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Abstract

One of the most effective techniques that allows a low-dimensional representation of Big
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the well-known Principal Component estimator for the common component under different
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1 Introduction

Nowadays, information and communication technologies have achieved a big improvement and

all knowledge fields, including Economics, Mathematics and Statistics, have taken advantage of

these developments in dealing with high-dimensional datasets. One highlighted improvement has

been the reduction of the processing and storage costs inherent to large data banks, the so-called

Big Data. These databases include information that grows exponentially day by day and can be

easily shared all over the world through Internet. In Peña (2014) one can find some of the main

implications when analyzing these enormous datasets. As a consequence of these developments,

the evolution of specific subareas such as time series econometrics, multivariate analysis, non-

parametric methods or Bayesian estimation, has made possible the estimation of more complex

statistical models which help to analyze and predict large number of macroeconomic and financial

variables. It is known between researchers that classical economic and multivariate time series

models present serious limitations when the number of variables to consider is high. One of the

main limitations is that the estimated number of parameters grows with the square of the time

series dimension. Therefore, finding simplified structures or factors that reduce this number of

parameters has became a must when applying these models to real data.

Two well-known solutions that face the problem of dimensionality presented in macroeconomic

and financial time series are (1) to assume that many coefficients are zero and apply some regular-

ization method that allows an efficient estimation of the model, and (2) to reduce the time series

vector’s dimension. The former is the approach of the autoregressive Bayesian models, where

regularization is established as a priori information, see, e.g., Doan et al. (1984) or more recently

Bańbura et al. (2010). Another possible form of regularization is through LASSO and Ridge re-

gression methods, which also have a Bayesian interpretation, see for example Belloni et al. (2012).

The second solution consists in finding linear combinations of the time series which represent de-

terminant features. Some techniques that pursue this goal are classical principal components and

its application to augmented observations as in Ku et al. (1995), the Scalar Component Model

(SCM) introduced in Tiao and Tsay (1989), the reduced-rank models of Ahn and Reinsel (1990),

the Dynamic Principal Components introduced by Brillinger and generalized by Peña and Yohai

(2016), and the well-known Dynamic Factor Model (DFM).

This work focuses on DFM, which has been considered one of the most effective techniques when

dealing with the problem of high dimensionality present in macroeconomic and financial time

series datasets. This model was originally proposed by Geweke (1977) and Sargent et al. (1977)
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as an extension of the classical static factor model for macroeconomic time series. These mod-

els are well-known in macroeconomic (comovements of macroeconomic aggregates, cross-country

variation, forecasting with diffusion indexes) and finance applications (asset returns, risk man-

agement, portfolio allocation, arbitrage pricing theory), and also are widely applied in different

areas of research, such as management (demand analysis, aggregate implications of microeconomic

behavior), medicine, and environment. The main idea in the DFM is that the comovements of a

N-dimensional vector of time series yt can be explained by the sum of two mutually orthogonal

unobserved components: the common component which have a pervasive effect over all the vari-

ables in yt, and the idiosyncratic component or noise, which is specific to each time series variable.

This work studies the estimation of the factors, and factor loadings in DFM. Particulary, we ana-

lyze the performance of two variance-covariance matrix specifications when estimating the common

component by principal components. Our interest is to find out in which scenarios it would be

more beneficial to consider each one of the two specifications: the classic variance-covariance ma-

trix which includes contemporaneous information, and the one proposed by (Peña and Box, 1987)

which includes past information. In order to analyze this performance, we carry out a simulation

study in which different scenarios are considered.

The article is organized as follows; Section 2 introduces a brief summary about the DFM and the

Principal Component estimator. Section 3 presents the data-generating processes considered in

the the simulation exercise, introduces the measure we apply in order to evaluate the performance

of the estimations and shows the simulation results. Section 4 gives an example of a macroeco-

nomic application about the Euro Area business cycles. Finally, some concluding remarks and

potential extensions are given in Section 5. Tables and figures are available in the Appendix and

upon request.

