
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Malandrino, F., Chiasserini, C.F., Casetti, C. (2018).
Virtualization-based evaluation of backhaul
performance in vehicular applications. Computer
Networks, 134, pp. 93-104.

DOI:10.1016/j.comnet.2018.01.018

© 2018 Elsevier B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288499782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.comnet.2018.01.018

Virtualization-based evaluation of backhaul performance in vehicular applications

Francesco Malandrino

∗, Carla-Fabiana Chiasserini, Claudio Casetti

DET, Politecnico di Torino, Torino, Italy

a b s t r a c t

Next-generation networks, based on SDN and NFV, are expected to support a wide array of services, including vehicular safety applications. These
services come with strict delay constraints, and our goal in this paper is to ascertain to which extent SDN/NFV-based networks are able to meet

them. To this end, we build and emulate a vehicular collision detection system, using the popular Mininet and Docker tools,

on a real-world topology with mobility information. Using different core network topologies and open- source SDN controllers, we measure (i) the

delay with which vehicle beacons are processed and (ii) the associated overhead and energy consumption. We find that we can indeed meet the

latency constraints associated with vehicular safety applications, and that SDN controllers represent a moderate contribution to the overall energy
consumption but a significant source of additional delay.

1

a

p -

n -

t

t

b

n

a

S

s

i

F

t

s -

p

p

R -

m

S

n

e

i

t

m

i

h

I

n

o

w

r

p

i

a

a

t

S
. Introduction

Vehicular networks are mobile wireless networks whose nodes

re represented by connected vehicles and the infrastructure sup-

orting them, e.g., road-side units (RSUs) providing Internet con

ectivity, as exemplified in Fig. 1. Current and expected applica

ions abound, and include navigation, e.g., downloading maps or

raffic updates, and entertainment, e.g., streaming movies to on-

oard entertainment systems similar to those found on airplanes.

A third, and arguably more critical, application of vehicular

et- works is represented by safety: indeed, in 2015 road

ccidents ac- counted for over 35,0 0 0 deaths in the United

tates alone [1], and over one million worldwide [2]. The most

ignificant of these safety applications is collision detection. The

dea of collision detec- tion is fairly simple, and is summarized in

ig. 1. Vehicles periodi- cally [3] (and anonymously [4]) report

heir position, direction and

peed to a detector. The communication between vehicles and de

tectors happens through road-side units (RSUs), that make commu-

nication possible even in non-line-of-sight (NLoS) conditions, e.g.,

due to buildings or other obstacles. The detector combines these

reports, determines whether any two vehicles are set on a collision

course, and, if so, it alerts their drivers. Collision detection is espe-

cially important in presence of obstacles, e.g., buildings, that pre-

vent drivers from timely realizing the danger. The importance and
relevance of collision detection has been acknowledged by trans-

∗ Corresponding author

E-mail address: francesco.malandrino@polito.it (F. Malandrino).

t

t
ortation regulators: as recently as December 2016, the U.S. De-

artment of Transportation (DOT) published a Notice of Proposed

ulemaking (NPRM) for vehicular communications [5]. The docu

ent proposes to establish a new Federal Motor Vehicle Safety

tandard (FMVSS), No. 150, to make vehicular networking tech-

ology compulsory: 50% of newly-made vehicles will have to be

quipped with such a technology in 2018, 75% in 2019, and 100%

n 2020.

It is fairly obvious that timeliness is critical to collision detec-

ion systems. However, satisfying latency requirements in emerging

obile network systems, which rely on software-defined network-

ng (SDN) and network function virtualization (NFV) in the back-

aul (and sometimes even in the fronthaul), may be challenging.

ndeed, while SDN and NFV bring major improvements in terms of

etwork flexibility and efficiency, both imply a certain amount of

verhead: such overhead is negligible in most applications, but not

hen it comes to vehicular safety. An additional concern is rep-

esented by energy consumption: some network nodes, e.g., solar-

owered RSUs, might not be connected to a reliable power supply;

t is therefore important to know the power consumption associ-

ted with virtual network functions (VNFs), so as to better decide

t which physical nodes to place them.

In this paper, we build, optimize, and evaluate a collision detec-

ion system, based on Mininet and Docker, the standard tools for

DN emulation and containerization, respectively. Our purpose is

wofold: on the one hand, we study the impact of SDN and NFV on

he performance of vehicular networks; on the other, we seek to
1

Fig. 1. A simple vehicular network composed of two vehicles (red and green), two

road-side units (RSUs) and a centralized collision detector. Solid lines represent bea-

con transmissions, dashed lines correspond to collision warnings. The vehicles peri-

odically transmit beacons (1a, 1b), which, through the RSUs, reach the collision de-

tector (2a, 2b). The detector realizes that the vehicles are set on a collision course,

and issues two collision warnings (3a, 3b) that, again through the RSUs (4a, 4b),

reach the vehicles. (For interpretation of the references to color in this figure leg-

end, the reader is referred to the web version of this article.)

t

.

s

r

-

,

s

i

k

n

1

A

R

p

i

b

w

a

c

T

c 4)

a nd

t ed

i re

i er

t t)

w re

a 8).

O he

t ld

v b

t he

b

w

d

b

F -

a

3

he

a ly,

S to

e .2,

w nd

D ed

node. Finally, Section 3.3 describes how the communication on the

radio link is simulated and how the resulting delay is accounted for

in the network emulations.

1 The beacon timeout depends on the actual scenario; in our case we set it to

one second.
2 Note that the speed vector also includes information on the direction.
learn valuable, real-world lessons concerning the pitfalls and im-

plementation issues associated with our tools.

As far as the tools we use are concerned, Mininet [6] recently

emerged as the de facto standard for reproducible network ex-

periments. It emulates a full network, including software, SDN-

capable switches and virtual hosts, running arbitrary programs in

separate execution environments while sharing the file system and

process space. It is typically used in SDN research, with custom-

written controllers controlling the Mininet-emulated switches. In

our case, however, we do not write our own custom controller;

rather, we test two popular, general-purpose SDN controllers –

namely, Pox [7] and Floodlight [8] – and ascertain how they im-

pact the performance and energy consumption of our emulated

network.

