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Abstract 
The increasing rise of robotics and the growing interest in some fields 

like the human-robot interaction has triggered the birth a new generation of 

social robots that develop and expand their abilities. Much late research has 

focused on the dance ability, what has caused it to experience a very fast 

evolution. Nonetheless, real-time dance ability still remains immature in many 

areas such as online beat tracking and dynamic creation of choreographies. 

The purpose of this thesis is to teach the robot Mini Maggie how to dance 

real-time synchronously with the rhythm of music from the microphone. The 

number of joints of our robot Mini Maggie is low and, therefore, our main 

objective is not to execute very complex dances since our range of action is 

small. However, Mini Maggie should react with a low enough delay since we 

want a real-time system. It should resynchronise as well if the song changes or 

there is a sudden tempo change in the same song. 

To achieve that, Mini Maggie has two subsystems: a beat tracking 

subsystem, which tell us the time instants of detected beats and a dance 

subsystem, which makes Mini dance at those time instants. In the beat tracking 

system, first, the input microphone signal is processed in order to extract the 

onset strength at each time instant, which is directly related to the beat 

probability at that time instant. Then, the onset strength signal will be delivered 

to two blocks. The music period estimator block will extract the periodicities of 

the onset strength signal by computing the 4-cycled autocorrelation, a type of 

autocorrelation in which we do not only compute the similarity of a signal by a 

displacement of one single period but also of its first 4 multiples. Finally, the 

beat tracker takes the onset strength signal and the estimated periods real-time 

and decides at which time instants there should be a beat. The dance 

subsystem will then execute different dance steps according to several pre-

stored choreographies thanks to Mini Maggie’s dynamixel module, which is in 

charge of more low-level management of each joint. 

With this system we have taught Mini Maggie to dance for a general set 

of music genres with enough reliability. Reliability of this system generally 

remains stable among different music styles but if there is a clear lack of 
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minimal stability in rhythm, as it happens in very expressive and subjectively 

interpreted classical music, our system is not able to track its beats. Mini 

Maggie’s dancing was adjusted so that it was appealing even though there was 

a very limited range of possible movements, due to the lack of degrees of 

freedom. 
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1. Introduction 

1.1 Motivation 
While some people are conjecturing about the future conquest of the 

world by excessively intelligent and powerful evil robots, so far they have been 

a great help to our society. Thanks to their speed and precision and to the 

increasingly sophisticated technology in the field of robotics, factories have 

boost their output with ultra-speed chain production, some dull tasks do not 

need to be made by humans anymore, doctors can do better interventions with 

high-precision aid and we have even had help in the kitchen or with the 

cleaning at home. 

But robots have not always had purely functional purposes. Sometimes 

they are not even meant to have a specific function but they been brought to the 

world simply to pleasure and entertain people, to respond interactively to our 

actions and gestures or even feelings, to be our friends and have a great time 

with them, to perform spectacles alone to the public or along with other humans 

or even to entertain hospitalised kids or the elders in residences or at home as 

well. 

Social robots have had a dramatic impact on current society. Some 

robots like Furby have marked the past of various generations, have 

entertained many children around the world and have been a great companion 

for the childhood of many people. Some people have even become fans of 

some robots, especially in Asia. Already in 1952 the release of the manga 

series Tetsuwan Atomu, also known as Astro Boy in most occidental countries, 

or other popular Japanese series like Doraemon, had triggered a high praise 

and fondness for robots, which were regarded as close friends by most children 

or likewise for more adult people. 

One of the reasons for which we have developed such big admiration for 

robots is that we get easily impressed by their actions, since robotics have 

developed quite rapidly in the last years and 20 years ago robots were not 

capable of doing most tasks the same way they are able to do nowadays. We 
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are seeing different baby robot generations grow; we watch in the media how 

they learn new abilities and how researchers bring them up. 

Something they have learned quite recently is the ability to dance. In the 

past, robots could just continuously make inarticulate artificial movements along 

with the music. Nowadays, as shown in many performances such as those with 

the QRIO robot made by Sony, some robots have developed the ability to move 

in a similar manner compared to us and make us feel they move their hips with 

the same passion some people do; or in other performances, such as recently 

in the 2016 Eurovision contest, robots even compete with humans to show they 

have better dance abilities than us. 

Nevertheless, dancing is not only a matter of having many human-like 

joints and being able to perform many flexible and different moves and change 

between them very fluently. If our robot does not execute a pre-programmed 

choreography, it has to be capable of thinking of new dance steps as music is 

being played and to execute each dance step along at the rate of the music. 

May this seem natural and uncomplicated for most of us, this has not been fully 

accomplished in robots yet. 

Not only performing different dances for different sorts of music or even 

for different parts of the same piece of music is an utterly complex task for a 

robot, but just synchronising with it and moving along with it online, as music is 

heard, is difficult as well. If it was already quite complicated for robots to dance 

according to the rhythm of a single piece of music, it is even much more 

confusing to them to dance along with several consecutive pieces of music, to 

detect a new song has begun and that it requires another pace or even other 

kind of dance steps. 

Because of the subjective nature of all these tasks and all the 

metaphysical questions that they carry about the ultimate reach of imitating 

human emotions, this field of robotics has attired much interest for new 

research and new experimentation. The Social Robots Group in the 

RoboticsLab of the University Carlos III of Madrid, with which this thesis has 

been written, currently explores many of these topics such as motivations and 

emotional control of robots, visual and auditory human-robot interaction, 

multimodal robot-human interaction and the capacity of robots to have a dialog 
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with people. We are working in making robots friendlier and heartier, share our 

feelings and thoughts with them, in making people think they are not just metal 

and plastic, making people happier with new company. 

However, all this poses questions about the sincerity of the response of 

robots to our gestures and feelings, can they really feel what they are 

programmed to say? Even if robots can make us laugh and have indeed an 

emotional effect on us, their deterministic nature impedes us considering we 

have mutual feelings. Nevertheless, with computers we can execute 

pseudorandom processes that humans cannot differentiate from real random 

processes and very often they are even better than us at doing so. Would you 

rely more on a human or a computer to have a random number from one to six? 

Are we humans actually a deterministic chemical system as well, but complex 

enough that if we abstract our behaviour we seem subjective and quasi 

random? 

 

1.2 Objectives 
In this bachelor thesis we are going to add a new social ability to one of 

our robots at the RoboticsLab of the University Carlos III of Madrid. In our case, 

we are going to make the robot Mini Maggie learn how to dance synchronously 

with music she hears real-time. 

The main objective of this project is to build an online system in which we 

hear the music real-time from the microphone, analyse it and detect its beats in 

order to synchronise with it. When the robot is synchronised with the piece of 

music, it will have to move at the detected beat instants so that it can execute 

dance steps along at the rate of the music. 

The main difficulty of this project lies on our desire to create an online 

system, so the robot should react to music real-time, to stop if it does not detect 

music anymore and to move at another rate if the music changes. Another 

important consideration being a real-time system, the robot must not act with a 

long delay but it has to process the input signal almost instantaneously from the 

point of view of human perception. 
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To accomplish this, the robot will have to fulfil three general requirements: 

Ø Beat tracking: 

o Mini Maggie will analyse the music and extract its periodicities and 

sound peaks in order to find the frequency (extracting the so-called 

tempo in the music theory field) and phase of the corresponding beat 

signal of the input music signal. 

o Mini Maggie will hear the music and detect when music starts and 

ends so that the beat signal is always zero when music is off. 

o Mini Maggie will need to update the detected frequency and phase 

online since the incoming song could have parts at different tempi 

and the microphone signal could have consecutive songs as well. 

o She will have to dance synchronously with a general set of music, 

without making unnecessary assumptions about incoming music for 

the system to track beats of pieces of most music styles. 

o Beats will have to be detected with an unperceived delay and sudden 

tempo changes will have to update detected frequency without a long 

delay. 

Ø Dance generation: 

o Choreographies should fit to the broadest set of input music. 

o We want Mini to execute dance steps according to her decisions and 

not hardcode a human-made choreography that fully matches a 

specific song that will be purposely fed into the microphone. 

Ø Integration and global control: 

o Beat tracking and dance generation will have to operate together so 

that Mini Maggie executes a dance step at the time instants a beat 

was detected. 

o The whole system will become idle or activated if an external system 

requires that so that the dancing ability can be integrated in Mini 

Maggie’s global system. 
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2. Previous research 

2.1. Origin of dancing robots 
Aulus Gellius wrote in his book Attic Nights that an ancient Greek 

philosopher and mathematician named Archytas, born 428 BC, is reputed to 

have made what is said to be the first robot of humankind, a wooden machine in 

the form of a pigeon, which was able to fly thanks to some air mechanism. [36] 

Nevertheless, although some people call this flying gadget a robot, even if it 

had indeed been created, it would not be a robot in the modern sense. 

An ancient invention that resembles nearer what we nowadays 

understand as robot was designed by Leonardo da Vinci in 1495. [37] This 

mechanical knight was able to stand, sit, raise its visor and move independently 

each arm, the neck and the jaw. It is disputed that his design was really put into 

practice and that Leonardo da Vinci once constructed this robot but his accurate 

description made it possible for Mark Rosheim to reconstruct it in 2002 and 

prove that it was fully functioning. 

However, the first autonomous robots that were driven by electricity were 

made by William Grey Walter in the 1950s. [38] They were called tortoises 

because of the shell that covered them and it’s similar size and slow speed. 

They were capable of autonomously detecting obstacles and avoiding them 

thanks to a rotating photoelectric cell. 

Even if William Grey Walter tortoises were electrically driven, they still 

had not the nature of modern robots since they were analogical. With the rise of 

digital technology, and specifically computers, there was an increasingly fast 

development in the field of robotics. An example of this development can be 

seen in the Honda E and P robot series, made for research in bipedal 

locomotion. [39] The first one of this series, the E0 robot, made in 1986, could 

just walk and took 5 seconds to move just one step. With the next robot 

generations of the E series, Honda increasingly gained speed for the robots, 5 

years later they could reach a speed of 4.7 km/h and in 1993 the robot could 

already climb stairs of step over obstacles. Since then, Honda tried to make 

fully humanoid robots with its experimental P series reaching to the ASIMO 
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model in 2000 since today, which can perform many different complex actions 

like dancing, recognising objects or gestures and interacting with humans. 

Since then, robot technology has become mature enough to not only 

perform non-cognitive actions such as simple moves. Nowadays, there is a new 

wave of research in more complex actions involving more logical processing or 

subjective-like thinking and memories such as interacting with humans and that 

has made possible the rise of social robots, which can be used for entertaining 

purposes and can even create a bond between the user and the robot. 

