
This� is a postprint version of the following published document� �

Martín-Pérez, J., Bernardos, C.J. (2018). Multi-domain 
VNF mapping algorithms. Paper submitted in 2018 
IEEE International Symposium on Broadband 
Multimedia Systems and Broadcasting (BMSB), 
Valencia.

DOI:10.1109/BMSB.2018.8436765

© 2018 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288499982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/BMSB.2018.8436765


Multi-domain VNF mapping algorithms
J. Martı́n-Pérez

IMDEA Networks Institute
Universidad Carlos III de Madrid

Madrid, Spain
Email: jorge.martin@imdea.org

Carlos J. Bernardos
Universidad Carlos III de Madrid

Madrid, Spain
Email: cjbc@it.uc3m.es

Abstract—5G technologies are taking benefit of the Network
Function Virtualization to achieve more flexible deployments.
This new paradigm allows the resource sharing between op-
erators in federated environments thanks to the decomposition
of services into virtual network functions connected together
composing a “service function chain”. This work proposes
algorithms to solve the placement of such chains in federated
multi-domain scenarios satisfying imposed restrictions in terms
of resource sharing. Algorithms run on top of an implemented
simulator for federated scenarios where multiple operators are
involved. Two of our proposed solutions reach O(N ) running
times in certain scenarios. Our results also show that we achieve
acceptance ratios very similar to those obtained using a tabu
meta-heuristic implementation.

Index Terms—multi-domain, VNF, mapping, heuristic

The remainder of this document is organized as follows. We
analyze the related work in Section II. Section III explains the
multi-domain graphs we can generate in our simulator. Section
IV provides details of the mapping algorithms used to do the
NS requests placement on top of the generated graphs. A stress
test of the implemented algorithms is shown in Section V.
Section VI finishes the paper with some conclusions and future
work.

II. RELATED WORK

The Virtual Network Functions mapping problem has been
widely studied in the recent years. Several works are putting
a big effort into the search of optimal solutions for the
NS mapping problem, which is an N P hard problem [1].
Some approaches rely on Integer Linear Programming (ILP)
techniques to achieve optimal solutions, while others solve
the problem with heuristic algorithms that reach solutions in
feasible computational times.

Works like [2] and [3] use ILP and Mixed ILP (MILP)
techniques to perform the NS placements. [2] focuses on a
relaxation of the initial ILP formulation to solve the VNF
placement and routing problem, while [3] creates an MILP-
based heuristic to solve the problem using local branching.

There is a considerable number of articles which focuses
on how to solve the problem with heuristics due to their short
running times. Among these proposals, works like [1] use
the simulated annealing algorithm to deploy the VNFs in the
middle of traffic flows, so the deployments are optimal. Others
use matrices and eigenvalues [4] to discover deployments that
minimize the costs, or well known algorithms as Dijkstra to
reduce the number of SDN flows [5]. Breadth First Search
(BFS) based algorithms [6], Genetic algorithms [7], greedy
heuristics [8], and even the tabu meta-heuristic algorithm [9]
have been used as well in the VNF mapping problem. The
latest has been modified in this work to minimize the end-to-
end delay of the deployed SFC.

Works mentioned above do not address the mapping in
federated scenarios, but projects as the 5GEx [10] are currently
studying these solutions. [11] and [12] show some of the
mapping algorithms ideas used in the 5GEx project.

The DFS (Depth First Search) is novel in the mapping
problem, and we chose it to directly reach the leaves of our
graphs (the servers). This paper proposes modifications in the
DFS and BFS to boost up the mapping performance in terms of

I. INTRODUCTION

Network Services (NS) like video streaming are usually 
made up of several components (firewalls, video optimizers, 
parental control, etc.) that form what is known as a Service 
Function Chain (SFC).

Such SFC is a set of Network Functions (NF) linked 
together to provide a service. Network Function Virtualization 
(NFV) technologies enable the virtualization of the NFs, 
obtaining Virtual Network Functions (VNFs), to provide more 
flexible deployments depending on the demand and require-
ments imposed by the Service Providers (SPs) that instantiate 
them.

In 5G technologies, NFV has led to an arising idea of 
federated multi-domain environments where several operators 
and SPs can share resources using virtualization layers. In-
frastructure owners can let other entities use their servers and 
links, and make agreements to decide how they want to offer 
part of the resources to other entities in the multi-domain 
federation.

In this work we present algorithms to map NS requests on 
top of a federated multi-domain environment. We analyze and 
implement existing algorithms in the literature, variations of 
them, and also propose novel ones. Every algorithm studied 
in this work tries to achieve the lowest service delay, and to 
allocate the minimum resources necessary for the deployment.

To test the algorithms’ performance we have implemented 
a simulator that generates federated multi-domain graphs and 
SFCs.

