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Abstract

In the present work, experimental results to show the impact in heat transfer

of chevron impinging jets is going to be described. The object of study will be

heat transfer coefficient, through the Nusselt number, of chevron impinging jets,

by putting caps with different chevron configurations at the end of a nozzle. The

parameters for the design of these caps are the number of chevron indentations (4

and 8), chevron length (4 and 8 mm) and chevron type (positive and negative).

The technique used for the measurements is infrared thermography, making use

of the heat flux sensor theory. Nusselt number maps are going to be obtained and

discussed. The whole experimental set up and performance was carried out in the

laboratory of the university, and the experimental set up and procedure is going

to be explained in detail. The Reynolds number used for all experiments was

10000 and the nozzle exit was placed at distances 2, 4, 6 and 8 nozzle diameters.

It will be seen, that certain chevron configurations show a better behavior than

a standard circular nozzle, in some cases a 8-10% in heat transfer performance.
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Chapter 1

Introduction

Intensive studies on heat transfer can lead to the understanding of the impact

of conduction, radiation and/or convection effects on scientific and technological

applications. In the ongoing times, the society and the environment require more

efficient and economic productions systems and means of transportation. To this

end, it is of crucial importance to accurately measure the energy required to a

certain end, while taking the most of the available/supplied energy.

In this work, convective cooling making use of impinging jets is going to be

studied. Impinging jets have shown to be a very efficient device for thermal

energy and mass transfer between a surface and a fluid. The first interests on

impinging jets date from the sixties, when Gardon and Cobopue [16] first showed

how the radial footprint of a single round impinging jet over a hot surface is

strongly influenced by the dimensionless nozzle-to-plate distance H/D. Later on,

further studies were carried out and it was found out that other parameters such

as Reynolds number, the turbulence intensity and the angle of impingement also

play an important role in this heat transfer system. Martin gathers results of all

these parameters in a review paper [22].

2
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1.1 Impinging jets applications and economical

importance

Impinging jet installations have found their place in several industries because

of their wide range of applications. In the aerospace industry, a very important

application is the one of cooling down the leading edges of the first stages of

turbines. For this, pressurized bleed flow (typically at 600oC after the compressor)

is internally conducted to impinge the internal walls of the blade immersed in

a very hot fluid (around 1400oC total temperature after passing the combustion

chamber). Cooling down the turbine blades allows higher operation temperatures

(and higher temperature ratios), which in terms of aircraft engines is translated

into higher efficiency, higher turbine output per unit weight and reduction of fuel

consumption. According to Zuckermann [35], this requires heat fluxes the order

of magnitude of 1MW/m2.

It has to be taken into account that the implementation of such systems affects

the structural strength and lifetime of the components (impinging jet cooling is

more easily applied to turbine stator blades than to rotor blades). The same

way, bleeding a fraction of air from the engine compressor entails a performance

penalty and for this reason, a good knowledge of the system requirements and

process capabilities will be needed by the designer.

Impinging jets have also been found to have a great potential in the electronics

industry, since the thermal over stressing is one of the major causes of failure

of electronic components, new high performance cooling systems are needed to

cover the need of high heat transfer coefficients for every day more powerful

components in more packed systems. Here the use of impinging jets happen to

be more effective than the current fin and fan arrays [28]. An implementation

example can be seen in the patent by Bartilson [4].

Jet impingement is also commonly used in several industrial drying operations

involving rapid drying of materials in the form of continuous sheets (tissue paper,

photographic film, textile) [26]. As drying rate is dictated by the rate of heat and

mass transfer within the drying substrate and the surroundings, jet impingement

results adequate when rapid drying or small equipment is desired. In comparison

to traditional parallel flow drying, the use of impinging jets results in a higher
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energy consumption and the possibility of burning the product due to overheating.

For these reasons, during the design of an impinging jet dryer, it will be important

to match the heat supply with the drying energy demand to avoid overheating

and waste of energy [19].

Another application area is glass tempering [13], where again, effort to understand

the relationship between the parameters involved in the impinging jets system

designs is made, in order to optimize the appliance to the problem.

1.2 Heat transfer enhancement

Still, research to find other ways to improve heat transfer between the jet and

impinged surface has been done. It is well known that intensity of turbulence

is directly related to convection heat transfer, compromising somehow the effec-

tiveness of the systems because of pressure losses. With the work done to date

and the current studies, it is expected to develop more effective systems, able to

increase heat transfer through an increment in turbulence while maintaining a

low pressure drop. The orifice design is very important in jet impingement, since

it will affect the pressure drop across the nozzle and the velocity profiles over the

impinged surface. These velocity profiles will be related to the convective heat

flux.

During the development of the jets, an entrainment mechanism takes place, which

increments the impinging flow rate and is able to substantially increase the con-

vective heat transport. For years, a lot of effort has been put on understanding

this entrainment phenomenon and its mechanism, in order to be able to control

it and optimize it.

Tennekes and Lumley [29] describe the entrainment rate as the rate at which the

fluid from the jet becomes entangled or mixed with that from its surroundings

as they join at the mixing layers. There have been many trials to increment this

entrainment rate while having the pressure drop across the nozzle under control.

For non-circular jets, the so called axis-switching is main responsible mechanism

of entrainment enhancement. This phenomenon can be seen in the laboratory

and consists on a turn of the jet cross section as it spreads further away from
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the orifice. According to [17], axis-switching is responsible, for example, of the

enhanced large-scale entrainment in rectangular jets.

On the line of understanding the behavior of non-circular jets, Gulati [18] carried

out a study of the influence of the nozzle shape on the local heat transfer distri-

bution over a normally impinged air jet on a smooth flat surface. Carrying out

experiments at different nozzle to plate distances and Reynolds numbers, they

observed that although the heat transfer characteristic of square and circular jets

are pretty similar, the Nusselt number distribution along the major and minor

axis for the rectangular case is different. In addition, they found out that for a

nozzle to plate distance up to 6 nozzle diameters, the Nusselt number distribu-

tion along the horizontal axis for rectangular jets is higher than in the stagnation

region for circular and quadrangular jets.

Meslem [24] among others, went deeper into the problem and experimented with

rectangular six-lobed orifices and compared the results with a reference round jet

under the same conditions. He found out that in contrast to the round nozzle

where the flow motion is dominated by large primary Kelvin-Helmholtz rings, for

six-lobed rectangular jet secondary vortexes generated at the tip appear to be

predominant, giving way to an incremented volumetric flow rate.

El Hassan [14]studied vortex structures for daisy-shaped orifice jets. He also

found a higher entrainment for the daisy shape as related to circular jets. The

reason for this is the generation of large-scale vortexes, which generated by the

lobed geometry. In a similar way, El Hassan [15] also studied the effect of having

a cross-shaped orifice.

Trávńıček [30] studied the effect of implementing a system of synthetic jets dis-

tributed around the circumference of a primary nozzle. He found that excitation

led to heat transfer increase in the stagnation area.

Cafiero [8] proved that implementing a fractal grid (a grid with a spare pattern

repeated at increasingly smaller scales) enhanced the degree of turbulence at a

slightly larger pressure drop. This way, it was possible to provide a significant

heat transfer enhancement for relatively small nozzle-to-plate distances.

There have been initiatives on studying the effect of forcing pulsating impulses to

the jet flow. Among them, Xu [34] performed a numerical study on this area and

concluded that pulsations significantly increase the heat transfer for both cooling
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and heating cases.

1.3 Purpose of this work

With some examples, it has been shown that strong efforts have been undertaken

to understand how is turbulence related to heat transfer and the way to profit

from it. Recent papers, like the one from Vinze [31] implemented different chevron

configurations at the end of the flow pipes and observed an increase in the local

Nusselt number on the plate. Vinze’s work changes the number of chevrons,

length and penetration depth.

Knowing that chevrons induce azimuthal vorticity to the flow, helping mix-

ing and entrainment to take place, the purpose of this work is to evaluate the

convective heat flux for different chevron configurations (for different chevron

lengths, chevron numbers and chevron shape) for certain experimental conditions

(Reynolds number and nozzle to plate distance). Temperature measurements are

going to be taken with an infrared camera by making use of heat flux sensor

and radiation theory. For that a pneumatic installation has to be mounted and

knowledge in infrared measurement has to be acquired.

1.4 Project planning

For this project, the following steps were planned.

• Gather information: An introduction to the topic of heat transfer, im-

pinging jets and infrared imaging had to be made. In order to perform the

following steps involving design and apparatus set up, a good understand-

ing of the physics of the problem and tools to be used had to be acquired.

In order to reinforce the knowledge on impinging jets and help visualize the

theory, simulations making use of COMSOL Multiphysics software were

carried out.

• Design of nozzle and nozzle caps: Design work had to be performed in

order to obtain chevron nozzle caps for the study. CAD software was used

during this design and the pieces were 3D printed at the university.
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• Components selection and purchasing: For this project, a pneumatic

installation which had been previously mounted at the Propulsion Systems

Laboratory of the university has been used. Still, some improvements and

corrections had to be made in order to adapt the system to the desired

operating conditions. Such changes involved for example, purchasing a new

massflow meter for the appliance, as well as a set of tubes and fittings to

adapt it to the system.