This interaction between humans and robots has permitted robots, for 

example, to dance with humans, as many demonstrations have showed, such 

as at Digital Content Expo 2010 in Tokyo, where Japanese humanoid robot 

HRP-4C (nicknamed Miim) dances along with people in a performance to the 

public. But interaction does not only happen between robots and humans. In 

2003 Sony created the QRIO robots, which could already dance together as 

showed in some performances. In January 2015 at Tokyo’s Marunouchi 

building there was a demonstration where there were even 100 do-it-yourself 

robots dancing together. 

Social robots are still in research phase and they have not been really 

integrated in the market yet. However, research has been very fast lately and 

some nations like Japan have showed an increasing interest for robots, what 

has accelerated dramatically their development. [40] Maybe in the next years 

go-go dancers will gradually be replaced by dancing robots in Japan. 

 

2.2. Beat tracking systems 

2.2.1. Beat, subbeat or not a beat 
Most pieces of music we are usually used to hear do not only have one 

type of beat. There is usually a hierarchy of beats in which some of them are 

louder, softer or structurally more important than others, what implies our robot 

has to filter somehow with which beats it wants to synchronise. 

To define this hierarchy in a sheet, music is fit within bars, which indicate 

the position of the fundamental beats, and a time signature that specifies the 
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hierarchy of subbeats. The time signature can change in time within a single 

piece of music but in most of them it remains constant. We can divide time 

signatures into two main groups: those that divide beats into two subbeats 

(generally the most common), and those that divide them into three subbeats 

(for example, in waltzes). Splitting beats into more subbeats is in most cases 

just a combination of these two main groups (for example, quadruple time 

signatures can be thought of being twice duple time signatures) and in other 

cases, like splitting it into five subbeats, very rare. 

 

       

   (a)      (b) 

Figure 1: (a) Representation of the most common beat structure. (b) Representation of 

another common beat structure, especially in waltzes. 

All this means that we do not hear all beats as easily and our perception 

depends on the music context as well. Besides, if we want to find a single BPM 

rate of a piece of music, that implies there are more than just one possible rate 

and we should decide which one fits better. If you are hearing a waltz and try to 

tap along at its rate, would tap with the fundamental beats or with each three 

subbeats? 

To address this issue, Paul M. Brossier, Matthew Davies and Martin F. 

McKinney did an experiment in which they asked 40 participants to tap along in 

time with several 30-second excerpts of pieces of music of different genres. [1] 

Each piece had a unique and stable time signature (80% corresponding to the 

binary time signature group). The results were that the subjects tended to tap at 

the beat rate nearest to approximately 120 BPM independently of the 

fundamental rate or subrates. That means that if a waltz were too fast we would 
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tend to tap along in time with the fundamental beats but if it were slower we 

would tend to do it with each of the three subbeats. 

This generates double uncertainty to real-time beat tracking systems, 

where the system at some instant could track the beats at the fundamental rate 

but later it changes to another subrate, what is generally undesirable. Besides, 

music sometimes has rhythmic phenomena such as syncopation in which more 

intense beats do not match the fundamental beats, especially in genres like 

jazz. In other cases, rythm could be complex enough that a time signature could 

not be abstracted so simply even by humans or the beat hierarchy is much 

complex than in the presented cases. 

 

2.2.2. Peak detection algorithms 
When a beat happens in a piece of music, usually that means the 

intensity of sound is largely superior at that time instant with respect the time 

history; that is, a peak occurs. Therefore, a simple way to track the beats could 

be just to search local energy peaks as microphone data comes in. 

Nonetheless, this is not very reliable, as we shall see. 

For this algorithm, we would just have to calculate the energy at every 

time instant as the quadratic sum of input microphone data (for example, each 7 

ms or each 1024 samples) and compare with the mean energy history. But if 

the signal has a very large variance, that may mean we find a beat too often 

since it is easier for a time instant to hold a higher energy in comparison to the 

local audio context. As a solution, to decide that at a time instant there was 

indeed a beat, we could impose the local peak to be steeper if previous input 

had a large variance. [2] 

Even if this analyses quite superficially the input signal without much 

detail, this could be enough for applications where we want to track the beats of 

highly percussive music like electronic and hip-hop. Beside, this simple 

algorithm has a very low computational cost and that would make it feasible in 

almost any low-end hardware. 

Nevertheless, this beat detection algorithm is rather unreliable for most 

other applications. If a piece of music contains a very powerful voice or any 



	 20	

other non-percussive instrument like saxophone or violin, it could mask even a 

very percussive accompaniment. This could be partially fixed by executing this 

algorithm independently at different frequency bands and that could be enough 

if the masked percussive parts are always in a different frequency band than 

the masking non-percussive parts like voice. But for music genres such as 

classical music and rock music, which do not have a high percussive character 

and beats are generally softer, this algorithm may not detect many beats or 

detect them quite arbitrarily. Besides, if a piece of music has a very complex 

rhythmic pattern, even if a robot dances moving at correct beats, we could have 

the perception that it does not move along at in time with the music. Moreover, 

most domestic hardware like personal computers have enough processing 

power to deal with a more detailed analysis of the audio input. 

Peak detection algorithms are widely used and have many other 

applications apart from audio analysis so they have been thoroughly 

researched in other domains such as medicine [3], especially for 

electrocardiograms [4]; image processing [5]; speech recognition [6]; or 

research on general data flow, which could have every kind of applications such 

as traffic control and economic analysis [7]. Nevertheless, the subjective nature 

of music and the difficulty of synchronising at its rhythm by just simply searching 

for input peaks, has made research in this domain look for other kinds of 

algorithms that fit better for audio and specifically music and take into account 

human psychoacoustics. 

 

2.2.3. Onset detection and feature extraction 
A realisation of peak detection specifically for audio is called onset 

detection, since what gives us information about the rhythm of a piece of music 

is not exactly its raw signal peaks but note onsets, that is, the beginning of 

musical notes. Considering an audio signal does not have clearly defined note 

onsets at specific time instants, as in a sheet of music, we often speak about 

onset strength, i.e. the degree of onset or transient, which is related to the 

beats. 
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Particularising beat tracking algorithms for music signals makes them 

much more powerful since the onset strength at a particular time instant does 

not only depend on the sound intensity but also on other features. In this way, 

we can extract more relevant information or use high-level musical knowledge 

to make our algorithm more robust. In the next sections, we shall explore 

different features of the audio signal that some authors have used for onset 

detection. 

 

2.2.3.1. Spectrum-related features 
As we said, when a beat occurs in a piece of music, not only a sudden 

change of the sound intensity happens but also other features of the signal 

change sharply, e.g. the frequency spectrum of the signal. 

Kristoffer Jensen and Tue Haste Andersen (2003) made a comparison of 

how the use of different features affected onset detection. [8] Among them, they 

used pure sound amplitude and other features based on the frequency domain. 

Thanks to their comparison using the same input audio signal, we can see that 

sound intensity does not necessarily offer the best results. 

Since transients are sharp changes in the time domain, the importance of 

variations in the high frequencies becomes apparent for onset detection. Thus, 

these authors use features such as the spectral centroid and high-frequency 

content for their analysis. The spectral centroid of an audio signal is a measure 

of the frequency centre of gravity of the spectrum and is related to timbre and 

specifically the subjective perception of sound brightness. [9] Brighter sounds 

have a higher spectral centroid than sombre sounds. It is calculated as follows: 

[10] 

𝑆𝐶 𝑡 =  
𝑎 𝑡,𝑛 · 𝑓! 𝑛!

!!!

𝑎(𝑡,𝑛)!
!!!

 

Where a(t, n) is the amplitude of the n-th frequency band at time instant t 

and fc is its centre frequency. 
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The high-frequency content of a signal is a weighted sum of the 

amplitude of each band, where the high-frequency bands are given more 

importance with a bigger weight: 

𝐻𝐹𝐶 𝑡 =  𝑛! · 𝑎(𝑡,𝑛)
!

!!!
 

Where nk is the weighting factor and different values of k produce 

different distributions of weight. Paul Masri proposes k = 1 for his audio 

transient analysis work [11] whereas Kristoffer Jensen and Tue Haste Andersen 

use k = 2, [8] thus giving more importance to high frequencies. 

An interesting aspect of HFC is that it does not only give information 

about the high-frequency energy but also about the global sound intensity (if the 

factor k is not too high). For this reason, this is a good way to evaluate at the 

same time both the variations of amplitude in the time domain and the spectrum 

of the audio signal. 

 

2.2.3.2. Adding human perception 
Human beings do not perceive sound pressure in a linear way but rather 

in a logarithmic scale. This implies that, for example, if two violins are 

performing together the same piece of music, we do not perceive sound to have 

double intensity that just one violin. 

For this reason, some authors prefer to use a logarithmic-scaled 

representation of sound amplitude for their onset detection algorithms. Anssi 

Klapuri made a comparison of the logged and the non-logged model with 

different transient piano sounds and concluded that the logged-model finds 

more accurately the time instant where the onset occurs and that it filters more 

efficiently other local amplitude maxima that correspond to the same onset. [12] 

Our hearing does not only sense sound pressure logarithmically but also 

frequency. That means our ear separates sound into wider bands in the higher 

frequencies, thus having more resolution at lower frequencies. There are many 

models of how our hearing filters sound into such frequency bands. 
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The Bark scale [13] and the mel scale [14] map the frequency domain 

into a logarithmic-scaled one. These models map the lower frequencies rather 

linearly whereas higher frequencies are mapped more logarithmically. Some 

authors like Tristan Jehan [15] use the Bark scale whereas Daniel P.W. Ellis 

[16] uses 40 mel bands for his onset detection algorithm apart from the above 

mentioned logged-scaled representation of intensity as well. 

Additionally, there are other psychoacoustical details that we could take 

into account to adapt the onset detection to human perception, such as the 

masking of consecutive sounds in the time and frequency domain, which mp3 

uses for compression purposes.  Another widely aspect of hearing used for 

onset detection is the relation between loudness perception and frequency, [17] 

as expressed in the equal-loudness contours. [18] This implies that we do not 

hear sound with the same amplitude and different frequency equally loud. This 

relation of loudness with respect to frequency even changes with the sound 

level. Besides, these curves are just standardised and in reality vary between 

each person, what exemplifies the complexity of human perception and its 

limited reach for audio analysis. 

 

Figure 2: Representation of the equal-loudness curves (ISO, 2003). 
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2.2.3.3. Using high-level musical knowledge 
We can particularise even further our audio signal and treat it as music 

so that we can take into account musical features that help us find the position 

of beats. Masataka Goto and Yoichi Muraoka took this approach and made two 

different real-time beat tracking systems that were robust enough to detect the 

beat structure of real-world signals. [19][20] 

Most western popular music has a set of drums, which mark quite clearly 

the rhythm of a piece of music. One of these systems from these authors takes 

advantage of this by extracting the bass drum from the piece of music, which 

would most probably mark the most prominent beats, and the snare drum, 

which would give a hint about the inner sequence of strong and weak beats. 