1



2



computV and computs hold the computational requirements
(CPU, memory and disk) required by a VNF V , and the ones
present in a server s. And last but not less important, delaymap

and delayreq are used for the delay between 2 mapped VNFs,
and for the required delay between 2 VNFs in the NS mapping
request.

In the following subsections we present all the algorithms.

A. Greedy algorithm

The implemented greedy algorithm (Algorithm 1) iterates
in order through every VNF in the SFC of the NS request. It
starts looking for the servers that have enough CPU, memory
and disk to host a VNF (line 1.4). Then it traverses the graph
starting from the server where the previous VNF was mapped
until it finds another server capable of hosting the next VNF
(line 1.5). Once the VNF is mapped, the algorithm extracts the
following VNFs directly connected to the one already mapped
— this is what we call the neighbor VNFs — and repeats the
process of finding the appropriate servers to host them, and
traversing the graph to find a path between them and the server
where the previous VNF was mapped.

To keep track of the consumed resources in the placement, a
resource watchdog is responsible of allocating the bandwidth
used along the paths and the server resources that every VNF
requires (line 1.10). The resource watchdog is not asked to
allocate resources in case there are no capable servers of
hosting the VNF, or there is no path with available bandwidth
to connect it with the previous one. In case the algorithm fails,
the watchdog frees resources previously allocated, and it exits
with an error.

During the mapping process a NsMapping object is created
to keep track of the paths found between the servers selected
to host the VNFs of the SFC.

Algorithm 1 Greedy search
1: function GREEDYMAPPING(NsReq)
2: for VNF in NSreq do

3: for nextVNF in neighbors(VNF) do

4: capServs = capableServers(opView, nextVNF)
5: path = findPath(VNFserv, nextVNF, capServs)

6: if no path then

7: watchDog.unwatch()
8: return ERROR
9: else

10: watchDog.watch(VNFserv, nextVNF, path)
11: NsMapping.setPath(VNF, nextVNF, path)
12: NsMapping.setLnkDelay(VNF, nextVNF,

path.delay)
13: end if

14: end for

15: end for

16: return NsMapping
17: end function

B. The findPath method

In this subsection we present the different implementations
of the findPath method. This method is used to search a server
capable of hosting a VNF ensuring that delay and bandwidth
requirements are satisfied. Implementations as the random
walk, Dijkstra and BFS have already been studied; but not
the DFS that we propose in this work.

1) Random walk: This algorithm traverses the SP available
resources graph choosing randomly the links to visit (all the
links have same possibilities of being visited). The implemen-
tation includes a hash table of already visited nodes to avoid
choosing them twice in the random walk.

2) Dijkstra: We adapt Dijkstra’s shortest path algorithm to
our scenario. The modified version discards links and paths
that don’t satisfy the bandwidth and link restrictions imposed
by the NS. It uses link delay as edge cost to reach the server
nodes that can host the VNF to be mapped.

3) BFS: Another alternative is to search a server that can
host a VNF using the BFS algorithm. This implementation
creates a tree having as root the previous VNF and expands
the tree in a BFS manner across the SP graph.

4) DFS: This implementation traverses the SP graph using
a tree but following the DFS strategy. It has not been tried in
the literature yet, but it reaches the servers of the SP graph
faster than the previous implementations. This is because it
goes directly to the leaf nodes of the generated tree.

C. BFS and DFS run-time complexity

If all nodes and paths in the SP graph are visited to map a
VNF, BFS and DFS deal with their worst case scenario:

O ��
�
(k − 1)6 ·

⎡⎢⎢⎢⎢⎣

(
k
2

)2
− 1 + (p − 1)

⎤⎥⎥⎥⎥⎦

2
��


(5)

(5) run-time complexity refers to the paths that DFS and BFS
do in the worst case. k is the fat-tree degree, and p is the
number of SP gateways in the meshed scenario (in Fig. 1 we
have p = 5 gateways in the federation graph). Every core,
aggregate and edge switch of a fat tree has k links, and we
need to walk through three switches (one of each type) to reach
the gateways that connects the initial SP to the others. Each
gateway has connection to the

(
k
2

)2
core switches underneath,

but it also has links with another p−1 SPs within the federated
scenario of this work.

We can express (5) in terms of the number of nodes N
(switches, gateways and servers) of a fat-tree [13]:

O
(
N

1
3 N3 (6)

D. BFS and DFS cutoffs

In the following lines que describe the “cutoffs” introduced
to improve the worst case run-time complexity (6):

Forbidden moves: the algorithm can not go from one
server to another of the fat-tree if it
does not use the shortest path.

