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Abstract

The present project emerges to provide a further development to the numerical an theoretical study on the

aerodynamics of delta wings.

The study is focused on the analysis of the rolling up of detached vortex sheets on the upper surface of a

delta wing.

First, the problem is introduced, describing the geometry used for the simulations. Then, the numerical

approach is explained, giving details on the construction of the sheet of vortices that model the primary vortices

that are created above the wing. In this section, the application of Kutta-Joukowski condition is explained. Also

the procedure followed to build the vortices that roll up above the wing is detailed.

Then, the results obtained, such as the variation of the pressure over the surface and the e�ect of the thickness

of the wing, are described and discussed.

Finally, some limitations of the present study and further improvements are presented.
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Chapter 1

Introduction

1.1 Technological relevance

In this project the main objective is to study the behavior of a delta-wing. The delta-wing is a wing

con�guration used in supersonic �ight, which was started to being studied in the 1930s by Alexander Lippisch, in

Germany.

The supersonic �ight has its origins in the aerodynamics of the propeller. Researchers realized that the lift of

the airfoils dropped as their drag increased when the �ow around it reached a certain velocity (450 mph). This was

the phenomenon which high-speed aircraft would face by the end of the 1930s, the aerodynamic `compressibility'

([1]).

In 1934 John Stack was already thinking about a `compressibility research airplane'. By that time, compress-

ibility might have seemed a distant problem, as the world airspeed record was still far from the speed of sound, but

it was not.

In 1935, Adolf Busemann proposed sweeping back the wing to reduce the drag associated with high-speed

�ight. But only in Germany his idea was started to be developed.

In April 1944, Anthony F. Martindale put a Mark XI Spit�re into a dive where the aircraft reached more

that 620mph (0.92 Mach, been 1 for the speed of sound). The wings of the aircraft was slightly swept back due

to the stresses su�ered. This high-speed dive, among others, gave researchers a insight of the kind of challenges

supersonic �ight would bring ([2]).

In the fall of 1944, Robert T. Jones presented the concept of the sharply angled delta and swept wing as a

means of delaying and minimizing transonic and supersonic drag.

By the time WWII was �nished, a number of aircraft had broken up as pilot overstressed them trying

to recover from high-speed dives approaching sonic velocities. Then both the USA and the URSS recognized the

potential of this type of design for supersonic �ight. The swept wing immediately went to the top of design priorities

for high-speed �ight, due to two main advantages: the leading edge of the wing remains behind the shock wave

created by the nose of the aircraft and generates a huge vortex which delays the stalling conditions of the aircraft.
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1.2. STATE OF THE ART UC3M

Lippisch was taken to USA, where he ended up working at Convair, a leading aircraft manufacturer of the

United States. Designers of this company begin with a sharply swept back thin wing and gradually �lled in the

trailing edge until they arrived at the 60-degree delta platform. This led to a much thin section of the wing and

low aspect ratio. Such changes made it necessary to increase the requirements of sti�ness and rigidity. The ratio of

fuselage length to wingspan also changed dramatically, giving the fuselage the necessity to get a streamlined shape,

which, prior to stability augmentation and �ight control, was plagued of dangerous instabilities.

By the 1980s only the Concorde and the Space Shuttle were using delta-wings. The Concorde was able to

sustain a cruise speed of 2 Mach due to its delta wings ([3]). For the Space Shuttle, which had the ability to glide

for thousands of miles when landing, delta wings provided the needed lift that rectangular wings were not able to

achieve at high speeds and altitudes. The use of this con�guration became obsolete due to a series of disadvantages.

Some of the disadvantages were that delta-wings require high speeds and long runways for landing and take-

o�, they are no longer stable at high angles of attack and they produce a huge drag when trying to keep plane

level. However, though structural and aerodynamic advantages are obtained from this wing con�guration, their

main disadvantages were due to control issues. One problem was pitch up. As the aircraft approaches stall, the

�uid detaches going inwards from the tips, moving forward the center of pressure, which leads the aircraft to pitch

up abruptly. Another problem is cross-�ow wind as it makes one of the vortices greater than the other one, starting

the rolling of the aircraft. This may lead to inertial coupling. As the plane had a huge part of its mass concentrated

on its fuselage, when it started rolling, control was lost.

Between the 1980s and 1990, delta-wing where incorporated in several aircraft, one of which is the Euro�ghter.

The appearance of the computer-controlled �ight control systems called "�y-by-wire" has allow the designers to

compensate for some of the poor control qualities of delta wings. Also the inclusion of canards mounted on the

fuselage in front of the aircraft have contributed to this as they improve its stability and maneuverability. It seems

that delta-wing, which seemed to be obsolete, has gained a new chance of life.

1.2 State of the art

Nowadays, delta wings appear is several aircraft, such as the Euro�ghter thanks to the incorporation of the

computer-controlled �ight control systems, which allow to compensate for the poor control qualities of this wing

con�guration.