[19] 

Later, they tried to make another system that would also work for 

drumless music. In this case, they used the fact that most western music has 

chord changes at the beginning of bars, the same place where the stronger 

beats happen. When a chord is maintained, we can observe some stability in 

the spectrum of the audio signal whereas it changes significantly when the 

chord is switched. [20] 

 

2.2.3.4. Alternatives approaches in feature extraction 
All the above-explained techniques have many things in common that we 

usually take for granted, like doing a frequency analysis with the FFT. Here we 

present a set of alternatives that some authors have used for feature extraction 

in audio signals. 

Performing the FFT of a signal periodically in time, what is generally 

called the short-time Fourier transform (STFT), presents some problems related 

to its fixed resolution depending on its window size, which specifies what 

amount of the signal is taken to calculate the FFT. If the window is too large, we 

have a poor time resolution at transients and if it is too small, the STFT has 
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poor frequency resolution at low frequencies. [21] This implies there is a trade-

off between time and frequency resolution. 

To tackle that, there have been two main approaches. On the one hand, 

Alexey Lukin proposes to vary the window size to imitate the time-frequency 

resolution of humans and adapt to local signal features like transients. [21] On 

the other hand, another transform, the discrete wavelet transform (DWT), does 

not provide a fixed resolution like the STFT but high time resolution and low 

frequency resolution for high frequencies and high frequency resolution and low 

time resolution for low frequencies, what is more similar to human hearing and 

can also be used for beat detection. [22] 

 

Figure 3: Time-frequency resolution of STFT and DWTW (wavelet.org). 

Additionally, in onset detection we are generally interested in how 

features vary in time. As a consequence, most onset detection algorithms are 

based on calculating the first-order difference between the value of the feature 

at the current instant and that at the previous one. But this is not the only 

approach for finding how they change in time. 

Masri and Bateman use the ratio between both instants, normalised with 

the signal energy for their HFC analysis explained above: [11] 

𝐻𝐹𝐶(𝑟)
𝐻𝐹𝐶(𝑟 − 1) ·

𝐻𝐹𝐶(𝑟)
𝐸(𝑟)  

Where HFC(r) is the high frequency content at current frame, HFC(r-1) at 

previous one and E(r) its energy. 



	 26	

Another approach is to take not only the previous consecutive instant to 

compute the difference but M previous instants: [17] 

𝐶 𝑟 −  
𝐶(𝑟 − τ)!

τ=1
𝑀  

Where C(r) is the value of the feature at current instant. This results in a 

smoothing of the onset detection signal compared with the sharpness of using 

the first-order difference. 

 

2.2.3.5. Which one is the best feature? 
We have seen that there are many different features that we can extract 

from a signal in order to track the beats of a piece of music. Therefore, a 

question may arise: which is the feature that offers the best results for a beat 

tracking system? Nevertheless, there is not a definite answer. 

Particularising the type of music from which we want to infer the beat 

positions can help us make more assumptions that we can use to track beats, 

as Masataka Goto and Yoichi Muraoka did, as we exposed above. As a 

consequence, they may have better results for this set of pieces of music but 

this system is useless for other pieces. Thus, particularising implies a trade-off 

between having better results but a narrower range of use. 

Some authors have tried to compare many of these different features. 

Among these works, we can find that of Nick Collins [17], Kristoffer Jensen and 

Tue Haste Andersen [8] and Matthew E. P. Davies, Norberto Degara and Mark 

D. Plumbley [22]. Nevertheless, it is very difficult to make cross-work 

comparisons since there is not a standardised set of pieces of music to track 

beats and, therefore, each work may have different results according to the test 

data they used. 

Another critical element in comparing different methods is the lack of a 

single ground truth, as we explained in section 2.2.1. This is due to the 

subjective nature of music and the many different interpretations that music can 

have for different listener, not only because of our psychoacoustics but also 

because our memories and culture can alter the way we perceive music. 
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2.2.4. Music period detection 
For a general set of music, just computing the onset strength signal with 

respect to some features and extracting the beats according to some threshold, 

does not provide a robust beat tracking system. Sometimes, features like the 

spectral centroid or chord change do not always vary along in time with the 

beats. 

Additionally, if the music is turned off, humans are still able to abstract 

would-be beats and keep tapping or dancing along in time with the previous 

music, since there exists a repetitive pattern. If we extract how often the beats 

are repeated, i.e. the BPM (beats per minute), we can use this information to 

make our system more robust. There are two main methods to do that: using 

the autocorrelation or using comb filters. 

 

2.2.4.1 Autocorrelation 
Autocorrelation is used in many fields of study, e.g. statistics and signal 

processing. Nonetheless, different fields of study do not have the same 

definition for it, so we will talk about autocorrelation as in signal processing, the 

domain we are interested in. 

For a finite-length discrete signal s[n], the kind of signal that we can 

process in computers, the autocorrelation is defined as follows: 

𝐴 τ =  𝑠 𝑛 · 𝑠[𝑛 − τ]
!!!

!!!
 

Where τ represents a delay and s[n- 𝜏] is signal s[n] delayed by τ. 

In other words, the autocorrelation is a measure of the similarity of a 

signal with itself delayed by different amounts. If our signal has some periodic 

content with period T, the autocorrelation will be the biggest at τ   = T. 

Consequently, we can extract the BPM of a piece of music by finding at which 

delay the autocorrelation has the largest value. This information can then be 

used in our beat tracking system to find the speed in which beats are repeated. 

[16] 
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If we want to make an algorithm to compute the autocorrelation function 

using this definition exactly, it does not scale linearly since it has a 

computational cost O(n2), so other algorithms are used such as the MKC 

algorithm. [23] Nonetheless, we could also use an alternative definition of the 

autocorrelation: [24] [25] 

𝐴 τ =  𝑖𝐹𝐹𝑇{𝐹𝐹𝑇 𝑠[𝑛] 𝐹𝐹𝑇 𝑠[𝑛] ∗} 

However, if we just want the autocorrelation of a limited set of delays, 

scalability is not as important. For example, in the case of finding the BPM of a 

piece of music, we could suppose the speed could just range from 40 to 250 

BPM, therefore, it is not necessary to compute the autocorrelation with every 

possible delay. 

Ultimately, if finding the period is not enough for our application and we 

want how this number corresponds in BPM, we have to compute the inverse of 

the period, since BPM is a frequency measure, and multiply the result by 60, 

considering BPM is a measure of the beats in one minute and not in one 

second: 

𝐵𝑃𝑀 =
60
𝑇  

Where T is the period we found with the autocorrelation function. 

 

2.2.4.2. Comb filters 
A comb filter is a system that adds a scaled and delayed version of its 

own output to the input signal: [26] 

𝑦 𝑡 =  𝑥 𝑡 +  α · 𝑦(𝑡 −  τ) 

Where τ is the delay and α is the gain. This lag causes constructive 

and destructive interferences that make the system filter out or amplify all 

multiples of a base frequency. 
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Figure 4: Frequency response of a specific comb filter (recordingology.com). 

Another property of comb filters is that if they are fed with a periodic 

signal of period equal the delay of the comb filter (T = τ), resonance occurs and 

the output is bigger. [27] We can use this property such that we let our signal 

pass through a set of parallel comb filters with different delays τ and see which 

comb filter has the largest output, which will be the period of our piece of music. 

If needed, we can then convert the period into BPM, as explained before. 

Not only to have a high precision but also for the algorithm to work 

properly, we need a fair amount of comb filters with different delays, since they 

resonate at one particular frequency, not a range of frequencies. However, 

using many comb filters is computationally expensive. Eric D. Scheirer had 

good results with a bank of 150 comb filters ranging frequencies logarithmically 

from 60 BPM to 240 BPM. [27] Hanchel Cheng and Sevy Harris propose, 

however, to make computations in the frequency domain with the FFT to reduce 

computational cost. [28] 

 

2.2.4.3. Comparison 
The use of comb filters and autocorrelation have some things in 

common. Analytically, the operations they compute are similar, comparing to a 

delayed version of the signal. However, there are important differences as well. 

The main advantage of comb filters is that they do not only resonate at 

multiples or fractions of the delay τ (2τ, 3τ, 1/2τ, 1/3τ), but also at simple 

rational relationships such as 3/2τ, 3/4τ, etc. [26] From a psychoacoustic point 
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of view, this approximates better the ground truth, since a tempo of 60 BPM in a 

binary piece of music contains a subtempo of 120 BPM as well, and different 

humans may tap at different of these tempi (see section 2.2.1). 

With autocorrelation methods, we just can extract the tempo of the 

music, but this is not enough to track the beats since we also need the phase. 

However, with comb filters, with can simultaneously extract the beat frequency 

and the phase since it estimates the output at each phase angle of each lag 

whereas the autocorrelation integrates it. [27] 

Additionally, to find the autocorrelation at τ = T, the autocorrelation only 

compares the signal with a version delayed by a single period and not by a 

bigger number of periods whereas the comb filter compares it infinitely far in 

time, yet with less weight as it gets further. [27] 

Nonetheless, the autocorrelation has the advantage that it is more 

efficient in memory usage due to the fact that we have to use one comb filter for 

each single lag, as we explained above, while the autocorrelation involves all 

different lags with it and they are generally simpler to implement. 

 

2.3. Real-time dancing robots 
In previous sections we talked about general beat tracking systems that 

could be applied not only to robots but to other applications as well. When a 

robot knows when it has to move it has to decide which dance step it will 

perform. Besides, beat tracking systems for robots have some particularities. In 

this section we are going to comment some of the many issues that have 

dancing robots in order to synchronise to music and perform dances according 

to it. 

 

2.3.1. Ego noise 
One of the problems that have beat tracking systems specifically on 

robots is that signal quality is damaged with the sound of the motors while the 

robot is dancing, what is called ego noise, the noise that the robot produces. 
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This lowers the signal-to-noise ratio, thus inferring in the reliability of the 

system. 

To solve this problem, a simple solution could be just to increase the 

volume of the music a lot so that the signal-to-noise ratio remains high. 

However, recently more sophisticated methods have been developed, which 

include a pre-processing stage to the beat tracking system where ego noise is 

eliminated from the incoming audio signal. The first approaches arose in 2008 

with Mizumoto [41] and Murata, [42] which focused mainly on rejecting the 

voice of the robot, one of the sources of ego noise. 

