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WizHaul: On the Centralization Degree of
Cloud RAN Next Generation Fronthaul

Andres Garcia-Saavedra, Josep Xavier Salvat, Xi Li, Xavier Costa-Perez

Abstract—Cloud Radio Access Network (C-RAN) will become a main building block for 5G. However, the stringent requirements of 
current fronthaul solutions hinder its large-scale deployment. In order to introduce C-RAN widely in 5G, the next generation fronthaul 
interface (NGFI) will be based on a cost-efficient packet-based network with higher path diversity. In addition, NGFI shall support a 
flexible functional split of the RAN to adapt the amount of centralization to the capabilities of the transport network. In this paper we 
question the ability of standard techniques to route NGFI traffic while maximizing the centralization degree—the goal of C-RAN. We 
propose two solutions jointly addressing both challenges: (i) a nearly-optimal backtracking scheme, and (ii) a low-complex greedy 
approach. We first validate the feasibility of our approach in an experimental proof-of-concept, and then evaluate both algorithms via 
simulations in large-scale (real and synthetic) topologies. Our results show that state-of-the-art techniques fail at maximizing the 
centralization degree and that the achievable C-RAN centralization highly depends on the underlying topology structure.

Index Terms—5G, Cloud RAN, Next Generation Fronthaul, Crosshaul

1 INTRODUCTION

Architectural flatness and decentralization—pushing in-
telligence out to the edge—has traditionally been an axiomatic
criterion to design 3G/4G systems with affordable topo-
logical flexibility and high capacity; we refer to this ar-
chitecture as Distributed Radio Access Network (D-RAN).
More recently, an opposing paradigm, termed Cloud RAN
(C-RAN), has gained momentum and holds itself out as
a promising solution for 5G. In its purest form, the func-
tionality of a base station (BS) is fully decoupled from
the radio unit (RU) and it is virtualized into a centralized
cloud computing platform or central unit (CU) [1]. (Virtual)
BSs/CUs are connected to the evolved packet core (EPC),
e.g charging, gateways to Internet, etc., via a backhaul (BH)
network. On the other side, RUs exchange digitized IQ
radio samples1 with CUs through a high-capacity fronthaul
(FH) network, typically using serial line interfaces like
CPRI (Common Public Radio Interface) or OBSAI (Open
Base Station Architecture Initiative) [1]. This approach has
been shown to improve spectrum efficiency and reduce
costs (pooling gains) in certain setups [2], [3]. However,
its benefits become questionable in many realistic large-
scale deployments for 5G. This is due to the stringent
requirements on the fronthaul, which can only be met in
practice by costly fiber point to point links. Moreover, such
costly dedicated infrastructure cannot be amortized due to
the following additional limitations [4]:

• Bandwidth usage is constant and independent of user
load, i.e. no statistical multiplexing;
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1. In-Phase and Quadrature (IQ) data is a representation of the
changes in amplitude and phase of modulated signals.

• Data rate demand grow linearly with the number of
antennas, which disallows massive MIMO;

• Low (or none) path diversity between RUs and CUs
(poor resilience, high inefficiency);

• No infrastructure reuse: FH and BH are incompatible in
terms of interfaces, data or control planes.

Fig. 1 illustratively describes the aforementioned traditional
RAN architectures D-RAN and C-RAN.

Fig. 1: Traditional Distributed RAN (D-RAN) vs Cloud RAN
(C-RAN) vs Next-Generation Fronthaul (Crosshaul).
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TABLE 1: Functional splits analysis in [5]. LTE scenario: 1 user/TTI, 20 MHz bandwidth; Downlink: MCS (modulation and
coding scheme) index 28, 2x2 MIMO, 100 Resource Blocks (RBs), 2 transport blocks of 75376 bits/subframe; Uplink: MCS
23, 1x2 SIMO, 96 RBs, 1 transport block of 48936 bits/subframe.

LTE BS Functional DL/UL BW Delay
Split # decomposition req. (Mb/s) req. (µs) Gains

A RRC - PDCP 151/48 30e3

• Enables L3 functionality for multiple small cells to use the same HW;
• Enhanced mobility across nodes w/o inter-small cell data forward-

ing/signaling;
• Reduced mobility-related signaling to the mobile core segment;
• No X2 endpoints between small cells and macro eNBs;
• Control plane and user plane separation.

B PDCP - RLC 151/48 30e3 • Enables L3 and some L2 functionality to use the same HW.
C RLC - MAC 151/48 6e3 • Resource sharing benefits for both storage and processor utilization.

D MAC I - MAC II 151/49 6e3
• Synchronized coordination and control of multiple cells;
• Coordination across cells enables CA, CoMP, eICIC or cross carrier scheduling.

E MAC - PHY 152/49 250 • Enhancements to CoMP with RU frame alignment and centralized HARQ.
F PHY split I 173/452 250 • More opportunities to disable parts of the CU at quiet times to save power;

• Central L1 CU can be scaled based on average utilisation across all cells;
• Smaller CU results in less processing resource and power saving;
• Enhancements to joint reception CoMP with uplink PHY level combining.

G PHY split II 933/903 250
H PHY split III 1075/922 250
I PHY split IIIb 1966/1966 250
J PHY split IV 2457.6/2457.6 250

1.1 Flexible Centralization: Crosshaul

In light of the above, a re-design of the fronthaul is
taking place in multiple fora, including industry [4], [6] and
major standardization bodies (IEEE [7], 3GPP, [8], Small-Cell
forum [5]) that will converge into the next generation fronthaul
interface (NGFI) tackling the aforementioned limitations (see
Fig. 1). Two pivotal paradigms steer its design. First, NGFI
shall be based on a simpler packet-based transport protocol
which would enable statistical multiplexing, infrastructure
reuse and higher degrees of freedom for routing. Note
that this blurs the separation between BH and FH. In fact,
their convergence towards a common packet-based segment
(Crosshaul hereafter) is being studied under the umbrella of
the 5G public-private partnership (5G-PPP) projects [9].

FH/BH coexistence in a common packet-based network
faces an important challenge: the tough requirements of
full C-RAN are now subject to more limited—and likely
shared—transport resources. However, retaining as much cen-
tralization as possible, when full offloading of BS functionality is
unfeasible due to transport constraints, would be desirable. This
leads to NGFI’s second driving concept: a flexible split of
RAN functionality. The idea is to divide a classic BS into a
set of functions that can either be processed at the RU or
offloaded into a CU, depending on the transport require-
ments and centralization needs. In this way we can better
balance cost/performance (the more aggressive the offload-
ing, the higher the gains) and requirements (the softer the
offloading, the more relaxed the network constraints).

Table 1 illustrates the trade-off between (qualitative)
gains and (quantitative) network requirements for different
splits in LTE. Split J is equivalent to pure C-RAN, i.e., all
functions are centralized enabling maximum gain, namely,
interference coordination mechanisms such as CoMP (Co-
ordinated MultiPoint) are enabled [6], computational re-
sources are pooled and can be scaled based on demand,
etcetera, at the cost of the toughest network requirements.
Note that, as we relax the amount of centralization, the
network requirements are also reduced at the loss of cen-
tralization gains. For instance, interference management
mechanisms are less efficient as channel state information
(CSI) for all RUs is not aggregated into a central location
when the physical layer (PHY) functions are not centralized.

However, centralizing e.g., PDCP (Packet Data Convergence
Protocol), still allows to obtain some computational pooling
gains and a common radio resource control (RRC) layer to
mitigate mobility-related signaling overhead. The conclu-
sion is that there is an inherent trade-off between network
requirements and system gains (which can be very hetero-
geneous and somewhat hard to measure objectively) when
deciding the degree of base station function centralization.
We refer the reader to [5] for further details into this analysis.
Similar conclusions arise in other studies, e.g., [8] by 3GPP.