• Installation assembly: Once the components were bought, it was neces-

sary to implement them for their use. At this point, special care was taken

in order to obtain the proper connections, distances and angles for a better

data acquisition.

• Data acquisition process: Measurements were performed and data were

obtained for analysis. During this process, it has been checked that the

results seemed consistent and useful for further modification in the instal-

lation.

• Data post processing and analysis: Making use of computational soft-

ware, post processing lead to results, which had to be compared with liter-

ature for validation.



Chapter 2

Impinging Jets

For the purpose of this project and for a deeper understanding of the physics of

the problem, it will be of interest to introduce some basics on impinging jets, the

variables that have to be taken into account and an overview of its effects over a

flat surface.

Although impinging jets can be found isolated or forming an array of jets, in this

work only the single nozzle arrangement is investigated. In order to help visualize

the explanation, some simulation results are going to be displayed. The software

used for these simulations is COMSOL Multiphysics. For the simulations, one of

the cases of study was taken: a simple round nozzle, two diameters away from

the plate and with a Reynolds number of 10000. The radius of the nozzle is 7.5

mm and the outlet flow velocity is 10.33 m/s.

The Reynolds number is a dimensionless number and is defined as the ratios of

inertial to viscous forces within a fluid subjected to relative internal movement

due to different fluid velocities. For the case of jet flows, where the nozzle diameter

D is taken as the reference length, the Reynolds number is given by Equantion

2-1

Re =
ρfV ·D

µ
(2-1)

whereρ is the fluid density, V is the jet flow velocity and µ is the dynamicic

viscosity of the fluid. This non-dimensional parameter helps to predict the flow

patterns under different flow conditions, determining for example the laminar to

8
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turbulent transition.

D

H

potential core

free jet

stagnation region

wall jet region

xw

Figure 2-1: Sketch of an impinging jet.

An impinging jet is schematically displayed in Figure 2-1 and can be understood

as a source of gas discharged from a nozzle onto a surface. Although later on, the

object of interest will be impinging jets with chevron nozzles, for now the reader

must think on a circular nozzle with exit diameter D at a distance H of the plate.

In agreement to other studies on impinging jets, this nozzle to plate distance will

be non-dimensionalized with the diameter of the nozzle exit (H/D).

Martin [22] describes the flow pattern of impinging jets as the ensemble of three

regions: free jet region where the flow is not being perturbed by the impingement

on the plate, a stagnation region where the flow is axially decelerated because of

the effect of the impingement on the plate while accelerated in the radial direction,

and a wall jet region where the flow velocity components are just parallel to the

wall and behaves according to a wall jet rather than wall flow.

The jet develops starting from a turbulent state with a uniform velocity profile at

the nozzle exit and as it travels away from the orifice, it experiences a momentum



CHAPTER 2. IMPINGING JETS 10

exchange with the ambient. This momentum exchange causes the jet to widen

while the potential core contracts, see Figure 2-2 . This potential core region is

where the original flow velocity and total pressure are retained [10]. This way, the

velocity profile of the jet leaving the nozzle reshapes from an almost rectangular

contour spreading to the free boundaries and acquiring a Gausian-shape. See

Figure 2-3. In Figure 2-2 is is also seen how this momentum exchange traduces

into some flow entrainment from the quiescent surrounding fluid.

For the problem of impingement cooling, this entrainment will be of special in-

terest because it will effectively increase the volumetric mass flow impinging the

surface. On the other hand, for better heat transfer at the stagnation region it

will be important that potential core conditions are conserved as well. It has

been found (and it will be seen in the results) that the optimal nozzle to plate

distance for this is of 6 nozzle diameters.

Figure 2-2: Absolute velocity magnitude distribution for the impinging jet flow
and arrow field. Extracted from simulation Re 10000 and H/D = 2.

For the heat transfer over the solid surface, it will be of of special importance to

understand what happens in the vicinity of the hot wall, since the flow velocity,

size/behavior of the boundary layer and turbulence will be determining the heat

transfer. As stated before, after reaching the stagnation region, the air will

start to radially accelerate, up to point xs (usually at around 4 nozzle radii

according to [1]). The effect of acceleration keeps the boundary layer laminar in
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Figure 2-3: Axial velocity profiles from the axis symmetry axis at different
distances from the impinged surface.

the stagnation zone, while in the contrary, after this maximum velocity point,

a transition to turbulence takes place. From this point on, because both the

velocity gradient at the wall and the gradient with the outside quiescent fluid,

the boundary layer starts to grow and a wall jet appears. In Figure 2-4 a field for

this radial velocities is displayed and the acceleration region is easily identified.

In Figure 2-5, radial velocity profiles for different radii are displayed. For x =

5 mm (right after the stagnation region), the flow is being accelerated. In the

following two images, the wall jet can be good appreciated and for the image

corresponding to x = 45 mm, far away from the maximum radial velocity and

already well into the turbulent regime, the wall jet has disappeared. It is also

recognized that as the boundary layer develops, the point of maximum velocity

in the profile finds itself further up from the wall and this locus of maxima will

lead to the boundary layer thickness distribution, according to Martin [22].

In the turbulent region, the magnitude of the maximum velocity of the jet will

be decaying to zero as the flow goes on (Figure 2-6).

The nozzle-to-plate distance (H/D) plays a crucial role in the development of

this potential core which directly affects the magnitude and distribution of the

local heat transfer coefficients over the impinged surface. In Figure 2-7 this

phenomenon is easily identified. For an impinged surface, knowing that the local

heat transfer properties of a circular jet will have an axisymmetric distribution,
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Figure 2-4: Radial velocity field.
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Figure 2-5: Radial velocity profiles for at different distances from the stagnation
point.
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Figure 2-6: Maxima in the radial velocity for different distances from the stag-
nation point.

they can be plotted as an only function of the radial distance to the stagnation

point r/D.

For large distances, it is seen that the maximum heat transfer coefficient is found

at the stagnation point and it will be radially decreasing in a bell-shape. For

nozzle-to-plate distances H/D < 6, the central peak is replaced by a heat trans-

fer minimum surrounded by an annular peak (inner peak). As H/D continues

decreasing, an annular hump starts to develop around this inner peak and grows

till at a nozzle-to-plate distance of 3, it appears a well defined secondary annular

peak (outer peak). The appearance of the second maximum is attributed to a

sharp rise in the turbulence level which accompanies the transition from an accel-

erated stagnation region flow to a decelerating wall jet [22]. Indeed, comparing

Figures 2-7 and 2-6, one can see that the location of the outer annular peak is

pretty close to the point of maximum radial velocity and right before transition

to turbulence.

Given that the impinging jets is a good way to enhance heat transfer, there have

been a lot of research initiatives to manipulate and optimize the value and location

of these heat transfer coefficient maxima. For that, tests have been made varying

nozzle to plate distances, Reynolds number of the flow and adding elements to

the nozzle exit as it is the case of the chevron nozzle, nozzle chamfering and the

implementation of confined nozzles. Examples of these studies can be found at

papers from Violato [32], Ianiro [10] and Choo [12].
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Figure 2-7: Nusselt number radial distributions for various nozzle-to-plate dis-
tances [23].

It is worthy to note that if the nozzle is placed closer than a half nozzle diameter,

the impingement of the jet is substituted by a wall jet with relatively high heat

transfer rates.

2.1 Introduction to chevron nozzles

In this project, the object of study is the heat transfer performance of different

chevron nozzles, although their first application was not in the field of impinge-

ment heat transfer. The idea of adding chevrons at the the rim of nozzles came

from the necessity of reducing jet noise and infrared signature of the aircraft en-

gines [6]. Jet noise is primarily produced by shear effects between the jet and

ambient flow. Reducing the exhaust jet velocity and promoting mixing of jet and

ambient flow is a good way to reduce jet noise, but this is difficult to be achieved

without compromising the engine performance.

Here is where the practice of adding chevrons to the nozzle rim comes into play,

so they generate axial vorticity encouraging the jet air to mix faster with the sur-

rounding fluid. In year 1999, GE started a program to develop a noise reduction

upgrade to the CFM56-5B [21] and nowadays chevrons are seen for example in

the engines of B747 airplanes. See Figure 2-8.
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Figure 2-8: B747 exhaust nozzles.

Later on, it was seen that the effect of adding chevrons to nozzles can be used

to heat transfer enhancement for industrial applications. So it was known that

the fundamental physical process at the origin of heat transfer is associated with

the flow turbulence and its three-dimensional behavior in the region of impinge-

ment [32]. If the flow reaches the impingement surface with a higher degree of

turbulence, a higher heat transfer rate will be achieved.

2.2 Parameters and geometry of chevron noz-

zles.

In the line of reducing noise making use of chevron nozzles, Bridges and Brown

[7] presented a paper in year 2014 describing the relationship between chevron

geometric parameters, flow characteristics and far-field noise. As stated before,

it will be of special interest a good turbulent mixing although the effective jet

velocity sees itself reduced.

Implementation of chevrons induces axial vorticity in the flow, which increases

cross-stream trasport and mixing in the shear layer of the potential core. Because

closely spaced chevrons generate vortexes that tend to annihilate one each other

and limit the cross-stream transport they should accomplish, it will be of interest

to manage an optimal axial vorticity distribution within the cortex core. For this

end, the main flow field parameters to vary are vortex strength, vortex spacing
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and vorticity distribution. These parameters are related to the following geometry

variables: chevron penetration, chevron count and chevron length respectively.