The first beat tracking system that took into account ego-motion was 

developed in 2012 by Oliveira, Ince, Nakamura and Nakadai, which improved 

the robustness of the beat tracking system by 15 points compared to that 

without ego-motion estimation. [43] 

To estimate ego-motion noise, they propose to pre-record a set of audio 

data of noises caused by different joints and movement speeds to model each 

possible kind of noise. Then, at each audio frame, joint state is acquired and 

speed is estimated and the robot looks into the audio database for the nearest 

neighbour in terms of joint position and speed and next uses the corresponding 

audio extract to subtract it from the incoming audio signal. Finally, they use a 

general beat tracking algorithm with the audio signal with ego-motion noise 

reduction. 

 

2.3.2. Automated choreography 
While robot manufactures, showing in public performances how well their 

robots can dance, usually prefer meticulously pre-thought choreographies by 

specialists, since they are usually more impressive and totally synched with the 

music. However, in recent years there has been an increasing interest in 

researching how are robots able to create their own dances with the smallest 

human intervention. 

A more specific issue inside this problematic is how the robot has to 

make a transition from a joint state to another joint state, i.e. how it has to 

change from a posture to another smoothly and in a natural way. This issue has 
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been explored by	 Gunwoo Kim et al. for their research in virtual dancing 

characters in computer animation. [44] 

First of all, they prepare a database of dances that the robot has learned 

by motion capturing of the performances of a dancer. These dances include 

specific joint angles at beat instants and their transitions; therefore, if the robot 

wants to make a dance based of parts of the dances of the database, it has to 

clearly identify transitions. However, that could be too slow since the database 

can be massive, due to the high number of degrees of freedom and joints, 

which means a high dimension. To tackle this, they use PCA (Principal 

Component Analysis), what basically reduces dimension while trying to 

minimise the loss of relevant information, and detect transitions from that. 

Bipedal robots have an additional complexity while moving since they 

need to remain stable in order not to fall. For this reason, the Japanese AIST 

has implemented an interface for their robot HRP-4C, nicknamed Miim, that 

hides to the user all the necessary management for the transitions between 

positions while taking into account stability management at the same time. [45] 

If the user tells Miim to do movements that are not possible for stability reasons, 

this software also has the capability of letting the robot execute similar 

movements, which do not put the robot in danger. 

Other authors like Guangyu Xia et al. have focused in making self-

created choreographies as more human as possible by extracting real-time 

emotions from music and adding some randomness. [46] They represent 

emotions as a two-dimensional vector using Thayer’s two types of emotional 

qualities. Then, with the use of some training data, they label each possible 

position the robot can perform with one emotion vector. To make dancing more 

random, they propose the use of Markov chain, which models dancing by 

representing postures by states while transitions between states have a specific 

probability. 
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3. System description 

3.1. Used technologies 

3.1.1. ChucK 
ChucK is a strongly timed programming language for real-time audio 

processing and synthesis created by Ge Wang. It is open-source and is 

supported by Linux, MacOs X and Windows. [30] Its creation was motivated by 

the lack of the notion of time in most programming languages and the excessive 

abstraction of time in high level computer music languages. [29] 

The main objective while creating this language was to address this 

issue and offer to the developers a way to control exactly when each task is 

executed. As design goals for the language, Ge Wang set the flexibility as a 

priority to let programmers express their ideas without difficulties into code and 

allow fast prototyping for rapid testing. [29] For this purpose, the author tried to 

make the language as readable as possible. Although the author recognises the 

importance of the performance, it is not set as a top priority for the language 

itself and it is handed over to the developers to provide them with the maximum 

control. 

ChucK supports a simple sample-synchronous, non-preemptive 

concurrent programming model in which many shreds (ChucKian threads) can 

be synchronised in time. It supports the use of unit generators that let the 

programmer use the loudspeaker and microphone and create different output 

signals, filters, basic signal processing and instruments and synthesisers. There 

are also unit analysers, which make possible time-frequency domain 

transformations and feature extraction for features such as the spectral centroid 

and spectral flux. It supports MIDI and the OSC protocol as well. 

ChucK is a C-like language but its main feature is the ChucK operator 

=>, which permits assignment of variables and the definition of streams in a left-

to-right manner with the combination of various ChucK operators. [31] Besides, 

it has an object system, which parallels the conventions of C++ and Java. [30] 
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ChucK is easy to install but it was already installed and integrated in the 

robot Mini Maggie since it was used for other previously added abilities such as 

speech recognition, noise filtering and sound generation. Besides, it provides a 

powerful set of classical tools of signal analysis, what made ChucK the ideal 

language for the first part of this project. Nevertheless, the lack of 

documentation made it difficult to learn how to use all its possibilities and 

features. 

 

3.1.2. OSC Protocol 
OSC (Open Sound Control) is a simple protocol for real-time sound 

based communication among computers, synthesisers and other multimedia 

devices. [32]  

It offers high resolution time tags, data-typed communication, pattern 

matching language to specify multiple recipients of a single message, message 

“bundles” which act as a single block and a query system to dynamically find 

the capabilities of an OSC server. [32] 

The main transmission of OSC is done via packets, in which the receiver 

is the server and the emitter is the client. OSC packets can be messages or 

bundles. OSC messages begin by an address pattern started by ‘/’, i.e. 

“/oscevent” or “/synth2/channel1”, that allow messages to be easily categorised 

and customised. It is followed by a type tag string started by ‘,’ where the 

different arguments that contain the message are defined. In the last place, we 

find the value of the arguments in the same order they were defined. 

The OSC protocol is used in applications such as sensor-based 

electronic music instruments, multiple-user shared musical control, virtual 

reality, networked LAN music performance or web interfaces. 

 

3.1.3. ROS 
The Robot Operating System is a set of libraries and tools which are 

aimed for robot development. Its goal is not to be a framework with the most 
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features but to support code reuse in robotics [33] and encourage collaborative 

robotic software development by providing a highly modular framework. [34] 

The ROS project arose from the work at Stanford University of the 

STanford AI Robot (STAIR) and the Personal Robots (PR) program around 

2007. [34] Then, Willow Garage, a hardware and software developer for robot 

applications, [35] along with many other institutions and many different types of 

robots took part in the extension of the core ROS concepts leading to an open-

source and very distributed system that makes it possible for many people to 

work easily in the same project and addresses the need of a collaborative 

framework in the robotics research community. 

ROS provides an inter-process communications infrastructure and 

robotic-specific libraries and tools such as the Robot Geometry Library, which 

aids the developer in controlling the relative location of the different parts of the 

robot, and Robot Description Language, to describe robots in a machine-

readable way. It supports many command-line tools for debugging, plotting, and 

visualising in a simple way such as rviz, a general purpose and three-

dimensional visualization of exchanged messages, and rqt, which allows the 

developer to plot variables, visualise a live ROS system and manually manage 

messages for debugging. 

ROS uses client libraries to ease the job of the programmer by 

transforming ROS concepts into code. To main stable libraries are for 

applications in c++, python and LISP. Nevertheless, there is a large collection of 

other experimental libraries that can be used for other programming languages 

such as Java, Go, R, Lua and Ruby. 

Each independent ROS process is called node, which generally performs 

a specific task. Various nodes performing different independent but connected 

tasks form a ROS system. In order for nodes to find each other, exchange 

messages or invoke services, they need the ROS Master, which, as a 

consequence, has to be invoked before invoking any node. State of the nodes 

can be saved in the Parameter Server, which is part of the master. Inter-nodal 

communication in ROS works by subscribing or publishing to topics. If a node is 

subscribed to the topic “/robot2/light_sens_1”, it will receive all the messages 

that are sent to this topic and if it publishes to the topic “/hr2/arm_joint”, it can 



	 36	

send messages to this topic. This system allows at the same the 

intercommunication of nodes and their independency by decoupling the 

emission and reception of messages. However, if a request-reply model is more 

appropriate for our application, we can still use services. 

The collaborative nature of ROS has made it become one of the most 

influential robotic frameworks among the research community. It has brought 

much attention thanks to its uncomplicated nature and its many successful 

works using ROS like the PR2 of Willow Garage and it has allowed many 

professors in the robotic academic world let their students apply in a simple way 

the theoretical concepts learned in class. 

 

3.2. Mini Maggie overview 
Mini is a social robot that is oriented to the elders with cognitive 

deterioration. It has been created by the Social Robots Group of RoboticsLab in 

the university Carlos III of Madrid. It has a similar aspect to the robot Maggie, 

who also belongs to this work group. 

Mini is a desktop robot in order to facilitate its transportation and 

eliminate the problems of needing to go to charge the batteries. However, she 

owns an internal battery as well so that she is able to perform a controlled shut 

down and so that people can move it manually from one location to another 

without a necessary restart. For central control, it has an i5 processor. 

Mini has five degrees of freedom, which are controlled by dynamixel 

servos: one for each arm, two for the head and one for her base. 

As opposed to the robot Maggie, Mini has a soft doll-like cover to 

improve the appearance for the interaction of the users. Besides, it has been 

given a lot of expressivity by adding different light devices: 

• Two 128x128 uOLED screens that simulate the eyes of the robot, where 

different gifs are displayed to emulate different emotions (anger, sadness, 

happiness, tiredness…) and blinking of eyelids as well. 

• Two RGB leds to simulate cheecks. 
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• One RGB led for the heart, which changes in color according to the state of 

the own robot and simulates Mini’s heartbeat by turning on and off. 

• VU metre that simulates the movement of the mouth, which operates 

according to the intensity of Mini’s speech. 

Besides, it has three tact sensors, which are located in the shoulders and 

the stomach and are controlled by an Arduino Mega board. It has other devices 

as well in order to perceive the environment, such as Kinect to detect if 

someone approaches Mini Maggie and a microphone, which is installed in the 

middle part of the robot. 

Mini has a table, which shows different multimedia content (music, 

videos and photos), and other functionalities such as entering the Internet or 

making video calls by Skype as well. 

In the software level, Mini works over the ROS framework. Its control is 

based in a state machine, programmed with Smach, whereas transitions are 

controlled by the dialog system IWAKI. In order to control the inputs and outputs 

of this dialog system, there are two packets called multimodal fussion and 

multimodal fission. 

Initially, Mini starts in the SLEEPING state. When someone touches her 

stomach, she wakes up, greets the user and goes to the WAITING state. This is 

the central state and from this one we can go to all the different states 

according to the ability that we want the robot to perform. 

Interaction with Mini can be performed through the tact sensors and/or 

speech with the microphone. Both speech recognition and the synthesiser that 

is used to generate Mini’s voice are performed with Loquendo. 
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Figure 5: Robot Mini Maggie. 
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3.3. Implemented system overview 

 
Figure 6: Global overview of the implemented dance system for Mini Maggie. 
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The dance system for mini Maggie is comprised of two subsystems: the 

beat tracking subsystem and the dance subsystem. The beat tracking 

subsystem tells the robot when to move and the dance subsystem decides what 

move it will perform. 

