled approach nodes in which the path between them
is not generated by A*. They are linked just by a straight line.

Figure 5.5: Target path corresponding to the Get Beverage expectation.

5.2. PATH PLANNER 39

The target path for the Get Beverage expectation is shown in the Figure 5.5. In it, the
robot simulates to grip the beverage in one table, and leaves the gripped beverage in
the other. This movement was impossible to do in the original MAROCO because the
risk was always too high. In the current system, when this expectation is detected, the
cooperation mode is set to unattended when the robot has to move near the human,
reducing the risk and allowing the cooperation even if the person is not looking at the
robot. After leaving the beverage, the robot continues doing the default task.

Figure 5.6: Target path corresponding to the Get Object expectation.

The other task is triggered when the expectation is Get Object (Figure 5.6). It simulates
the gripping of an object in one table and moves it to a point very deep in the human
area to give him the the object. This movement is the most difficult to do by the original
system, because it lacks of a velocity control system and a risk reduction method. In
the current system the cooperation mode changes to attended when the robot has to
give the object to the human. The human normally has to be looking to the robot in
order to allow this movement, but even if he is not looking, the movement sometimes
can be done if the speed is low enough and the human is not too near of the final point.

This means that not only the risk reduction value allows the cooperation. With the
dynamic velocity control A* can reach some nodes that were forbidden in the original
system just by reducing the speed.

The robot returns to the default task when the human grips the tool. This is simulated
in MAROCO by pressing the Z key of the keyboard or the button 1 of the connected
joystick 1. Also, if a different expectation comes, the robot leaves the beverage or the
tool in its original position if it had one of them gripped. If the robot had already
gripped the required object, it moves directly to leave the beverage or give the tool.

The path replanning is triggered when the distance to the human is lower than the
distance threshold of the Look Ahead function. The rest of the functions are like in
the original system. It is important to say that the path planned by A* sometimes

40 CHAPTER 5. EXPERIMENTAL ANALYSIS

passes through the tables in the original MAROCO too.

5.3 Velocity control

In this section, the main objective is to evaluate how the velocity control works and
how it is influenced by the distance to the human. The cooperation mode is changed
manually to see the effects in the speed. The default path is selected again for all the
experiments.

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500
 0

 0.5

 1

 1.5

 2

D
is

ta
nc

e
to

 h
um

an
 (m

)

R
is

k
m

ul
tip

lie
r v

al
ue

Traversed distance

No cooperative
Unattended

Figure 5.7: Distance to human with unattended and no cooperative mode.

The differences in the distance to the human depending on the cooperation mode can
be seen clearly in the Figure 5.7. There are two different planned paths for the same
task. Without cooperative mode the average distance is higher than in the unattended
mode. The periods in the unattended mode are shorter, which means that the robot
finish its path traversing less distance. This shows how the risk can influence in the
planned path length.

The Figure 5.8 shows how the speed is reduced to allow nearer approximations to the
human. When the distance is low, the velocity is reduced to pass through these nodes.
The speed variations along the nearest path sections are very important because they

5.3. VELOCITY CONTROL 41

 0

 10

 20

 30

 40

 50

 60

 200 400 600 800 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

V
el

oc
ity

 (d
eg

re
es

/s
)

D
is

ta
nc

e
to

 h
um

an
 (m

)

Traversed distance

Velocity
Distance to human

Figure 5.8: Robot velocity and distance to human variations with unattended mode.

demonstrate that the velocity control is working and A* takes nearer nodes although
the robot has to reduce its speed.

The apparently fast decelerations in the robot speed means that it stops at the end of
the path and starts replanning another. This graph uses the total traversed distance
instead of the elapsed time for comparison reasons, so the plots are reasonable.

When there is not cooperation mode, the risk is equal to the original system, but the
new one plans a little different path even with the same final risk value. The Figure
5.9 shows these small differences. The speed taken in some nodes is slightly inferior
because A* considers a trade-off between distance and speed, and sometimes a reduced
speed node is preferred. This implies that the velocity control is independent of the
risk value, being more probable that A* can find a successful path to the goal node.

In the figure 5.10, the cooperation mode is changed manually to see how the path is
altered. In the left image, the unattended mode reduces the risk, allowing approximat-
ing much more to the human. In the right image the risk is the original and the path
tries to maintain the safety distance.

42 CHAPTER 5. EXPERIMENTAL ANALYSIS

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500
 0

 20

 40

 60

 80

 100

 120

V
el

oc
ity

 (d
eg

re
es

/s
)

D
is

ta
nc

e
to

 h
um

an
 (m

)

Traversed distance

Original system
No cooperative

Figure 5.9: Velocity without cooperative mode and in the original system.