Combining these variables Bridges and Brown were able to vary the effective

nozzle diameter and define a vortex strength parameter.

In Figure 2-9, chevron length and penetration are displayed.

Figure 2-9: Details of the chevron geometry: length L and penetration depth
p. [32]

2.3 Jet development and differences between round

and chevron nozzles.

Violato and Scarano [32] [33] made a deep study of the development of circular

jet flow and compared it to the jets product of chevron nozzles.

For the circular impinging jet and moderate Reynolds numbers, in the region close

to the nozzle rim, Kelvin-Helmholtz instabilities (azimuthally coherent) originate

and will later on be organized in toroidal vortexes (or vortex rings). These donut

shape vortexes will pair downstream. During this vortex pairing, streamwise

instabilities are formed and also radial vorticity coherence is seen to grow. Instead

of toroidal vortexes, the chevron jet develops in a star-shaped pattern with regions

of higher axial and radial velocity components in correspondence to the chevron

notches. See Figure 2-10 and 2-11.

2.3.1 Heat transfer

It is interesting to check at the differences in pattern and values that the heat

transfer coefficients acquire over the impinged surface. The paper of Violato
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Figure 2-10: Temporal sequence of instantaneous iso-surface axial velocity
W/Wj = 1.45 (red in the circular jet) and 1.7 (purple in the chevron jet), az-
imuthal vorticity ωθDj/Wi = 4 (cyan), axial vorticity ωzD/Wj = −1.2 (green)
and 1.2 (yellow). Vectors on plane Y/d = 0. Time separation between snapshots
∆tWj/D = 0.45. [32].

Figure 2-11: Chevron jet: contours of mean-axial velocity at different cross-
sectional Z-planes; X-Y projection of velocity vectors. [33].
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[32] elaborates a good description of this heat transfer coefficients distribution

and some of his results are going to be used to validate the outcomes of this

experiment.

In Violato’s Nuselt maps and for the case of circular nozzle jet the two axisymetric

maxima stated before are clearly seen and for the case of a chevron nozzle, a star-

shape in concordance to the chevron distribution appears. In the center higher

Nusselt number values than for the circular case are observed, as well as in the

star segments corresponding to the nozzle notches.



Chapter 3

Heat Flux Sensors

For this experiment, it will be necessary to accurately measure the local convective

heat flux, qconv[W/m
2], making use of infrared thermography technique. For that

it will be necessary to calculate the convective heat transfer coefficient h[W/m2K].

The relationship between these two terms is given by the Newton’s convection

law

qconv = h(Tw − Tjet) (3-1)

where Tw is the surface temperature of the wall and Tjet is the jet temperature,

which in principle in approximate to the ambient temperature. For the calcula-

tions, in order to remove the dependence on the ambient temperature, a temper-

ature Tcold (the temperature of the system without energy contribution) and a

temperature Thot (the temperature of the system after applying Joule heating) is

going to be taken. Transforming Equation 3-1 into Equation 3-2.

qconv = h(Thot − Tcold) (3-2)

Data is generally presented in terms of the Nusselt number

Nu =
hL

kf
(3-3)

Here, L is a characteristic length (for the Nusselt number calculation, nozzle

19
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diameter will be taken) and kf is the thermal conductivity of the fluid.

Heat flux sensors generally consist of a plate with well known thermal properties

and whose energy will be measured by the infrared camera. Knowing the proper-

ties of the flow and the temperature differences, one can apply an energy balance

to develop a suitable thermal model to calculate the desired thermal parameters.

Before proceeding, it is necessary to point out the names given to the slab surface

in contact with the flow (front surface) and the opposite one (back surface). It

will be also necessary to introduce the Biot number (Bi), a parameter used to

evaluate the thermal thickness of a slab.

Bi =
hts

kplate
(3-4)

In this relationship, ht is the total heat transfer coefficient that includes convec-

tion and radiation, s is the slab thickness and kplate is the thermal conductivity

of the sensor.

For IR thermography, three classical heat flux sensors are commonly used [3]:

• Heated thin foil sensor : This sensor normally consists of a thermally thin

(Bi << 1) metallic sheet or a printed circuit board, which is steady and

uniformly heated by Joule effect. Taking advantage of Joule effect and the

relative high conductivity of the material, one can make sure this uniformity

condition.

• Thin film sensor : This time, a thermally thick slab is used as a sensor

instead, and the convective heat transfer coefficient is deduced from the

unsteady heat conduction in a semi-infinie solid.

• Thin skin or wall calorimeter : For this sensor, a thermally thin slab is used

as a perfect calorimeter. In order to do that, the time rate of temperature

change is evaluated and modeled.

It is important to note that, according to Astarita [2], the most typically used

heat-flux sensors are the ones known as one-dimensional. For these sensors, the

heat flux to be measured is assumed to be transverse to the sensing surface. A

first approximation considering one dimensional sensor can be estimated (denoted

as the ideal case), but then an extension to the multi-dimensional configuration
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needs to be made, since for real applications, effects of lateral conduction and

transient convection need to be taken into account for a proper data processing.

For the purpose of this work, it is relevant to focus on the heated thin foil sensor.

3.1 Heated Thin Foil Sensor

The convective heat transfer coefficient can be quantified by measuring the heat

input as well as the foil surface temperature with the infrared scanner.

The ambient temperature Ta is assumed to be constant, so the ambient environ-

ment can be considered as a black body (what a black body is will be explained

in Chapter 4).

According to the diagram in Figure 3-1, one needs to account for the radiative

heat leaving the surface of the sensor qrad, the convection contribution qconv, an

other contribution due to thermal conduction across the foil qcond and a last term

accounting for the natural convection qn on the back surface of the heated thin

foil sensor.

qn

qconv qrad

qcond

qJoule

Figure 3-1: Sketch of heated thin foil sensor. Diabatic back surface.

Conservation of energy for the case of the heated thin foil sensor, without taking

into account the unsteady term, results to be:

qJoule = qrad + qn + qconv + qcond (3-5)
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At this point it is interesting to introduce the expressions of the terms in Equation

3-5. So, from here on one can extract the convective heat transfer coefficient, h.

This value will be used in order to calculate the Nusselt number, either for one

point or like in this case, a Nusselt number distribution.

qJoule =
V I

A
(3-6)

qrad = εσ(T 4
w − T 4

∞) (3-7)

In these equations V is the voltage supplied, I the corresponding current intensity,

A is the area of the heated foil sensor, ε is the emissivity of the material, σ the

Stefan-Boltzmann constant, Tw the wall temperature and T∞ the temperature far

away from the surface. The temperatures are in Kelvin.

A phenomenon like the one of study, implies that the heat transfer coefficient

varies. So does the sensor surface temperature. Consequently temperature gra-

dients force heat fluxes in the tangential directions, but by the assumption that

the sensor is thermally thin and ideal, this can be easily modeled by means of

Fourier law:

qcond = −kplates∇2Tw (3-8)

By neglecting natural convection qn, after equating Equation 3-5 and solving

Equation 3-3 for h, the final expression for the convective heat transfer coefficient

will be

h =
qJoule − qrad − qcond

Thot − Tcold
(3-9)

3.1.1 Natural Convection contribution

The natural convection phenomenon is the result of body forces such as gravity

acting on a fluid in which there are density gradients. This natural convection is

also known as free convection because there is no instrument forcing the fluid to

move. Because the velocity of this fluid is much lower than in the forced case,

the heat transfer coefficient is also quite low.
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There are several cases of study for the determination of the relevance of free

convection, depending on the orientation of the plate and on the temperature

difference between the plate, Ts and the ambient, T∞. It is of interest the case of

the natural convection under a horizontal hot plate, refer to Figure 3-2.

Figure 3-2: Buoyancy-driven flow over the bottom surface of a hot horizontal
plate [5]

Here, the tendency of the fluid to ascend is impeded by the plate. The flow must

horizontally displace before it can ascend from the edges of the plate [5].

For this situation

NuL = 0.27Ra
1/4
L (3-10)

where

RaL =
ρgβ(Ts − T∞)L3

µαd
(3-11)

In this Equation 3-11, g is the gravity constant, β is the volumetric thermal

expansion coefficient, which for an ideal gas is

β =
1

T
(3-12)

bein the temperature in absolute value. Ts is the surface temperature, T∞ the

ambient temperature, ρ the fluid density, L a characteristic length, µ the dy-

namic viscosity and αd is the thermal diffusivit of the fluid under the determined

temperature and pressure conditions. These values are taken from the tables of

Thermophisical Properties of Gases at Atmospheric Pressure [5].
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Noting that for this case the characteristic length is given by

L =
plate surface

plate perimeter

the Nusselt number value for the natural convection of the plate is around 7.3,

which is quite low in comparison with the forced convection Nusselt numbers

resulting from the impinging of the jet shown in the next sections. . For this

reason, natural convection will not be taken into account.

3.1.2 The printed circuit board.

For the development of these experiments it was decided to implement a printed

circuit board as a heated-thin-foil sensor. Several adjacent thin copper tracks are

printed and arranged in a Greek fret mode and bound to a fiberglass substrate.