On the one hand, the beat tracking subsystem begins by making an 

onset strength analysis of the microphone input signal with the ChucK 

programming language. From this analysis, an onset strength signal is 

outputted and is then delivered via the OSC protocol to the music period 

estimator and the beat tracker, both written in different C++ files. The music 

period estimator extracts the BPM using the autocorrelation of the onset 

strength signal and it hands it over to the beat tracker, which with this 

information in addition to the onset strength signal tracks the beats. 

On the other hand, the dance controller guards a set of possible dance 

steps saved in a text file. It is in charge of reading the dance steps from this file, 

deciding the appropriate dance step and telling the dance step publisher about 

it. The dance step publisher will then publish the specific movements to perform 

to the robot joints according to the dance step brought by the dance controller 

when the beat tracker commands to move. 

Robots do not only have one single ability, but they can execute many 

different tasks in very different domains, such as singing, playing different 

games, helping people, as well as dancing. That means this dancing system will 

ultimately be in another supersystem that manages all the abilities and controls 

when each ability should be performed. For this reason, an external topic called 

“dance_command” has been created to start and finish this dance ability for a 

higher-level system to manage it among other abilities. If a “finish” string value 

is sent to this topic, the beat tracker will shut down, thus making all the dance 

system become idle since it relies on the beat tracking subsystem to move. 

When a “start” string is received, the beat tracker will operate again and, 

therefore, the dancing ability as well. 
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3.4. Beat tracking subsystem 
This system is in charge of tracking the beats of a piece of music. We 

can view this system as a block where an input signal is processed and outputs 

another signal. In this case, it has the microphone signal with respect to time as 

an input and the output is a set of ones or impulse train (or any similar way of 

describing a binary output) with respect to time, which have to correspond to 

the beats of the heard music. 

This system can be represented as follows: 

 

Figure 7: Beat tracking system as a block with an input and output signal. 

Where the output signal b(t) represents the detected beats and 

mathematically is: 

𝑏 𝑡  =  
𝛿 𝑡 –  𝑛 · 𝜏(𝑡)

!!

!! !!
, 𝑖𝑓 𝑚𝑢𝑠𝑖𝑐 𝑖𝑓 𝑜𝑛

 
 

                    0,                           𝑖𝑓 𝑚𝑢𝑠𝑖𝑐 𝑖𝑠 𝑜𝑓𝑓

 

Where n is an integer number and 𝜏(𝑡) is the detected period of the 

different pieces of music that the robot hears in time. This output signal will then 

be used to know at what time instants the robot will have to move. 

This system or block is internally, at the same time, a set of other smaller 

blocks that have different input and output signals. These blocks correspond to 

the bubbles in the beat tracking subsystem in the figure of the overview of the 

global system (see figure 6). The onset analysis block takes the microphone 

signal as input and the onset strength signal o(t) as output. The music period 
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estimator block has this onset strength signal as an input and outputs the 

detected periods real-time 𝜏(𝑡). The beat tracker block takes both the onset 

strength signal o(t) and the detected periods 𝜏(𝑡) and outputs the signal b(t) 

introduced above. 

 

Figure 8: The internal blocks of the beat tracking system. 

In the next sections, we are going to explain how each internal block 

works and how it is implemented. 

 

3.4.1. Onset strength analysis 
The raw microphone input signal is not appropriate for directly finding its 

beats. If we use the raw signal and we feed it into our beat tracking blocks, the 

system would be too unreliable. Therefore, we have to make some pre-

processing and analysis so that we have a signal that better represents the 

probability that there exists a beat at a specific time instant. The output of this 

block would then be the onset strength signal. 
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Figure 9: The onset strength analysis as an input-output block. 

In the analysis of a musical signal and in determining exactly when a 

beat happens in the music, timing is essential. That is why we used the ChucK 

language for implementing this block, since with this language we can control 

time precisely and easily. 

The basic structure of the implemented algorithm is as follows. We listen 

to the microphone at a 8 kHz sampling rate and we first wait for 4 ms of 

microphone input samples in order to have a sufficient amount of information. 

Then we calculate the energy at that time instant by making the quadratic sum 

of the samples and we check if music is on or off according to an algorithm 

explained later. Is music is off we go back to buffering the next samples and if it 

is on we process these samples to perform feature extraction, as commented in 

the previous work, and extract the onset strength at this 4 ms time instant 

(although it is not instantaneous in the physical sense, it is pretty much a time 

instant for our perception). All this results in a single float number, which is then 

sent via the OSC protocol to the next blocks of the beat tracking subsystem. 
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Figure 10: The general flowchart of the onset strength analysis block. 

The “is music off?” block in the previous flowchart has two possible 

states that are saved in a boolean variable: music is off (the initial state) and 

music is on. To change between states we use the energy at that time instant 

and a counter. If the energy is below a threshold, we increment the counter; and 

in the opposite case, we decrement it by 6. If the counter is above a counter 

threshold, we change the state to “music is off” whereas if it is below 0, we 

change the state to “music if on”. 
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Figure 11: Flowchart of the algorithm used to change state between “music is on” and 

“music is off”. 

By preserving state and waiting for a counter and not changing state 

instantaneously when we detected energy was low, we avoid false alarms since 

it is very common that a piece of music has short periods of low energy even in 

more than 4 ms consecutively. The same way, this avoids that transitory noise 

triggers a state change and, as a consequence, that the system thinks wrongly 

that it is hearing to music. If the counter threshold is too low, it will not solve the 

former problem. However, if it is too high, it will not respond quickly to the start 
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and end of music. Through experimentation with different values, we found that 

a counter threshold of 150 works fine. 

To tell the next blocks that music is off, we send them an onset strength 

value of -1042, which is an impossible value since onset strength is mainly 

positive and rarely negative but always near 0 (it can be negative due to the 

normalisation). 

To find the onset strength value at the 4 ms time instant, we first perform 

the FFT of the samples of the buffer (strictly speaking, we actually perform the 

STFT since we do it each 4 ms) to divide the spectrum in different bands. Then, 

for each band, we calculate the difference with the value of the same band at 

the previous instant and we set it to 0 if the difference is negative. Next, we sum 

all the differences calculated for each band and we normalise the result with its 

temporal mean and variance. The result of this process is the onset strength 

value. 

The onset strength is normalised so that it has a stable range of values 

and it does not vary if the music is softer or louder. For the same reason, if the 

music has a lot of variance so it is very unstable with lots of highs and lows, an 

unnormalised onset strength signal would have too many peaks, since it would 

think each high could correspond to a beat when in reality it is just the nature of 

the music signal. The normalisation is performed as follows: 

𝑛𝑜𝑟𝑚 𝑜𝑛𝑠𝑒𝑡 =  
𝑜𝑛𝑠𝑒𝑡 − µ

σ  

Where µ is the mean and σ the standard deviation. Since we never have 

the entire signal so as to perform the mean and standard deviation of it, we use 

a different definition of the mean and the standard deviation to adapt it to this 

online process. 
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Figure 12: Flowchart of the processing of the microphone signal and extraction of the 

onset strength. 
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For the online mean, we just calculate the weighted sum of the mean 

calculated at the previous instant and the new onset strength value. The 

weighting affects the adaptability and variation of the online mean with respect 

to time. 

𝑜𝑛𝑙𝑖𝑛𝑒_µ[𝑛] = 1− 𝑎𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑜𝑛𝑙𝑖𝑛𝑒_µ[𝑛 − 1]+ 𝑎𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑜[𝑛]  

For the online standard deviation, the concept is the same. We compute 

the weighted sum of the previous online standard deviation and the newly 

calculated standard deviation as the absolute value of the difference between 

the onset strength and the previously calculated online mean. 

𝑜𝑛𝑙𝑖𝑛𝑒_σ[𝑛] = 1− 𝑎𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑜𝑛𝑙𝑖𝑛𝑒_σ[𝑛 − 1]+ 

𝑎𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ |𝑜 𝑛 − 𝑜𝑛𝑙𝑖𝑛𝑒_µ[𝑛]| 

The factor adaptability determines how fast the online mean and online 

standard deviation will change with a new different input. If the music gets 

suddenly much louder and the adaptability is high, the online mean will get 

bigger faster. However, if it is too high, it will have a lot of noise and vary too 

much with respect to time and the mean should be a relatively constant value. 

For this reason, in general a low adaptability has better results. In our case, we 

have used a 0.05 adaptability with good results. 

Last of all, the onset strength value is sent to the next two blocks, the 

music period estimator and the beat tracker, which are both programmes written 

in C++. The way ChucK has to communicate with other external processes is 

via OSC, which is explained is section 3.1.2. ChucK supports OSC natively but 

the C++ programmes have to implement some code to parse the OSC 

messages. 

In our case, since we always just need to send a single float value, we do 

not need to create a full OSC parsing system. Therefore, the message structure 

remains the same: it starts by the address pattern, which we have set to 

“/onset”, a type tag with a single float parameter definition, i.e. “,f”, and the value 

of the 4-byte float, which is in IEEE 754 single-precision binary floating-point 

format. As a result, they will have to reject any package which does not start 

with “/onset” and is not followed by “,f” and the main problem just lies on parsing 

the float value. 
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The structure and location of information in the 4-byte block is as follows. 

The first bit represents the sign of the float: if it is 0, the number is positive, in 

the opposite case, it is negative. The next 8 bits contain the exponent and the 

remaining bits hold what is called the significand, mantissa or fraction. 

 

 

Figure 13: Example of the structure of an IEEE 754 single-precision binary floating-point 
number (Fresheneesz, 2007). 

Finally, to decode the binary block into the actual floating-point number, 

we perform the following operation: 

𝑓𝑙𝑜𝑎𝑡 = (−1)! · 1 +  𝑚 · 2!!" · 2!"#!!"# 

Where s is the sign bit, m is the significand and exp is the exponent. 

 

3.4.2. Music period estimator 
The music period estimator receives the onset strength signal real-time 

from the previous analysis and examines its periodicities to extract the main 

beat frequency. 

 

Figure 14: Music period estimator as an input-output block. 

The find the period of the incoming onset strength signal, when we 

receive an onset strength value from the previous block, we first add it to a 

buffer and check if the music is off. If music is off, we restart the algorithm and 

otherwise, we continue after waiting to have a minimum amount of onset 
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strength values in order to be able to do computations. When our buffer is 

sufficiently loaded, we perform the 4-cycled autocorrelation, we get the three 

highest values, we add their corresponding periods to the histogram and we 

decide which period of the histogram would be the most probable period of the 

music. So as not to send unreliable periods too fast, we wait for the algorithm to 

stabilise and finally we send the period to the beat tracker. To avoid detecting 

irrelevant frequencies and to make the algorithm faster, we just search BPM 

between 40 and 250. 