As it is explained in [4], the dominant aspect of a subsonic �ow over a delta wing are the two vortex sheet

that detach from the region near the highly swept leading edges. This happens due to the di�erence on pressure

between the upper, where it is lower, and the bottom surface, where it is higher. Thus, the �ow separates (S1on

Figure 1.2.1) and rolls-up over the leading edge creating what is called the primary vortex. This vortex goes above

the wing and inboard the leading edge, and the �uid adheres again to the surface of the wing at the primary

attachment line (A1), inducing an outward �ow beneath of it. As the �ow passes below the primary vortex, the

boundary layer of the wing separates creating a secondary vortex rotating in the opposite sense to the main vortex,

with its own separation (S2) and attachment lines (A2) , as it can be observed on Figure 1.2.1.

Theoretical study of aerodynamics of slender wings 3 María Martínez Pascual
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Figure 1.2.1: Schematic of the subsonic �ow �ied over the top of a delta wing at an angle of attack, from [4].

One of the main advantages of delta wings is that this two primary vortex provide stability to the wing and

an increase in the lift. While the pressure at the bottom and on the middle of the upper surface is essentially

constant, the accelerated �uid near the leading edge has as a consequence the drop on static pressure. This is what

is seen on Figure 1.2.2, where the pressure distribution over the upper and lower surfaces of the wing is sketched,

below the representation of the �at wing an the two primary vortices. Thereby, the vortex that is generated stays

attached to the upper surface increasing the lift of the wing due to suction e�ect of the separation vortex, delaying

the stalling conditions of the aircraft.

Figure 1.2.2: Schematic of the spanwise pressure coe�cient distribution across a delta win, from [4].

Another huge advantage of the delta wing is that when �ying at supersonic speeds, the leading edge of

the wing remains behind the shock wave created by the nose of the aircraft. The consequence of this is that the

component of the velocity normal to the leading edge is subsonic; the wing has a subsonic leading edge. This allows

the aircraft to �y at higher speeds avoiding the increase on drag that may be produced by a rectangular wing, for

example. The �ow pattern at this conditions is therefore similar to the one shown on Figure 1.2.1.

Theoretical study of aerodynamics of slender wings 4 María Martínez Pascual
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1.3 Objectives

The main objective of this project is to develop a model for the study of the aerodynamics of the slender

wings. In particular, the e�ect that the thickness of the wing has on the the rolling up sheet of vortices. Some of

the inputs for the problems are going to be imposed such as the geometry of the wing and the initial position of

the nascent vortices (what a nascent vortex is is de�ned in subsection 2.3.2).

From a more practical point of view, one of the aims of this project is to reproduce the evolution of the

rolling up of the sheet of vortices that begins at the edges of the wing. At the beginning the problem is simpli�ed

as much as possible, so the initial con�guration is a circle in a uniform �ow. Then at each side of this circle, two

vortices are located far enough from it, at a distance larger than the panel size but small compared to the span of

the wing. They are called detached vortices . The sheet of vortices is created from the vortices that are generated at

the edges of the pro�le. This vortices are called attached vortices . Their initial position is an input of the problem

and their intensity is such that enforces the Kutta condition at the leading edges. As the attached vortices go

further from the pro�le, they become detached vortices, and new vortices are generated. This is how the sheet of

vortices develops and evolves with time.

At the end of this project it is expected to develop a computational tool that will be useful to obtained

further more realistic results such as the in�uence of the side slip angle.

Theoretical study of aerodynamics of slender wings 5 María Martínez Pascual



Chapter 2

Methodology

2.1 De�nition of the problem

In this section the geometry of the problem is de�ned. Bare in mind that the problem is fully two-dimensional,

so the computations are reduced to a single plane, the cross-�ow plane (see Figure 1.2.1). The reference frame is

set with the positive x-axis pointing downstream along the axis of symmetry of the wing, the y-axis following the

spanwise direction and the z-axis perpendicular to the surface of the wing as it is illustrated in Figure 1.2.1).

The wing geometry can be described in very simple terms, as it is reduced to an ellipse which represents

the transverse section of the wing. It is explained later that for simplicity the problem is made non-dimensional

and the characteristic length is the mid span of the wing. Therefore the span of the wing goes from point (1, 0)

to point (-1, 0) on the y-axis. These points are located at the right and left edges of the wing respectively. Is at

this two points at the leading edge of the wing where the �uid leaves the surface generating the sheet of vortices.

It is also at these points where the Kutta-Joukowski condition is applied. The shape of the upper part of the wing

cross-section is given by the equation (2.1.1), and applying symmetry with respect to the horizontal axis, the lower

surface is found. The cross-section of the airfoil is chosen to be symmetric also with respect to the vertical axis,

although the code is actually able to handle non-symmetric geometries. The mid thickness of the wing ( c) is taken

as a 10% of the mid span of the wing (b).
z2

c2
+
y2

b2
= 1 (2.1.1)

For purposes that are explained later, the pro�le is discretized into k panels, separated by m = k + 2 nodes,

and basic solutions are placed in the middle of each panels. The �rst and last nodes coincide with the point on the

right side of the leading edge as it is indicated on Figure 2.1.1, where the approximate (as it may vary when obtaining

the results) position of the nascent vortex is also shown. The number of the node increases counterclockwise.
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2.1. DEFINITION OF THE PROBLEM UC3M

Figure 2.1.1: Scheme of the geometry

On each panel it is de�ned a normal vector (nk), pointing inwards the cross-section, and a tangent vector(tk),

pointing counterclockwise. Also, the middle point of the panel and the surface coordinate are de�ned, as it can be

seen on Figure 2.1.2.