Because of the high conductivity of copper, the board shows an anisotropic ther-

mal conduction behavior (different in each direction) and for this reason instead

of making use of Fourier law as in the case of a thin foil, the conduction term has

to be expanded to

qcond(x, y) = −∇(s(x, y)Λ(x, y)∇Tw(x, y)) (3-13)

By choosing a cartesian coordinate system with axes directed as the two principal

axes of the thermal conductive tensor Λ, it is possible to split this effect in the

directions parallel and normal to the copper tracks, obtaining

qcond = qcond,x + qcond,y (3-14)

Figure 3-3 serves as an illustration for the problem.

In Equation 3-14, qcond,y happens to be the addition of two conduction mecha-

nisms: the heat flux due to the copper tracks and due to the fiberglass support.
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Figure 3-3: Printed circuit. [2]

qcond,y = −
(wcscλc + wfsfλf

wf

)∂2Tw
∂y2

= −(γ∗scλc + sfλf )
∂2Tw
∂y2

= −(sλ)ey
∂2Tw
∂y2

(3-15)

Here w indicates the width, s the thickness, subscripts c and f correspond to

copper and fiberglass. λf and λc are the thermal conductivity coefficients of the

copper and fiberglass respectively. A width parameter γ∗ was implemented to

simplify the expression.

γ∗ =
wc
wf

(3-16)

(sγ)ey stands for equivalent thermal conductance along the y-axis.

When looking at the x-direction, the one perpendicular to the copper tracks, in

the gap zone only fiberglass allows conductive heat transfer while, in the track

zone, both copper and fiberglass contribute to it. So, the heat flux in this direction

will be formulated as
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qcond,x = −
(1− γ∗

sfλf
+

γ∗

scλc + sfλf

)−1∂2Tw
∂x2

= −(sλ)ex
∂2Tw
∂x2

(3-17)

where (sλ)ex represents the equivalent conductance along the x-axis.

After applying this correction, one can go back to Equation 3-9, find the value of

the local convective heat transfer coefficient and set it into Equation 3-3 to find

the corresponding Nusselt number.

3.1.3 Remarks

In this set of equations the reader can see that most of the terms are either physical

constants or properties of the material an geometry of the appliance. In the

heated-foil-sensor used, the voltage for the Joule heating is an input and the only

parameters that actually count for the h and Nu determination is the difference

in temperature between the Tcold and Thot conditions. Thot is the temperature of

the plate when then electric circuit is switched on, and Tcold is the temperature

measure then the electric circuit is switched off.

Up to this point, the reader may notice too that in Equation 3-3, the thermal

conductivity of the fluid needs to be implemented, but this parameter depends

on the the fluid temperature above the surface which is neither the temperature

of the free stream, nor the temperature of the hot plate. During the calculation

an average temperature, called Tfilm, was taken.
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Radiation Theory and IR scanner

In contrast to other means of heat transfer like conduction or convection, when

talking about radiation one has to have in mind that there is no need of a physical

medium for it to happen. Radiation takes place in vacuum and its effect does not

result negligible in industrial applications and energy conversion methods.

At this point it results important to have a deep understanding of this heat

transfer phenomenon, since it is going to be the one that will allow the acquisition

of data for the experiment. Furthermore, it will approach the reader to the

understanding of the way the IR camera works.

Figure 4-1: Radiation cooling of a heated solid [5].

For the study of this heat transfer phenomenon, the bodies will be considered in

vacuum (still in presence of an atmosphere, one would only have to deal with it

27
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applying the proper corrections). It is well known that thermal energy flows from

bodies with a higher energy to bodies with lower one. The body will receive some

energy in form of radiation from the surroundings and cool down while radiating

free energy back to the surroundings. This cooling down is associated with a

reduction of internal energy stored, which is released as a result of oscillations or

transitions of the many electrons that constitute matter.

Radiation is a volumetric phenomenon because the heat emerging from a finite

volume of matter (solid, liquid or gas) is the integrated effect of local emission

through the volume. That means that the radiation emitted by the internal

molecules of the volume to be considered, is strongly absorbed by the adjoining

molecules and at the end, only the energy actually coming out of the control vol-

ume will be to be considered. For this reason, it is useful sometimes to concentrate

in situations for which radiation is a surface phenomenon. It has been observed,

that the radiation emitted from a solid or a liquid originates from molecules that

are within a distance of approximately 1 µm from the exposed surface.

(a) As a volumetric phenomenon. (b) As a surface phenpmenon.

Figure 4-2: Emission process [5].

Answering the question of what is actually the mean of propagation of energy of

a radiating body, one can describe it as the fact that just because of being at a

temperature above the absolute zero, the movement of charged particles results

in the emission of electromagnetic waves traveling in vacuum. The characteristics
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of these waves depend on several variables, such as the material of the radiating

body and its surface finish, the thermodynamic state and its specific wave length,

which is described as

λ =
co
ν

(4-1)

For infrared thermography applications, it will be useful to consider this value

in terms of µm. co is the speed of light in vacuum, which takes the value of

co = 2.998 · 108m/s and ν is the frequecy of the wave and will be expressed in

term of s−1.

The speed of light and the wave length will depend on the nature of the medium

and the frequency will depend only on the source of the electromagnetic wave.

This fact is directly related to another way of approaching the quantification of

radiation, which is based on quantum theory. At this point, radiation will be seen

as a collection of discrete particles termed photons whose energy will be defined

as

e = h̄ν = h̄
co
λ

(4-2)

This energy e is expresed in Joules and the Plank’s constant takes the value

h̄ = 6.626 · 10−34Js. Knowing that the magnitude of radiation varies with wave

length, it is possible to describe an electromagnetic spectrum of it and notice

that thermal radiation (the one of interest for the thermography scanning to be

performed in this experiment) encompasses just a discrete range of wave lengths.

This thermal radiation band is relatively small and ranges from 0.1 µm to 100

µm. In particular, when a body is at ambient temperature most of the energy is

radiated in the infrared spectral band. This band is at the same time, sub-divided

into four smaller bands called: near infrared [0.76 - 3 µm], middle infrared [3 -

6 µm], long infrared [6 - 15 µm] and extreme infrared [15 - 100 µm]. For the

IR thermography application, most of the sensors are sensitive to the middle

(MWIR) or the long wavelength (LWIR) spectral bands.

There are two remaining features that describe radiation. On the one side, it is

to take into account the spectral distribution radiation describes. This is related

to the temperature and the nature of the emitting surface. The second feature is

known as directionality, which as seen in Figure 4-4, denotes that a surface may
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Figure 4-3: Spectrum of electromagnetic radiation [5].

emit preferentially in certain directions creating a directional distribution of the

emitted radiation.

(a) Spectral distribution. (b) Directional distribution.

Figure 4-4: Radiation emitted by a surface [5].

4.1 Black Body Radiation

A blackbody is defined as a perfect emitter and absorber of radiation. Is the one

that [5]:
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1. Absorbs all incident radiation, regardless of wavelength and direction.

2. Emits the highest energy for a prescribed temperature and wavelength.

3. Emits radiation, which is independent of direction. In other words, it is a

diffuse emitter.

It serves as a standard against which the radiative properties of actual surface

may be compared.

To put an example, one can think in the case in which radiation enters a cav-

ity whose inner surface is at uniform temperature as the one shown in Figure

4-5. Here, the reader can see how all radiation enters the cavity without being

reflected, while it is able to leave the cavity through a small orifice uniformly

emitting in all directions.

Figure 4-5: Characteristics of an isothermal blackbody cavity: Complete ab-
sorption, diffuse emission from an aperture and diffuse irradiation of interior
surfaces [5].

The radiation energy emitted by a black body per unit time and per unit surface

area is given by the experimental Stefan-Boltzmann law

Eb(T ) = σT 4 (4-3)

where the Stefan-Boltzmann constant is σ = 5.670 · 10−8W/m2 · K4 and the

absolute temperature of the surface T will be given in Kelvin.

Stefan-Boltzmann law determines the total blackbody emissive power Eb, which

happens to be the sum of radiation emitted over all wavelengths. In some cases,
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it will be of interest to know the spectral blackbody emissive power which is

the amount of radiation energy emitted by a blackbody at a thermodynamic

temperature T per unit time, per unit surface area, and per unit wavelength

about the wavelength λ [11].

The relation for the spectral black body emissive power is

Ebλ(λ, T ) =
C1

λ5[exp(C2/λT )− 1]
(4-4)

and is given in W/m2 · µm. Here C1 = 2πhc2o = 3.74177 · 108W · µm4/m2 and

C2 = hco/k = 1.43878 · 104µm ·K.

At this point it is interesting to introduce the emissivity (ε) to the list of defini-

tions. The emissivity is known as the ratio of radiation emitted by the surface

at a given temperature to the radiation emitted by a blackbody at the same

temperature. It varies in the interval [0, 1] and the black body adopts ε = 1.

The emissivity of materials will be later taken into account when focusing and

calibrating the camera, as well as while designing a proper heat-flux sensor for

the measurements.

(a) Spectral distribution (b) Directional distribution

Figure 4-6: Comparison of blackbody and real surface emission [5].