Note that these heterogeneous network requirements
are due to a new degree of freedom: choice of functional
splits. Additional requirements from user-end applications
may impose further constraints, e.g., an ultra-low latency
application may have tighter latency tolerance than, e.g.
split B in Table 1. For simplicity, in this paper we focus on
the requirements attainable to a diverse set of functional
splits only, which is particular for this new type of systems.

1.2 The Problem

Though industry and academia advocate towards this
direction for 5G [4]–[6], [9]–[12], to our knowledge, no
study has looked into the implications that a flexible RAN
centralization poses on path computation with high path
diversity. In fact, despite its benefits, a joint implementation
of both, flexible RAN centralization and a Crosshaul path
computation, is inherently challenging.

On the one hand, a proper choice of BS split points
depends on the transport capabilities of the Crosshaul, like
available bandwidth, latency or jitter, which in turn are
unknown until all paths have been computed (note that
in Crosshaul, links can be shared). On the other hand, an
adequate routing across the Crosshaul requires knowledge
of the BS split points, because such choices set the demands
of the flows to route (see Table 1). Therefore, we face a coupled
problem where routing and selection of RAN splits must be
optimized jointly, a problem that to the best of our knowledge
has not been identified before.

In order to illustrate this, let us set up a simple scenario,
depicted in Fig. 2, with one CU and 5 RUs. We now analyze
different strategies to optimize our example.
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Fig. 2: Simple scenario.

1.2.1 Best split, then best routing
The first (rather naı̈ve) strategy is to decide first on the

RAN split—without routing knowledge—and then, based
on such decision, find a feasible set of paths. Given a split,
the problem can be seen as an Unsplittable Flow Problem
(UFP), which is NP-Hard [13]. Regarding Fig. 2, we may
be tempted to pick split J (Table 1) for all BSs to grasp
the advantages of full centralization. This choice, however,
implies that five 2.5-Gb/s flows shall be routed from the
CU to each RU, which is unfeasible (this is obvious in such
a simple example). It thus becomes evident that a (mildly)
better approach is to set the paths first and then, based on
the transport capabilities given by these routes, find a good
feasible RAN split, which leads to our next strategy.

1.2.2 Best routing, then best split
The second strategy is to decide on routing first, based

on some criteria (e.g. shortest-path), with no knowledge
of each flow demand (which highly depends on the RAN
split). For instance, if we apply a max-min criterion [14],
the outcome would be five 2-Gb/s flows. Now, upon such
routing knowledge, we could find the highest feasible RAN
split. This is also an NP-Hard problem since it could be
seen as a BAG-UFP problem in a tree [15] which, to
our knowledge, does not have approximation algorithms.
However, given the simplicity of our example, we can find,
via exploration, that the solution with highest centralization
degree is split I for all BSs (Table 1). However, as we show
next, we can still do better; in fact our simulation results in
§8 show that this strategy leads to poor solutions in general.

1.2.3 Joint decision
If, in contrast, we exhaustively looked across all possible

combinations of split and routing choices between CU and
RUs, we would find out that we could route the traffic of
the RU-5 through path CU-2-3 using split G. This releases
additional capacity in path CU-1 for the remaining RUs
which can now use split J, maximizing in this way the ad-
vantages of centralization of the whole system. Obviously,
an exhaustive search deems unfeasible in real-systems with
hundreds of RUs and switches, and clearly the joint problem
is also NP-hard (as it could be particularized to either of the
former problems). Finding an algorithmic solution to this joint
problem is precisely the goal of this work.

1.3 Our Goal and Contributions

Despite the enormous interest in the design of
NGFI, driven by industry ( [4], [16]) and standardization
(NGMN [17], 3GPP [8], IEEE [7], Small-Cell forum [5]), to

the best of our knowledge, we are the first to formalize
a new problem arising of such flexible fronthaul: the cou-
pled problem of optimally taking routing and BS function
placement decisions. The above analysis makes evident
that functional split selection complicates an already hard
problem (QoS routing) and thus traditional solutions do not
apply here. In light of this, we develop algorithmic solutions to
this new problem, conveniently wrapped into a decision-making
engine named WizHaul, that serve two purposes:
• Network planning. WizHaul solves a problem that

is essential for any Crosshaul planning tool: that of
deciding the optimal BS functional split and link provi-
sioning between CUs and RUs. We evaluate the ability
of WizHaul to maximize the centralization degree in §8;

• Fault-tolerance. WizHaul is a centralized decision en-
gine that can be integrated in Software-Defined Net-
work (SDN)-based platforms to support fault-tolerance
in a more dynamic fashion,2 as we show with a proof-
of-concept implementation in §7.

The latter is useful when link changes occur. For instance,
an operator may make a configuration choice based on
measurements available at a planning phase. However, in-
terfering links may appear with time, possibly rendering the
original choice invalid. RAN cloudification, already demon-
strated in the past (see e.g. [18]) and realized in some early
commercial solutions (see [16]) enables these new use cases.

In summary, the contributions of this paper are:
• Optimization Framework. To the best of our knowl-

edge, this is the first work that formalizes a new prob-
lem arising from the flexibility that NGFI introduces:
optimal routing choices and optimal BS function place-
ment choices are coupled and hard to find in general;

• Decision-making algorithms. Based on our analyti-
cal framework, we devise two algorithms: an optimal
branch-and-bound approach, and a heuristic suitable
for large-scale topologies or small-timescale decisions,
wrapped up into a common entity named WizHaul;

• Experimental Proof-of-Concept. We integrate WizHaul
as an application on top of an SDN platform and
demonstrate its feasibility in fault-tolerance use cases
with a proof-of-concept;

• Performance Evaluation with Synthetic and Real
Topologies. We evaluate WizHaul both with real-world
networks from two major European operators and syn-
thetic topologies to generalize our results.

The rest of the paper is organized as follows. Related
works are revised in §2. Our system model and optimiza-
tion framework are introduced in §3 and §4. §5 presents
WizHaul’s algorithms: a branch-and-bound approach and
a heuristic solution. WizHaul is validated experimentally
in a fault-tolerance use case in §7 and as a planning tool
with large-scale synthetic and real-world topologies in §8.
Concluding remarks are in §9.

2 RELATED WORK

C-RAN has fostered a lot of work lately [1], [3], [18]–
[22]. An early study of the feasibility of pure C-RAN in

2. The timescale of these configuration changes is days or even
weeks, and thus we do not envision functional split changes adapting
to fast events such as, e.g., mobility of single users or wireless fading.
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packet-based networks is shown in [10], concluding that
frame preemption (802.1Qbu), scheduled traffic (802.1Qbv)
and buffers in the receivers would be needed. Very re-
cently, distributed synchronization in 5G systems has been
demostrated in [23]. The work of [24] was the first to
propose BS functional split points different from pure C-
RAN to relax constraints while retaining some centralization
degree. Some other work has studied the trade-offs between
qualitative benefits and quantitative costs of different splits
for simple scenarios [5], [12], [25], [26], the impact of pack-
etization and scheduling in simple setups [27], [28] and, re-
cently, the convergence of Data over Cable Service Interface
Specification (DOCSIS) in broadband cable and C-RAN via
functional splits [29]. The design of NGFI is driven by dif-
ferent standardization fora: IEEE [7], 3GPP [8], NGMN [17],
Small-Cell forum [5] or eCPRI [30] which makes evident the
interest of industry in a more flexible fronthaul architecture.
For instance, driven by IEEE 1914 work, [31] proposes a two-
level crosshaul architecture. Though all this work shows that
RAN centralization has many advantages and architectural
advantages, we are, to the best of our knowledge, the first to
study the implications that a flexible functional split poses
on path computation in large-scale packet based networks,
and propose solutions to address them.