2 Dynamic Factor Model

The state-of-the-art about DFM has distinguished two representations in terms of the dynamic

behaviour of the latent common factors. On one hand, the standard representation, which is

known as the static or stacked representation, introduces the latent factors, ft, in Equation 1

contemporaneously. On the other hand the dynamic representation takes into account the current

effect, as well as, lags of the common factors, see Stock and Watson (2016) for an in depth

explanation of the relationship between both representations. The idea behind DFM is that the

comovements of a N -dimensional vector of time series variables, yt, are explained by the sum of
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two latent components: Λft and et, where Λft is the common component, ft is a r × 1 vector of

common factors and Λ is a N×r matrix of factor loadings, and et, is the idiosyncratic component,

a N × 1 vector of idiosyncratic disturbances or errors. Moreover, the factors follow time series

processes, which has been generally assumed to be a vector autoregression, VAR(p), where p is

the degree of the polynomial matrix Φ(L) = (I − φ1L − ... − φpL
p). When the model admits an

infinite lag order and assumes that the idiosyncratic components are nonorthogonal it is known as

the Generalized DFM, proposed in Forni et al. (2000). Finally, ηt is a r × 1 Gaussian white noise

vector with positive and finite covariance matrix Ση, which is independent of the idiosyncratic

errors et, that is, Eetη
′

t−k = 0 for all k.

yt = Λft + et (1)

Φ(L)ft = ηt (2)

In Equation 1 just the left-hand-side is observed whereas the remaining information must be

estimated with the information contained in the N -dimensional vector yt.

It is important to consider the following general assumptions about the factors ft, the factor

loadings in Λ matrix, and the idiosyncratric errors, et, from Stock and Watson (2002). In order

to avoid the problem of identification, given that for any nonsingular matrix A, Λft = ΛAA−1ft,

we assume that:

A.1 (Λ′Λ/N) → Ir

A.2 E(ftf
′

t) = Σff

A.3 | λi |≤ λ̄ < ∞

A.4 T−1
∑

t ftf
′

t

p
→ Σff

Where Σff is a diagonal matrix with elements σii > σij > 0 for i < j, which means that factors

may present autocorrelation. The factors will be identified up to a change of sign given that A

matrix is restricted to be diagonal with elements of ±1.

Different characterizations of the idiosyncratic component give rise to various versions of DFM

such as, exact or approximate, among others. The main difference between the approximate and

the classic or exact factor model is that in the latter the idiosyncratic errors, et, are assumed to

be cross-sectionally and serially uncorrelated, whereas in the approximate specification the errors
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are allowed to present serial and weak cross-sectional correlation. Let eit indicates the ith element

of et, then the assumptions about the errors et in the exact DFM would be:

A.5 E(e′tet+u/N) = 0

A.6 E(eitejt) = 0

and in the approximate DFM:

A.7 E(e′tet/N) = γN,t(u), and

limn→∞ supt
∑

∞

u=−∞
| γN,t(u) |< ∞

A.8 E(eitejt) = τij, limn→∞ suptN
−1

∑N
i=1

∑N
j=1 | τij,t |< ∞

A.9 limn→∞ suptN
−1

∑N
i=1

∑N
j=1 | cov(eiseit, ejsejt) |< ∞

These assumptions in the approximate DFM are consistent with macroeconomic data and have

been widely considered in the literature about DFM.

Furthermore, as it is said in Hallin and Lippi (2015), most of these models have the nature of

statistical models, in the sense that they make assumptions on the underlying data-generating

process. Traditionally, some of these models have assumed stationarity such as in Peña and Box

(1987), Stock and Watson (2002), Stock and Watson (1988), Bai and Ng (2002) and Lam and Yao

(2012), between others. Whereas, Peña and Poncela (2006) assume nonstationarity for integrated

process, Pan and Yao (2008) for generalized process and Motta et al. (2011) and Motta and Ombao

(2012), assume locally stationary process. It is recommended to see Bai et al. (2008), Stock and

Watson (2011) and Stock and Watson (2016) for an overview of the different DFM specifications,

estimation methodologies, and empirical applications.