In general, the spectral radiation emitted by a real surface disagrees from the

Planck distribution for a real body. In addition, the directional distribution for

the emission of a real body does not appear to be diffuse, like for a black body.

Figure 4-6 schematizes this these differences.
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Absorptivity α =
Absorbed radiation

Incident radiation
=
Gabs

G
0 ≤ α ≤ 1

Reflectivity ρ =
Reflected radiation

Incident radiation
=
Gref

G
0 ≤ ρ ≤ 1

Transmissivity τ =
Transmitted radiation

Incident radiation
=
Gtr

G
0 ≤ τ ≤ 1

Table 4-1: Summary of radiative properties.

4.2 Other radiative Properties

• Absorptivity α: Fraction of irradiation absorbed by the surface.

• Reflectivity ρ: Ratio of irradiation absorbed by the surface.

• Transmissivity τ : Fraction of transmitted radiation through the medium.

Figure 4-7: The absorption, reflection, and transmission of incident radiation
by a semitransparent material. [11].

Being G the incident radiation, the radiative properties are defines as:

Adding terms, energy conservation requires:

Gabs +Gref +Gtr = G (4-5)
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After normalizing Equation 4-5 transform into

α + ρ+ τ = 1 (4-6)

Again, the knowledge and understanding of these properties will be important

for the calibration of the IR camera.

4.3 IR scanner

One of the most important elements during the performance of these experi-

ments, will be the infrared camera, or IR scanner. This camera, the same way as

an optical one, collects a radiative signal through an optical system and sends the

information into a temperature detector that is sensitive to the selected radiation

band. In this case the signal will be delimited into the infrared band. This tem-

perature detector generates an electrical signal, which will be acquired by a video

frame grabber and is later processed by an electronic board in order to obtain a

temperature map of the scanned scene [9]. How this works is schematically shown

in Figure 4-8.

Figure 4-8: Essential components of an IR scanner. [3]

The available IR scanner is the FLIR SC4000 MWIR camera.

4.4 Optical System

The IR scanner optical system is composed by a lens, that the same way that for

a photographic camera, has to be transparend in the used infrared band. Filters



CHAPTER 4. RADIATION THEORY AND IR SCANNER 35

could also be used to improve the performance of the scanner. In this case, no

filter will be implemented.

4.5 IR Temperature Detector

Once the radiation has gone through the optical system, the temperature detector

will be in charge of converting the impinging radiation into a electric signal to be

interpreted later on.

There are two classes regarding their physical working principle. On the one

hand there are thermal detectors, whose electrical response is proportional to the

absorbed energy because it changes the electrical properties of the detector due

to a temperature modification of the detector itself. Meanwhile, in the case of

photon detectors, the electrical response is proportional to the number of absorbed

photons that interact with the electrons of the surface of the detector.

According to the data sheet of the IR scanner, the detector is made of Indium

Antimonide (InSb), which is a photovoltaic material able to generate electric

current when subjected to IR radiation. If the energy of the incident photon (e)

is larger than the energy required for quantum level change (Egap), the photon

can excite electrons and change their energy state.

Returning to the Equation 4-2 and equating for λ,

λo =
h̄ · co
Egap

(4-7)

one can see that there exists a maximum wavelength, for which the gaps between

energy levels are so low that no transition occurs.

The detector of this scanner is designed to work in an spectral range going from

3.0 through 5.0 µm, under broadband conditions in the spectral range 15-5.0 µm.

It is known that the energy required for quantum level change decreases if the

detector temperature does, because for low temperatures the electrons have such

a low energy that remain in the valence band without conducting. This way, the

action of low energy photons is able to stimulate the movement of electrons to

the conductive band. For this reason, a cooling system will be needed.
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4.6 Cooler.

For the reasons explained in the previous point, a cooling system is needed in

order to increase the signal-to-noise ratio of the data acquisition process and/or

decrease Egap.

During the years, several systems have been designed to accomplish this task.

For the case of the FLIR SC4000 MWIR, one encounters a stirling closed cycle

cooler. These coolers are based on causing a working gas to undergo a stirling

cycle which consists of 2 constant volume processes and two isothermal processes.

Devices consist of a compressor pump and a displacer unit with a regenerative

heat exchanger, known as a regenerator.

Figure 4-9: Stirling cooler with the detector array (Courtesy of FLIR Systems,
Inc.) [3]

4.7 IR Scanner Performance

There are several features and variables to measure the performance of the IR

scanner. According to the data sheet:

• Thermal sensitivity (< 18mK at ambient temperature). This feature is

generally expressed in terms of the mean Noise Equivalent Temperature

Difference (NETD), which is the standard deviation of the random noise

averaged over all pixels of a black body scene [20].

• Spatial resolution. Is the ability of the scanner to measure surface temper-

atures of small objects. FLIR SC4000 MWIR has a spatial resolution of

320(H)x256(V) pixels, having each pixel a pitch of 30x30 µm.
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• Acquisition frequency : This feature is related to the detector response time.

Although the camera can perform at 0.1 to 432 Hz, for the experiments a

frequency of 10 Hz will be set.

• Dynamic range: For this scanner is 14 bits, and this is the number of differ-

ent energy levels the signal will be composed of. As seen later, a calibration

to the proper band will be needed in order to take the most of this dy-

namic range, so the most accurate image with differentiated temperature

differences can be obtained.

4.8 IR Scanner calibration

As stated before, a calibration function will be needed to convert the radiation

energy impinging the detector surface into an output signal that can be read and

understood by the software.

As seen in Figure 4-10, only a radiation flux fraction collected by the IR scanner

is actually emitted by the target [9]. There are other contributions associated

to the radiation emitted by the external ambient environment and the radia-

tion of atmosphere. The effect of the external ambient environment is adding a

contribution by the reflection of irradiation.

Figure 4-10: Sketch of the radiation detected by the camera [9].

The whole thing is summarized in Equation 4-8,

ET = ετEb,obj + (1− ε)τEb,a + (1− τ)Eb,atm (4-8)

The first contribution states that only a fraction ε of the black body radiation at

the same temperature will be seen through a medium of transitivity τ . The second
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and third contributions account of the effect of the ambient and the atmosphere.

As stated by Carlomagno [9], the transmissivity of the atmosphere τ is assumed

to be equal to unity, which simplifies Equation 4-8 to

UD = ε
R

eB/Tobj − F
+ (1− ε) R

eB/Tamb − F
(4-9)

where UD is the detected signal, R is a function of integration time and wave-

length, B is a function of wavelength alone and F is a positive value close to

1.

There will be a mirror deviating the signal from the blackbody to the sensor

and it will be difficult to account for its reflectivity and the transmitivity of the

medium. For this reason, the terms in Equation 4-9 will be gathered in constants

λ1, λ2, λ3 and λ4 leading to the equation that will be used for the calibration of

the camera.

YPlank =
λ1

eλ2/Tobj − λ3
+ λ4 (4-10)

The purpose of camera calibration is determining these constants. IR camera

calibration is one of the steps to follow during this project and the process and

results will be explained in Chapter 6.



Chapter 5

Experimental Set Up

The experiments took place in one of the laboratories on the Aerospace Engi-

neering Department at the Carlos III University and a big part of the installation

was mounted by Jorge Maza during his work on his bachelor thesis. Some ad-

justments had to be made in order to adapt his installation to the requirements

of the current experiment.

high pressure line

valve
massflow meter

stagnation chamber

structure

nozzle

cap

heat flux sensor

mirror

IR camera

computer

multimeter

power supply

Figure 5-1: Sketch of the experimental installation.

The installation, as seen in Figure 5-1, is composed by three groups of elements:

• The pneumatic feeding : these elements are in charge of the gas conduction

from the compressed air source to the stagnation chamber and nozzle. A

39
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valve controls the air coming from the compressed air source, and this one is

monitored by an airflow meter for the further Reynolds number calculations.

• The test structure: A solid aluminum structure had to be assembled, which

rigidly subjects the rest of components in order to avoid any physical error

(vibrations or displacement). It will be important to allow the stagnation

chamber to move vertically for being able to take measurements for different

H/D values.

• The power supply and sensing components : These components will be in

charge of putting in energy into the printed board sensor and measuring

the temperature values. It is important that these components are carefully

placed and oriented.

5.1 Pneumatic feeding

As stated above, the role of this segment of the installation is to connect the

compressed air supply to an stagnation chamber and nozzle for the desired mea-

surements. The compressed air supply is directly connected to the laboratory line

and in order to measure the mass flow going through the application, an mass-

flow meter had to be connected. When choosing a proper airflow meter several

constraints had to be taken into account:

• A good accuracy at operation Reynolds numbers (in the range of 10000 to

40000) is desired.

• An analogical output to make easier the reading of values.

• Price.

At the end, AWM720P1 from Honeywell has selected, see Figure 5-2. This device

allows a flow range up to 200 SLPM with a response time of 6 ms. The airflow

meter has to be connected to a multimeter, which reads a certain voltage for a

given mass flow. The calibration data are given by the manufacturer and can be

seen at the products data sheet. Taking into account the exit dimensions of the

nozzle and room conditions, it was possible to plot a calibration curve to relate

the voltage read by the multimeter with the massflow and Reynolds number of

the problem.
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Figure 5-2: AWM720P1 Airfow meter. Image taken from product data sheet.