RAN virtualization has been matter of study in [2], [18],
[32], [33]. We rely upon all this work making a flexible
fronthaul interface, where BS functions can be virtualized
and placed on general-purpose processors, possible.

The most similar problem is the multi-commodity un-
splittable flow problem (UFP). In this problem, we have
to route multiple flows using single-paths subject to net-
work constraints. There are a few versions depending on
the objective [34]. MAX-EDP (maximum edge-disjoint path
problem) aims to route a subset of flows across disjoint
paths maximizing a profit function [35]. MAX-UFP gener-
alizes it allowing links to be shared [36]. ROUND-UFP (UFP
with rounds) partitions the set of flows into the minimum
number of subsets with feasible routing instances [37]. BAG-
UFP divides all the flows into bags or baskets and finds
the subset of flows of maximum profit such that each
flow belongs to a different bag [15]. Though most of the
algorithms exploit particular graph structures or make the
no-bottleneck assumption (no link has less capacity than the
highest demand), some works focus on general graphs [13].
ROUND-UFP is NP-Hard as it contains the BIN-PACKING
problem. MAX-UFP and Bag-UFP contain the KNAPSACK
problem as a particular case and thus they are NP-Hard too.
Another related problem is the Virtual Network Embedding
(VNE) problem and the problem of placing chains of virtual
functions [38]. In our problem, however, (i) we must find
paths for all RUs (all flows must be admitted), (ii) the
flow demands are given by another variable (splits), and
(iii) both delay and bandwidth requirements must be met,
requirements that render the above solutions unfit.

The problem of routing video flows while optimizing
their coding rate (which define the network demands, like
BS splits in our case) can also be related. However, given the
short timescale in which decisions shall be taken, the related
work focus on multipath routing (to exploit coding diver-
sity), single flows and/or make topology simplifications to
reduce complexity (e.g. [39]).

3 SYSTEM MODEL

We consider a scenario comprised of M CUs B :=
{B1, · · · , BM}, N RUs R := {R1, · · · , RN}, and a packet-
based network connecting RUs to CUs by means of packet-
switching nodes V := {v1, · · · |V|}. Nodes communicate via
network links such that li,j = 1 denotes an existing link
between nodes i and j and li,j = 0 otherwise. The collection
of all nodes is denoted by N := B ∪ R ∪ V . Note that
we do not make any assumptions on topology structure
in an attempt to shed some light for arbitrary large-scale
scenarios. Also, without loss of generality we will focus on
the downlink case.

3.1 Flexible RAN functional split

RUs are in charge of analog processing and digital-to-
analog conversion. The remaining functionality of a tradi-
tional BS (modulation, HARQ, scheduling, etc.) is split into
a set of H atomic functions F := {f1, · · · , fH} that can be
executed by either a CU or an RU though, importantly, they
must be processed sequentially. This is known as flexible
functional split. As we explained above, offloading RAN
functionality into a cloud platform (CU) has the advan-
tages of lower operational costs (e.g. common refrigeration,
single-point maintenance, etc.) and capacity gains to users
(joint signal processing, coordinated resource allocation,
etc.) [5]. However, the delay and throughput requirements
for the transport network between CUs and RUs become
more stringent when a larger number of functions are of-
floaded.

To model this, we let θm,n ⊆ F denote the subset of BS n
functions assigned to CU m. In turn, θ̄n := F \

⋃
m∈B θm,n

is the subset assigned to RU n. We impose a one-to-one
mapping between CUs and RUs and therefore θm,n =
∅∀m ∈ B \ {An}, where An returns the CU assigned to RU
n, i.e., we do not consider chaining functions across different
CUs. In this way, we can model traditional scenarios like C-
RAN (setting θAn,n = F and θ̄n = ∅ ∀n ∈ R), traditional
D-RAN (with θAn,n = ∅ and θ̄n = F ∀n ∈ R), and any
other configuration between these two.

3.2 Routing and CU assignment

We assume a flexible transport protocol (NGFI) that
is able to carry IQ samples from CUs to RUs as well
as traffic from different BS splits and BH traffic onto the
same substrate (switching-based) Crosshaul infrastructure.
Hence, our network must transport N flows (each asso-
ciated with one RU) with different demands that depend
on the functional split of each BS. The path followed by
flow n is comprised of a subset of the forwarding nodes
Pm,n ⊆ V from CU m = An to RU n such that for
any vi ∈ Pm,n there is exactly another vj 6=i ∈ Pm,n with
lvi,vj = 1 (i.e. no loops). If CU m 6= An (does not serve
RU n), then Pm,n = ∅. The network between CUs and
RUs must satisfy the delay/throughput requirements of a
given RAN split θ := {θm,n | ∀m ∈ B,∀n ∈ R}. In
turn, the transport capacity depends on the routing choices
P := {Pm,n | ∀m ∈ B,∀n ∈ R} between CUs and RUs.
Thus, as said earlier, we face a problem where routing P
and BS splits θ must be optimized jointly.
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TABLE 2: Computational costs based on the CPU execution
times shown in [42] and split mapping from Table 1.

LTE subfunction (f ) Others RLC MAC PHY 2 PHY 1
Relative cost (ςf ) 0.2 0.01 0.14 0.17 0.48

Split 1 (B in Table 1) CU RU
Split 2 (C in Table 1) CU RU
Split 3 (E in Table 1) CU RU
Split 4 (G in Table 1) CU RU
Split 5 (J in Table 1) CU

3.3 Clustering
The main challenge of our problem is the large space of

candidate solutions, i.e. a network has (k ·M)N · (|F|+ 1)N

possible settings, where k is the number of possible paths
between any CU/RU. In order to reduce such huge space,
we leverage the fact that joint processing of different BSs
mostly makes sense if it is done within the same CU.
Moreover, there is little gain to do joint processing of a set
of BSs with different functional splits [40]. We thus assume
that the set of RUs is partitioned into Q := {q1, . . . |Q|}
clusters where qi contains a subset of RUs constrained to
the same split choice and CU assignment. Note that RUs
can still follow a different route to their CU even if they
belong to the same cluster. For instance |Q| = 2 in our
toy example in §1. This brings down the space of candidate
solutions to kN ·M |Q| · (|F| + 1)|Q|. Since our focus is on
joint routing and RAN centralization, we will rely on state-
of-the-art clustering mechanisms (e.g., [40], [41]).

4 OPTIMIZATION FRAMEWORK

Our goal is threefold: (i) pair CUs to RUs (or clusters
of RUs), (ii) set the paths between CUs and RUs, and (iii)
choose the functional decomposition of BSs in an optimal
way. To this aim, we rely upon estimates (e.g. in peak hour)
of user demands at each radio site and capacity/latencies in
each network link. We expect configuration changes across
the Crosshaul (if possible) to happen in large timescale
(hours, days or even weeks) and so we do not target adap-
tation to very quick events, e.g. fading events in the wireless
channel. Although the capacity gains vs. cost trade-offs due
to function centralization could be modeled to some extent
[3], [21], [43], the actual benefits are much broader than such
quantitative measures (see [5], descriptively condensed in
Table 1) and are hard to model in general. For instance,
maintenance is simplified by centralizing functions which
should then reduce costs; however, the extent of these gains
depends on several factors which differ across operators. In
the literature today we can find some models on the trade-
offs between full centralization (C-RAN) and distributed
BSs (D-RAN), e.g. [3], [21]. However, these are only two
split options out of the many we consider here. A recent
paper [42] has experimentally studied the computational
costs of different functions of Open Air Interface (OAI)’s
LTE protocol stack (a well-known software-defined radio
implementation); however, they do not model the gains of
centralization, which remain an open issue.