3



4



TABLE I: Tabu search best iterations and blockings
parameters settings to reach highest acceptance ratio.

algorithm iterations blockings avg. time acceptance (%)

DFS 6 4 3.24 sec. 61.5 %
BFS 6 2 5.04 sec. 63.5 %

Dijkstra 5 3 4.37 sec. 64%

TABLE II: Acceptance ratios as resources are reduced

0/10 2/10 4/10 6/10 8/10 10/10

DFS 100% 90.75% 61.25% 27.25% 3% 0%
BFS 100% 89% 59.75% 27% 3% 0%

Dijkstra 100% 89.75% 60.5% 27.75% 2.75% 0%
tabu 100% 89.75% 61.75% 28.25% 3.25% 0%

simulation jobs in parallel we have made use of GNU parallel
[14].

We use python to implement the algorithms of Section IV,
and we rely on the NetworkX software package [15] to
manipulate the graphs. All the code used to obtain the results
presented in this paper is published as a public repository1.

A. Experiment setup

The graphs generated for this experiment are made up of
20 SPs, each one has a k = 4 fat-tree data center connected
to the federation. The gateway nodes are connected as a full
mesh. In terms of resources sharing, every SP has access to
the computational resources of other 9 SPs, and the foreign
SP can share up to 4 pods with it. Every server equally shares
its resources with the SPs that can access itself.

In the experiment we launch 400 NS requests (each of them
made up of 6 VNFs), having every VNF same computational
resources requirements, an end-to-end SFC delay of 15 time
units, and links requesting 1 bandwidth unit. Each request is
performed by one of the 20 SPs, to decide which one requests
the NS we use a random variable that follows a uniform
distribution SP ∼ U {1, 20}.

For the initial step of the experiment all of the 400 NS
requests must have enough resources to be allocated, that
is a 100% acceptance ratio. To achieve it we start with the
following conditions: 1 time unit of delay and 2400 bandwidth
units in the links used to connect switches, gateways and
servers in the generated infrastructure; and computational
resources in each server (320 present in the multi-domain
graph of this experiment) to host up to 1 VNF for every SP
that can access it (remember every requested VNF has same
computational requirements in the stress test).

B. Tabu search parameters

Before performing the stress test we checked which imple-
mentation of the findPath must be used in the initial greedy
algorithm that tabu search uses as initial solution to perform
modifications. We also tuned the tabu search parameters to get
the best acceptance ratios. Unlike Section V-A, we modified
the incoming NS request requirements so the link’s delay and
bandwidth, and VNF computational resources are not always
the same. If the VNFs to be mapped require between 1/200
and 1/20 of a single server disk resources, between 1/200 and
1/50 of the CPU resources, and between 1/200 and 1/12 of the
server memory resources; then the generated multi-domain is
not able of hosting all the incoming NS requests.

1https://github.com/MartinPJorge/vnfs-mapping/commit/
c8172327860443ac8abcc9f4a51d66abf5c26e19

With this in mind we performed 400 NS requests across
the 20 SPs using Dijkstra, DFS, and BFS (the last two with
the cutoffs) as the findPath algorithms to be used in the initial
solution provided to the tabu algorithm. Then we seek how
many iterations the tabu meta heuristic must perform over
the SFC trying to remap every VNF, and for how many
iterations the performed mappings must be blocked (marked
as tabu). Table I shows the best configurations and average
mapping time per NS request among the 400 ones, and the
acceptance ratio. According to the table, Dijkstra achieves the
best acceptance ratio, but the DFS gets only a 2.5% lower
acceptance ratio while obtaining the quickest average mapping
times.

C. Resource reduction stress test

For this section’s experiment the first step is to have a 100%
acceptance ratio scenario as the described in Section V-A, then
computational resources are reduced in steps of tenths until
every server in the infrastructure has no more CPU, memory
and disk available.

After decreasing the computational resources of all the
servers to a tenth, our simulator performs the 400 NS requests
with the requirements of Section V-A. It tries with 4 different
algorithmic approaches. Three of them are just greedy search
using Dijkstra, BFS and DFS with cutoffs for the findPath
method. The tabu algorithm tested is the one with the pa-
rameters that retrieved the best acceptance ratio among the
ones tried in Section V-B (the one based in Dijkstra). The
random walk implementation of the findPath method is not
included in the experiment because it does not have 100%
acceptance ratio even when there are enough computational
and bandwidth resources for the incoming 400 NS requests of
the experiment setup.

All the tried algorithms yield acceptance ratios that differ
from each others in ≤ 2.24% in every step reducing the
resources (see Table II). That is, the experiment reduces a
10% the computational resources, and in each step all the
four algorithms mentioned in the previous paragraph obtain
very similar acceptance ratios in the 400 NS requests they are
asked to map.

But although acceptance ratios are almost the same, the
running times differ within the four used algorithms (see
Fig. 3). The highest execution time has been reached in the
tabu search, while the greedy search using DFS to find server
nodes is the one that has taken less time to perform the 400 NS
request mappings. The reason why tabu decreases its execution
times as resources are reduced, is because acceptance ratio

5



6