5.4 Full system

The final test set executes the program as is should be, without static environment
and without changing any variable artificially. The human moves in the robot working
area and interacts with it while the robot tries to do its default task. Now the system
depends on the detections of the situation awareness module to change the task and
the cooperation mode automatically. The only manual action is to press the key to
simulate that the human has gripped the object given by the robot.

The test of the full system shows that the robot can cooperate with the human, guessing
its intentions and working proactively, although there are yet some problems. The
programmed behaviour for the Get Beverage expectation works well, but the robot
sometimes moves too near to the human to leave the beverage in the place. The main
problem is that the replanning takes some time, and (although the robot can stop its
motion) if the human is not looking and does a fast movement, he can hit the robot
arm. This can be solved just by adding an intermediate target node in the corner of the
tables to avoid going round the human, but this is a trivial problem and the developed
solution was better to test the speed control.

A* normally does a good job planning the path but sometimes the path has strange
turns and loops which clearly are not the best way to do it, but the path always respects

5.4. FULL SYSTEM 43

Figure 5.10: Path planned in unattended mode and without cooperation.

the risk and distance constraints. This path should be improved in future works to be
straighter. Also, A* sometimes makes paths through the tables. This should be solved
in future works too.

The behaviour for the Get Object expectation works very well. The robot arm ap-
proaches slowly to the human and stops in the programmed point. Sometimes, if the
human approaches before the robot has reached the goal node, the Look Ahead function
forces a path replan, and cannot find any.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

FP
S

Time (s)

Old FPS
New FPS

Figure 5.11: Frames per second in the original and the new implemented system.

44 CHAPTER 5. EXPERIMENTAL ANALYSIS

This forces to the human to go back and allow the robot to finish its movement, because
he cannot grip the object given by the robot until it has reached the goal node. This
behaviour should be improved too.

The frames per second are similar than in the original system (Figure 5.11). The new
program is even one frame per second faster but is a tiny difference. The sudden drops
mean a path replan. In this case, there are more in the old system. The windows with
graphs of the fuzzy variables, rules and fuzzy outputs slow down the system too much,
so all the debug graphic windows except the main OpenGL have been disabled in the
new and the original system. The most important added delay in the new system is
in the path generation part, because the fuzzy risk system is executed many times for
a node to determine the minimum acceptable velocity. This delay is not too big and
this method does the job without making important changes in the original code.

In essence, the original system has many tools to cooperate but they were not joined
together. Now, with the new added functions and adjusts, every part contributes to
have an initial approximation of cooperation that can be extended and improved in
the future.

Chapter 6

Summary

This section contains a summary of all the work that has been done, the final conclu-
sions and the proposed future work.

6.1 Conclusions

In this work a system to allow a robot cooperating with a human has been improved.
The risk quantification module needed changes because the original one was not de-
signed to do potentially dangerous movements. This limitation prohibited the cooper-
ation. A double output fuzzy system was designed. These two outputs are:

• The original base risk, maintaining the idea and all the meaning of the original
fuzzy system that proved to be safe.

• A risk reduction factor, which multiplied by the original risk gives a reduced
value more suitable for cooperation purposes.

The path of the robot changes according to the expectation received. A behaviour
was programmed for two different expectations, Get Beverage and Get Object. The
expectation is not detected in real time, so the risk reduction factor takes into account
the delay of each detection of the situation awareness module.

The path planner was also modified. The original planner moves the robot always at
the same speed, preventing the robot to pass through many nodes because it was very
risky. A speed control was developed to achieve two main targets:

• Move the TCP under the speed of 250mm/s in reduced speed mode (when the
robot has to cooperate with the human) to comply with the ISO rules.

• A dynamic speed control to reduce the speed to allow the path planner moving
the robot through nodes that were inaccessible before at higher speeds.

45

46 CHAPTER 6. SUMMARY

The system is capable to decide (with the situation awareness module) when to leave
a beverage on a table very near to the human, or when the robot has to get a tool and
give it to the human. Now it is capable to plan the task according to this expectation
and its movements considering safety constraints.

6.2 Future work

A very interesting possibility in this work is to improve the cooperation by giving the
object to the human exactly in front of him, instead of in a fixed point in space. This
can be interesting in the case of the beverage too, leaving it near the human instead
of in a defined place in the table.