In this paper, given such research gap, we use a simple
model that serves our purpose, to study the implications of
flexible RAN centralization in a packet-based FH, and leave
a more accurate modeling of different splits gains/costs for
future work. Thus, we aim at maximizing the degree of cen-
tralization γ of our system subject to network constraints:

max γ
θ,P

:=

 1

N

∑
n∈R

α ∑
f∈θn

ςf (sn)+
∑
f∈θ̄n

ςf (sn)

−1

(1)

s.t.∑
i6=j∈Pm,n

li,j · δli,j ≤ d(θm,n, sn), ∀m ∈ B,∀n ∈ R (2)

M∑
m=1

N∑
n=1

I(i, j,Pm,n)·b(θm,n, sn)≤βli,j ,∀i 6=j ∈ N (3)

where ςf (sn) models the computational burden of function
f given configuration sn (MIMO setting, bandwidth, etc.) of
BS n, and 0 ≤ α ≤ 1 models the relative cost savings when a
function is centralized, i.e., if α = 1, centralizing a function
is as costly as maintaining the function co-located with the
RU and therefore our problem becomes a simple feasibility
problems where D-RAN and C-RAN configurations provide
the same cost to the system. Conversely, if α < 1 there is
a cost saving when a function is centralized (e.g. coming
from pooling gains) and our optimization problem will
lean towards C-RAN as much as possible. The first set of
constraints (2) handle delay requirements, where δli,j is the
latency of link li,j , which we assume is an additive constant
for simplicity (i.e. we do not consider queueing effects)3 and
d(θm,n, sn) is the delay requirement of split θm,n and setting
sn. We skip jitter constraints because they can be mitigated
with buffers at the receivers at the cost of latency [10]. Eq. (3)
handles capacity violations, where βli,j is the total bit-rate
capacity of link li,j , I(i, j,Pm,n) is an indicator function
which is 1 if nodes i and j are contained in Pm,n and 0
otherwise, and b(θm,n, sn) gives the throughput demanded
by an RU with split θm,n and setting sn (including all
protocol overheads). For instance, Table 1 shows values of
d(·) and b(·) for different splits and a certain setting sn
(with 1 user and 150 Mb/s downlink load). Without loss
of generality, we consider the functions, splits and costs
given in Table 2 (the shaded and white area highlight the
functions running in a CU and an RU, respectively), and
assume sn ∀n given in Table 1 to simplify our evaluation. In
practice, different traffic profiles could be used to minimize
resource wastage. The above can be easily extended to, e.g.,
consider computational constraints, but here we only focus
on networking constraints for simplicity.

5 WIZHAUL ALGORITHMS

We let the triple Xn := {An, θAn,n,PAn,n} describe a
configuration of BS n, and X := {Xn | ∀n ∈ R} be
a candidate solution to our problem. Our goal is to find
the optimal X∗ that maximizes the degree of centralization
γ. Since this is an integer non-linear optimization problem
(b(·), d(·) or ςf (·) can be discontinuous non-linear func-
tions), we focus on combinatorial algorithms. In order to
reduce complexity, we constraint our combinatorial search
to settings where all BSs within the same cluster have the
same split and CU assignment. We propose two algorithms:
a nearly-optimal branch-and-bound backtracking algorithm
(BBB), and a low-complex greedy approach (GA).

3. Frame preemption (802.1Qbu) and scheduled traffic (802.1Qbv) can
be used mitigate queueing effects [10].
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5.1 Backtracking Branch-and-Bound (BBB)
We start with an optimal branch-and-bound approach

that explores a discrete space of candidate solutions. This
type of algorithms has the advantage of being highly paral-
lelizable [44], i.e. suitable for cloud computing platforms.
First, we store in Πn := {P(1)

m,n · · · P(k)
m,n | ∀m ∈ B} k

candidate paths between each CU m and RU n, for all
n ∈ R. This can be readily obtained with k-shortest path
routing versions of Dijkstra, for example, with complexity
O(MNk(L+ |N | log |N |)) with L :=

∑
i,j∈N li,j [45].

0. State notation. The space of candidate solutions can
be represented as a tree where a node i in level τ represents
one possible setting X

(i)
ψ(τ) for RU ψ(τ), where ψ(τ) is

a function that maps a level τ to RU n (ψ(0) = ∅ is
the root level) and i is a point in the configuration space
Cn :=

{
(m, θm,n,Pm,n) | m ∈ B, θm,n ∈ 2F ,Pm,n ∈ Πn

}
. A

full branch represents thus a candidate X (see Fig. 3).
1. Initialization phase. We make use of a heuristic score

function that pre-evaluates how “good” configuration Xn is.
To this aim, inspired by [13], we define FXn as

FXn :=
W (θm,n)∑

p∈Φ(Pm,n)

b(θm,n, sn)

min
{li,j |∀i,j∈p}

βli,j

, (4)

where W (θm,n) :=
(
α
∑
f∈θi ςf (ri) +

∑
f∈θ̄i ςf (ri)

)−1
is a

reward function: the individual degree of centralization of BS
n when using split θm,n and CU m, with α and ςf (·) being
the same parameters used in Eq. (1). In the denominator,
function min{li,j |∀i,j∈p} represents the maximum capacity
of a path p (i.e. the bottleneck link on that path) and
b(θm,n, sn) is the throughput requirement of BS n when
using configurationXn (i.e. functional split θm,n). Addition-
ally, Φ(Pm,n) is a set that collects all paths p ∈

⋃
j∈R\n Πj

(all potential paths for all CU/RU pairs) that share some
link with the path considered in configuration Xn, Pm,n. In
this way, the denominator of the above equation sums up
across the load required by flow n relative to the maximum
capacity of path p for all paths that share some link with the
path under consideration by configuration Xn. This serves us
as a rough estimation of the penalty incurred by any split
choice and path combination. Therefore, FXn represents the
reward of using path Pm,n and split θm,n (i.e. configuration
Xn) relative to an estimation of the burden such choice would
add to the whole system. If, e.g., a path p shares many links
with other paths that could potentially be used by other
flows, the denominator would contribute to lower the score
of Xn, which is maximum for disjoint paths (with no links
in common) and high-centralization functional splits. In this
initialization phase, we pre-compute F

X
(i)
n
∀i ∈ Cn,∀n ∈ R.

We will use this information in our branching phase.
We also keep track of an upper bound on the minimum

cost γ−1 achievable in the system, which is tightened as it
advances. As we will see in §8, a good initial bound helps
enormously to lower the searching time. In our case, we will
use the greedy approach we introduce later to this aim.

2. Branching. Our branching method is based on a
Depth-First-Search (DFS) tree-exploring scheme that starts
at the root τ = 0 and visits one unvisited node per level
until it reaches the depth of a branch, when it backtracks

Fig. 3: BBB algorithm. Partial candidate
({X(c1)

ψ(1), X
(c1)
ψ(2), · · · }) violates constraints and all hanging

branches are thus pruned.
one level, until all nodes in the tree are visited. This can be
implemented recursively or iteratively.

To minimize running time, it is of paramount impor-
tance that reasonably good solutions are explored early, and
also that configurations that violate constraints are detected
early. This would allow us to maximize the amount of
pruning that we do over the tree, i.e., sections that do not
have to be explored via early backtracking and bounding.