 

Figure 15: Flowchart of the general algorithm used to estimate the period of the incoming 

music. 
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For the stabilisation phase and to check if there are already enough 

values of the onset strength signal, we use counters. For the former, we just 

wait until we have received 80 more onset values. For the latter, we wait until 

we have received at least what corresponds in the time domain to two times the 

maximum period we want to find (which coincides with the lowest BPM, i.e. 40 

BPM). That is, we wait for 750 onset strength values: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑤𝑎𝑖𝑡 = 2 ∗  
1

𝑚𝑖𝑛 𝐵𝑃𝑀/60 ∗
1

𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 = 750 

Where min BPM is 40, and the receiving period is the time it takes for a 

new onset value to be received, the “sampling period” of the onset strength 

signal, i.e. 4 ms (see section 3.3.1.). 

In order to solve some of the disadvantages of the autocorrelation 

commented in section 2.2.4.3., we do not use the real definition of 

autocorrelation but a derived one, what has been called the n-th cycled 

autocorrelation. The problem is that if we want to know the weight of a period 𝜏, 

if this period is a good estimation, the autocorrelation would just give the 

similarity of the signal which itself displaced one period 𝜏 since autocorrelation 

is one-cycled. But actually, if this period is indeed a good estimation, the signal 

should not only be similar to itself displaced one period 𝜏, but also to 2𝜏, 3𝜏, and 

so on till 𝑛𝜏. Since we have finite signals, we cannot take this to the infinity but, 

in any case, since the tempo of music could change with respect to time, we 

should not make comparisons with too delayed signals. 

To spare unnecessary computations, we just compute the n-th cycled 

autocorrelation in the range from the minimum period (250 BPM) to the 

maximum period (40 BPM). The definition of the n-th cycled autocorrelation is: 

𝑁 − 𝑡ℎ 𝑐𝑦𝑐𝑙𝑒𝑑 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟 (𝜏) =  
𝑜 𝑡 · 𝑜(𝑡 − 𝜑)

𝑁

!·!

!!!

!"# !

!"# !
 

Where 𝜑 is 𝜏, 2𝜏, 3𝜏, etc. and N is the maximum number of cycles. 

Once we know the weight of each possible period thanks to the n-th 

cycled autocorrelation, we add the best three periods to our histogram. The 

histogram serves to count real-time the occurrences of each period we detect. If 

a period has surpassed 500 occurrences, we decrement the counter of each 
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period by one, avoiding negative values. This is necessary because a new 

piece of music with another period may begin and if there is no maximum 

number in the counter of occurrences, it can be very difficult for the new period 

to surpass the previous one if the robot has listened to the previous piece of 

music for a long time. 

 

Figure 16: Summary of the use of the histogram when new three periods were detected. 

After the last detected periods have been added to the histogram, we 

decide with the registered occurrences of each period in the histogram, which is 

the period that has most probability of being correct. 

First, we filter out the periods that have less than 25 occurrences and 

among the remaining ones we get the three with the highest counter value. 

Then, we see if these periods have a simple relationship between them, that is, 

if one is double of triple the other one. To do that we divide the periods and we 

see if the result is near to 2 or ½, or 3 or 1/3. Since music has several periods at 



	 53	

the same time, which follow these relationships, we consider unrelated periods 

to be outliers, so we discard them. Finally, from the remaining periods, we get 

the nearest one to 120 BPM, since human perception tends to this rate (see 

section 2.2.1). 

If all three periods were found to be unrelated, at least we compare their 

occurrences. We get the highest value of occurrences in the current histogram 

data and then we filter out all periods that have fewer occurrences than half this 

highest value. If there remains more than one, we get the nearest to 120 BPM. 

 

Figure 17: Algorithm to decide the best global period from the histogram data. 
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When the system decides which period it considers better, once the 

stabilisation phase has finished, it is sent to the beat tracker via ROS by 

publishing it to the topic “/music_period”, to which the beat tracker listens. 

 

3.4.3. Beat tracker 
With the period alone, we cannot synchronise to the song, we need to 

know the phase of the beats as well. The beat tracker gets the onset strength 

signal and the current detected period from the music period estimator and it 

outputs a beat signal with the frequency corresponding the last detected period 

and a phase according to the onset strength signal. With the beat signal we will 

then tell the robot to move at those instants. 

 

Figure 18: The beat tracker as an input-output system. 

 

If we know reliably at least the time instant of one beat, that would be 

enough since we could then infer the time instants of the remaining ones with 

the BPM. Therefore, the way we have used to find the right phase of the beat 

signal is by looking for beats, in the onset strength signal, which have a much 

higher probability of being correctly detected. With the position of one beat, we 

can derive the other ones with the period. 

A detected beat that has high probability of really corresponding to the 

song has two characteristics. It has a minimum onset strength at current time 

instant and at previous time instants displaced by a whole number of periods 

from the current instant as well. Like this, we ensured that our beat signal fits 

better the onset strength signal. 
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The general flow of the algorithm is as follows. When a new onset 

strength value arrives, we first check if the music is on to continue or wait for 

another value otherwise. We then adapt the threshold, which we our going to 

use to find beats later, to the incoming music if it is needed. Next we use this 

threshold to check if at the current time instant there is a beat that we can 

detect reliably, so as to estimate the phase of the beat signal. If not, by counting 

the time that has passed from the previous beat, we check if a period of time 

has already passed from the previous beat so a new beat should occur. We will 

command mini Maggie to move if we found a highly reliable beat or if according 

to the period we estimate that a beat should happen now. 

 

Figure 19: The general flowchart of the beat tracker. 
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We use a counter that counts the onset strength samples that we have 

received since the last beat occurred. When this counter surpasses the number 

of samples that correspond to a period, we reset it and tell the robot to move. 

To find out if at current instant there is a reliable beat, we compare the 

last onset strength value to a threshold and the mean of the onset strength 

values at the three previous periods by 0.8*threshold. If the current instant 

satisfies these conditions then that means there is very probably a beat and, 

therefore, we tell Mini Maggie to move and we restart the period counter, so 

that we make current instant to correspond to the phase of the beat signal. 

To try to make this separately detected beat as reliable as possible, we 

increment the threshold whenever one such beat was found so that next 

detected beat has more restrictive requirements and is thus more reliable. We 

cannot use a very high threshold from the beginning since, depending on the 

incoming music, that may be too high and that could cause that we may never 

find this reliable estimate of a beat. For the same reason, this threshold will be 

lowered if the onset strength signal has much lower values, to adapt to new 

music since we phase might change with respect to time. 

Lastly, for the dance subsystem to know when music is off, in this case 

the beat tracker will send zeros instead of ones in order to make a distinction. 

 

3.5. Dance subsystem 
When the robot knows when it has to move in order to be synchronised 

with the music, it has to know as well what dance steps it has to perform. The 

dance controller or dance reader will be in charge of deciding a dance step 

whenever the dance publisher asks for it. When the beat tracker detects a beat, 

it will tell the dance publisher that it has to move right now, so the dance 

publisher will ask the dance controller for a dance step string. Then it will parse 

it and command specific movements to the dynamixel module of the robot, 

which automates transitions between different joint states, so we only have to 

care about the new desired joint angles. 
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As a summary, the beat tracker tells the dance publisher when it should 

move, the dance controller tells the dance publisher what movement it should 

perform, and then the dance publisher will actually execute that movement at 

that time instant. 

 

Figure 20: General scheme of the dance subsystem. 

A dance is represented as a dance string. A collection of dance strings is 

stored in each line of a dance file, which the dance controller will read: 

 

Each dance string is at the same time a sequence of step strings 

separated by the character ‘/’, so the dance file would have this structure, where 

the line number would represent the dance number: 

 

Each step string is represented at the same time by an angle in radians 

of each joint, separated by the character ‘;’. In our case, joints have one degree 

of freedom except from the head, which has two, and Mini Maggie has only four 

joints (left and right arm, base and head), so we only need four numbers 

separated by ‘;’. 

As a consequence, in a dance file we have all the necessary information 

about the exact movements of all the dances. The dance controller will just 
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need to read a dance and keep control of the last dance step it has sent to the 

dance publisher in order to send consecutive steps when the dance publisher 

wishes. 

When a dance step string is received, the dance publisher will parse 

each joint position by splitting the step string with ‘;’ knowing its structure: 

 

Figure 21: Structure of a dance step string. 

Finally, when the desired position of a joint is parsed, it will be sent to the 

corresponding topics of the dynamixel module for each joint. 

Due to the movement limitation of Mini Maggie, it is very difficult to 

programme choreographies that make the viewer think that she dances 

according to specific dance styles, such as hip-hop or tango. On the contrary, 

her choreographies have a general style and each dance is not meant to only fit 

a specific style but to fit as well as possible a general set of music. Therefore, 

instead of performing specific dances according to incoming music, a random 

dance will be performed when Mini Maggie detects a new song. 

For this reason, Mini may not dance synchronously with the general 

feelings that we may perceive from the music. Nevertheless, so that Mini can 

somehow express minimally her emotions, she is able to express the desire to 

hear music when she detected music is off. That is done with a random 15 to 25 

seconds timer, which is activated when music is off. Then, Mini says a random 

sentence from a set of previously saved sentences that express this desire for 

music. 

Mini’s speech is controlled by the etts package. If we want Mini Maggie 

to say something, first we have to set some parameters, mainly related to the 

language we want her to speak. Then, a publisher has to be set up, which 

sends messages to the topic “etts”. The message should be a string with the 

desired text but it can also contain some annotations that specify how the text 

can be communicated, such as adding emphasis or making pauses at specific 

time instants. 
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Figure 22: Mini Maggie dancing. 
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4. Experimentation and results 

4.1. Onset strength analysis 
In this section we are going to examine how is the onset strength signal 

of our analyser with different kinds of incoming music. For the analysis, all the 

graphs were plotted using an implementation of our algorithm in MATLAB 

instead of ChucK language, which is the language used in the original 

implementation. For simplicity purposes and easier control, the input signal did 

not come from the microphone but from computer files. 

As a first example, we show the effect of each stage of our algorithm on 

a 5-6 seconds extract of a piece of music in figure 22. We can visually 

appreciate that the raw microphone signal is not appropriate to be directly used 

for our beat tracker since it is too noisy. After the FFT, with the spectrogram it is 

much easier to find several beats in some regions since we separate 

frequencies and, therefore, we can see each frequency band distinctively. The 

onset strength is then extracted from the spectrogram, which basically 

summarises in two dimensions the relevant beat information that we had in the 

spectrogram in three dimensions. After normalising it, we get a stable range for 

the onset strength signal, which approximately is from -1 to 1 for lower onset 

strength values and from 1 to 10 for time instants with higher probability of 

corresponding to beats. 