2.1 Principal Component Estimator

Two of the main tasks that researches face when dealing with DFM is to estimate the number of

common factors r, as well as, the estimation of the factor loading space M(Λ) and the common

latent factors ft. In the present work we are interested in the estimation of the common component

and we assume that the number of common factors r is known. Specifically, we pay attention to

one of the most applied methodologies in dimension-reduction problems, Principal Component

Analysis (PCA). Some well-known references about the consistency of the Principal Component

estimator are Connor and Korajczyk (1986), Forni and Reichlin (1998), Forni et al. (2000), Bai

5



(2003) and Bai and Ng (2006). Furthermore, we recommend to see Stock and Watson (2011)

which summarize the different methodologies within the time-domain estimation of DFM in three

generations. In summary, the first generation applied Gaussian Maximum Likelihood (MLE) and

the Kalman filter to estimate low-dimensional parametric models. The second generation consid-

ered cross-sectional averaging methods, mainly PC, to estimate high-dimensional nonparametric

models. The third generation combines both, using the consistent nonparametric estimates of the

factors (second generation) in the estimation of the state-space model (first generation), obtaining

the parameter estimates.

For the cross-sectional averaging methods, the vector ft is considered a r-dimensional parameter

to be estimated using the cross-sectional averaging of yt. Therefore, the estimator of ft, f̂t, is ob-

tained as the weighted average of yt using a nonrandom matrix of weights W , which is normalized

such that WW ′/N = Ir. The principal component estimator sets W = Λ̂, where Λ̂ is the matrix

of scaled eigenvectors associated with the r largest eigenvalues of the sample covariance matrix M

described bellow, and the factors are computed as f̂t = Λ̂′yt, the scaled first r principal compo-

nents of yt and this estimator is consistent under general error structure as shown in (Stock and

Watson, 2011). As we mentioned in the introduction, our interest is to find out which variance-

covariance matrix specification, the classic one Γy(0), or the one proposed in Peña and Box (1987),

provides the accuratest estimation of Λ̂, in terms of sample size T , time series dimension N , as

well as, the number of lags k0 considered in the Mk matrix in Equation 3. The idea behind Mk

is to accumulate the information from different time lags which makes sense when dealing with

time series data. Furthermore, it is shown in Lam and Yao (2012) that when the number of time

observations T is small, such specification is particularly useful. The variance-covariance matrix

which includes lags is defined by the following equation:

Mk =

k0∑

k=1

Γy(k)Γy(k)
′ for k ≥ 1 (3)

In both specifications, Γy(k) = cov(yt+k, yt) and the subscript k in Mk means the number of lags

k0 considered in the sum of Equation 3. What we need to estimate the factor loading space M(Λ)

is to implement an eigen decomposition on:

Γ̂y(0) =
1

T

T∑

t=k+1

YtY
′

t (4)
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M̂k =

k0∑

k=1

Γ̂y(k)Γ̂y(k)
′ for k ≥ 1 (5)

where Γ̂y(k) = 1
T

∑T
t=k+1 YtY

′

t−k is the sample variance-covariance matrix of yt at lag k, (k =

0, ..., k0).

The covariance matrix of yt, Γy(k) is:

Γy(k) = ΛΓf (k)Λ
′ + Γe(k) for k ≥ 0 (6)

and

Γy(k)Γy(k)
′ = [ΛΓf (k)Λ

′ + Γe(k)] [ΛΓf (k)Λ
′ + Γe(k)

′]

= ΛΓf (k)
2Λ′ + Γe(k)Γe(k)

′ + Γe(k)ΛΓf (k)Λ
′ + ΛΓf (k)Λ

′Γe(k)
′

(7)

Then the sum of k matrices:

Mk =

k0∑

k=1

Γy(k)Γy(k)
′ = Λ

k0∑

k=1

Γf (k)
2Λ′+

+

k0∑

k=1

Γe(k)
2 + 2Λ

k0∑

k=1

(Γf (k)Λ
′Γe(k))

(8)