In our experiments, we couple Mininet with Docker [9], again

the de facto standard containerization platform. Containers, often

described as lightweight virtual machines, are a virtualization tech-

nique where applications run in isolated environments but share

the same Linux kernel, thus substantially reducing the overhead.

For this reason, they are generally viewed as the ideal way to

implement network function virtualization in next-generation net-

works.

The remainder of this paper is organized as follows. We star

by discussing how collision detection is carried out, in Section 2

Then, Section 3 describes our reference scenario, the virtualized

network architecture, and investigates the delay over the wireles

network segment. Section 4 shows how we refine collision detecto

placement, while Section 5 reports our findings. Finally, we

discuss related work in Section 6 and conclude the paper in

Section 7.

2. Detecting collisions

Our collision detection system, depicted in Fig. 1, has two

main components: vehicles, and one or more collision detectors.

As specified by current standards, vehicles are in charge of pe

riodically sending beacons, reporting their position, direction, and

speed. In order to safeguard privacy, beacons are anonymized [10]

e.g., they do not include the vehicle identity and report a tempo-

rary source MAC address (also called a pseudonym [11]).

The beacons are conveyed, through a set of road-side unit
(RSUs) to a collision detector, running on a centralized – and, typ-
t

cally, virtualized – server as shown in Fig. 1. The detector

eeps a set B of recently 1 received beacons and, upon receiving a
ew beacon, checks it for collisions as summarized in Algorithm

.

lgorithm 1 Collision detection.

equire: � x 0 , � v , B

1: C ← ∅
2: � x (t) ←

�
 x 0 +

�
 v t

3: for all b ∈ B do

4: �
 x b (t) ←

�
 x b
0

+

�
 v b · t

5: �
 d (t) ←

�
 x (t) − �

 x b (t)

6: D (t) : = | � d (t) | 2 ← (� v − �
 v b) · (� v − �

 v b) t 2 + 2(� x 0 − �
 x b
0
) ·

(� v − �
 v b) t + (� x 0 − �

 x b
0
) · (� x 0 − �

 x b
0
)

7: t � : = t : d
d t
D (t) = 0 ←

−(� x 0 − �
 x b
0
) ·(� v − �

 v b)

| � v − �
 v b | 2

8: if t � < 0 then

9: continue

10: d � ←

√

D (t �)

11: if d � ≤ d min then

12: C ← C ∪ { b}
return C

The algorithm, which is based on [12], takes as an input the

o- sition and speed of the current vehicle (Line 0), respectively

denti- fied by vectors x� 0 and �v, 2 as well as the previous

eacons in B. We start by initializing the set C of vehicles, with

hich the current vehicle will collide, to the empty set (Line 1),

nd we compute how the position of the current vehicle will

hange over time (Line 2).

hen, for every vehicle that generated a beacon b ∈ B recently re-
eived by the detector, we compute its position over time (Line

nd the difference d� (t) between the positions of such vehicle a

he current vehicle (Line 5). The scalar D (t) := | d� (t)| 2 , comput

n Line 6, represents the square 3 of the distance over time. We a

nterested in the minimum value that this quantity will take ov

ime; to this end, in Line 7 we compute the time t� at which D(

ill take its minimum value. If t� < 0, then the vehicles a

ctually getting farther apart and no action is required (Line

therwise, in Line 10 we compute the minimum distance d�

 t

wo vehicles will be at; if such a value is lower than a thresho

alue d min (Line 11), then we need to send an alert, and thus add

o C (note that b essentially identifies the vehicle who sent t

eacon).

In summary, Algorithm 1 returns the set C of vehicles with

hich the current vehicle is set to collide. This set (along with ad-

itional information such as the time of collision) is transmitted

ack to the vehicles whose beacon was included in C, as shown in

ig. 1. The vehicles will therefore alert their drivers or, if appropri

te, directly take action, e.g., brake before the collision happens.

. Network scenario and virtualized backhaul

This section describes our reference network scenario and t

rchitecture of the virtualized bachkaul under study. Specifical

ection 3.1 details the real-world, large-scale scenario we seek

mulate, and its traffic and demand patterns. Then, in Section 3

e discuss how we emulate such a scenario using Mininet a

ocker, as well as the applications we run within each emulat
3 Using the squared distance instead of the distance itself simplifies computa-

ions. 2

Fig. 2. Road topology, with red dots corresponding to RSUs. (For interpretation of
the references to color in this figure legend, the reader is referred to the web ver-

sion of this article.)

3.1. Reference scenario

As mentioned earlier, the beacons include the position, speed

and direction of the vehicle sending them. In our experiments,

this information is obtained from the mobility trace presented in

[

i

M

t

l

i

t

r

f

i

f

a

h

w

s

F

c

g

a

interested in modeling general-purpose vehicular networks sup-

porting several services.

RSU coverage and interference are computed according to the

model presented in [13], which results in a maximum coverage

ra- dius of 255 meters. On average, successfully-transmitted

b

a

s

y

v -

c -

c

t

w l

i

t r

c

F

(
(c

(c

W

t

a

g

F

c

3

W

,

13].

Therein, the authors combine a 1.5 × 1 km

2 section of the real-
world road topology of the city of Ingolstadt (Germany), depicted

n Fig. 2, and realistic vehicular mobility obtained with the SUMO

simulator [14]. Ingolstadt is a medium-sized city in the

unich metropolitan area; the inner city includes a mixture of

narrow streets and wider, multi-lane roads, as it is common in

urban areas

hroughout the world. Taking it as our main reference scenario al-

ows us to easily generalize the main indications in which we are

nterested, to other cities and countries. It is also worth stressing

hat, in Section 5.3, we check to which extent considering another

oad topology and user mobility impacts our results.