Figure 2.1.2: De�nition of the middle point and normal and tangent vector associated to a panel.

Regarding the normal vectors used in future calculations, all of them are de�ned pointing outwards the

domain ΩC , as it is shown on Figure 2.1.3. In this Figure there are also de�ned the domains on which integrals are

de�ned, although they may vary as the con�guration of the problem does so, for instance, if we add more Kutta

conditions or vortices.

Theoretical study of aerodynamics of slender wings 7 María Martínez Pascual
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Figure 2.1.3: Scheme of the problem to be solved numerically (nomenclature is described on sections 2.2 and 2.3).

2.2 General view

As explained before, the computations to �nd the solution for the problem start with the simplest problem:

a circle in a uniform �ow. Then the circle is converted into an ellipse and two pair of vortices are positioned at each

side near the leading edge. The pair of vortices that is further from the pro�le moves and gives way to other pair

of vortices that is generated. In this way the sheet of vortices is build up.

The procedure followed to obtain the numeric solution is the one described in reference [5]. Therefore the

problem to be solved is the following, which gives a solution for the potential �ux (φ) around the body, assuming

an incompressible �uid:

(∇∗)2φ∗ = 0

|x∗|�∞, φ∗�U∞y∗ sinα cosβ + U∞z
∗ sinβ

(2.2.1)

Where U∞ is the free stream velocity and α and β are the angle of attack and the sideslip angle, respectively.

The vector x∗de�nes a point at the surface of the wing (Σs) through which no permeability (n·(∇∗)φ∗ = 0) is

assumed. Although at this point of the problem the Kutta-Joukowski condition is not necessary, it has to be

mentioned as it will appear at some point of the development.

Theoretical study of aerodynamics of slender wings 8 María Martínez Pascual
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The problem, is made non-dimensional, using as characteristic scales of the longitude and the velocity the

mid-span of the wing (b/2) and the vertical velocity (U∞ sinα ≈ U∞α, as the angle of attack is assumed to be

small), respectively. So ∇∗ =
1

(b/2)
(∇), (∇∗) 2 =

1

(b/2)2
∇2, φ∗ = (U∞α(b/2))φ and y∗ = (b/2)y. Therefore the

problem to be solved is expressed as:

∇2φ = 0

|x|�∞, φ�y sinα cosβ + z sinβ
(2.2.2)

The asterisk (∗) stands for dimensional notation, and those variables without it are unitless, which are the

ones used from now on. The problem is solved by the Green method, which expresses the potential at any point of

the surface of the object as the superposition of a continuous distribution of two basic solutions. These are source

(Gj = ln ‖x�xj‖) and doublets (n ·∇Gj), oriented to the outside of the object, as the vector normal to the surface.

2.3 Numerical Method

2.3.1 Flow around a circle and two vortices

As a �rst approach, the potential solution around a circle and two vortices is obtained. These vortices are

referred as detached vortices. As they are far enough from the pro�le, they can be considered part of the far �eld

potential. So the value of the potential at the in�nity, expressed on equation (2.2.2), now includes the potential

induced by the vortices:

|x| → ∞, φ→ y sinα cosβ + z sinβ +

Nvor∑
i=1

Γi
2π
θ (2.3.1)

Where Nvor is the number of detached vortices, Γi the circulation of a vortex and θ is the angle between the

horizontal axis and the vector that goes from the point (y, z), to the the point where the vortex is located. The

circulation of the vortices is also non-dimensional so: Γ =
Γ∗

U∞αb/2
.

It is known that the complex potential of sources and doublets satis�es the Laplace equation. So as ∇2φ = 0

and ∇2Gj = 0, the following identity is satis�ed also:

Gj∇2φ− φ∇2Gj = 0 (2.3.2)

The Green function arises from applying the volume integral to the equation (2.3.2), extended to the domain

de�ned as ΩC . Within this domain a circular surface of radiusε� 1 is placed at the location of the basic solution

of Laplace, to avoid the singularity. The Gauss theorem is then applied to this equation:

ˆ

ΩC

(Gj∇2φ�φ∇2Gj)dV =

ˆ

ΩC

∇ · (Gj∇φ− φ∇Gj)dV =

ˆ

ΣC

(Gj∇φ− φ∇Gj) · ndσ (2.3.3)

The domain is expressed as ΣC = Σ∞
⋃

ΣS
⋃

Σε (all de�ned on Figure 2.1.3), where Σ∞ includes the two

vortices, which can be considered part of the far �eld. At this point it is convenient to substitute in equation (2.3.3)