In order to do that, we carefully choose our ψ(τ) function
to map RUs in ascending order according to

∑
i FX(i)

n
,

where F
X

(i)
n

is the score function defined earlier. Then, each
node i in level τ corresponds to a configuration from the or-
dered sequence 〈X(i)

ψ(τ)〉, where candidate settings are sorted
in descending order according to F

X
(i)

ψ(τ)

∀i ∈ Cψ(τ) first,

and in ascending order according to |θ(i)
m,ψ(τ)|, second. This

tests high-order centralization levels with a high score first
(potentially good solutions) and “worse” RUs higher up in
the tree (configurations with potential constraint violations).

Additionally, it is important to note that inferior levels
may have a lower space of candidate configurations if an
ancestor node belongs to the same cluster. This is because, in
such case, a split choice and a CU assignment have already
been made for this RU (that of the ancestor); thus the space
of possible settings for this RU drops to k, that is, simply the
set of candidate paths.

3. Early backtracking. Every time we visit a node of
the tree we have a larger partial candidate solution, until
we reach the depth of the tree, when we have a complete
candidate solution. To speed up the process, when a node is
visited we check that such partial candidate does not violate
constraints (2)-(3). If it does, the hanging nodes are pruned,
we backtrack to the previous level τ − 1 and visit a new
unvisited node (see Fig. 3).

4. Lower bounding. As we explained above, given a
branch, every level of the tree τ corresponds to a candidate
configuration for one BS or flow. When visiting a node of
the current branch, we compute a lower bound by assuming
the inferior levels of the branch (unexplored) has the lowest
possible contribution to γ−1 (our cost function). This is
straightforward to compute as we can just assume these
unexplored nodes use the highest possible split, which ob-
viously represents a lower bound (unexplored nodes cannot
contribute less to the overall cost than what we assume to
compute the lower bound). If the computed lower bound is
higher than the current upper bound, we prune the hanging
branches, backtrack to the previous level τ − 1 and visit a
new unvisited node.
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Algorithm 1 Greedy algorithm.

1: function GREEDY_OPT(B,R,V,Q)
2: /*Initialization*/
3: for ∀q ∈ Q do
4: θ′q = ∅
5: end for
6: (P ′, γ′) = find_routes(B,R,V,Q,θ′)
7: while |P ′| = |R| do
8: /*All flows could be routed*/
9: (θ∗,P∗, γ∗) ← (θ′,P ′, γ′)
10: for ∀q ∈ Q, |θq| < |F| do

11: ψq =
∑
n∈q

max
∀i∈Cn

{
F
X

(i)
n
| θq = {θ∗q , f|θ∗q |+1}

}
12: end for
13: q ← arg max(ψ)
14: θ′q ← {θ∗q , f|θ∗q |+1}
15: (P ′, γ′) = find_routes(B,R,V,Q,θ′)
16: end while
17: return (θ∗,P∗, γ∗)
18: end function

5. Upper bounding. We use the output of the heuristic
approach in §5.2 as an initial upper bound. Then, every time
depth of a branch is reached, this branch becomes the new
best solution, γ−1 the new upper bound, we backtrack to
the previous level and visit a new unvisited node.

5.2 Greedy algorithms (GA-GR and GA-RR)
Unfortunately, the complexity of branch-and-bound ap-

proaches does not scale well in general, particularly if an
initial upper bound is not properly chosen. For this reason,
we now propose a low-complex combinatorial algorithm
described in Algorithm 1. The algorithm assumes that F

X
(i)
n

has been computed for all RU n ∈ R and all i ∈ Cn.
(Although Cn is built using a set of pre-computed routes,
this algorithm is not constrained to choose them). Note that
we abuse notation and we let θq denote the functional split
θAn,n for any RU n in cluster q ∈ Q (since all of them shall
have the same setting).

Algorithm 1 greedily increases the functional split set-
ting of the cluster q ∈ Q with largest ψq such that

ψq :=
∑
n∈q

max
∀i∈Cn

{
F
X

(i)
n
| θq = {θ∗q , f|θ∗q |+1}

}
(5)

ψq is another score function that we use as a heuristic
approach to favor higher degrees of centralization of RUs
in larger clusters with a roughly higher likelihood to satisfy
constraints. The intuition is that larger clusters contribute to
increasing ψq (because we are summing up across all RUs
in the cluster) and, given that a higher FXn has (roughly)
higher chances of meeting constraints (because RU n over-
laps with less and higher-capacity links used by others),
clusters with RUs that have good “best potential configu-
rations” will also contribute to increasing ψq . Thus, clusters
with higher ψq are in better position to cause less damage
if their split is increased but also have higher improvement
over the degree of centralization (because there are more
RUs in the cluster).

This score is computed in step (11) of Algorithm 1. The
algorithm tests BS configurations greedily in an orderly
fashion based on the above score. Step (13) selects the cluster
with highest aggregated score and increases the degree of

centralization of all the BSs within the cluster (step (14)).
Then, for every split change, we invoke find_routes(·)
(step (15)) to find a CU assignment first and a feasible
routing instance second. Algorithm 1 has a worst-case com-
plexity of O(|Q||F| + 1) times that of the CU assignment
and routing algorithms which we present next. Our CU
assignment algorithm is a simple heuristic that pairs each
cluster to the CU which is closest (in terms of lowest latency)
to the centroid of the cluster. This can be readily done with
complexity O (M(L+ |N | log |N |)) applying Dijkstra. We
now propose two alternative routing schemes.

5.2.1 Greedy Routing (GA-GR)
This is a quick greedy algorithm that leverages the F

X
(i)
n

scores for the set of pre-computed routes mentioned above.
We note that, although we use a set of pre-defined paths,
the output of this approach may not return those routes—
we are just interested on the scores. The algorithm is a
simple greedy approach, inspired by the combinatorial UFP
solver of [13]. We first sort all flows n ∈ R in descending
order according to

∑
i∈Cn{FX(i)

n
| θq = θ∗q}. The intuition is

that high-score flows are (roughly) less prone to penalize
the degree of centralization of other flows (note that F
scores favor disjoint paths). Then, for each flow of the sorted
sequence, we iteratively apply shortest-path routing (or any
QoS routing approach) to greedily find a feasible route for
each path in the sorted set. The topology is updated in
each iteration with the new residual link capacities. The
algorithm returns a set of feasible routes for all flows or an
empty set if we could not find a feasible route for some flow.
Using Dijkstra, this has complexity O (N(L+ |N | log |N |)).

5.2.2 Randomized Rounding routing (GA-RR)
Alternatively to that greedy approach, we also propose

a randomized rounding routing algorithm, inspired by [46],
which works as follows. We first solve the following linear
relaxation that give us fractional flows (multi-path routing)
from CUs to RUs:

min
Y

U :=
∑
∀n∈R

∑
∀i6=j∈N

δli,j · yn,li,j (6)

s.t.
∑

∀e∈ε+(v)

yn,e −
∑

∀e∈ε−(v)

yn,e = 0, ∀n ∈ R,∀v ∈ V (7)

∑
∀e∈ε+(An)

yn,e −
∑

∀e∈ε−(An)

yn,e = 1, ∀n ∈ R (8)

∑
∀e∈ε−(Rn)

yn,e −
∑

∀e∈ε+(Rn)

yn,e = 1, ∀n ∈ R (9)

∑
∀ev∈ε+(v)
∀n∈R

yn,eib(θAn,sn)+
∑

∀eo∈ε−(v)
∀n∈R

yn,eob(θAn,sn)≤βeo ,∀v ∈ N

(10)

where Y := {yn,li,j | ∀n ∈R,∀i 6= j ∈N}. yn,li,j is a real
value that represents the fraction of the flow of RU n that
is routed through link li,j . ε+(i) (ε−(i)) are sets containing
all outgoing (incoming) links from (to) node i. The objective
function aims to find paths with low latency. Eq. (7) is the
flow conservation constraint, eq. (8)-(9) guarantee that flows
go from CUs to RUs, and eq. (10) is the capacity constraint.
Since this formulation is quite standard, we refer the reader
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to [46] for further details. Secondly, we perform path de-
composition on the fractional solution. To this means, we
use DFS to map the N fractional flows found during the
previous step to N sets of paths where each path is given
a weight which corresponds to the minimum fraction of
flow assigned to the path. Finally, we apply randomized
rounding to select one path of each set and then we assign
the whole flow to that path. To do so, we use the weight
proposed before for each candidate path as the probability
of selecting this path. We proceed until all flows have one
path, which is one round. The idea is to try out several
rounds and select the best one. After each round, we check
if the resulting set of paths violates constraints; if so, we
discard this round. Otherwise, we compute the objective
function of the linear relaxation (using the integer solution).
We repeat the whole process until the standard error over
the average objective function is small enough (e.g. 10%)
or we arrive to a pre-defined number of iterations. The
algorithm returns the routes with lowest cost U or null if
some flow could not be routed. The worst-case performance
of this approach isO(log(|N |)/ log(log(|N |))) relative to the
optimal multipath solution [46].