We distinguish four cases depending on the assumptions about the errors et: (1) DFM with

identical error structure, this is the simplest situation where the errors do not present serial

correlation nor cross-correlation. The covariance matrix Γe(0) = σ2I is diagonal and Γe(k) = 0 for

k > 0. Then, it is easy to see that Γy(0) and Γy(k) share the same r eigenvectors which are the

columns of the loading matrix Λ. (2) DFM with non scalar error structure, where the errors do not

present serial correlation neither serial cross-correlation. Γe(0) is a full rank non diagonal matrix

and Γe(k) = 0 for k > 0. Then it is easy to see that Γy(0) and Γy(k) have different eigenvectors

but all the matrices Γy(k) for k > 0 will have the same eigenvectors. (3) DFM where the errors

present serial correlation and instantaneous cross-correlation. The error covariance matrix Γe(0)

is non diagonal and has full rank, and Γe(k) for k > 0 is a diagonal matrix. Therefore, all the

matrices Γy(k) for k ≥ 0, will have different eigenvectors. (4) DFM where erros are serially and

cross-sectionally correlated. The covariance matrices Γe(k) for k ≥ 0 are full rank and sparse.

Then, all matrices Γy(k) for k ≥ 0, will have different eigenvectors.

Next section provides a simulation study of cases (1) and (2), where the parameters of interest

are the sample size T , the time series dimension N and the number of static common factors r.
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3 Simulation study

3.1 Data-generating processes

We consider three data generating processes DGP1, DGP2, and DGP3 with r = 1, 2, 3 common

latent factors, respectively. Under a stationary framework and in line with the model in Equation

1, each observation is generated by:

yit = f ′

tλi + eit, for i = 1, ..., N and t = 1, ..., T (9)

where the idiosyncratic errors follow Gaussian White Noise processes, such as, eit ∼ WN(0, σe)

with σe = 2 under case (1), where errors do not present serial correlation nor cross-correlation.

In case (2), the idiosyncratic errors present instantenous cross-correlation and they are generated

following the model:

eit = αei−1,t + σiεit, for i = 1, ..., N and t = 1, ..., T (10)

where the element σi has Uniform (1,10) distribution, the noise εit has Normal (0,1) distribution,

and the parameter α takes values from the Uniform (0, 0.7) distribution.

The r-dimensional common factors, ft, are generated as a vector autoregressive process of order 1

given by the following equation:

ft = φft−1 + ηt (11)

with φ = (0.8, 0.5, 0.2)′. We assume that the errors ηt are independent of the idiosyncratic errors

et, such that E(ηte
′

t) = 0. Each element λi of the factor-loading matrix Λ corresponding to f1t has

Uniform (0,1) distribution. The ones corresponding to f2t have Uniform (0,1) distribution when

i = 1, ..., N/2 and negative Uniform (0,1) when i = N/2 + 1, ..., N . The ones associated to f3t

have Normal (0,1) distribution when i = 1, ..., N/2, and when i = N/2 + 1, ..., N , λi equals zero.

In the simulation exercise, for DGPi with i = 1, 2, 3, we run 500 iterations for each one of the

16 combinations (N, T) and within each combination the number of lags in M̂k matrix are k0 =

1, 2, ..., 10, 15, 20. The sample sizes are, N = 10, 20, 50, 100, and the time observations, T =

50, 100, 200, 500.
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3.2 The angle between subspaces: Canonical Correlations

Our objective is to find out which one of the two variance-covariance matrices Γ̂y(0) and M̂k

provides the most accurate estimation taking into account different sample sizes, number of time

observations, as well as, the parameter k0. Note that we have assume a scalar variance-covariance

matrix for the noise of the form Γe(0) = σ2I, so that in theory both procedures would be equiv-

alent, as the eigenvectors of the matrices Γy(0) and Mk are identical. However, in finite samples

we may find differences and this is the situation we will consider first. In a companion paper

we analyze the case in which the covariance matrices of the noise have a more general form. We

evaluate the performance of each variance-covariance matrix specification using the measure of

the angle between the subspaces generated by each estimated Λ̂ matrix and the original loading

matrix Λ, which is equivalent to the Canonical Correlations (CC) between the estimated matrix

of eigenvectors Λ̂, and Λ, see Equation 11. Briefly, the canonical correlations represent the rela-

tionship of dependence between the subspaces generated by two sets of variables. Let X and Y

be the (n × p) and (n × q) corresponding matrices of eigenvectors Λ and Λ̂, respectively. Then,

we seek a linear combination of the X variables (eigenvectors of Λ), which is the most correlated

with a linear combination of the Y variables (eigenvectors of Λ̂). The eigen decomposition of