Theoretical study of aerodynamics of slender wings 9 María Martínez Pascual



2.3. NUMERICAL METHOD UC3M

the perturbed potential (φ
′

= φ− φ∞) as the integral over Σ∞ disappears, leading to:

ˆ
Σ∞

⋃
ΣS

⋃
Σε

(Gj∇φ
′
− φ

′
∇Gj) · n dσ =

ˆ
ΣS

⋃
Σε

[(Gj∇φ− φ∇Gj)− (Gj∇φ∞ − φ∞∇Gj)] · n dσ = 0 (2.3.4)

The integral evaluated over ΣS at the in�nity is equal to zero. Knowing that n · ∇Gj = (−er) · (1/ε)erand
Gj = ln ε: ˆ

Σε

(Gj∇φ∞ − φ∞∇Gj) · n dσ = lim
ε�0

ˆ 2π

0

[
(ln ε)∇φ∞ · n + φ∞

1

ε
n

]
εdθ = 2πφ∞(xj) (2.3.5)

To solve the rest of the integral over Σs
⋃

Σε we need to apply the condition of non-permeability (∇φ · n = 0)

at the surface of the circle:

ˆ
Σε

⋃
ΣS

(Gj∇φ−φ∇Gj)·n dσ = lim
ε�0

ˆ π

0

[
(ln ε)∇φ · n + φ

1

ε
n

]
εdθ+

ˆ
ΣS

(−φ∇Gj)·n dσ = πφ(xj)−
ˆ

ΣS

(φ∇Gj)·n dσ

(2.3.6)

The solution to equation (2.3.4) is then:

φ(yj,zj) = 2

[
(mjy cosβ +mjz sinβ) +

Nvor∑
i=1

Γi
2π

arctan
mjy − yvi
mjz − zvi

]
+

1

π

ˆ
Σs

φ(y, x)
(x�xj) · n
|x�xj |2

ds (2.3.7)

Where xj = yjj + zjk is a �xed point at the surface of the object where the potential is calculated and

x = yj + zk is the vector-position of the integration variable in the surface integrals of equation (2.3.7).

As it has been anticipated at the beginning of this section, the Green method expresses that the potential

at the point (yj,zj), φ(yj,zj) can be expressed as a superposition of the potentials of a continuous distribution of

doublets oriented as the normal of the surfaces ΣS and Σε. For this reason, from equation (2.3.7), a numerical

solution for the problem can be found. First, the geometry is discretized, divided into n panels. For each of the

panels, the vector position of the adjacent nodes (rk), the normal and tangent vectors (nk, tk), the middle point

and the distance between them (mn,∆n) and the distance between the nodes of the pro�le (∆k) can be calculated.

To �nd the numerical solution, the value of the potential along the panels has to be approximated to the

value of the potential at the middle point. At this point, equation (2.3.7) can be rewritten as follows:

φ(yj,zj) = 2

[
(mjy cosβ +mjz sinβ) +

Nvor∑
i=1

Γi
2π

arctan
mjy − yvi
mjz − zvi

]
+

1

π
φk(y, z)

ˆ ∆k

0

(x�xj)�nk
|x�xj |2

ds (2.3.8)

Where s is de�ned as the surface coordinate and yv and zv are the vortex coordinates. Notice that the

integral at the second term of equation is calculated for each panel. In case k = j the integral is equal to zero,

as (x�mj) is perpendicular to the normal vector of the panel. If k 6= j the vector position can be expressed as

x = rk + stk, so:

ˆ ∆k

0

(x�xj) · nk
|x�xj |2

ds =

ˆ ∆k

0

(rk + stk −mj)·nk
(rk + stk −mj) · (rk + stk −mj)

ds =
1

((rk −mj) · nk)2

ˆ ∆k

0

(rk −mj) · nk
1+
(
s+(rk−mj)�tk
(rk−mj)�nk

)ds =

arctan

(
∆k + (rk −mj) · tk

(rk −mj) · nk

)
− arctan

(
(rk −mj) · tk
(rk −mj) · nk

)
(2.3.9)
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2.3.2 Kutta-Joukowski condition

Moving forward with the con�guration of the problem, the arbitrary vortices that use to developed the

equations in section 2.3.1 disappear. The aim now is to generate two symmetric vortices of unknown circulation

(Γi) at a given location (tv1 and tv2, see Figure 2.1.1), which will be referred to as nascent vortices.

Kutta-Joukowski condition determines the value of their circulation. Also it is known that the integral over

the line C (equation 2.3.10) that encloses the pro�le (see Figure 2.1.3) is de�ned counterwise:

Γ =
z

C

∇φ�dl (2.3.10)

Kutta-Joukowski condition is applied at the points de�ned as the leading edge of the wing (Figure 2.1.1). At

this points the �uid on the upper and the lower surfaces of the wing separate to rise the sheet of vortices. Therefore,

the velocity of the �uid leaving the surfaces has to be equal in module and direction.