Because of the dimensions of airflow meter inlet and outlet, an adjustment to the

available nylon tubes had to be made. For this end, a piece of thermal rubber

hose, hose plug-in adapters, straight pneumatic fittings and hose clamps were

used. For this type of application, where air is flowing at high velocities, special

attention to air losses has to be paid, since at the hoses and pneumatic fittings, air

tends escape from the circuit. During the assembly and first tests, the quantity

of escaping air was a matter of concern, and for security some molding clay was

added. See Figure 5-3.
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(a) Airflow meter and rubber hose.

(b) Straight pneumatic fitting and hose
clamp.

(c) Hose plug-in adapter covered with mold-
ing clay.

Figure 5-3: Pneumatic adjustments
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5.2 Test structure

An aluminum structure to hold the components was designed, giving priority to

stability and allowance to the stagnation chamber and nozzle to move vertically.

It is of crucial importance that the stagnation chamber and nozzle do not vibrate

and stay perpendicular to the heated thin foil sensor placed below. So, two ring

clamps were used, removing two degrees of freedom and allowing only the vertical

displacement of the components. See Figure 5-4.

Figure 5-4: Two-ring-clamp system.

5.2.1 The stagnation chamber

The stagnation chamber is a cylinder connecting the nozzle and the line. Fur-

thermore it has some other functions to fulfill:

• Supply the air stream to the nozzle.

• Assure the pressure and temperature conditions are kept nearly constant.

• Assure an homogeneous air distribution.

• Assure a one dimensional air flux.

• Subject the nozzle.

It is made up by a PVC tube for the external wall and two internal modules,

holding two meshes and a honeycomb while isolating the airflow stream from any

external agent.
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The meshes are made of a regular mosquito net. There is one placed before a

honeycomb to remove undesired velocity components of the airflow. There is

another after the honeycomb to make sure that the flow enters the nozzle with

an only axial direction.

A honeycomb is commonly used in wind tunnel applications and is placed between

the two meshes to reduce swirl and turbulence. For this, 350 drinking straws were

glued together, filling the whole module.

A plug for the top of the chamber had to be designed to allow the air to come

into the chamber but not to leave it.

5.2.2 The Nozzle

One of the main components of the installation is the nozzle, conducting and

expanding the flow from the stagnation chamber. Since the experiments are

performed in the subsonic regime, a simple convergent nozzle is enough.

The nozzle was designed making use of the curve given by Vitoshinski theory.

This expression outputs a radius distribution (r(x)) along an axial position (x),

given the inlet and outlet radii (ri and ro) as well as the nozzle length (Ln).

r(x) = ro ·

{[
1−

(
1−

(
ro
ri

)2
)]
·
[
1−

(
x

Ln

)2]2
·
[
1 +

(
x

Ln

)2]−3}−0.5

The magnitudes of the problem are:

• ri = 61mm

• ro = 7.5mm

• Ln = 98.3mm

See Figure 5-5 to visualize the inner radial profile of the Vitoshinski nozzle used

during the experiments.

In Figure 5-6 the 3D printed piece is shown
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Figure 5-5: Inner Vitoshinski nozzle shape.

Figure 5-6: 3D printed Vitoshinski nozzle

5.2.3 Chevron Caps

For this work, several caps with chevron indentations had to be designed and

3D printed. A careful designing process had to be carried out, since the cap

had to accurately fit at the end of the nozzle without breaking it, but with

enough subjection so that it does not shoot off. A first basic cap without chevron

indentations was designed and from there on, the rest were developed by cutting

off some triangular patterns. For this work, two types of chevron indentations

were tested, a positive and negative chevron type.

This way, there are two series of nozzles, each one with its own code of the form

N/CXXXX. N stands for negative chevron, C for crown cap (standard chevron).
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Chevron series Number of chevrons Chevron length [mm] Chevron type

Circular 0 0 -

C0408 4 8 positive

C0404 4 4 positive

C0808 8 8 positive

N0408 4 8 negative

N0404 4 4 negative

N0808 8 8 negative

Table 5-1: Nozzle caps properties

The letter is followed by a series of four numbers: the two first digits indicate the

number of chevrons and the last two, the chevron length in mm. In Figure 5-7,

one can see the caps printed and used during the development of the experiments.

See Table 5-1 where the properties of all caps are summarized.
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(a) Circular (b) C0408 (c) C0404

(d) C0408 (e) N0408 (f) N0404

(g) N0408

Figure 5-7: Tested chevron taps.
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5.2.4 Heated foil sensor and support

As explained in Chapter 3, a printed circuit board is used as a heated-foil sensor

during the experiments. The circuit chosen is made of copper tracks of 5 µ m

thickness, 1 mm width and 208 mm length, with 52 tracks and a spacing between

tracks of 1 mm. As seen in Figure 5-8, the tracks are printed over a FR-4 glass-

reinforced epoxy laminate sheet. It is also to be noted that an electric wire has

been welded to the ends of the copper circuit in order to connect the sensor to

the power source. As a support, a piece of plywood was cut and horizontally

subjected to the aluminum structure.

Finally, it is important to know that over the back surface some high emissivity

painting was sprayed to help the data acquisition.

Figure 5-8: Printed circuit board.

It was very important to make sure that the nozzle completely perpendicular to

the circuit, so after matching the plywood plate to the horizontal axis making use

of a level, a string with a little weight was hung beside the stagnation chamber

to align the perpendicular to the string.

For the first experiments, a stainless steel foil was taken as a heated-foil sensor.
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This foil was placed in a methacrylate plate support with a square whole in the

middle and subjected with four copper pieces and strings as described in Jorge

Maza’s work [27]. Thermal modeling using this sensor had already been tested

in the laboratory but the dimensions of the foil lead to a pretty small regions

of study. In addition, with time the copper pieces rusted and were not properly

connecting to the power source. For these reasons, it was finally decided to use

the printed circuit.

5.2.5 Mirror

Due to the dimensions of the camera and installation it was not possible to mount

the camera to directly measure the temperatures from the thin foil sensor. For

this reason, a high reflectivity mirror had to be placed at a 45o angle under the

sensor, to perpendicularly deviate the radiation and direct it to the IR camera.

Figure 5-9: Mirror.

Special care had to be taken while placing the mirror and the camera, since any

important deformation of the image would lead to errors in the data processing.

Remember that the lateral distance from the center of the impacting jet is impor-

tant, so an misproportioned image is not desired. The way to test the quantity

of deformation was to place a square piece of material of known dimensions and
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different emissivity than the high emissivity painting and check the dimensions

in pixels measured by the camera.

5.3 Power supply and sensing

In order to supply the required energy for heating the circuit, a voltage source

able to load 30 V was used. The voltage was an input, and according to the

copper properties and track dimensions, a corresponding current intensity of 1.48

A came out.

As pointed out in Chapter 4, the IR camera used for this experiment was FLIR

SC4000, after the calibration process described in Chapter 6.



Chapter 6

Experimental Procedure

In this chapter, a detailed explanation of the experimental procedure and data

post processing is going to be explained.

6.1 IR camera calibration

As explained in Chaper 4 of this text, in order to be able to use infrared ther-

mography as a way of measuring temperature, one needs to first calibrate the

camera with a black body under conditions coherent with the ones of the experi-

ment. In Chapter 4, was explained that the IR camera reads energy levels, which

need to be transformed into temperature values by means of Planck equation.

Because of the impossibility of measuring the properties of the medium and ele-

ments between the target and thermal sensor, the process of calibration resumed

on finding the four constants λ1, λ2, λ3 and λ4 of Equation 4-10.

Because a black body is taken as an ideal body, instead of the printed circuit

board the calibration will be performed with black body, whose temperature will

be accurately regulated by a power supply. As in the actual experiment, the

signal will not be directly measured by the camera, but there will be a mirror

deviating it. Special care had to be taken while locating the mirror and the IR

camera, because little discrepancies in the mirror angles would lead to a wrong

calibration curve and incorrect temperature measurements. In order to focus the

optical system, a metallic part was located close to the black body surface, taking

51
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profit of the contrast in emissivity and temperature between the black body and

the metallic part, and the lens was moved until a sharp image was obtained.

black body mirror

IR camera

computer

Figure 6-1: Sketch of the calibration set up.

In this case the calibration process consisted on taking measurements of the

intensity numbers for different temperatures in a range from 44 through 90 oC

with a step of 2 oC.

For that, a Region of Interest (ROI) of constant temperature in the center of the

image was selected. The reason of selecting an area far from the edges of the

blackbody is that in the proximity of the frames the read temperature tends to

be slightly lower.

Making use of a controlled power supply, the blackbody was set to radiate at a

desired temperature. The stabilizing of temperature for every measurement takes

some time. When the temperature (and consequently the energy levels) appeared

to be stabilized a recording of snapshots during 100 seconds was performed. This

procedure was repeated for every temperature of interest.

Making use of Matlab codes provided by the Aerospace Department of the univer-

sity, a median of the set of images taken for each temperature could be calculated

and at the end, the constants for the Plank’s law of radiation were obtained

In this case the constants are : λ1 = 7.1478 · 107, λ2 = 3214.85, λ3 = 36.7313 and

λ4 = 2458.54 with a correlation coefficient of 0.999027.