In SUMO, vehicles are associated with a random source and

destination locations on the edge of the road topology, and move

rom the former to the latter following the fastest (not necessar-

ly the shortest) route. The mobility simulated by SUMO accounts

or such factors as speed limits on different roads, the number and

direction of lanes therein, vehicles altering their course to over-

take and/or avoid incidents, and traffic lights. The resulting av-

erage and maximum speeds are 12.9 and 70.1 km/h respectively,

while the average acceleration and deceleration values are 0.44

nd 0.33 m/s 2. The maximum deceleration, corresponding to ve-

icles violently braking to avoid an obstacle, is 128.8 m/s 2. Both

the speed and density of vehicles in the trace, depicted in Fig. 3 a

and b, respectively, closely reproduce their real-world counterparts,

ith higher speeds along the main thoroughfares and higher den-

ities around busy intersections.

The topology also includes 20 RSUs, represented by red dots in

ig. 2. RSUs are placed at the busiest road intersections, so as to

over a large set of vehicles. Specifically, we employ the following

reedy procedure for RSU placement:

1. we consider a set of candidate locations;

2. for each candidate location, we compute a score,

corresponding to the number of vehicles passing through it;

3. we place one RSU at the candidate location with the highest

score;

4. we subtract the newly-covered vehicles from the scores of all

candidate locations;

5. we repeat steps 3–4 until all RSUs are placed.

While more complex deployment strategies exist [15,16],

they

re typically tailored around one specific application, while we are
eacons travel 123 meters between vehicles and RSUs.

At any given time, there are between 1,0 0 0 and 2,500 vehicles

present in the topology, a value representative of the morning and

fternoon peak times (i.e., 8:00–8:30 a.m. and 5:00–5:30 p.m., re-

pectively.) All vehicles send a beacon each second [3,4], which

ields the traffic demand depicted in Fig. 4 (a). Notice that, while

ehicles not covered by an RSU still generate beacons, those bea

ons do not reach the collision detectors, and thus are not ac

ounted for in Fig. 4 (a).

Our real-world trace contains no information on the network

opology, i.e., how the RSUs are connected with each other and

ith the core network. Network topologies can have a substantia

mpact on performance; intuitively, we can expect sparser topology

o put a higher stress on switches – and the controlle

ontrolling them. We study two such topologies, represented in

ig. 4 (b) and

(c) respectively. In both topologies, we create one switch for each

RSU (red dots in the figure), and add four core-level switches

(blue dots). In the mesh-like topology (Fig. 4 b), we then

connect:

ci) the core switches in a mesh (blue links in Fig. 4 b);
ii) each RSU switch to the two closest core switches (orange links

in Fig. 4 b);

iii) each RSU switch is also connected to the two closest RSU
switches (black links in Fig. 4 b).

The star-like topology, shown in Fig. 4 (c), is less connected.

ith respect the mesh-like topology:

• RSU switches are only connected to the closest core switch;

• there are no links between RSU switches.

In our experiments, the number and location of collision detec-

ors is not determined a priori: collision detectors can be placed at

ny RSU or core switches. We refine these decisions through the

reedy, iterative process described later in Section 4.

urthermore, we remark that the above 24 switches are

ontrolled by a single SDN controller.

.2. Mininet network structure

The basic structure of our network is summarized in Fig. 5.

e have a Mininet emulated network, including:

• one OpenVSwitch controller, bundled with Mininet;

• one switch for each of the 20 RSUs and four extra core

switches;

• one host per RSU;

• one host per collision detector.

Recall that switches are connected as described in Fig. 4 (b) and

(c). For Mininet-emulated links, we conservatively keep the default

bandwidth of 1 Gbit/s and the default latency of 0.12 ms. Within

each Mininet host, we run a Docker container, and within each

container we run a Python program, which depends on the type

of host (either a RSU or a collision detector host).

As far as RSU hosts are concerned, we connect each host to

the corresponding RSU switch, and run the vehicles.py script

which represents the vehicles under the RSU (see Fig. 5), on the

host. The vehicles.py script is in charge of:

• reading the mobility information from the real-world trace

from the city of Ingolstadt, described in Section 3.1;
• generating the beacons carrying the above mobility informa-

tion, and transmitting them to the collision detector;
3

Fig. 3. Speed (a) and density (b) of vehicles at different location of the trace we use. The scale is in km/h in (a) and vehicles per square kilometers in (b); darker colors

correspond to higher values.

Fig. 4. Evolution of the traffic load over time (a); mesh-like (b) and star-like (c) network topologies, with red dots corresponding to RSUs and blue ones representing core

switches. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

e

w

s

t

d

g

s

• receiving the replies from the collision detector, and logging the

elapsed time.

The collision detector program, detector.py runs within the

collision detector hosts, and:
• receives beacons sent by the vehicles;

• detects collisions, by running Algorithm 1 described earlier;

• sends collision reports as appropriate;

• logs the time it took to process each beacon.

Notice that, for each beacon, we log two times: the delay per-

ceived by the vehicle, i.e., the time elapsed between sending the

beacon and receiving the reply, and the time used by the collision

detector to actually process the beacon. The difference between

these times is the network delay, i.e., the time packets spend trav-
ling from the vehicle to the collision detector and vice versa

ithin the emulated network.

Each beacon/reply consists of a single UDP packet. Also, we

tress that, owing to the dynamic nature of vehicular scenarios,

here are no persistent connections between vehicles and collision

etectors.