The circulation of the two vortices that want to be calculated are also unknown, so two more equations are

needed. The application of the Kutta-Joukowski condition provides two new equations that allow the problem to

be solved:
φ1 + φN+1

∆N+1
= 0

φN/2 + φN/2+1

∆N/2+1
= 0

(2.3.11)

The problem of solving the potential over the pro�le reduces to a lineal system of N+2 equations of the N+2

unknowns [φ1, φ2, ..., φN ,Γ1,Γ2]:

N∑
k=1

Rjkφk = 2

[
(mjy cosβ +mjz sinβ) +

Nvor∑
i=1

Γi
2π

arctan
mjy − yvi
mjz − zvi

]
φ1 + φN+1

∆N+1
= 0

φN/2 + φN/2+1

∆N/2+1
= 0

(2.3.12)

Where the coe�cients are de�ned as:

Rjk =


1

π

(
arctan

[
btjk + ∆k

bnjk

]
− arctan

[
btjk
bnjk

])
k 6= j

0 k = j

 , (2.3.13)

with btjk = (rk −mj)�tkand bnjk = (rk −mj)�nk.

2.3.3 Velocity of a vortex

To go on with the problem, the nascent vortices have to move in time to shape the sheet of vortices. Time is

made dimensionless, as the rest of the magnitudes of the problem, so: t =
t∗

U∞α(b/2)
.Once they move far enough

from the surface of the wing they are called detached vortices.
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The velocity of any particle of the �uid is the resultant of the addition o three contributions: the velocity

induced by each of the panels of the pro�le, the velocity induced by the uniform �ow and the velocity induced by

any other vortex around (the vortex of which the velocity is been calculated does not induced velocity to itself).

The velocity induced by the pro�le on the vortex is obtained by derivating the result of integrating equation

(2.3.2) over the surface (Σs), taking into account the condition of non-permeability (n�(∇)φ = 0) at the surface:

φ(yv, zv) =

ˆ
Σs

φ∇Gj · ndσ =

ˆ
Σs

φ

(
(x�xj) · nk
|x�xj |2

)
dσ (2.3.14)

φ(yv, zv) =

N∑
j=1

φj
nj · (x−mj)

|x−mj |2
∆j (2.3.15)

∂φ

∂y
=

N∑
j=1

φj
nym[(y − ym)2 + (z − zm)2]− [nym(y − ym) + nzm(z − zm)] · [2(y − ym)]

[(y − ym)2 + (z − zm)2]
2 ∆m (2.3.16)

∂φ

∂z
=

N∑
j=1

φj
nzm[(y − ym)2 + (z − zm)2]− [nym(y − ym) + nzm(z − zm)] · [2(z − zm)]

[(y − ym)2 + (z − zm)2]
2 ∆m (2.3.17)

These equations, (2.3.16) and (2.3.17), give the solution for the velocity induced by the body at any point of

the space, outside the boundaries of the pro�le:

v =
∂φ

∂y
− i∂φ

∂z
(2.3.18)

To this velocity it is added the vertical contribution of the uniform �ow, whose intensity is assumed to be

equal to unity as the problem is non-dimensional:

v =
∂φ

∂y
+ i

(
1− ∂φ

∂z

)
(2.3.19)

Regarding the velocity that is induced by any other vortex in the domain it is calculated analytically. The

analytical solution for the potential created by a vortex is derived with respect to the complex variable t = y + iz,

and the velocity is obtained:

vv1→v2 =
∂

∂t

(
−iΓ1

2π
ln(t2 − t1)

)
=
iΓ1

2π

1

t2 − t1
(2.3.20)

Therefore, the velocity of any vortex in the domain is:

vv =
∂φ

∂y
+ i

(
1 +

∂φ

∂z

)
+
iΓ1

2π

1

t2 − t1
(2.3.21)

2.3.4 Building in the sheet of vortices

To build in the sheet of vortices, we start with a �rst pair of symmetric vortices that arise from the combination

of the potential solution (equation 2.3.8) and the Kutta-Joukowski condition (equation 2.3.11). These vortices are
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called attached vortices as they do not have velocity. The second pair of symmetric vortices appear at a certain

distance, which is chosen to be greater than the panel size, from these two. They are the ones that have been

refereed before as nascent vortices. As these vortices evolve with time they become part of the detached vortices

that shape the sheet of vortices. Once the pair of vortices is far enough from the pro�le, a new pair of symmetric

vortices appear in between them and the attached vortices..

Figure 2.3.1 shows a simple scheme of how the sheet of vortices is created. At t = 0, the con�guration

includes the attached vortices (Γfv1, tfv1,Γfv2, tfv2) and the �rst pair of moving vortices (Γv1, tv1,Γv2, tv2) . When

the time is set up, the velocity of these vortices is calculated (t′v1,, t
′
v2) and the potential on each panel (φk) is

recalculated accounting for the potential generated at the new positions. Once these vortices are far enough from

the �xed vortices, a new pair of vortices is generated in between the �xed and the moving existing vortices and the

potential of the panels and the circulations and positions of these new vortices (Γvi, tvi,Γvi+1, tvi+1) are calculated.