The calibration curve is then, according to Equation 4-10.
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YPlank =
7.1478 · 107

e3214.85/Tobj − 36.7313
+ 2458.54
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Figure 6-2: Analytic curve vs. calculated points

6.2 Massflowmeter calibration

As explained in Chapter 5, the massflow meter outputs a voltage signal to a

multimeter according to the air massflow going through it. The manufacturer

provided some data, relating SML and voltage, which had to be fitted into a

curve using by Matlab. The result is displayed in Figure 6-3. The result only

had to be adapted later on to the dimensions of the exit nozzle for Reynolds

number calculation.
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Figure 6-3: Calibration of the massflowmeter.
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6.3 Data Acquisition Process

This was the longest and most tedious step of the project, since some feedback of

the results had to be made and analyzed until the most appropriate arrangement

of elements was found. At the end, the nozzle was pointed to the center of the

circuit. All chevrons caps and for different HD distances were tested, the Reynolds

number was set to 10000 for all experiments. The air source was switched on all

the time.

Every measurement consisted on recording two series of frames with the power

supply switched on and off. The images taken with the power supply off, were

for a cold stage (used as Tcold during the data processing) and the images taken

with the power supply on, were for a hot stage (used as Thot during the data

processing). Every time that data was acquired, it had to be waited for the mean

of digital levels at the ROI including the plate was stabilized.

6.4 Data processing

Adapting some Matlab codes provided by the Aerospace Department of the uni-

versity it was possible to process the data obtained by the IR camera. For every

measurement the camera recorded a series of frames which had to be assembled

and averaged together and using the calibration data obtained, transformed into

temperature images. At the end two images called Tcold and Thot were obtained.

It was also necessary to implement a model for the Joule heating and radiation and

conduction heat fluxes making use of the material properties and temperatures

of the ambient and surface, applying theory in Chapter 3. This way it was

possible to use Equation 3-9 to find the value of the convection coefficient h, and

transform it into the desired Nusselt number given by Equation 3-3. By doing

this calculations over all the images, it was possible to obtain Nusselt number

maps and even identify the footprint of the jet on the heated heat flux sensor.

After having visualized the Nusselt number maps, it was decided to plot calculate

an azimuthal mean along the radii for every case and plot them together to see

and compare the behavior in the radial direction.
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6.5 Data Results Analysis and Discussion

After having processed all data, it was time so do the proper comparisons between

the different designs and with the examples found in the literature, while finding

a correct interpretation according to the nature of the problem.



Chapter 7

Results Analysis and Discussion.

Now, it is time to display some results and make some discussion. A comparison

of the results and discussion according to theory and literature is going to be

made. Important features here are going to be values of the Nusselt number

and their distribution. This last feature is going to be seen by studying the jet

footprint on the hot surface and azimuthal mean along the radii.

First, a description of results for the basic rounded nozzle is going to be made,

in order to validate the results with other studies already made.

Then, while distinguishing the effect of having a positive negative nozzle, a com-

parison changing the number of chevrons and chevron length is going to be made.

At the end, conclusions of the whole analysis are going to be extracted.

7.1 Circular nozzle.

In Figure 7-1, the Nusselt maps for the circular chevron cap, see Figure 5-7a,

at different nozzle to plate distances are displayed. The circular footprint can be

easily seen and as expected from the theory, it gets narrower as the nozzle exit is

placed further away from the plate.

Figure 7-2 can be compared to Figure 2-7 in the sense that for H/D of 2, the inner

hump and the plateau of Nusselt between x/r = 2 and x/r = 4 is easily identified.

Remember that this plateau coincides with the region of laminar boundary layer
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(c) H/D = 6
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Figure 7-1: Nusselt maps for the circular nozzle at different nozzle to plate
distances. Re 10000.
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before entering into turbulence, as explained in Chapter 2. As the nozzle is placed

further up, the shape of the radial Nusselt number mean curve resembles more

a Gaussian bell, which reaches its maximum at H/D of 6. The reason for this is

maximum is found when looking at the entrainment of the quiescent fluid into

the shear layer of the jet. As the shear layer broadens (as explained in Chapter 2)

entrainment occurs giving way to the Gaussian shape in the axial velocity profile.
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Figure 7-2: Radial mean comparison for the circular nozzle at different H/D
distances. Re 10000.

7.2 Differences in chevron length.

For the caps with negative chevrons, as seen in Figure 7-3a, one can easily differ-

entiate the chevron notches and apexes because of the star shape of the Nusselt

number footprint. Figure 7-3b shows the same chevron cap at a H/D of 6 instead.

The effect of the chevrons is less appreciated in the Nusselt number distribution,

but the maximum Nusselt number reached at the center of the jet is higher.

This is still correlated with the literature. For longer chevrons, comparing Figure

7-3a and Figure 7-3c, the star shape does not seem to change a lot, but at a

first sight, for the case of negative chevrons at low H/D, it seems that longer

chevrons have a negative impact on the maximum Nusselt number. At larger

H/D distances, compare Figure 7-3a and Figure 7-3d, the effect of having longer
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chevrons shows negative consequences for the maximum Nusselt number too, as

long as the number of chevrons is kept to 4.

For the case of the crown caps with standard positive chevrons, at shorter dis-

tances longer chevrons show a better performance while at higher H/D distances

it is observed to be the other way around. At both distances, H/D = 2 and

H/D = 6, the pattern left on the plate does not change a lot and again, at a

distance of two nozzle diameters, the Nusselt mark of the chevrons is to be seen.

7.3 Differences number of chevrons.

When having more chevrons, the star shape it was talked about earlier is lost and

the Nusselt number footprint resembles more the one of the circular nozzle case.

Looking at Figures 7-3d, 7-3f, 7-4d and 7-4f one can see that for a distance

of H/D = 6 changing the number of chevrons does not bring a notable change

neither in the pattern of the Nusselt number distribution, nor the values of the

Nusselt number. On the other hand, at low H/D distances, H/D = 2, for the

case of the negative chevron caps, the larger chevron brings a better performance,

while for the positive chevron cap, the Nusselt number values behave the other

way around.

7.4 Azimuthal mean analysis.

Figure 7-5 shows the result of having changed the coordinate system to a polar

one and having taken azimuthal mean along the different radii.

At this point, it is important to notice that N0808 does show either the best or

second best performance for these H/D values at Re 10000. In a first sight, there

would not be a clear preference for negative or positive nozzles.

For a fixed distance, all Nusselt number distribution decays for all nozzles pretty

much in the same way as the Nusselt number for the circular nozzle does. Even in

Figure 7-5a the hump for the inner annular peak and the plateau are conserved.
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(f) N0808 H/D = 6

Figure 7-3: Nusselt maps for the different nozzle caps with negative chevron
indentation at different nozzle to plate distances. Re 10000.



CHAPTER 7. RESULTS ANALYSIS AND DISCUSSION. 62

-6 -4 -2 0 2 4 6

x/r [-]

-6

-4

-2

0

2

4

6

y
/
r
 
[
-
]

30

35

40

45

50

55

60

65

70

75

(a) C0404 H/D = 2

-6 -4 -2 0 2 4 6

x/r [-]

-6

-4

-2

0

2

4

6

y
/
r
 
[
-
]

30

35

40

45

50

55

60

65

70

75

80

(b) C0404 H/D = 6

-6 -4 -2 0 2 4 6

x/r [-]

-6

-4

-2

0

2

4

6

y
/
r
 
[
-
]

30

35

40

45

50

55

60

65

70

75

(c) C0408 H/D = 2

-6 -4 -2 0 2 4 6

x/r [-]

-6

-4

-2

0

2

4

6

y
/
r
 
[
-
]

30

35

40

45

50

55

60

65

70

75

(d) C0408 H/D = 6

-6 -4 -2 0 2 4 6

x/r [-]

-6

-4

-2

0

2

4

6

y
/
r
 
[
-
]

30

35

40

45

50

55

60

65

70

(e) C0808 H/D = 2

-6 -4 -2 0 2 4 6

x/r [-]

-6

-4

-2

0

2

4

6

y
/
r
 
[
-
]

30

35

40

45

50

55

60

65

70

75

(f) C0808 H/D = 6

Figure 7-4: Nusselt maps for the different nozzle caps with positive chevron
(crown caps) at different nozzle to plate distances. Re 10000.
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Figure 7-5: Aximuthal along the radii for different nozzle heights. Re 10000.
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7.5 Uncertainty estimation.

After having analyzed the data and obtained some results, it is important to

measure the uncertainty of the system to evaluate how reliable the results are.

Errors are present in all measurements and are found in the uncertainty of the

variables (temperatures, voltages, metric measurements... ) and each variable will

have its own error and uncertainty. Moffat [25] defines the error as the difference

between the true value and the measured value, while the uncertainty refers to a

possible value that an error can have. For the components that were bought for

example, the error is given in the data sheets. The error source can be categorized

as ”fixed” or ”random”. If the source always produces the same error one talks

about a fixed error, but if the error changes for every experiment a random error

is referred. There can be also a variable but deterministic error, when errors that

seem to be random are caused by faulty measurement techniques.

In order to quantify the uncertainty of this problem, the following algorithm was

followed:

1. All variables of the problem and their errors where identified and quantified.

For this, data was taken from one of the real experiments.