PXPY , where PX and PY define the projector onto the corresponding column-space of X and

Y , give the canonical correlations (square roots of the eigenvalues) and the coefficients of linear

combinations that define the canonical variates (eigenvectors). In other words, the best loading

matrix estimation Λ̂ will be the one with larger canonical correlation δ2. From a geometric point

of view, the maximal canonical correlation is equivalent to the cosine of the angle formed by X∗

and Y ∗, the subspaces generated by X and Y . Then,

cos θ2 = δ2 =
(α′S12β)

2

(α′S11α) (β′S22β)
(12)

Where Sij is the ML estimation of the matrix Vij being V11 = E [XX ′], V22 = E [Y Y ′] and

V12 = E [XY ′]. The vectors α and β are the eigenvectors linked to the largest eigenvalues of

matrices Â and B̂, respectively, in:

Âp×p = S−1
11 S12S

−1
22 S21

B̂p×p = S−1
22 S21S

−1
11 S12
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3.3 Simulation results

Let Λ̂0 and Λ̂k be the estimated Λ matrices with no lags and with lags k = k0, respectively. We

write CC0 to define the maximum canonical correlation for (Λ̂0, Λ) and CCk the one for (Λ̂k,

Λ). For each DGPi, i = 1, 2, 3, we have sixteen scenarios in terms of N and T . In case (1)

in which idiosyncratic errors do not present serial correlation nor cross-correlation, the analysis

just considers the cases when k0 = 1 given that Γy(0) and Γy(k) share the same r eigenvectors.

Although we expect similar performances under both covariance matrices specifications, the esti-

mate Λ̂0 provides slightly larger canonical correlation coefficients for the most part of scenarios.

Nevertheless, there are some scenarios in which the estimate Λ̂k achieves superior performance.

Figures 1 to 3 depict the CC0 (solid line) and the CCk (dotted line) for DGP1, DGP2 and DGP3,

respectively. The abscissas axis represents the sample size T and from left to right, each plot has

a fixed number of time series, N = 10, 20, 50, 100. The first plot in Figure 1 (when N = 10) shows

that when T increases, the estimation for Λ improves, as we expected. This patterns is detected

in all plots in Figures 1 to 3. Continuing with the example for N = 10 in Figure 1, for T > 100 the

estimate Λ̂k achieves better results than the estimate with no lags. This finding shows up when

N = 20 too (see second plot in Figure 1). Nevertheless, when the data set includes larger number

of time series (third and fourth plot in Figure 1), N ≥ 50, the estimate Λ̂0 would be better. The

latter behavior is corroborated also for DGP2 in Figure 2 and DGP3 in Figure 3. Moreover, for

DGP2 and DGP3, when the dimension of time series is small (N = 10, 20 third and fourth plots)

and a large number of observation is available (T ≥ 150 and T ≥ 350, respectively) it is more

recommendable to consider the estimate Λ̂k, as we saw previously for DGP1 in Figure 1.

In case (2), idiosyncratic errors present a more realistic structure and, as we specified in Section

2, Γy(0) and Mk have different eigenvectors. Figures 4 to 6 present the simulation results when

Γe(0) is a full rank non diagonal matrix, for DGP1, DGP2 and DGP3, respectively. In Figure 4,

for DGP1 and k0 = 2, the estimator M̂k provides the largest canonical correlation coefficients,

meaning that the estimates Λ̂k are better than Λ̂0. This pattern is also observe in Figures 5 for

k0 = 5, and Figure 6 for k0 = 4 when N = 10, 20, 50 and the number of time observations available

is T > 100. Bottom right plots in Figures 5 and 6 show that when N increases up to 100, CC0

are a little larger than CCk, this is reasonable since Γ̂k contains less information because of the

lags considered.
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4 Macroeconomic application