Controllers. SDN networks include a controller , a software pro-

ram that determines the forwarding behavior of switches. In the

implest case:

• switches have a set of rules , determining how packets shall be

treated (forward on a certain port, flood, discard...);

• upon receiving a packet that does not match any of the existing

rules, switches will forward it to the controller;
4

Fig. 5. Our network architecture. A Mininet network (the gray area) contains sev-

eral Mininet hosts (switches are not represented for simplicity). Within each host,

we run a Docker container, and within the container one of two Python scripts:

vehicles.py emulates the vehicles passing by an RSU, while detector.py is
a collision detector. Mobility information is read from the Ingolstadt trace described

in Section 3.1. Both collision detectors and vehicles store detailed log

information, which is later used to obtain the performance metrics presented in

Section 5.

i

i

f

a

s

p

a ,

t

P

v -

t

i

fi

w

i

w

m

3

w

w

t

n

l

a

e

c

o

u

r

s

t

o -

fl

t

p

t

c

b

d

F

p
b

p

h

m

r

t

o

i

s

o

s

t

i

t

5

r
• based on the headers and/or payload of the packet, the con-

troller will install one or more rules on the switch.

Being software programs, controllers can make switches behave

n virtually any way. One of the simplest behaviors controllers can

mplement is the so-called learning switch: the controller observes

rom which port of each switch packets coming from a certain host

re received, and “learns” that future packets directed to that host
hall be forwarded on the same port.

In our experiments, we compare two SDN controllers, both im-

lementing the learning switch behavior: Pox and Floodlight. Both

re popular, actively maintained open-source projects; however

hey have slightly different goals and scopes. Pox [7] is written in

ython and is based on an older project called NOX; it aims at pro-

iding a simple, object-oriented interface to OpenFlow, and is of

en used in research projects. Floodlight [8] is written in Java, and

ts community tends to focus on providing high performance, con-

gurability (e.g., through a REST API) and manageability (through

eb-based GUIs). Both controllers are vastly more capable than

t is needed for our scenario; however, we are interested to see

hether they provide us with different trade-offs between perfor-

ance and complexity (hence, energy consumption).

.3. Wireless simulations

Since Mininet does not support the emulation of wireless net-

orks, we cannot use it to study the delay incurred by beacons

hen going from vehicles to RSUs. Instead, we resort to simula-

ions, based on the popular, open-source simulator ns-3 [17].

s-3 includes a detailed WAVE model, reproducing both its MAC

ayer and multi-channel coordination mechanism.

As specified by the IEEE 1609.4 standard, we set the control

nd service channels (CCH and SCH, respectively) to take 50 ms

ach. All beacons are transmitted on the CCH and all communi-

ation happens on the 5.9-GHz band, with a channel bandwidth

f 10 MHz. We perform our simulations as follows:

• we take the position of RSUs and the mobility of vehicles from

the Ingolstadt trace described in Section 3.1, so as to

guarantee the consistency between simulation and emulation;

• as in the emulated scenario, vehicles transmit a beacon every

second;

• we measure the time it takes for beacons to reach the RSUs.

We then add the beacon-specific delays we obtain from the sim-

lation to our emulation results, thus being able to account for the

adio link contribution to the total latency.

m

n

4. Collision detector placement

As mentioned in Section 3.1, a key feature of our scenario i

that any number of collision detectors can be attached at any poin

f the network topologies described in Fig. 4 (b) and (c). This re

ects the increased flexibility offered by the network function vir-

ualization (NFV), where any network node can run (virtually) any

rogram. We therefore have to establish (i) how many collision de-

ectors we need in our network in order to ensure that a suffi-

iently high fraction of beacons are served within the deadline set

y the application, and (ii) where in the network topology these

etectors should be placed.

Assuming we want at most one detector per node, this trans-

lates into deciding, for each of the 24 network nodes depicted in

ig. 4 (b) and (c) (20 RSUs plus 4 core switches), whether or not we

lace a detector therein. This produces a total of 2 24 ≈ 16 · 10 6 com-
inations. Recall that, because we are emulating networks, as op-
osed to simulating them, testing one combination with the one-
our trace we use also takes one hour. Thus, testing all possible

combinations is clearly impractical. A popular and effective ap-

proach is coupling network simulation (or emulation, in our case)

with stochastic optimization algorithms, as done in [18].

Intuitively, stochastic optimization techniques [19] are based on

evaluating the performance (fitness) of a set of randomly
generated solutions, combining the most promising ones into new

solutions to evalu- ate, and repeating the process until

convergence is reached. They have been shown [20] to find

optimal or quasi-optimal solutions after testing a very limited

number of alternatives, i.e., performing a very limited number of

simulations (or emulations in our case). Considering that

optimization is not the focus of our study, we further simplify the

collision detector placement, and follow the greedy refinement

procedure below. Given the number n of detec- tors to deploy,

we:

1. start by placing the detectors at randomly chosen nodes;

2. emulate the configuration thus obtained, and consider, for each

RSU, the success fraction , i.e., the fraction of beacons originated

within the RSU coverage for which a reply from the collision

detector is received within the deadline;

3. for each switch (either RSU or core switch), compute the suc-

cess fraction corresponding to the neighboring RSUs;

4. move a detector from the switch with the highest success frac-

tion (among those having a detector) to the switch with the

lowest success fraction (among those not having a detector);

5. if the configuration has been already tested, move a randomly-

chosen detector to a randomly-chosen switch;

6. go to step 2.

Notice how the random changes in step 5 are equivalent to the

utation step in genetic [19] and simulated annealing [20] algo-

ithms. Furthermore, a desirable aspect of our procedure is that

here are no meta-parameters that need tweaking: this simplifies

ur study, and guarantees that none of the results we will observe

s an artifact of a specific parameter setting.

Although we cannot formally prove any property in this re-

pect, we consistently observed the greedy refinement procedure

utlined above to converge in twenty to thirty iterations, corre-

ponding to an emulation time of roughly one day. Additionally,

he runs for different values of n are independent and can be run

n parallel: indeed, all the results we show in Section 5 can be ob-

ained over a weekend.