2. With all variables, the item of study (the Nusselt number) was taken and

calculated.

3. Random perturbations contained in the error range of the variables were

introduced and a new Nusselt number (accounting with the effect of the

little perturbations) was calculated and stored.

4. Step 3 was repeated 106 times and the error of the overall problem was

calculated by applying the Equation 7-1.

error =
Nustd
Numean

· 100 (7-1)

Where Nustd is the standard deviation of the Nusselt numbers and Numean their

mean value.

For the error estimation calculations, conduction heat flux was not taken into
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Parameter Typical value (units) Typical error ±
Thot 298.1 K 0.25 K

Tcold 293.1 K 0.25 K

Tamb 293.1 K 0.1 K

ε 0.95 K 0.1

L 0.015 m 10−4 m

A 0.0437 m2 10−8 m2

Table 7-1: Control parameters and their uncertainty

account because in comparison to the summation of the rest of heat flux con-

tributions (radiation, Joule effect and convection) the contribution is very small

(<<1).

Table 7-1 was used in order to quantify the uncertainty of each parameter

The error calculated for the whole experiment is 3.89 %.



Chapter 8

Symmary and Conslusions

During the development of this projects, several thing were learned and found out.

A good understanding of the literature and physics of impinging jets was needed

in order to evaluate most relevant parameters for the design of the nozzle caps.

Furthermore, the acquired knowledge on heat flux sensors, radiation theory and

thermography was very useful during the design of the experiment and trouble

shooting. Until the very last experimental configuration was obtained, many

problems had to be faced an corrections had to be implemented.

The first challenge was to find a proper massflow meter which fulfilled the restric-

tions explained in Chapter 5 and manage the proper adaptions to the pneumatic

system. During this process, knowledge on pneumatic components, fittings and

standardization was obtained.

The chevron caps design was a long step as well. At first it was tough on 3D print-

ing the whole Vitoshinski nozzle with the chevron at the end, but after several

changes of design, it was decided to reuse the nozzle available at the laboratory

and simply print the caps with the different chevron configurations. So, the idea

of introducing negative chevrons came out. As explained in Chapter 5, it was

important the the caps accurately fitted into the nozzle, since a good subjection

is needed but the nozzle cannot break. Adjustments taking into account the

tolerances of the 3D printer were made.

During data acquisition, several nozzle and heat flux sensor configurations were

tested and feedback from the results was needed. After having checked the limi-

tations the first heat flux sensor (thin foil sensor) it was decided to use a printed
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board and by adapting the heat flux model, satisfactory results were obtained.

Last, it was seen that COMSOL is a useful tool when modeling steady state jet

flows and it will open in the future opportunity for further studies in transient

mode, as well as to model the whole system including the sensor cooling.

So, after a lot of adjustments and work, a good installation and efficient codes for

computation were obtained. The results obtained just seem to be the beginning

of a promising investigation line where other new configurations can be tested.

The carried out experiments showed an interesting response from the nozzle caps

with negative chevrons. At this point it is not possible to define a preference for

positive or negative chevrons, still further studies for this geometry are encour-

aged.

Although at H/D = 6, the best heat transfer performances were provided by the

circular nozzle configuration, for the rest of nozzle to plate distances, chevron

caps showed a better performance in terms of convective heat flux (5 to 10 %

improvement). It is encouraged to keep on working with the same assembly

by varying the conditions, so hopefully a good correlation between eh problem

parameters can be found.



Chapter 9

Project Budget

In this section, all costs for the development of this project are going to be sum-

marized. A first analysis of all installation components is going to be made, taking

into account the different parts of the installation, and a further explanation of

the electronic devices and software costs. It has to be taken into account that

some of the most expensive components, as the IR camera or the black body, were

not exclusively bough for this bachelor thesis, but were available in the labora-

tory of the Aerospace Department. In order to calculate the cost of using these

elements, the depreciation during the use is going to be calculated.

If one takes a linear depreciation of the components and a life time of 5 years

(60 months), one comes to the following expression for the cost of using a that

component

cost =
tuse · price

tlife
(9-1)

For the components with a depreciation on time, in Table 9-2 are marked with

an asterisk, and a precise depreciation calculation is summarized in Table 9-1.

On the top of all this, the so called Engineering Work has to be taken into

account. This cost is calculated in terms of the time devoted to each one of the

tasks, the average salary of a trained engineer per hour (including taxes and social

security contribution). With an average salary of 25 e/h and a total work of 300

hours during the whole project, engineering cost rise to 7500 e. In addition,

transportation costs for activities like going to the warehouse have to be taken
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Item tuse [months] Price e Depreciation cost e

Power supply 4 964 64.26

Multimeter 4 800 53

Black body 0.25 10000 41.66

IR camera 4 34000 2266

Computer 4 600 40

TOTAL 2464.92

Table 9-1: Summary of depreciation costs

Electronics and software

Item Quantity Item price Cost (e)

Electric circuit 564.22

Power supply * 1 964 e 64.22

Printed board 1 500e 500

Measurements and Control 2400.66

Multimeter * 1 800 53

Black body * 1 10000 41.66

IR camera * 1 34000 2266

Computer * 1 600 40

Software 155.00

Windows XP 1 120e 120.00

Matlab student license 1 35e 35.00

TOTAL 3119.88

Table 9-2: Sumary of all electronic componets costs.
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Installation components

Item Quantity Item price Cost (e)

Pneumatic Installation 25.75

Nylon pneumatic tube 8 mm 3 m 0.92 e/m 2.76

Nylon pneumatic tube 10 mm 3 m 1.02 e/m 3.06

Thermal rubber hose 0.40 m 8.83 e/m 3.53

Hose plug-in adapter 2 1.90 e 3.80

Straight pneumatic fitting 2 3.80 e 7.60

Hose clamps 4 1.05 e 4.20

Plastecine pack 1 0.80 e 0.80

Structural 224.26

T-slotted aluminum bars 15 m 6.51 e/m 97.65

Screews and nuts 32 2.51 e 80.32

Aluminum squads 14 3 e 42.00

Ring clamps 2 1.77 e 3.54

Plywood plate 1 0.75e 0.75

Mirror 1 35e 35.00

Stagnation chamber 14.62

PVC tube 1 3.12e 3.12

Modules 2 1.52e 3.04

Plug 1 1.70e 1.70

Mesh 2 0.88e 1.76

Honeycomb 1 5 e 5.00

3D printed parts 39.14

Vitoshinski Nozzle 70.33 cm3 0.30e/cm3 21.10

Nozzle caps 60.132 cm3 0.30e/cm3 18.04

TOTAL 303.77

Table 9-3: Sumary of all material costs.
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Group of costs e

Installation components 303.77

Electronics and software 3119.88

Engineering costs 7500

Other costs 15

TOTAL 10938.65

Table 9-4: Sumary of total costs.

into account (15 e).

At the end, the cost of this project rises up to 10938.65 e.



Chapter 10

Regulatory Framework

This parametric study was performed at one of the laboratories of the Aerospace

Department of the university, where the whole pneumatic installation was con-

nected to a high pressure line from where the gas was coming out. The gas used

during the experiments was air, but special care has to be taken when working

with gases at high pressures because.

Flammable gases such as acetylene, propane and hydrogen can burn or explode

under certain conditions. If flammable gases are allowed to accumulate until their

concentration is between their defined Lower Explosion Limit (LEL) and Upper

Explosion Limit (UEL), an explosion may occur if there is an ignition source

present.

Proper ventilation is always required when working with toxic gases. Many gases

are toxic and can cause serious health problems dependent upon the specific gas

and its concentration, length of exposure, and route of entry.

In addition, special care in the storage and manipulation of gas cylinders has to

be taken. Valves and leak checks have to be regularly undertaken.

For these and other problems, it was necessary to determine a regulatory frame-

work to work with gases at high pressures. With the Real Decreto 379/2001 on

April the 6th, the Regulations for storage of chemical products and their com-

plementary techniques( MIE-APQ-1 to MIE-APQ-7) was approved.
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Future Improvements

During the development of this bachelor thesis, some points of improvement were

detected, which can be taken into account further experiments.

• Add silicon to the regions where the air can leak. Controlling the Reynolds

number of the problem is crucial for a proper analysis and interpretation

of data and all kind of leaks have to be avoided. In order to control this,

strongly tight hose clamps and Plasticine were used and this worked for Re

10000. However, for higher Reynolds, a real leak proof system should be

implemented.

• Do more test at several Reynolds numbers. This can lead to hopefully a

better understanding of the problem and a better validation of the results,

since not much literature was found for experiments undertaken at Re 10000

only. Doing experiments at higher Reynolds number would help to also

study the Reynolds number contribution to the whole problem

• The fact of experimenting with negative chevron caps brought curiosity to

the researches included in the project. It would be interesting to try to

understand more the flow behavior under the action of such chevrons by

flow imaging techniques and more experiments. During the carried out

tests, N0808 showed the best or second best Nusselt numbers.

• Combine the experiments with some multiphysics simulation software such

as COMSOL, for a better understanding and validation of the results.

• Do the required changes in configuration in order to introduce an inclination
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in the impingement angle and see how the results change.
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