In the next section, we revise the key requirements and
limitations of such flexible fronthaul and WizHaul.

6 PRACTICAL CONSIDERATIONS

An NGFI-compliant packet-based network capable of
transporting flows from a variety of functional splits needs
to be deployed [7]. Fortunately, such function placement
flexibility saves operators from having to deploy dedi-
cated fiber between RUs and CUs like a traditional C-
RAN does [12]. WizHaul adapts the choice of function
splits and routing to the forwarding limitations in terms of
capacity or latency in the data plane, rather than imposing
specific requirements. Even though this new system and
thus WizHaul relaxes constraints on the data plane, it does
require some degree of performance determinism that can be
obtained in cost-effective Ethernet networks via e.g. Clock
synchronization (IEEE 802.1AS), Stream Reservation Proto-
col (IEEE 802.1Qat), Frame Pre-emption (IEEE 802.1Qbu)
and scheduled traffic (IEEE 802.1Qbv)—see IEEE’s Time-
Sensitive Networking Task Group and [10].4 In the scope of
optical infrastructure, a packet-based fronthaul over TDM
PON is discussed in [47] and demonstrated in [48].

Note that these requirements are mild: even though these
extensions mitigate uncertainty in the underlaying data
plane, their absence (i.e. uncertainty in the data plane) sim-
ply makes WizHaul lean towards less centralized (but safe)
configurations. This is a substantial cost-efficiency improve-
ment over the requirement of dedicated fiber in traditional
C-RAN, which explains the interest by the industry [4], [6].

In order to support fault-tolerance, i.e., system re-
configuration in a more dynamic fashion, in addition to the
above requirements, WizHaul requires explicit forwarding
path control (IEEE 802.1Qca or OpenFlow) and a system
architecture that follows the Software Defined Networking
(SDN) principles, namely, (i) decoupled data and control
planes, (ii) logically centralized control, and (iii) exposure

4. IETF DetNets is another group working on deterministic WANs.

Fig. 4: Testbed.

of abstract resources and state to the network controller.
In this case, the control plane is not only in control of the
forwarding behavior of the data plane but also manages
the placement of Base Station functions (into RUs/CUs’
compute processor units) as shown in [9].

Although in this paper we focus on the algorithmic
solution to a new fundamental problem arising in a flex-
ible fronthaul, rather than the design of the system it-
self (e.g. design choices such as whether BS functions are
implemented on virtual machines or linux containers, or
whether migrating virtual functions or simply switching
from one configuration to another upon a functional split
change) we do refer the reader to relevant literature on
how SDN can be exploited in this manner. For instance,
in [9], the authors presented the architecture of a system
that integrates BH/FH operating multiple functional splits
with a common forwarding plane; in addition, in the scope
of optical network technology, a comprehensive survey of
SDN is shown in [49], and an SDN-controlled digital signal
processor enabled spectral converter for converging optical
and FH/BH systems is presented in [50].

In the next two sections we evaluate the ability of the
above algorithms, wrapped up into a common decision
engine named WizHaul, to (i) operate in fault-tolerance
use cases when integrated into an SDN platform (§7), and
(ii) maximize the degree of centralization in large-scale
synthetic and real topologies, suitable when integrated in
a planning tool for NGFI systems (§8).

7 EXPERIMENTAL PROOF OF CONCEPT

In this section, we implement our algorithms in a cen-
tralized decision-making entity based on SDN and present
a fault-tolerance use case. Our goal is to validate the abil-
ity of WizHaul to maintain maximum centralization upon
topology changes.

7.1 Experimental Setup
We deploy the testbed shown in Fig. 4, illustratively

described as a baseline scenario in Fig. 5. We use two com-
mercial wireless products in the BH/FH segment, namely a
µWave link (connecting nodes 3-5 in Fig. 5) and a mmWave
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Fig. 5: Baseline PoC scenario.
link (connecting nodes 4-7). Both support adaptive modu-
lation schemes so the actual capacity varies with the av-
erage signal-to-noise ratio (a common measure of wireless
channel conditions or quality). For demonstration purposes,
the radio links are wired with an SMA cable (µWave RF
over coaxial) and a rigid waveguide (E-band RF). Moreover,
variable attenuators let us emulate different average channel
conditions. The remaining topology of the transport seg-
ment is virtualized using a programmable switch via gigabit
Ethernet interfaces. In addition, a softwarized virtual EPC
is deployed on a commodity laptop. The RAN equipment
is comprised of R1, a fully-fledged LTE small-cell (i.e., its
base station functions are not centralized), and two RUs (R2
and R3) connected to a CU. Given that we do not have yet
the ability to configure all functional splits from Table 2
in our CU/RU hardware, we derive traffic flow patterns
based on a commercial product [16], namely a flexible C-
RAN solution with available splits 1 and 3 from Table 2,
and generate UDP flows accordingly. Table 3 provides more
details of the HW components of our testbed. All elements
are connected across the same L2 Ethernet-based domain
and are synchronized with PTP, which allows us to measure
one-way delay.

7.2 Software Deployment

Fig. 6 depicts an illustration of our software archi-
tecture. We implement GA-RR as an application on top
of Floodlight, a Java-based Apache-licensed SDN con-
troller5. In the initialization phase, the application retrieves
(through a REST-based interface) a graph abstraction of the
physical topology using Floodlight’s Topology Manager
which in turn uses LLDP discovery protocol. Then, our ap-
plication uses GA-RR to jointly compute the optimal paths
between radio access points, vEPC and CU (when needed)
and the functional split of capable BSs. Upon topology

5. http://www.projectfloodlight.org/floodlight/

TABLE 3: Detailed HW components in our testbed.

Device type Description Ref.

vEPC OpenEPC Rel. 6 [51]

µWave 56 MHz bandwidth @ 7GHz band
Adaptive rate ≤ 1 Gb/s [52]

mmWave 500 MHz bandwidth @ E-band
Adaptive rate ≤ 3.2 Gb/s [53]

Switch OpenFlow switch
48 one-gigabit, 4 ten-gigabit ports [54]

Small-cell 20 MHz channel @ band 3 [55]

RU 20 MHz BW @ band 3
Split 1 (PHY, MAC, RLC) and 3 (PHY) [16]

CU Virtual MAC, RLC, PDCP, RRM, RRC [56]

Fig. 6: WizHaul as an application on top of an SDN platform.

changes, e.g. a link failure or a change on the modulation of
a wireless link, our application receives a notification from
the SDN controller (which in turn receives a notification
from the hardware components via SNMP) and a new con-
figuration is computed (and enforced by the SDN controller
via SNMP and OpenFlow for path setup). As depicted in
Fig. 6, the different key architectural components of our soft-
ware application are the following. The HTTP management
class is used to create different HTTP request objects that
will be used to communicate with the controller’s REST
API. The bodies of the HTTP methods are filled out with
JSON data objects. The Communications management
class enqueues all the HTTP objects in a FIFO queue and are
processed by several threads associated to different callback
functions in charge of managing replies of requested objects.
The Crosshaul controller class provides the different
data structures to maintain the network state and implement
the logic of Algorithm 1. The Manager class manages the
callbacks upon notifications from the SDN controller, and
coordinates the above classes for the recovery process (i.e.
computation of a new configuration) while it maintains
updated data structures and network state information. We
rely on existing SDN services in Floodlight (shown in
Fig. 6) for path provisioning, topology and monitoring infor-
mation, as well as an extended service to let us (re)configure
the CU/RU split in our equipment.