Also, currently the cooperation mode fuzzy variable takes always three values. 0,
0.5 and 1 for off, unattended, and attended respectively. But the system works also
with values different of these ones, always between 0 and 1, giving different levels of
cooperation. But also, this means that the cooperation mode could be interpolated
along the path traversing. For example, currently after giving an object to the human,
the cooperation mode returns to 0 immediately, causing a sudden fast robot movement
and a forced path to avoid the human. If the cooperation mode is interpolated, the
risk reduction change could be softer and the resulting path more natural.

The last proposed work is to have a path planner that tries to find better paths every
time. Currently the path is built in one moment, taking the environment configuration.
If the human moves out, for example, the robot will move to the goal using the already
calculated path because it is only replanned when there is some danger detected in
the planned path. With the speed control, this proposed improvement is now more
interesting due to the fact that the robot will conserve the planned velocity too.

Bibliography

[1] http://www.mrk-systeme.de/e produkte interaction.html Last visited on 2012-08-25.
(Cited on page 5)

[2] https://shop.pilz.com/eshop/cat/en/DE/00014000337042/
SafetyEYE-Safe-camera-system Last visited on 2012-08-25. (Cited on page 6)

[Amato et al. 1998] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones and
D. Vallejo:OBPRM: An obstacle-based PRM for 3D workspaces. In Proceedings
of Workshop on Algorithmic Foundations of Robotics, 1998, pp. 155-168. (Cited on

page 7)

[Czapiewski et al. 2010] P. Czapiewski and J. Graf: Entwurf und Integration eines
Fuzzy-Logik Systems für die sichere Mensch-Roboter-Kooperation. Interner Bericht,
Fassung vom 5. Februar 2010. (Cited on page 20)

[Edsinger et al. 2007] A. Edsinger and C.C. Kemp: Human-Robot Interaction for Co-
operative Manipulation: Handing Objects to One Another. Robot and Human
interactive Communication 2007. The 16th IEEE International Symposium pp.
1167-1172. (Cited on page 6)

[Graf et al. 2009] J. Graf, S. Puls and H. Wörn: Incorporating Novel Path Planning
Method into Cognitive Vision System for Safe Human-Robot Interaction. Proceed-
ings of IARIA Computation World: Cognitive 2009, Athen, Greece, pp. 443-447.
(Cited on page 4 und 17)

[Graf et al. 2010] J. Graf, F. Dittrich and H. Wörn: High Performance Optical Flow
Serves Bayesian Filtering for Safe Human-Robot Cooperation. Proceedings of Int.
Symposium of Robotics (ISR) and VDI/VDE Robotik 2010, München, Germany,
8 pages. (Cited on page 2)

[Graf et al. 2010b] J. Graf, P. Czapiewski and H. Wörn: Evaluating Risk Estimation
Methods and Path Planning for Safe Human-Robot Cooperation. In Proceedings of
ISR/ROBOTIK. 2010. Institute for Process Control and Robotics (IPR), Karlsruhe
Institute of Technology (KIT), Karlsruhe, Germany. (Cited on page 3, 9 und 20)

[Hart et al. 1968] P. E. Hart, N. J. Nilsson and B. Raphael: A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics SSC4, pp. 100-107. (Cited on page 13)

[Heinrich et al. 2008] D. Heinrich, M. Fischer and T. Gecks: Multi-Camera Collision

47

http://www.mrk-systeme.de/e_produkte_interaction.html
https://shop.pilz.com/eshop/cat/en/DE/00014000337042/SafetyEYE-Safe-camera-system
https://shop.pilz.com/eshop/cat/en/DE/00014000337042/SafetyEYE-Safe-camera-system

48 Bibliography

Detection Between Known and Unknown Objects. Proceedings of 2nd ACM/IEEE
International Conference on Distributed Smart Cameras (ICDSC), 2008, Stanford,
USA. (Cited on page 6)

[Kindel et al. 2000] R. Kindel, D. Hsu, J.C. Latombe and S. Rock: Kinodynamic mo-
tion planning amidst moving obstacles. In Proceedings of IEEE Conference on
Robotics and Automation, 2000, pp. 537-543. (Cited on page 8)

[Kulic 2005] D. Kulic: Safety for Human-Robot Interaction. Dissertation, Faculty of
Graduate Studies, Mechnical Engineering, University of British Columbia, Decem-
ber 2005. (Cited on page 6)

[Kunz et al. 2010] T. Kunz, U. Reiser, M. Stilman and A. Verl: Real-Time Path Plan-
ning for a Robot Arm in Changing Environments. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS’10), Oct. 2010 (Cited on page 7)

[Leven et al. 2002] P. Leven and S. Hutchinson: A Framework for Real-time Path Plan-
ning in Changing Environments. The International Journal of Robotics Research,
Vol. 21, 2002, pp. 999-1030. (Cited on page 7)