In 1962 the country-members of the European Economic Community (EEC) contemplated the

creation of an economic and monetary union in the Marjolin Memorandum. From then, the

country-members have followed several steps to achieve the current monetary cooperation known

as the European Monetary Union (EMU) or Euro Area (EA). During the last decade, the Financial

Crisis in 2008 and the European Debt Sovereign Crisis in 2011, have arisen new concerns about the

optimality and sustainability of the EMU. These two crises led to recession phases in the business

cycles of the country-members and the different ways of recovering of such periods gave rise to the

phenomenon known as The Two-Speed Europe. This phenomenon represents the existence of two

different groups of countries: the core-countries and the peripheral-countries. Although Euro Area

country-members share a common monetary policy, they may face different phases (recession or

expansion) of the business cycle. The business cycle (BC from now on) is defined in the literature

(see Bai (2003)) as the comovement of economic variables, and the latent common factors in the

DFM are interpreted as a proper illustration of such comovements.

This topic about the existence of two different groups within the Euro Area in terms of business

cycle synchronization and convergence have been analyzed by Vymyatnina and Antonova (2014)

amongothers, who found that the synchronization of GDP and its major components had increased

since the creation of the EMU. On the contrary, Artis et al. (2004), Camacho et al. (2006) and

Camacho et al. (2008), and Gogas and Kothroulas (2009) conclude that the level of comovements

between the country members have not experimented a significant increased. Recently, Klaus and

Ferroni (2015) analyzing the four largest European economies identify a considerable economic

integration for France, Germany and Italy, but a disconnection for Spanish business cycle. Also,

Borsi and Metiu (2015) analysis shows no global convergence in the EU based on per capital real

income. Although the issue has been widely analyzed, there is no consensus about which countries

would belong to each group, as well as, the possibility of there being a Multi-Speed Europe. Some

of the reasons of such no consensus may be the time horizon and the macroeconomic indicators

considered, together with the country-members included in the sample. Camacho et al. (2006) and

Borsi and Metiu (2015) carry out their analysis considering just one macroeconomic indicator, the

Industrial Production Index (IPI) and Per capita real income, respectively. Di Giorgio (2016) and

Jiménez-Rodŕıguez et al. (2013) analyze comovements between Euro Area countries and Central

and Eastern Europe Countries (CEECs), while Klaus and Ferroni (2015) studies the four largest

EA economies. In addition, Breitung and Eickmeier (2006) consider Austria, Belgium, France,
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Germany, Italy, the Netherlands and Spain as core EA countries. Any of the previous studies have

considered all the EMU countries at the same time, nor the existence of a Multi-Speed Europe.

Nevertheless, the present study fill these gaps in the literature, since the data sample includes

macroeconomic series of all EMU country-members and spans the period from the introduction

of the single currency until the end of 2017.

As we mentioned in the introduction, one of the main advantages of the DFM is that we will

summarize the comovements across the Euro Area country-members during the period of analysis

in a reduce number of common factors. We estimate each country-member business cycle with

the first principal component obtained from the eigen decomposition of the sample variance-

covariance matrix M̂k in Equation 5. We have used this matrix because according to Section

3.3 for small number of time series and large number of observations, M̂k matrix provides more

accurate estimations than Γ̂y(0). Once we estimate the business cycle of each country, we apply a

Hierarchical clustering analysis in order to give answer to the existence of a Two- or Multi-Speed

Europe. Results from this DFM application may provide relevant insights to economic policy

makers, as well as, to the public in general.