. Numerical results

For our performance evaluation, we set the deadline by which

eplies shall be received to 20 ms, as suggested by the real-world
otorway trial [21]. Then, in Section 5.1, we change the number

 5

Fig. 6. Default scenario. (a): Number of successfully processed, delayed and lost beacons as a function of the number n of detectors. (b): Breakdown of the delay in its

components. (c): Distribution of the delay components when n = 2 .

a

c

i

t

t

w

a

c

n

a

s

d

e

c

w
of detectors between 1 and 5 and, for each value of n, we study the

overall detection performance, e.g., the fraction of successfully pro-

cessed beacons, along with the associated delay and energy con-

sumption. In Section 5.2 we investigate how changing the core

net- work topology or the SDN controller influences the system

perfor- mance and energy consumption. Finally, Section 5.3

presents some results obtained using a different road topology

and user mobility trace.

5.1. Default scenario

In the following, we consider a default scenario, where:

• the road topology and user mobility are modeled as described

in Section 3.1;

• we use the star-like core network topology depicted in Fig. 4 (c);

• all switches are controlled by a Pox [7] SDN controller.

The most basic aspect we are interested in is the effectiveness

of our collision detection system. Out of all the beacons sent by

vehicles, we need to know how many are (i) successfully processed,

i.e., receive a response within the set deadline; (ii) late, i.e., receive

a response but later than the deadline; (iii) lost, i.e., never receive

a response. These three cases are represented by green, yellow

and red areas in Fig. 6 (a) respectively.
Fig. 6 (a) shows that, as long as there is more than one collision

detector deployed in the network, virtually all beacons can be pro-

cessed within the deadline. Only in the case n = 1 we can observe
 small number of lost beacons, and a substantial fraction of bea-

ons that are replied to too late. Bearing in mind that we are tak-

ng into account a medium-sized European city under congested

raffic conditions, our results suggest that the task of collision de-

ection can indeed be successfully tackled through a vehicular net-

ork based on SDN/NFV.

Fig. 6 (b) breaks the delay down into four components:

• the time to reach the detector from the RSU (labeled

as RSU- > det);

• the processing time within the detector, e.g., to run

Algorithm 1 (labeled as in_detector);

• the time to reach RSU from the detector (labeled

as det- > RSU);

• the time beacons and alerts spend in the air (labeled

as veh < - > RSU).

While we might expect these components to be roughly equiv-
lent, Fig. 6 (b) shows the opposite: the time to transfer the bea-

ons from the RSUs to the detector outweighs all other compo-

ents; as confirmed by the CDFs in Fig. 6 (c), the difference is of

lmost two orders of magnitude. Interestingly, Fig. 6 (c) also

hows that the time needed by data to travel in the opposite

irection, i.e., from the detector to the RSUs, is much shorter,

ven shorter than the processing time at the detector.

This is due to the fact that, while most packets are directly pro-

essed at the switches, some – those that do not match the for-

arding rules currently stored at the switch – are forwarded to the
6

Fig. 7. Default scenario. (a): How much CPU time is consumed by the detector.py script simulating detectors (yellow), vehicle.py scripts simulating vehicles (green),

the pox controller (red), Mininet and Docker overhead (gray), for each value of n . (b): Link between the number of beacons processed by a detector and the CPU time it

consumes. (c): Link between the number of vehicles watched by each detector and its per-beacon CPU consumption. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

S

n

s

t

t

t

t

n

s

n

f

s

u r

s

l

s

s

d
c

r

c

l

b

d

m

f
a

r

c

a

p

n

u

t

s -

s

e

p f

fi

w

c

i

p

b

s

w
DN controller, which substantially increases the amount of time

eeded to forward the packets. Indeed, the OpenVSwitch virtual

witches first cache the forwarding instructions of the SDN con-

roller for some time (which explains why the replies going from

he detectors to the RSUs are much less likely to be forwarded to

he controller again) and then purge them after a timeout, in order

o avoid keeping stale routes.

This unexpected effect serves us as a reminder that SDN does

ot represent a drop-in replacement for traditional networks, and

pecial attention ought to be devoted to the interaction between

odes of the data plane and controllers. At the same time, it

urther highlights how network emulation is an excellent tool to

tudy SDN networks.

In Fig. 7, we move to energy consumption. Specifically, we

se the CPU time logged by the different components of ou

ystem as a proxy for the actual energy they consume; this is in

ine with

uch recent works as [22], that identify an almost-linear relation-

hip between CPU utilization and energy consumption.

Fig. 7 (a) shows the CPU time logged by detectors (i.e., the

etector.py instances), RSUs (i.e., vehicle.py instances) and

ontrollers, as a function of the number n of detectors. It also rep-

esents the overhead due to Mininet, Docker, and the virtual ma-

hine Mininet runs on (gray area in the plot). Recall that our tests

ast one hour, and the total consumed CPU time can exceed that

ecause different com ponents, e.g., two collision detectors, can use

ifferent CPUs at the same time.
A first thing we can observe is that collision detectors consume

ost of the CPU time; indeed, when n = 1 , the detector is active
l

d

or more than 50 minutes. rsu.py scripts also consume a fair

mount of CPU, due to their manifold role of sending the beacons,

eceiving the replies, and logging the elapsed times. The CPU time

onsumed by the detector, on the other hand, is almost negligible,

mounting to barely 30 seconds. This confirms that SDN controllers

er se do not substantially increase the energy consumption of the

etworks they belong to, and SDN itself is a suitable technology to

se in energy-constrained network scenarios.

Another interesting aspect we can learn from Fig. 7 (a) is tha

the total CPU time consumed decreases as n grows, even as the

ystem performance (Fig. 6 (a)) increases. To understand the rea

on for this, we show in Fig. 7 (b) the CPU time consumed by

ach detector as a function of the number of beacons it has to

rocess throughout the whole simulation. There are a total o

fteen points in Fig. 7 (b): one for the single detector deployed

hen n = 1 (the topmost one, corresponding to the CPU time

onsumption we see

n the leftmost part of Fig. 7 (a)), two for the two detectors de-

loyed when n = 2, and so on. We can clearly see that, the more

eacons a detector has to process, the more CPU time it will con-

ume.