7.3 Experiment
We create 3 UDP downlink flows with the fixed user

load assumed in Table 1 with mgen6 from the vEPC towards
each of the radio access points, as shown in Fig. 5. Note
that the flows of R2 and R3 must go through the CU which
connects with the RUs via fronthaul paths with different
requirements depending on the functional split. Fig. 8 de-
picts the mean throughput and packet delay performance
of all flows at the access point side (i.e., fronthaul flow for
R2 and R3, and backhaul flow for R1). We start with the
baseline scenario shown in Fig. 5. Due to the limitation of
our testbed to 1-Gb/s interfaces, the algorithm settles with
split 4 (from Table 2) for R2 and R3, i.e. no full C-RAN which
would require transporting ¿2-Gb/s flows. After 20 sec, we
attenuate the signal of the E-band link, as illustrated in
Fig. 7a. This causes two reactions: (i) the fronthaul flow of R3

6. https://www.nrl.navy.mil/itd/ncs/products/mgen
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(a) Step 1

(b) Step 2
Fig. 7: Use case illustration

is re-routed through switches 2 and 6, and (ii) subsequently
the functional split of both R2 and R3 must be softened
to split 3 in order to keep a high degree of centralization
while guaranteeing that network constraints are satisfied.
Finally, 20 sec later, we attenuate the power of the µWave
link. This causes the backhaul flow of R1 to be re-routed
through link 2-6, which is shared with 2 fronthaul flows. As
we can see from Fig. 8, the requirements of both fronthaul
flows are still satisfied in this step and thus no functional
split change is required. In summary, the results shown in
Fig. 8 validate that our algorithm (i) maximizes the degree
of centralization, and (ii) ensures the flow requirements of
each split are met at all times.

In Fig. 9 we provide insights regarding the nature of
the time taken to re-deploy a new configuration when
topology changes occur in the use case presented before.
The figure shows the amount of time taken on each of the
basic operations of our software, namely (i) receiving a no-
tification of the affected hardware elements (labelled “HW
reaction”), (ii) running our algorithm (labelled “Algorithm),
(iii) install new OpenFlow rules (“Path installation”), and
other functions like building/processing messages through
the REST interface, etc. (labelled as “Others”). From the
figure we see that the overall reaction time is dominated
by the delay of the HW components in noticing physical
changes. Remarkably, re-computing a new solution barely
has a toll given by the simplicity of the topology. We also
note that the reaction takes longer in Step 1 (Fig. 7a) due to
path installation process because the flow of R3 has to be
managed by a different physical network card at the CU (as
opposed to virtual interfaces in our virtual topology) which
results in longer processing.

8 LARGE SCALE SIMULATIONS

We now assess via simulations the performance of our
algorithms with both synthetic large-scale networks and
two topologies from two major operators in Europe to assess
the performance of WizHaul as a planning tool.
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Fig. 8: Experimental validation.
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Fig. 9: Software reaction time

In order to get statistically meaningful insights, we run
each of the algorithms described above over a large set
of simulated topologies and extract three parameters for
each simulation: degree of centralization γ, whether it is a
feasible solution (D-RAN otherwise) and its elapsed time.
Each simulation runs on a single Intel i7 core operating at
2.4 GHz. Based on [3], we set α = 0.5 to compute γ in eq.
(1), i.e. processing functions in an RU is twice as expensive
as doing it in a CU. The first and second set of topologies
are based on two backhaul networks of existing operators in
Romania and Switzerland (up to 900 topologies). The third
and forth sets correspond to random topologies based on
tree structures (up to 1800 topologies) and Waxman random
graphs (up to 1500 topologies).

8.1 Real Topologies
We create semi-random scenarios based on the backhaul

topology of two operators in Romania and Switzerland,
illustrated in Fig. 10. We know the distance between switch-
ing nodes, links connecting them and their capacities. Based

(a) Romania topology. (b) Switzerland topology.

Fig. 10: Snapshot of real topologies.
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TABLE 4: Ethernet-based link profiles (proc. delay = 5 µs, packet size = 1518 Bytes)

Technology Bandwidth (Gb/s) Prop. delay (µs) distance (km)
mmWave (60-80 GHz) 0.9, 1.25, 1.5, 2, 3, 4, 8 1-20 0.3-6
µWave (6-60GHz) 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.25, 1.5, 2 1-100 0.3-30
Copper (1000/10G/40GBASE-T) 1, 10, 40 0.05-0.5, 0.275, 0.15 0.001-0.1, 0.055, 0.03
SMF fiber @ 1310 nm
(1000, 10G, 40, 100GBASE-EX, LR, LR-4)

1, 10, 40, 100 1-200, 50, 50, 50 0.2-40, 10, 10, 10

SMF fiber @ 1550 nm
(1000, 10G, 40, 100GBASE-ZX, ER, ER-4)

1, 10, 40, 100 1-350, 200, 200, 200 0.2-70, 40, 40, 40

TbE (*under development) 200, 400 1-50 0.2-10

on this, we choose the profiles from Table 4 that match
better the known capacities. Note that we only consider
Ethernet over different PHYs. We assume classic store-
and-forward switching which induces a per-hop latency
equal to propagation delay—distance(m)/200 µs for cop-
per, distance(m)/300 µs the rest—plus serialization delay
(bits/rate). Finally, we randomly pick nodes to be RUs and
CUs according to Table 5 and use simple k-means to create
as many RU clusters as CUs. We note that, though we
use simple k-means for simplicity (and no generality loss),
clustering is important in Cloud RAN and has been object
of much study over the years [20], [40], [41].

8.2 Tree-based Topologies
To generate topologies with a tree structure, first we

generate a set of CUs connected in a ring. These will
be located at the root of the trees. Second, hanging from
each CU, we create a pure random tree using independent
Poisson processes with parameters λlevels and λsiblings to
model the number of levels of the tree and nodes per level.
The leafs of the tree correspond to RUs. For each level of
each tree, we randomly add a backup link with the upper
layer of a neighboring tree, to add additional degrees of
freedom for routing, following another Poisson process with
parameter λbackup. Table 5 shows the parameters we used
in our evaluation. Once we have the graph structure, we
randomize the profile of all the links and their length, using
the same assumptions as in the previous scenarios (links in
Table 4). For each link and topology, we randomly pick one
profile depending on its proximity to a CU or an RU. To
this aim, we group links based on its proximity to a CU and
assign them the same link profile. Additionally, we assign
high-capacity profiles to links closer to CUs with more
probability, to capture the fact that aggregation segments
typically provide higher capacities. Finally, RU clustering is
done as in the previous scenarios.

8.3 Waxman-based Topologies
The last set of topologies consists of Waxman random

graphs [57], based on the Erdös-Renyi random graph model,
which is popular to evaluate realistic backhaul topolo-
gies [58]. To this aim, we used the parameters displayed
in Table 5, λ being the intensity of the Poisson process, α the
maximal link probability and β a parameter to control the
length of the edges. Link profiles, capacities, latencies and
clusters are assigned in the same way we did before.