 

a) 



	 61	

 

b) 

 

b) 

 

c) 

Figure 23: Graphs representing the input signal at different stages of the algorithm. a) 

contains the original raw signal with no processing. b) is a representation of the STFT, 

that is, the spectrogram of the signal. c) is the final onset strength signal that results of 

the processing with this algorithm. 

The number of bins of the STFT marks the frequency resolution of the 

spectrogram and, thus, its clearness. In figure 23 we show the effect of different 

number of bins in the spectrogram with the same input signal. We can see that 

with just four bins, frequency resolution is that low that is very difficult to extract 

the beats. As the number of bins increases, we can observe that beats are 

much easier to identify but, as a side effect, our algorithm has a higher 
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computational cost. Since above 64-128 bins the spectrogram does not seem to 

become clearer anymore, we use 128 bins for our implemented beat tracking 

system. 

 

Figure 24: Spectrogram of the same input signal with different number of bins. The 

number of bins (we just graph the non-repeated bins instead of the really computed bins, 
which would be doubled) is from top to bottom 4, 8, 16, 32, 64, 128 and 256. 

 

Since we have developed a real-time system, to normalise the onset 

strength signal we have to calculate the mean and standard deviation online. As 

we commented in the system description in section 3.3.1., that is when the 

adaptability comes into place. If adaptability is high, the system will respond 

quickly to changes in the mean and standard deviation, so they will change 

more often and vary much more with respect to time. As we see in figure 24 
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with an adaptability of 20% the onset strength signal is too noisy and varies too 

much. 

 

Figure 25: Effect of the adaptability on the normalised onset strength signal. Adaptability 

goes from top to bottom 20%, 10% and 5%. 

Different styles of music have different characteristics that affect the form 

of the onset strength signal and, as a result, the reliability of the system. 

Experimenting with different music genres we have concluded that, in general, 

onset strength signals take three types of form depending on the music style. 

The one that results in a more reliable system happens generally with popular 

music, i.e. mainly rock, pop and electronic music. Beats are easy to identify and 

appear with stable intensity and frequency. Nonetheless, classical music, even 

if it is a piece of music that seems very rhythmic to our ears, produces a very 

unclear onset strength signal; beats are not distinct. However, with jazz music 

we obtain an onset strength signal with clear beat locations, but due to the 

nature of this music style, peaks do not appear in a stable manner, they are not 
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equally spaced and their intensity varies with respect to time because of 

syncopation and the use of more complex rhythmic patterns. 

 

a) 

 

b) 

 

c) 

Figure 26: Resulting onset strength signal from extracts of representative pieces of 
music of different music styles. a) Rock music, b) classical music and c) jazz music. 

 

4.2. Music period estimation 
In order to test our music estimator, we have tried to evaluate three 

parameters: its error rate, its exactitude and its reaction time. 

The resulting period estimation can be wrong due to three reasons: 

because the period of the music has suddenly changed and the estimator has 

not yet adapted to the new rate; due to inaccuracy in the result, even though it 

is very similar to the ground truth (if incoming music has a tempo of 156 BPM 

and our algorithm detects 159 BPM, would you consider the estimation right, 

wrong or inaccurate?); or just because the estimation was wrong. For this 

reason, we have separated error from accuracy, that is, we consider very near 

BPM estimations are right and then we calculate the accuracy as the deviation 
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of correct estimations from ground truth. Besides, our beat tracker does not 

necessarily need an exact BPM estimation since inexact BPM estimations just 

cause an increasing phase difference with the ground truth but our system 

resynchronises from time to time with incoming music due to phase detection. 

Nonetheless, accuracy is important and affects the robustness of the beat 

tracker, so we have evaluated it. 

Wrong periods due to a slow adaptation to the new rate of the music will 

also be considered as right estimations in the error rate evaluation and reaction 

speed will be evaluated separately later. 

We have defined the error rate as the number of wrong estimations 

(excluding the previously commented cases) divided by the total number of 

guesses. That coincides with the relation between the total time the music 

period estimator has been sending wrong estimations of the BPM divided by the 

total duration of incoming music. 

𝑒𝑟𝑟𝑜𝑟 =  
𝑤𝑟𝑜𝑛𝑔 𝑔𝑢𝑒𝑠𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑢𝑒𝑠𝑠𝑒𝑠 =
𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑤𝑟𝑜𝑛𝑔

𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑢𝑠𝑖𝑐  

And accuracy is defined as the mean deviation of right estimations from 

the ground truth. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
|𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛! − 𝐺𝑇!|!

!

𝑁  

Where estimationi is the detected BPM at time instant i and GTi it the 

ground truth at the same time instant (BPM change with respect to time in some 

pieces). 

To evaluate the error rate and the accuracy of our period estimator, we 

have separated music pieces into the three main music categories that we have 

differentiated in the previous section (section 4.1): general popular music, jazz 

music and classical music. We have selected 5 pieces from each category (see 

appendix for the list of pieces and the results for each song), some of them with 

varying tempo, and then calculated the error rate and accuracy as explained 

above. 

Classical music has very often a continuously varying tempo due to 

rubato and other common practices and our algorithm is adapted to find sudden 
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tempo changes and not continuously varying tempi; therefore, with the choice of 

classical pieces we have been partially biased since we have rejected pieces 

that are interpreted with a lo of rubato and expression that vary significantly the 

tempo too often. As a consequence, there is no music from the Romantic period 

and we have included more Baroque music since it has rhythmically a more 

stable nature. Nonetheless, we have still evaluated the error and accuracy of 

these unstable pieces, but separately. 

 
Popular Jazz Classical 

Unstable 
classical 

Error rate 5.51% 9.87% 5.27% 44.20% 

Accuracy ±1.75 ±1.85 ±3.14 ±2.88 

Figure 27: Rate of wrong estimations and exactitude of the implemented system. The 
category named “unstable classical” includes pieces from the Romanticism period that 

have a very unstable tempo. 

We can observe that we generally achieve the best results with popular 

music, both in correct estimation rate and precision. The more complex 

rhythmic patterns of jazz music makes it harder for the algorithm to estimate 

correctly the right period, but precision is still acceptable. With classical music 

that is not too unstable temporarily, we can observe that the problem does not 

lie in approximately detecting correctly the period, but to be precise in the 

detection. This is generally due to the less rhythmic nature of this music and 

due to the practices in the interpretation of classical music, where tempo 

changes for expressive purposes are very common. If tempo variations are 

generalised and excessive, as in the “unstable classical” category, our 

algorithm is not able to estimate correctly the period of incoming music most of 

the time. 

Next, we are going to evaluate how fast our algorithm detects a sudden 

change of tempo. To do that, we concatenate two pieces of music or use a 

piece of music that has parts with different tempi. We are going to use the 

pieces of music of the previous experiment that showed better results, to 
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separate reaction time evaluation with the evaluation of correct estimation and 

precision. 

To compute reaction time we have repeated the experiment 10 times and 

for each experiment we counted the number of times the system still estimated 

the old BPM when a new BPM suddenly appeared and then translated that into 

time, knowing our system makes an estimation each 0.32 seconds. 

 Reaction time 

Mean count 15.2 

Mean time 4.86 s 

Figure 28: Mean reaction time of our algorithm as the number of old estimations and the 
duration of the detection of the new period. 

 

4.3. Beat tracking 
Now we will evaluate how our beat tracker is capable of tracking the 

beats of a song by synchronising to its phase and using the information of the 

music period estimator. To do that, we have examined the precision and recall 

of our system for each song and then, with those two values, we have 

calculated the F-score, which summarises that into a single value by computing 

the harmonic mean of the precision and recall: 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

Precision is a measure of the correctly tracked beats in relation to the 

total number of beats that our algorithm has outputted while recall is the ratio 

between the number of correctly tracked beats and the total number of correct 

beats (ground truth). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
{𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐴𝑁𝐷 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑}

{𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑}  

𝑟𝑒𝑐𝑎𝑙𝑙 =
{𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐴𝑁𝐷 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑}

{𝑐𝑜𝑟𝑟𝑒𝑐𝑡}  
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Due to the subjectivity of deciding if a detected beat was correctly 

tracked or not and to make the evaluation independent of changes between 

different correct periods, we have tried to simplify it to make it more 

deterministic making some assumptions. First, we will consider that undetected 

beats happen while period has been incorrectly estimated or if a there is a clear 

lack of phase synchronisation.  

𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑡𝑠 = {𝑤𝑟𝑜𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑂𝑅 𝑤𝑟𝑜𝑛𝑔 𝑝ℎ𝑎𝑠𝑒} 

The number of undetected beats based on previous suppositions will 

contribute to the number of false alarms as well, since for each undetected beat 

there is a beat that was detected erroneously. However, during the 

experimentation phase, we realised that every time a phase resynchronisation 

occurs because the system has found a new highly reliable beat (see section 

3.3.3.), our system detects two beats when there is in reality just one, so that 

will contribute to the number of false alarms as well. 

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 = 𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑡𝑠 + 𝑛𝑢𝑚 𝑝ℎ𝑎𝑠𝑒 𝑟𝑒𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠 

The programme counts by its own the number of beats it has detected 

and the number of phase resynchronisations. The number of correct beats 

(ground truth) will then be computed as the number of detected beats minus the 

number of phase resynchronisations, since phase resynchronisations count 

twice a correct beat and each incorrectly detected beat corresponds to an 

undetected beat. 

𝑛𝑢𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑏𝑒𝑎𝑡𝑠 = 𝑛𝑢𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑡𝑠 − 𝑛𝑢𝑚 𝑝ℎ𝑎𝑠𝑒 𝑟𝑒𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠 

Therefore, with all this information we can calculate the precision and 

recall as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑡𝑠 − 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑛𝑢𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑡𝑠  

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑛𝑢𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑡𝑠 − 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑛𝑢𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑏𝑒𝑎𝑡𝑠  

With music from the category named “unstable classical” in previous 

section, our beat tracker had rather random results since our algorithm was not 

able to track the beats so we have not made this quantitative evaluation. 
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Besides, ground truth was sometimes very difficult to determine, even by 

humans and, therefore, the evaluation would be too unreliable. 

 Popular Jazz Classical 

Precision 0.767 0.771 0.770 

Recall 0.802 0.815 0.788 

F-score 0.784 0.792 0.779 

Figure 29: Recall, precision and F-score of our beat tracking system according to three 
main music categories of music genres. 

Results about each particular piece of music are presented in the appendix. 

We observe that our beat tracking system generally works well enough if 

music is not too unstable rhythmically, independently of the music genre. 

Nevertheless, as already commented, if there is not a stable rhythmic pattern, 

our algorithm is not able to track beats. 