Fig. 7 (b) is not especially surprising: detectors basically run
Algorithm 1 every time they receive a beacon, so it stands to rea-

son that doing that more often translates into a higher CPU con-

sumption. More interestingly, Fig. 7 (c) correlates the per beacon

CPU consumption with the number of vehicles each detector has

ithin its coverage area. We can observe an almost linear corre-
ation between the two. It tells us that having more vehicles to

eal with not only means that collision detectors need to process
7

Fig. 8. Mesh-like topology (“mesh”) and Floodlight controller (“floodlight”) scenarios. (a): Number of successfully processed, delayed and lost beacons as a function of the

number n of detectors. (b): Breakdown of the delay in its components. (c): Distribution of the delay components when n = 2 .

.

,

s

-

5

b

h

s
s

a
more beacons, but also that each beacon takes longer to process

The reason lies in the structure of Algorithm 1 itself: in Line 3

we loop over all (recent) beacons received by other vehicles, and

the number thereof directly depends upon the number of vehicle

the detector has to watch.

Summary. In our default scenario (star-like topology as de

picted in Fig. 4 (c), Pox controller), any value of n greater than

one guarantees that virtually all beacons are processed success-

fully (Fig. 6 (a)). Having to send some packets to the SDN

controller is the main source of delay (Fig. 6 (b), (c)), and

collision detectors consume most of the CPU time (Fig. 7 (a)),

and thus most of the energy. Such a consumption increases with

the total traffic each detector has to process (Fig. 7 (b)), as well

as the number of vehi- cles it has to watch (Fig. 7 (c)). This

suggests that improved, more efficient collision detection

algorithms are a worthwhile direction to follow in order to reduce

the energy consumption of vehicular safety networks.

s

a
.2. Alternative backhaul topology and detector

In the following, we maintain the same road topology and mo-

ility trace as considered before, and address two alternative back-

aul scenarios:

• one labeled “mesh”, where we replace the star-like network
topology depicted in Fig. 4 (c) with the mesh-like one depicted
in Fig. 4 b;

• one labeled “floodlight”, where we replace the Pox controller
with the Floodlight [8] one.

Notice that we are interested in studying the effect of these two

changes individually; therefore, in the “mesh” scenario we use the

ame Pox controller as in the default one, and in the “floodlight”

cenario we use the same star-like topology as in the default one.

Fig. 8 (a) shows that the performance is virtually the same in

ll scenarios. Intuitively, this tells us that the collision detection

ystem we devised is robust to changes in the network topology

nd type of SDN controller. There are, however, some slight but
8

Fig. 9. CPU time used by Pox (solid lines) and Floodlight (dashed lines) controllers,
as n changes.

s

F

t

i

t

c

c

w

s

v

t

m

t

c

t

c

t

u

p

r

t

(

s r

i

(

5

W
C
3

o

k
a

f
F
R

-

o

t

v

F

(

ignificant differences in the delay: specifically, we can see from

ig. 8 (b) that using the mesh-like network topology corresponds

o shorter delays, which again makes sense as in that case

ndividual switches tend to be less loaded.

More interestingly, in Fig. 8 (c) we see that the Floodlight con-

roller is associated with a stronger variability in the delay, espe-

ially for the packets sent from detectors to RSUs: some are pro-

essed very quickly, while others take substantially longer than

ith the Pox controller. Furthermore, this also affects the time

pent by packets in the controller (red lines in Fig. 8 (c)), whose

ariability increases as well. Indeed, as we observed earlier, the

ime it takes the detector to process a beacon depends on how

any beacons the detector has received in the recent past, and
ig. 10. Cologne scenario. (a): road topology and RSUs location; (b): number of successfu

c): breakdown of the delay in its components.
hat can change substantially if controller-induced delays are not

onstant.

Fig. 9 shows another difference between Pox and Floodligh

ontrollers: the latter consumes substantially more CPU time than

he former. Such a difference is due to the different language they

se (Java programs tend to be heavier than their Python counter-

arts), and, to a greater extent, to Floodlight focusing on feature-

ichness over simplicity.

Summary. Using a different controller or a different network

opology does not substantially change the system performance

 Fig. 8 (a)). However, a more connected topology translates into

lightly shorter delays (Fig. 8 (b)). Using the Floodlight controlle

n lieu of Pox yields a higher variance in packet processing delay

 Fig. 8 (c)), as well as higher CPU time consumption (Fig. 9).

.3. Alternative road topology and mobility trace

e now consider a different trace, coming from German city of
ologne [23]. Similar to the Ingolstadt trace detailed in Section
.1, it combines real-world topology with realistic vehicle mobility
b- tained through SUMO. The area covered by the trace is 2 × 2
m

2, and there are on average 2,410 vehicles, traveling at an
verage speed of 41.98 km/h. We place 20 RSUs on the topology,
ollow- ing the same greedy procedure as in the Ingolstadt case.
ig. 10 (a) shows the road topology (in gray) and the location of
SUs (red dots).

Fig. 10 (b) summarizes the number of beacons that are pro

cessed successfully, delayed, or lost. We can observe that, in spite

f the higher number of beacons (notice the y-scale in the plot),

wo detectors are sufficient to provide the collision detection ser-

ice with a small number of delayed or lost beacons.
lly processed, delayed and lost beacons as a function of the number n of detectors;

9

(b).

,

t

f

s

,

-

-

t

m

f

t

o

A

.

R

g

/

c

t

We can further confirm this by comparing Fig. 10 (c) to Fig. 6

Both the overall delay and its components are very similar be-

tween the Ingolstadt and Cologne scenarios: the main difference

lies in slightly longer delays in the collision detectors for the

Cologne scenario (red area in Fig. 10 (c)), due to the higher num-

ber of vehicles.

6. Related work

6.1. Collision detection

Collision detection for vehicular networks is a widely studied

topic. Earlier works such as [24] focus on system architecture, e.g.

the role of RSUs, while later ones address specific aspects such

as countering shadowing effects [3] or evaluating competing sys-

tems [25]. In a recent twist, [26] advocates using smartphone data

along with the beacons that vehicles periodically transmit.