[Lösch et al. 2009] M. Lösch, S. Gärtner, S. Knoop, S.R. Schmidt-Rohr and R. Dill-
mann: A human body model initialization approach made real-time capable through
heuristic constraints. Proceedings of the 14th International Conference on Ad-
vanced Robotics (ICAR), 2009, Munich, Germany. (Cited on page 6)

[Mazer et al. 1998] E. Mazer, J.M. Ahuactzin and P. Bessière: The Ariadne’s clew
algorithm. Journal of Artificial Intelligence Research 9-295-316, 1998. (Cited on

page 8)

[Mizuuchi et al. 2009] I. Mizuuchi, J. Fujimoto, K. Yamamoto, Y. Sodeyama, N. Mu-
ramatsu, S. Ohta, K. Hongo, T. Hirose and M. Inaba: A Kitchen Assistant Robot
with a Variety of Sensors Embedded in the Hand to Clear Away Dishes. First
International Symposium on Quality of Life Technology, 2009. (Cited on page 5)

[Pearl 1984] J. Pearl: Heuristics: intelligent search strategies for computer problem
solving. Addison-Wesley Longman Publishing Co., Inc. (Cited on page 14)

[Puls et al. 2011] S. Puls, J. Graf and H. Wörn: Design and Evaluation of Descrip-
tion Logics based Recognition and Understanding of Situations and Activities for
Safe Human-Robot Cooperation. International Journal on Advances in Intelligent
Systems, vol 4 no 3 & 4, 2011. (Cited on page 3)

[Puls et al. 2012] S. Puls, J. Graf and H. Wörn: Cognitive Robotics in Industrial En-
vironments. Maurtua Iñaki (Ed.): Cognitive Robotics in Industrial Environments
(2012) pp. 213-234. (Cited on page 2)

[Reiser et al. 2009] U. Reiser, C. Connette, J. Fischer, J. Kubacki, A. Bubeck, F. Weis-
shardt, T. Jacobs, C. Parlitz, M. Hägele and A. Verl: Care-O-bot R© 3 - Creating
a product vision for service robot applications. The 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, October 11-15, 2009 St. Louis,
USA. (Cited on page 5)

Bibliography 49

[Sax 2004] Carl Sax: Using Robotics to Enhance Logistics Solutions: An Interdisci-
plinary Approach to IKF. M. Jamshidi, A Ollero, L. Foulloy, M Reuter, A. Kam-
rani and H. Yutaka (Eds.), World Automation Congress Volume 4, 2004 Seville.
(Cited on page 5)

[Thiemermann 2005] S. Thiemermann: Direkte Mensch-Roboter-Kooperation in der
Kleinteilmontage mit einem SCARA-Roboter. Dissertation, Fakultät für Maschi-
nenbau der Universität Stuttgart, 2005. (Cited on page 6)

[Vallejo et al. 1999] D. Vallejo, C. Jones, N.M. Amato: An adaptive framework for
’single shot’ motion planning. Technical Report TR99-024, Department of Com-
puter Science, Texas A&M University, College Station, TX, October 1999. (Cited

on page 8)

[Winkler 2008] B. Winkler: Konzept zur Sicheren Mensch-Roboter-Kooperation auf
Basis von Schnellen 3-D Time-of-Flight Sensoren. A. Verl und M. Hägele (Eds.),
VDI/VDE Gesellschaft für Meß- und Automatisierungtechnik (GMA), Düsseldorf,
Deutsche Gesellschaft für Robotik: Robotik 2008, pp. 147-151. Tagung München.
(Cited on page 6)

[Zadeh et al. 1996] L. A. Zadeh, G. J. Klir and B. Yuan: Fuzzy Sets, Fuzzy Logic,
Fuzzy Systems: Selected Papers. World Scientific, 1996. (Cited on page 9)

	Introduction
	Abstract
	Motivation
	Task description

	State-of-the-art
	Human-robot cooperation
	Path planning

	Background
	Risk quantification
	Fuzzy logic
	Double threaded

	Path Planner
	A* algorithm
	Current Path Planner

	Implementation
	Risk quantification
	Considerations of the original fuzzy system
	New fuzzy variables and rules
	The expectation delay processing

	Task planner and target paths for cooperation
	Velocity control
	Considerations over the original path planner
	Obtaining the instant velocity of the TCP
	Limit the maximum speed in a cooperative mode
	Calculate the maximum node speed

	Other modifications

	Experimental Analysis
	Risk quantification
	Path planner
	Velocity control
	Full system

	Summary
	Conclusions
	Future work

	Bibliography