4.1 Data

The dataset is composed by three macroeconomic indicators for each one of the 19 EA country-

members. As suggested by Kose et al. (2003) , macroeconomic series of production, consumption

and investment for each country are considered to be good proxies for the estimation of business

cycles. In particular, seasonally and calendar adjusted series at a quarterly frequency of Gross

Domestic Product (GDP), Household & NPISH Final Consumption Expenditure (CON), and

Gross Fixed Capital Formation (INV) were obtained from the Eurostat database. Data availability

differs for each one of the EA members, thus, in order to consider a balanced dataset, the sample

spans the period between the first quarter of 2000 and the third quarter of 2017, covering the last

17 years since the introduction of the Euro as a single currency in 1999. Previous to the analysis

all series were corrected from data anomalies, we use the program TRAMO from Gómez and

Maravall (1996), where the outlier detection and correction procedure for each observation consist

in computing the t-test for four types of outliers, as in Chen and Liu (1993). Furthermore, data

were transformed to achieve stationarity by differencing or log-differencing. Finally, to avoid the

problem of series with large-variance when stracting common factors all series were standardized

to have zero mean and standard deviation equals to one. In general, quarterly series become
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stationary after a log-difference transformation.

4.2 Clustering time series by dependency

The algorithm we consider for the cluster analysis is the Hierarchical Agglomerative Clustering

(HAC). This technique merges observations from bottom to top: it starts with each observation

assigned to its own cluster, in each iteration the two most similar clusters are merged into one

. Similarity between clusters is measure by a distance matrix. In this application the distance

matrix is the Generalized Cross-Correlation matrix, recently proposed in Alonso and Peña (2017).

This measure takes into account all the cross correlations of the observed variables until some lag

k, where k = 1 in this application. We consider four clustering methodologies within the HAC:

Average Linkage, Single Linkage, Complete Linkage and the Ward’s method, and choose the one

with the largest agglomerative coefficient, which represents the amount of clustering structure

found. The dissimilarity measure is defined as:

ĜCC(Yi, Yj) = 1−
|R̂χ(i,j)|

1/2(k+1)

|R̂χ(i)|1/2(k+1)|R̂χ(j)|1/2(k+1)
(13)

where R̂χ represents the sample correlation matrices of the χ’s data matrices, see section 4 in

Alonso and Peña (2017) for a detailed description of the measure.

4.3 Results

First, we take into account the whole dataset and estimate the Euro Area business cycle which

give us an useful interpretations of the European Monetary Union’ economic performance. As

we mentioned above, the estimated common factor is considered as representative of the Euro

Area business cycle given that is able to represent the main events that have occured during

the period of analysis taking negative values during the two recession periods. Shaded areas

in Figure 7 correspond to the Financial Crisis of 2008Q1 and to the European Sovereign Debt

Crisis of 2011Q3 established by the Euro Area Business Cycle Dating Committee. Moreover, this

estimated common factor is able to represent 42.05% of the variability present in the original

data. Figure 8 displays the impact (sum of loading coefficients in absolute value) of each country

explaining the Euro Area business cycle, and Figure 9 summarizes the effect in terms of Gross

Domestic Product, consumption and investment indicators. In general, it represents the economic

behavior of most countries in the Euro Area during the last 17 years, although we can see minor
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influences of countries such as Estonia, Greece, Luxembourg, Malta and Slovekia. In terms of

macroeconomic indicators, GDP series are the most influential explaining comovements between

countries.

The second application consists in estimating each country-member’s business cycle and applying

the clustering methodology to them in order to analize the groups’ memberships. We consider

the Ward’s method since it presents the largest agglomerative coefficient. The objective of this

method is to minimize the total within-cluster variance. Analyzing the dendogram of the Ward’s

method in Figure 11 we can distinguish two main clusters, which are supported by the results of

the Elbow and the Average Silhoutte methods in Figure 10. These methods consist in optimizing

a criterion: in the Elbow method, the optimal number of clusters is the one with minimum total

within cluster Sum of Squares, and in the Average Silhoutte the one that maximizes the average

silhouette. This result confirms the phenomenom of a Two-speed Europe, but the main finding is

that groups do not have a geographic interpretation. One group is composed of Austria, Belgium,

Cyprus, Finland, Germany, Greece, Irland, Italy, Latvie, Lithuania, Malta, The Netherlands,

Portugal, Slovakia, Slovenia, and Spain; meanwhile just three countries formed group 2: Estonia,

France, and Luxembourg. Even though the optimal number of clusters is two, it is worthy of our

attention the likely existence of four clusters in Figure 12. Group 1 would be formed by Austria,

Irland, Malta, Slovakia, and Slovenia, group 2 by Belgium, Cyprus, Finland, Greece, Italy, Latvia,

and Lithuania, group 3 by Germany, the Netherlands, Portugal and Spain, and finally, group 4 by

Estonia, France, and Luxembourg.