Another significant aspect of collision detection systems is se-

curity. Indeed, beacons can be used by malicious attackers to re-

construct the vehicle position and/or trajectory [10,11].

Anonymous beacons improve the situation [11]; however, they

can be abused by vehicles providing false information [4] to hide

their position to the authorities.

Compared to these works, the collision detection solution we

present in Section 2 is remarkably simple. This is due to the fac

that our focus is not on optimizing collision detection, but rather

on assessing the ability of SDN/NFV-based networks to meet the

strict latency constraints imposed by vehicular collision detection,

and the resulting energy consumption.

6.2. SDN and NFV

Our work is also related to the wide area of software-defined

networking and network function virtualization. In particular, the

authors of the early work [27] envision a software-based imple-

mentation of next-generation cellular networks, where all types o

network nodes, e.g., firewalls and gateways, are implemented

through middleboxes, virtual machines running on general-

purpose hardware. The concept of middleboxes is further

generalized into virtual network functions (NFV) [28], capable of

performing any task, including those usually carried out by ad

hoc servers, e.g., video transcoding.

Enabled by SDN and NFV, mobile-edge computing (MEC) ha

been recently introduced [29] as a way to move “the cloud”, i.e.

the servers processing mobile traffic, closer to users, thus reduc-

ing the latency and load of networks. Recent works have studied

the radio techniques needed to enable MEC [30], its relationship

to the Internet-of-things [31] and context-aware, next-generation

networks [32].

Placing the VNFs and the servers hosting them within the cel

lular network is one of the most important MEC-related research

question, the most popular approach being exact [33] and approx-

imate [34,35] optimization. When faced with the task of placing
our collision detectors, we take the more straightforward

approach of refining their positioning, as detailed in Section 4;

indeed, for us the impact of different placement solutions on the

resulting de- lay and energy consumption is more important than

finding the utmost optimal solution

7. Conclusion and future work

Collision detection is a prominent safety application of vehic

ular networks, having very strict delay requirements. In order to

verify the compatibility of these requirements with SDN and NFV,

we designed, implemented and emulated one such collision detec-

tion system using Mininet and Docker.
Using a real-world road topology and mobility trace, we found

hat a limited number of collision detectors can process the vast

ajority of beacons with acceptable delay. More importantly, we

ound that most of that delay comes from packets being sent to

he SDN controller; this further highlights the importance of thor-

ughly testing SDN-based solutions before deploying them.

cknowledgement

This work was partially supported by the European Commission

through the H2020 5G-TRANSFORMER project (Project ID 761536)

eferences

[1] National Highway Traffic Safety Administration, Fatality analysis reporting

sys- tem, https://www-fars.nhtsa.dot.gov/Main/index.aspx.

[2] World Health Organization, Global status report on road safety,

http://www.who.int/violence_ injury_ prevention/road_ safety_ status/2015/

GSRRS2015_ data/en/.

[3] C. Sommer, S. Joerer, M. Segata, O.K. Tonguz, R. Lo Cigno, F. Dressler,
How shadowing hurts vehicular communications and how dynamic beaconin
can help, IEEE Trans. Mobile Comput. (2015).

[4] F. Malandrino, C. Borgiattino, C. Casetti, C.F. Chiasserini, M. Fiore, R.

Sadao, Ver- ification and inference of positions in vehicular networks

through anonymous beaconing, IEEE Trans. Mobile Comput. (2014).

[5] NHTSA, U.S. DOT advances deployment of connected vehicle technology to pre-
vent hundreds of thousands of crashes, http://bit.ly/2hMmtSk.

[6] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown, Reproducible
net- work experiments using container-based emulation, ACM CoNEXT, 2012.

[7] The POX controller, https://github.com/noxrepo/pox.
[8] The Floodlight controller, http://www.projectfloodlight.org/floodlight/.

[9] Docker, http://docker.com.
[10] S. Al-Shareeda, F. Özgüner, Preserving location privacy using an

anonymous authentication dynamic mixing crowd, IEEE ITSC, 2016.

[11] H. Artail, N. Abbani, A pseudonym management system to achieve
anonymity in vehicular ad hoc networks, IEEE Trans. Depend. Secure Comput.
(2016).

[12] F. Gong, B. Gao, Q. Niu, An algorithm for rapidly computing the minimum

dis- tance between two objects collision detection, 2008 Congress on Image

and Signal Processing, 2008.
[13] C. Sommer, D. Eckhoff, F. Dressler, IVC in cities: signal attenuation by

build- ings and how parked cars can improve the situation, IEEE Trans. Mob.
Comput.(2014).

[14] DLR Institute, The SUMO mobility simulator, http://www.dlr.de/ts/en

desktopdefault.aspx/tabid-9883/16931_ read-410 0 0/.

[15] F. Malandrino, C. Casetti, C.-F. Chiasserini, M. Fiore, Optimal content

download- ing in vehicular networks, IEEE Trans. Mob. Comput. 12 (7) (2013)

1377–1391.

[16] Y. Liang, H. Liu, D. Rajan, Optimal placement and configuration of

roadside units in vehicular networks, in: Vehicular Technology Conference

(VTC Spring), 2012 IEEE 75th, 2012, pp. 1–6.
[17] The ns-3 simulator, http://nsnam.org.

[18] A. Hess, F. Malandrino, M.B. Reinhardt, C. Casetti, K.A.
Hummel,
J.M. Barceló-Ordinas, Optimal deployment of charging stations for electri

vehicular networks, ACM CoNEXT UrbaNe Workshop, 2012.

[19] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. (2002).

[20] E. Aarts, J. Korst, W. Michiels, Simulated Annealing, Springer US, Boston, MA.
[21] Nokia Networks, Continental, Deutsche Telekom, Fraunhofer ESK, and Nokia

Networks Showcase First Safety Applications at Digital A9 Motorway Test

Bed. http://www.prnewswire.com/news-releases/continental-deutsche-

telekom-fraunhofer-esk-and-nokia-networks-showcase- first- safety-

applications- at- digital- a9- motorway- test- bed-543728312.html.