The condition for the generation of a new vortex depends on a numerical parameter that is set arbitrarily (Dmin)

as explained later. The velocity of all the moving vortices is calculated again and new vortices appear under the

same condition. This loop goes on until the time of calculation �nishes.
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Figure 2.3.1: Flowchart of the generation of the sheet of vortices.
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Chapter 3

Validation

3.1 Flow around a cylinder and two vortices

The �rst thing done in order to check if the results given by the code are correct is to �nd the potential �ow of

the simple case of a circle and two vortices submerged in a uniform �ow going on the vertical direction. The analytic

functions that represent an uniform �ow and a vortex are elementary solutions of the Laplace equation (2.2.2). To

�nd the theoretical solution to this problem, Milne-Thompson theorem is applied to a �ow �eld composed of these to

elementary solutions: an uniform �ow, going in the positive direction of the z-axis, and two vortices. The potential

of this �ow is obtained from equation (3.1.1).

f = −iU∞αt−
Γ∗v1

2π
ln(t− tv1)− Γ∗v2

2π
ln(t− tv2) (3.1.1)

As for the numerical solution, the equation for the potential of an uniform vertical �ow and two vortices is

made non-dimensional, with the same characteristic scales used for the numerical problem:

f = −it− Γv1

2π
ln(t− tv1)− Γv2

2π
ln(t− tv2) (3.1.2)

.

The Milne-Thompson circle theorem is a statement that gives a new streamfunction for a �uid �ow when

a circle is placed on it. Let w = f(t) be a complex streamfunction with no rigid boundaries and no singularities

within |z| = a. If a cylinder |z| = a is placed into that �ow, the complex potential for the new �ow is given by:

w = f(t) + f

(
1

t

)
= f(t) + f

(
1

t

)
(3.1.3)

Therefore, the analytical solution for this problem is obtained by means of known basic solutions of potential

theory to which Milne-Thompson theorem is applied, giving the following expression:

w = −it+ i
1

t
− iΓv1

2π

[
ln(t− tv1)− ln

(
1

t
− tv1

)]
− iΓv2

2π

[
ln(t− tv2)− ln

(
1

t
− tv2

)]
(3.1.4)

The analytical value of the potential is calculated on the surface of the body, where equation (2.3.8) gives the

numerical solution. The error between these two solutions is shown in Figure (3.1.1) and it is obtained by equation
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(3.1.5).

ε =
φ− w
w

(3.1.5)

(a) Error between analytical and numerical solutions of the potential for m = 40.

(b) Error between analytical and numerical solutions of the potential for m = 400.

Figure 3.1.1: Error between analytical and numerical solutions of the potential as a function of s, the coordinate
along the surface of the pro�le.

The �st thing that is noticed is the non-symmetric distribution of the potential. This is due to the potential

induced by the vortices, which break the symmetry with respect to the horizontal plane.

The graphs show the error between analytical and numerical solutions for the same geometry but with

di�erent number of panels. The con�guration used in Figure 3.1.1a has a number of panels equal to the 10% of

the number of panels of Figure 3.1.1b. Then it can be said that even if the number of panels is small, the error is

Theoretical study of aerodynamics of slender wings 16 María Martínez Pascual



3.2. PRESSURE DISTRIBUTION UC3M

reasonable, taking into account that the numerical scheme used is a second order method, since it stays below an

order of magnitude of 10−2.

3.2 Pressure distribution

The linearized potential theory, explained on [6] predicts an in�nite suction peak at the leading edges of

the wing on its pressure distribution (see Figure 3.2.1). According to this theory, and adapting equations on [6]

to the present problem, vertical (w (y, z, 0±)) and horizontal (u (y, z, 0±)) velocities on the surface of the wing are

calculated by means of equation 3.2.1.

u
(
y, z, 0±

)
+ iw

(
y, z, 0±

)
= ∓ U∞αy√[

b

2

]2

− y2

− iU∞α (3.2.1)

u
(
y, z, 0±

)
+ iw

(
y, z, 0±

)
= ∓ y√[

b

2

]2

− y2

− i (3.2.2)

Figure 3.2.1: Pressure di�erence distribution on a slender delta wing predicted by linearized theory [6].
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Which made non-dimensional would look as equation 3.2.2. This equation gives the values of the velocity of

the �uid at each point on the surface of the wing. The numerical solution is obtained by making the wing extremely

thin (c = 0.005b ) and calculating the velocity on the surface of the wing at an instant where the vortex sheet is

stable (t = 1, for standard conditions that are de�ned on Subsection 4.1, except for the value of the thickness).

Analytical and numerical solutions are shown together in Figure 3.2.2. On it can be seen that numerical solution

for the pressure coe�cient di�erence has has very high values at the leading edges of the wing. Based on this,

numerical solution can be considered a good approximation, taking into account that is not obtained over a �at

plate as the analytical solution.