Results from the clustering of the business cycles of the Euro Area country-members are consistent

with the literature about the existence of a Two-speed Europe, although such groups of countries

do not represent geographical regions within the European Monetary Union as it has been assumed

previously.

5 Concluding remarks

This article has evaluated the performance of the Pincipal Component estimator under two set-

tings; when the sample covariance matrix of yt only includes current information, and when it

considers past information. Some simulation experiments have been conducted to analyze for

which (N, T ) combinations would be more advantageous to consider Γ̂0 or M̂k under two scenarios

depending on the idiosyncratic error structure. Simulation results show that when idiosyncratic

errors are assumed to have a scalar structure both covariance matrix specifications provide similar
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Canonical Correlation coefficients. Nevertheless, when errors are assumed to have a more realistic

structure, as in case (2) with instantaneous cross-correlation, the M̂k matrix, which includes past

information, performs better than Γ̂0, which only considers current information. Just when the size

of time series N grows more than proportionally with respect to the number of time observations

T , we obtain slightly larger Canonical Correlation coeffients from Γ̂0. The empirical application

of the Euro Area dataset shows the usefulness of the Principal Component estimator with Λ̂k, for

analyzing and evaluating the economic behaviour of countries or regions of countries. Moreover,

the estimation of the Euro Area business cycles together with the clustering analysis provide us

relevant insights about the phenomenon of the Two-Speed Europe.

This work can be extended in many dimensions. The first, that is currently under investigation, is

to consider different characterizations of the idiosyncratic comonent et as in cases (3), where errors

present serial correlation and instantaneous cross-correlation, and case (4), where erros are serially

and cross-sectionally correlated. A second theoretical extension may be to include common latent

factors with lags in Equation 1, or to move beyond stationary settings.
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Figure 1: Similarity between theoretical and estimated subspaces measured by the max-

imum canonical correlation for the model with one common factor (DGP1). CC0 (solid

line) and CCk with k = 1 (dotted line). T in abscissa axis.
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Figure 2: Similarity between theoretical and estimated subspaces measured by the max-

imum canonical correlation for the model with two common factors (DGP2). CC0 (solid

line) and CCk with k = 1 (dotted line). T in abscissa axis.
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Figure 3: Similarity between theoretical and estimated subspaces measured by the maximum

canonical correlation for the model with three common factors (DGP3). CC0 (solid line) and

CCk with k = 1 (dotted line). T in abscissa axis.
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Figure 4: Similarity between theoretical and estimated subspaces measured by the maximum

canonical correlation for the model with one common factor (DGP1). CC0 (solid line) and

CCk with k = 2 (dotted line). T in abscissa axis.
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Figure 5: Similarity between theoretical and estimated subspaces measured by the maximum

canonical correlation for the model with two common factors (DGP2). CC0 (solid line) and

CCk with k = 5 (dotted line). T in abscissa axis.
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Figure 6: Similarity between theoretical and estimated subspaces measured by the maximum

canonical correlation for the model with three common factors (DGP3). CC0 (solid line) and

CCk with k = 4 (dotted line). T in abscissa axis.

Figure 7: Estimated Euro Area Business Cycle.
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Figure 8: Loadings coefficients by country for the estimated Euro

Area Business Cycle.

Figure 9: Loadings by macroeconomic series for the estimated Euro

Area Business Cycle.

Figure 10: Elbow and Average Silhoutte methods for the optimal number of

clusters of the Euro Area country-members.
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Figure 11: Dendogram from the Euro Area country-members

clustering under Ward’s method in two groups.

Figure 12: Dendogram from the Euro Area country-members

clustering under Ward’s method in four groups.
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