[22] B. Krishnan, H. Amur, A. Gavrilovska, K. Schwan, VM power metering:

feasibil- ity and challenges, ACM SIGMETRICS Perform. Evaluat. Rev. (2011).

[23] D. Naboulsi, M. Fiore, On the instantaneous topology of a large-scale

urban vehicular network: the Cologne case, ACM MobiHoc, 2013.

[24]

[25]

F.J. Martinez, C.K. Toh, J.C. Cano, C.T. Calafate, P. Manzoni, Emergency
services in future intelligent transportation systems based on vehicular
communication networks, IEEE Intell. Transp. Syst. Mag. (2010).

S. Joerer, M. Segata, B. Bloessl, R.L. Cigno, C. Sommer, F. Dressler, A

vehicular networking perspective on estimating vehicle collision probability a

 intersec- tions, IEEE Trans. Veh. Technol. (2014).
[26] H. Sharma, R.K. Reddy, A. Karthik, S-CarCrash: real-time crash detection

anal- ysis and emergency alert using smartphone, IEEE ICCVE, 2016.

[27] X. Jin, L.E. Li, L. Vanbever, J. Rexford, Softcell: scalable and flexible
cellular core network architecture, ACM CoNEXT, 2013.
http://www.etsi.org/

[28] ETSI, Mobile edge computing white ppaer,
technologies-clusters/technologies/mobile- edge- computing.

[29] Cisco, Transform data into action at the network edge,
2015, 10

https://www-fars.nhtsa.dot.gov/Main/index.aspx
http://www.who.int/violence_injury_prevention/road_safety_status/2015/GSRRS2015_data/en/
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0002
http://bit.ly/2hMmtSk
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0003
https://github.com/noxrepo/pox
http://www.projectfloodlight.org/floodlight/
http://docker.com
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0007
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0009
http://nsnam.org
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0011
http://www.prnewswire.com/news-releases/continental-deutsche-telekom-fraunhofer-esk-and-nokia-networks-showcase-first-safety-applications-at-digital-a9-motorway-test-bed-543728312.html
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0013
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0013
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0013
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0017
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0018

[30] S. Sardellitti, G. Scutari, S. Barbarossa, Joint optimization of radio and compu-

[31] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing and Its Role in

the Internet of Things, in: Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, 2012.

[32] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler, H.
Feussner,
A. Schneider, Enabling real-time context-aware collaboration through 5g
and mobile edge computing, ITNG, 2015.

tational resources for multicell mobile-Edge computing, IEEE Trans. Signal Inf.

Process. Networks (2015).
[33] N. Gazit, F. Malandrino, D. Hay, Coopetition between network operators
and

content providers in SDN/NFV core networks, IEEE INFOCOM SWFAN Work-
shop, 2016.

[34] R. Cohen, L. Lewin-Eytan, J.S. Naor, D. Raz, Near optimal placement of

virtual network functions, IEEE INFOCOM, 2015.

[35] J. Cao, Y. Zhang, W. An, X. Chen, Y. Han, J. Sun, VNF placement in hybrid NFV
environment: modeling and genetic algorithms, in: IEEE ICPADS,
11

http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30027-6/sbref0022

nuary 20, 1985. He graduated from Politecnico di Torino summa cum laude degree in

, he obtained the Alta Scuola Politecnica diploma. From October to December 2008 he
o di Torino in the frame of the regional project VICSUM. In January 2009, he joined the

 di Elettronica of Politecnico di Torino as a Ph.D. student under the supervision of prof.

uary 2010, he was admitted to the Scuola Interpolitecnica di Dottorato. Between August
ornia, Irvine, working social-driven traffic in cellular networks under the supervision of

10/110 summa cum laude) in Electronic Engineering from the University of Florence in

mmunications from Politecnico di Torino in 20 0 0. Since 20 0 0, she has been with the
nico di Torino, where she is currently an Associate Professor. Before her current appoint-

lt (now TELECOM ITALIA) grant on wireless ATM networks (1996) and with a short-term
8 till 2003, she did research work at the Center for Wireless Communications and at the

n Technology, University of California at San Diego. In 2012 and 2016, she was a visiting

uties at Politecnico di Torino include graduate-level courses on wireless communications
he has been the Coordinator of the Master Program in Communications and Computer

 di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy. He has published almost

nferences on the following topics: Transport and network protocols in wired networks,
or networks. According to Google Scholar, his H-index is 32. He has given Tutorials at

on vehicular networks. He has served in the Technical Program Committees of the main
 IEEE INFOCOM, ACM SIGMETRICS, IEEE GLOBECOM or IEEE ICC).
Francesco Malandrino was born in Siracusa (Italy) on Ja

Computer Engineering in September 2008. In June 2009
worked with the Dipartimento di Elettronica of Politecnic

Telecommunication Networks Group at the Dipartimento

Claudio Casetti and prof. Carla-Fabiana Chiasserini. In Jan
2010 and February 2011 he visited the University of Calif

prof. Athina Markopoulou.

Carla-Fabiana Chiasserini received her Laurea Degree (1

1996, and her Ph.D. in Electronic Engineering and Teleco
Electronics and Telecommunications Department at Politec

ment, she worked at the Politecnico di Torino under a Cse
position as an Assistant Professor (20 0 0–20 02). From 199

California Institute for Telecommunications and Informatio

professor at Monash University (Australia). Her teaching d
and advanced topics on wireless networks. Since 2012, s

Engineering at Politecnico di Torino.

Claudio Casetti is an Associate Professor at Dipartimento

200 papers in peer-refereed international journals and co
IEEE 802.11 WLAN, Vehicular networks, Ad hoc and sens

major IEEE Conferences, including IEEE ICC and IEEE VTC
international conferences in the networking field (such as
12