 

4.4. Dancing 
When Mini hears music, she analyses the microphone signal to get the 

onset strength signal, from which we can get the tempo with the music period 

estimator and the phase and final beat sequence with the beat tracker (see 

system description). Then Mini executes a movement (a single dance step) 

when the beat tracker detected a beat. 

 

a) 
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b) 

 

c) 

     

d) 

Figure 30: Representation of the stages of the whole system from microphone input 

signal to Mini’s dancing. a) Microphone input signal, b) onset strength signal, c) beat 

sequence, d) Some dance steps of Mini’s performed choreography. 

To create choreographies and dance steps for the dance database, we 

experienced two limiting factors while making tests with the robot. On the one 

hand, the limited degrees of freedom of Mini did not allow to make many 

interesting choreographies that highly appeal to the viewer. On the other hand, 

with the choreographies we just decide the desired positions of each dance 

step at each beat instant but the displacement between consecutive dance 
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steps and velocity of transition was handed over to the dynamixel module of the 

robot, which sometimes was too slow if the beat sequence had a high 

frequency and at the end that made the impression that Mini did not dance 

along at the rate of the music or some dance steps were only partially executed. 

To cope with this issue and make it less visible to the viewer, we first 

reduced the maximum joint displacement between consecutive dance steps so 

that dance step transitions could be fully executed with a slower velocity. 

Nevertheless, by trying so, we noticed that short displacements made the 

choreographies much less appealing and seem much more basic. For this 

reason, we introduced again long displacements in the choreographies but 

when a large displacement was foreseen, another joint would make shorter 

displacements that would clearly follow the music even when the beat signal 

had a high frequency. For example, for most written choreographies, the head 

moves with short displacements whereas the arms make longer movements 

and, thus, the result is a more appealing choreography that follows exactly the 

detected beat sequence. 
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5. Conclusions and future work 

In recent years, dancing robots have become much more human and 

realistic and seem to be able to synchronise with the music very well and 

perform very flexible dances. Nevertheless, real-time dancing robots have still a 

long way for research, since music and choreography is not fixed in advanced 

by humans and, therefore, the robot has to make much more decisions and 

analysis, thus, making the dance ability more complex. 

The processing of music can be a very difficult task, since it usually 

involves the extraction of high-level features and subjective emotions. For most 

high-level knowledge, even if it is deterministic information such as chord type, 

robots seem to have much more trouble than. This deterministic high-level 

music features also include tempo, time signature, tonality and many others, 

which robots still have to learn to extract more precisely. 

Besides, since we wanted to implement a real-time system with a low 

delay, we did not have all the information of the song when we needed to make 

an estimation of the tempo or the beat instants and the microphone signal could 

consist in many consecutive songs or a song with tempo changes, what made 

music processing even more complex. Despite these issues, we have been 

able to create a system that extracts real-time and with a fairly high reliability 

the tempo of the music, extracted by the music period estimator. 

Nevertheless, even if Mini Maggie can dance synchronously with the 

rhythm of the music, sometimes the user may perceive her not to dance 

according to the feelings that may arise with song or, for example, even with its 

intensity, since humans do not dance in the same way with louder and softer 

songs. The inclusion of a manner to coordinate Mini’s dancing with feelings and 

other features is still to be done in the future. However, to include some 

liveliness and emotion in the dance ability, Mini Maggie is able to express the 

desire of having music when she hears none. 

The extraction of emotions can be even more complex since we have to 

convert it to a deterministic process that robots can understand and that usually 

involves the extraction of many different features and the execution of many 
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different processes that might be complex as well at the same time. However, 

humans perceive determinism as the opposite of feelings and that forms a 

barrier for the research in emotion extraction. Besides, not every human being 

may feel exactly the same emotions when they listen to a piece of music. 

That opens up an issue that has been considered for other abilities of 

social robots, but not for dancing robots, as far as we are concerned. Should a 

dancing system have different results in different robots to emulate subjectivity 

of humans? The effect of the memory of the robot could be introduced to modify 

the way a robot dances according to the specific experience of the robot, for 

example, when Mini watches people dancing, she learns new choreographies 

emulating humans. Not only experience but identity of each robot as well, to 

dance in a particular manner that makes humans remember this specific robot. 

That could have striking impact on how human beings perceive and remember 

Mini Maggie. 

If robots may be able to feel in the future, is a question that has aroused 

many interest in the robotics community, especially in recent years. 

Investigation currently explores how to make humans think robots respond to 

moving events and feelings and how they can seem to be compassionate or 

empathic. However, at the current research stage, algorithms are written to trick 

people into thinking they really have feelings but developers generally do not 

deliberately code in order to really “create” feelings because that is currently 

impossible.  

That may always remain impossible as well but I would personally say, 

since some future technologies have always been regarded as impossible by 

previous generations, that in the far future a robot, which we could not currently 

grasp, might be able to feel in a similar way humans do. As technologies are 

discovered and the world is better understood, some topics previously 

considered as metaphysics or philosophy become science. Besides, if the real 

deterministic world of science has been able to create humans with complex 

feelings and interactions, why wouldn’t it be possible to create another system 

with similar results? 

A manner that some authors have been used to try to create a robot that 

seems to have similar feelings to us, is to add randomness to its processes like 
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the Markov chain we explained in the previous work section. Other options may 

include adding random noise, such as perlin noise, which has been recently 

used for making robots or characters in computer animations seem to move in a 

very lively way. Nevertheless, the control of perlin noise movement by dances, 

synchronising to music, has not been widely explored yet and it could be 

researched in the future in order to include it for Mini’s dancing generation 

system. 

There are other tasks in the field of music processing that are very 

simple for humans but for robots it seems too confusing. For example, if we 

listen to two songs at the same time it is very easy for us to identify that there is 

not just one song and we may identify each song without difficulty as well but 

that remains challenging for a robot. Besides, if a singer sings very badly, if a 

piece of music is performed artificially by a computer, we can clearly identify 

these situations while for a robot to detect that, we may have to implement 

complex algorithms and these algorithms generally cope with just one of those 

many issues. 

 

5.1. Integration of the dance ability in Mini 

Maggie’s dialog system 
As we explained in this thesis, a robot can perform a varied set of 

abilities such as playing games, singing, helping the elders, etc., and that is the 

case of our robot Mini Maggie; she is a baby robot that still learns new abilities. 

For this reason, all abilities have to be managed by a higher-order system that 

controls when each one should be executed. 

The implemented system is prepared it is possible to activate and 

deactivate it externally. Therefore, it is adjusted so that a higher-order system is 

able to control it without making any modifications in the code. However, 

modifications in the already existing code of the robot have to be made to 

prepare the robot to accept another ability, in our case the dance ability, and 

manage it among all the previously existing ones. 
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Mini Maggie has a dialog system and a status control that manages how 

different abilities are activated and switched in time. These statuses include 

some general ones that specify how the robot is reactive to new input: sleeping, 

ready, etc.; and each ability has an associated status as well, which indicates 

the ability that is currently being performed.  

To switch between different states, a dialog system is generally used so 

that, for example, when Mini Maggie hears that someone tells her to play a 

game, she changes to the status “playing”; or if she is told to go to sleep, she 

changes her status to “sleeping”. The main way to change between different 

statuses is with this dialog system but it is not the only manner; for example, the 

robot can wake up from the sleeping status when it is touched. 

In order to fully integrate the implemented dance ability to this high-order 

system, we would need to define a status associated with the dancing ability 

and manage transitions from and to this status. Since the dialog system works 

with Loquendo, it would be needed to write a set of grammars such as “I want 

you to dance”, “please, dance” (although it would actually be in Spanish, since 

that is the language Mini Maggie knows how to speak) and create a recipe in 

the dialog system in order to recognise the sentence. 
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Appendix – Data used for the evaluation 
and specific results of each song 

 

JAZZ MUSIC CATEGORY 

1. “Little Lily Swing”, Tri-Tachyon. 

2. “As Time Goes By”, H. Person. 

3. “Boogies Blues”, D. Gaynor. 

4. “Corcovado”, A.C. Jobim. 

5. “Amado Mio”, D. Fisher and A. Roberts. 

 

POPULAR MUSIC CATEGORY 

1. “Take Me”, JiKay & MNKN ft. Gaby Henshaw. 

2. “Spaceships”, AREA21. 

3. “Billboard Killer”, Cheap Talk. 

4. “We’re all to blame”, Sum 41. 

5. “Hung up”, Madonna. 

 

CLASSICAL MUSIC CATEGORY 

1. “Eine Kleine Nachtmusik”, W. A. Mozart. 

2. “Concerto Grosso in G Minor, 4th movement”, A. L. Vivaldi. 

3. “Brandenburg Concerto No. 3 in G major, 1st movement”, J. S. Bach. 

4. “String Quintet in E major G.275”, L. Boccherini. 

5. “Messiah - Hallelujah”, G. F. Haendel. 

 

 

 

 

JAZZ MUSIC CATEGORY 
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 1 2 3 4 5 

Music period estimation 

Error rate 0.23% 42.95% 0.00% 3.20% 2.97% 

Accuracy ±0.43 ±2.13 ±2.01 ±1.52 ±3.16 

Beat tracker 

Detected 
beats 

280 412 524 419 512 

Phase 
resynchs 

37 23 8 17 8 

Not 
detected 

8 158 102 53 79 

Precision 0.839 0.561 0.790 0.833 0.830 

Recall 0.967 0.594 0.802 0.868 0.843 

F-Score 0.899 0.577 0.797 0.850 0.837 

 

POPULAR MUSIC CATEGORY 

 1 2 3 4 5 

Music period estimation 

Error rate 2.77% 1.93% 7.30% 15.57% 0.00% 

Accuracy ±1.20 ±0.96 ±1.88 ±3.45 ±1.25 

Beat tracker 

Detected 237 221 174 119 441 
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beats 

Phase 
resynchs 

9 4 5 10 18 

Not 
detected 

46 46 33 29 28 

Precision 0.776 0.774 0.718 0.672 0.896 

Recall 0.806 0.788 0.750 0.734 0.934 

F-Score 0.790 0.781 0.734 0.702 0.914 

 

CLASSICAL MUSIC CATEGORY 

 1 2 3 4 5 

Music period estimation 

Error rate 1.23% 11.15% 1.85% 2.06% 10.08% 

Accuracy ±4.63 ±2.52 ±2.84 ±2.45 ±3.24 

Beat tracker 

Detected 
beats 

187 286 584 250 379 

Phase 
resynchs 

7 4 5 9 8 

Not 
detected 

48 45 124 41 94 

Precision 0.706 0.829 0.779 0.807 0.731 

Recall 0.733 0.840 0.786 0.836 0.747 
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F-Score 0.719 0.835 0.782 0.821 0.739 

 

 