8.4 State-of-the-art Techniques
The related literature presented in §2 is not well-suited

to solve our problem. Instead, we compare our algorithms

against a few “best routing, then best split” strategies (see
§1) to demonstrate that simple heuristics based on state-
of-the-art tools are also unfitted for large-scale setups. We
first use the same simple heuristic we adopted in our GA
algorithm to assign RU clusters to CUs. Then, we use
three different baseline routing techniques to compute paths
and choose BS splits. The first algorithm (SHORTEST-PATH)
greedily chooses, for each RU, the shortest path to its CU.
Then, based on the paths set, we exhaustively search for
the best RAN split. The second algorithm (MAX-FLOW)
solves an LP relaxation of the routing problem that max-
imizes the aggregate flow load; then we use randomized
rounding (explained above) to find single paths and select
feasible splits. The third approach (MAX-MIN) uses the
algorithm proposed in [14] to obtain a max-min fair single-
path routing solution; then we pick the best functional splits
given the resource allocation of such routing instance. We
note however that our BBB algorithm renders an optimal
configuration and therefore we can use it as a benchmark
for our heuristic and this state-of-the-art techniques.

8.5 Results

Fig. 11-14 (top) depict the normalized degree of central-
ization γ (y axis), i.e., a real value between 0 (all functions
co-located with the RUs, that is, D-RAN) and 1 (all functions
centralized in a CU, that is, C-RAN) for all algorithms and
topologies presented earlier, as a function of the number
of RUs in the topology (x axis). At the bottom, the figures
represent the ratio of unfeasible solutions. We compare
our BBB, our GA with greedy routing approach (GA-GR),
and our GA with randomized rounding approach (GA-RR)
against the benchmarks presented earlier. Importantly, we
use GA-RR as initial upper bound for BBB. Their elapsed
time is shown in Fig. 15. If one simulation reaches 105s, we
stop it and declare the result as unfeasible (which only hap-
pens occasionally for MAX-MIN). Given the large amount
of scenarios and heterogeneity of the algorithms, we show
curves from a non-parametric local regression fit model
(loess [59]) in all figures. Shaded areas show the standard
error of the fitted model.

TABLE 5: Parametrization of topology generators.

Type of topology Parameters
Romania BH, • |NRomania| = 46, |NSwiss| = 272 nodes;

• |R|={|N| · 0.025i | i ∈ N, 0 < i ≤ 25} RUs;
• |B| = |Q| = {1, 2, 3} CUs/clusters.

Switzerland BH

Tree-based • λlevels = λsiblings = λbackup = 1;
• |B| = |Q| = {2, 3, 4} CUs/clusters.

Waxman-based • λ={20i | i ∈ N, 0<i≤10}, α=0.4, β=0.1;
• |R| = {1, 2, · · · 100} RUs;
• |B| = |Q| = {1, 2, 3} CUs/clusters.
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Fig.11:Romaniantopology.
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Fig.12:Swisstopology.

Thefirstobservationisthatbothgreedyapproaches(GA-
RRandGA-GR)behaveveryclosetothebenchmarkBBB
in mostcases. Onthecontrary,SHORTEST-PATH, MAX-
FLOWand MAX-MINrenderlowdegreeofcentralization
andahighrateofunfeasiblesolutions(i.e.nocentralization
whatsoever)acrossalltypesoftopologies.Thereasonis
thatnoneofthelatterthreealgorithmshavetheabilityto
tradeoffthecentralizationdegreeofsomeflowstobenefit
largerclusters,likeweillustratedinthetoyexampleof§1.
Thisisbecausetheyallhavesimplergoals:SHORTEST-PATH
aimstofindlow-latencypathswithoutfavouringdisjoint
paths; MAX-FLOWtargetshigh-capacitypathsirrespective
oftheirdistance(latency)towardsaCU;MAX-MINfocuses
onbothcapacityandfairnessacrossRUs,withoutbalancing
centralizationtowardslargerclusters.
Asecondobservationisthatfullcentralizationcanonly

beachievedinlow-scaledeploymentslikeourRomanian-
basedscenarios.ThisisbecauseCUsandRUsaregenerally
toofarapart.Thisimpliesnotonlythatthetightlatency
demandsoffullC-RANcanberarely metbut,also,that
morelinksarecompromised,limitingthechancesoffinding
disjointpaths.Ourthirdobservation
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isratherintuitive,thatis,
wecanachievehigherdegreeofcentralizationinscenarios
withlowernumberofRUs(lesscontention)andlarger
numberofCUs(shorterpathsbetweenRUsandCUs).In
addition,thetree-basedtopologiesrenderlowercentraliza-
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Fig.14:Waxmantopologies.

tiondegreethantheotherstructuresunderevaluation.This
occursbecausethesescenarioshavelessdiversityofroutes
(e.g.nodisjointpaths)withmanylinksaggregatingmultiple
flowsandthereforewithfeweropportunitiesoftransporting
high-loadflows(high-centralizationsplits).
Thelastobservationisthat,whilstGA-GRfollowsclosely

theperformanceofBBBin Waxman-basedscenarios,GA-
RRdeviatesasthenumberofRUsgrow.Thereasonlays
inthefactthatthelinearprogramusedinGA-RR,eq.(6)-
(10),tendstofindpathsofminimumlatencyconcentrating
manyflowsinafewlow-latencypaths,failinginthiswayto
tradeofflatencyofsomeflows(thatcouldstillmeetlatency
requirements)forpathdiversificationthat wouldrelease
capacityforhigh-centralizationflows.Notethattheseare
themostcomplextopologiesintermsofpathdiversity.
Regardingtherunningtimeofthesealgorithms,shown

inFig.15,wecanobservethatMAX-MINisthemostcom-
plexalgorithmofthemall(thoughitcouldbeaccelerated
byusingdualvariables[14]).Perhapssurprisingly,BBB
behavessimilarlytoGA-RR.Thisissimplybecauseweuse
GA-RRasaninitialupperboundconfigurationforBBB
and,becauseGA-RRusuallyfindsagoodsolution,BBB
quicklyprunesworsecandidatesolutionsoutofthewhole
space. MAX-FLOWisthefastestbecauseitisbasedona
simpleLPrelaxation,fasterthanSHORTEST-PATH
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Fig. 15: Elapsed time (s) vs. number of RUs and CUs.

9 CONCLUSIONS

A main requirement in the path towards 5G systems
is to increase the centralization degree of RAN function-
ality. Classical C-RAN technology is deemed unfeasible
in many realistic scenarios for 5G and new RAN func-
tional splits have been defined to enable a smoother mi-
gration. In this paper we showed that next generation C-
RAN faces a joint problem to route traffic across fron-
thaul/backhaul (crosshaul) transport networks while maxi-
mizing the amount of centralization. To address this issue,
we defined a metric to measure the degree of centraliza-
tion and proposed three algorithms to maximize it while
meeting transport constraints: WIZHAUL-BBB, WIZHAUL-
GA-GR and WIZHAUL-GA-RR. WIZHAUL-BBB provides
a near-optimal solution which yields a performance up-
per bound. WIZHAUL-GA-GR and WIZHAUL-GA-RR are
greedy heuristics where WIZHAUL-GA-GR achieves the
best trade-off between computational load reduction and
distance to the optimal solution. The mechanisms designed
can be used both at network planning and operational run-
time phases to achieve the maximum centralization degree.
WIZHAUL-GA-GR has been implemented in a proof-of-
concept with commercial hardware and its properties at
operational runtime have been analyzed.
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