Figure 3.2.2: Numerical and analytical solutions for pressure distribution.
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Chapter 4

Results

The aerodynamics of a delta wing are going to be studied. To do so, equations (2.3.8) and (2.3.11) are

combined to form a system of k+2 equations, as the one shown on equation (2.3.12). This system gives the solution

for the potential at each panel of the discretized geometry (φk) and the circulation of the vortices that shape the

sheet of vortices (Γi).

The sheet of vortices grows from the separated �ow at the leading edge of the wing. The �rst vortex is �xed,

so that it has no velocity and it sets the origin of the sheet of vortices. It is positioned at an arbitrary distance

(datt, see Figure 4.0.1) from the leading edge, as it was shown on Figure 2.1.1. The �xed vortex is the attached

vortex that appeared in section 2.3.4. The second vortex of the sheet is the �rst moving vortex as it also placed at

a given distance (dmov) from the attached vortex. The vortices that are created after this �rst moving vortex are

positioned in between the attached vortex and the closest moving one.

Figure 4.0.1: Schematic representation of the initial positions of the attached vortex and �rst moving vortex of the
sheet.

4.1 Numerical parameters

The e�ects of the variations of the numerical magnitudes are studied in this section. All the simulations

carried out are done using the circulation line simpli�cation, explained on on the following section, 4.2. These

numerical parameters are the following:
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� datt - The distance of the attached vortex.

� dmov - The distance of �rst moving vortex.

� dv - The minimum distance between the attached vortex and the closest moving vortex to generate another

vortex.

� Dmin - The radius to construct the line of circulation.

The �rst magnitude is the distance of the attached vortex with the leading edge of the wing (datt), which

goes only in the y-direction. This attached vortex provides stability to the method, it has no velocity and is placed

very close to the leading edge. This parameter has a small approximated range of possible values. If the vortex is

placed very close to the leading edge of the wing, numerical calculation does not hold. If the vortex is placed too

far, the results do not give a good approximation of the actual solution of the �ow, though high values are safer for

the stability of the method.

To get approximate ranges for this value, specially to know which is the minimum allowed, di�erent simu-

lations are carried out for given conditions of time (∆t = 0.01, t = 3) and geometry (b = 1, c = 0.05). The tested

ranges of values within the code gives an acceptable solution are: for m = 200, [0.00001, 2], for m = 400, [0.01, 2]

and for m = 800, [0.01, 2]. It it worth to mention that values above the maximums of these ranges can be a�orded

numerically, but the results would be further from reality. Also, longer distances delay the rolling up of the sheet

of vortices.

The second numerical magnitude if the distance of the �rst moving vortex to the attached vortex (dmov),

which is a vector with components di�erent from zero in both axis of symmetry. Simulations to investigate the

possible range for this distance are done for the same three values of m, under the same conditions of time and

geometry as for the distance of the attached vortex and �xing datt = 0.05. It is observed that the distance on the

y-axis may be chosen from a range of values of [0.0001, 2] without concerning much about it since it has not a great

in�uence on the results. However, if the distance on the z-axis exceeds a determined order of magnitude (10−3 for

m = 200, 400, 600 and 800) numerical analysis does not give the expected solution as is is seen in Figure 4.1.1b.

These two distances datt and dmov have to be adjust together. This means that having a possible physical

solution of the �uid if one of them is changed this solution may vary giving a non-valid solution. Figure 4.1.1 shows

how the shape of the vortices change by increasing the vertical component of dmov in one order of magnitude.
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(a) Sheet of vortices at t = 1 for dmov = 0.5 + i0.005 (b) Sheet of vortices at t = 1 for dmov = 0.5 + i0.05

Figure 4.1.1: Primary vortices generated for datt = 0.05 for di�erent values of dmov.

Other numerical magnitude that is set arbitrarily is the minimum distance required (dv) between the attached

vortex and the closest moving vortex to generate a new vortex. To �nd an approximate criteria to establish this

value relating it to the geometry of the wing, several simulations are carried out under the same conditions of time

(∆t = 0.01, t = 6) and geometry (b = 1, c = 0.05, datt = 0.05, dmov = 0.5 + i0.0001). These simulations consist in

changing the value of the distance to get the closest solution to the time just before the vortex breaks, meaning the

sheet crosses itself or changes direction drastically. Table 4.1.1 shows the relation of the minimum distance required

between the vortices and the panel size by means of a coe�cient (a = dv/D), for geometries with di�erent number

of nodes. Figures 4.1.2, 4.1.3, 4.1.4 and 4.1.5 show how the vortices behave for the di�erent cases gathered on table

4.1.1.

m = 200, D = 0.0203 m = 400, D = 0.0101 m = 600, D = 0.0067 m = 800, D = 0.005

dv 0.0913 0.1014 0.0858 0.0908 0.0874 0.0907 0.0856 0.0881
a 4.5 5 8.5 9 13 13.5 17 17.5

Table 4.1.1: Relation (a = dv/D) between the size of the panel (D) and the distance from the attached vortex to
the moving one (dv).
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(a) For a = 4.5. (b) For a = 5.

Figure 4.1.2: Shape of the sheet of vortices for m = 200 at t = 6.

(a) For a = 8.5. (b) For a = 9.

Figure 4.1.3: Shape of the sheet of vortices for m = 400 at t = 6.
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(a) For a = 13. (b) For a = 13.5.

Figure 4.1.4: Shape of the sheet of vortices for m = 600 at t = 6.

(a) For a = 17. (b) For a = 13.5.

Figure 4.1.5: Shape of the sheet of vortices for m = 800 at t = 6.

A linear interpolation between can be done to obtain an approximation of the coe�cient a needed as a

function of the number of nodes of the pro�le (m). According to the values of Table 4.1.1, the value of a follows

linear regression with a slope of 0.021 and an intercept of 0.75. Therefore, the coe�cient is calculated by means of

equation (4.1.1).

a = 0.021m+ 0.75 (4.1.1)

From �gures 4.1.2, 4.1.3, 4.1.4 and 4.1.5 it can be observed how the primary vortices are more stable (�gures

on the right) with greater values of a. Also, it is appreciated that as the number of nodes is increased this linear
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relation gives less accurate values of the distance. Figure 4.1.6 shows the position of the sheet of vortices for the

value of the coe�cient calculated with equation (4.1.1), con�rming that the prediction done by the linear regression

is less accurate for greater nuber of nodes.

Figure 4.1.6: Shape of the sheet of vortices for m = 1000 at t = 6.

The last numerical parameter is the minimum distance (Dmin) to construct the circulation line at the core

of the vortex, a procedure that is explained in section 4.2. It gives the condition for the vortices which get very

close inward the primary vortex to merge into one single vortex, to avoid what happens at the end of the sheet,

what it is observed on Figure 4.1.6. After some simulations performed under the same conditions used up to now

it has been observed that the simpli�cation starts to work if Dmin is above 0.08, and for values greater than 0.2

calculations do not hold. A good range of values has been proven to be [0.09, 0.15].

When choosing any of these numerical parameters it should be kept in mind that the calculations may be

very sensitive to variations and solutions may decompose

Unless something di�erent is speci�ed in a particular case, to �nd results the parameters chosen are the ones

on Table 4.1.2.

Theoretical study of aerodynamics of slender wings 24 María Martínez Pascual



4.2. CIRCULATION LINE SIMPLIFICATION UC3M

m b c datt dmov dv Dmin ∆t t

600 1 0.05 0.05 0.5 + i0.001 (0.021m+ 0.75)D 0.14 0.01 8

Table 4.1.2: Standard conditions used for calculations.

4.2 Circulation line simpli�cation

In section 1.2 the evolution of the �uid on the surface of the wing was explained. Up to know, calculations

are limited to short times, as when time goes on, the vortices agglomerate on the inside of the primary vortex sheet.

This may lead to the sheet crossing itself or changing drastically direction, leading to non-physical solutions.

The way to deal numerically with this problem consists in placing a line of circulation that goes through the

middle of the primary vortex, at the vortex core (see Figure 4.2.1). In a two dimensional plane this line is seen as

a vortex.

Figure 4.2.1: Schematic representation of the cross-section of the vortices generated over a delta wing.

As vortices are created near the leading edge, they go far from the pro�le. The �rst moving vortex of the

sheet is the one that is taken as the primary vortex core, as the sheet rolls up on it. When the vortices get close to

this vortex they merge with it and become one single vortex, whose circulation and position is the mean of their

circulations and positions. This happens when the distance is smaller than a given distance (Dmin), which is one

of the numerical parameters of the problem, as it was explained on section 4.1.
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Figure 4.2.2 shows the di�erence on the evolution of the vortex sheet between the case when the circulation

line simpli�cation is applied or not (both solutions in standard conditions). When the circulation is concentrated,

using circulation line simpli�cation, it can be noticed that the stability of the primary vortices is kept, the sheet

rolls up without crossing itself and the vortices. Meanwhile, when the sheet rolls up freely, vortices are less stable

and may cross themselves at some point. It should be also observed that in �gure 4.2.2a the primary vortices rotate

closer to the wing than in �gure 4.2.2b.
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(a) With line vortex simpli�cation.

(b) Without line vortex simpli�cation.

Figure 4.2.2: Evolution of the sheet of vortices at t = 5.
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4.3 Pressure and lift coe�cient

The pressure and lift coe�cients are part of the characteristics of the aerodynamics of a wing. Several

analyses regarding the pressure distribution over a delta wing ([6, 7]) have been developed, studying the lift in some

particular cases. In [6] the di�erence between the value of the lift obtained by means of linearized potential theory

and the experimental one is commented. The di�erence from one to the other is what is called the vortex lift, e.g.

the lift generated by the vortices.

The pressure distribution on the lower surface of a delta wing follows an almost constant distribution. On

the upper surface the pressure is only constant at the center of the wing. However, at the tips the primary vortices

generate a suction peak increasing the velocity of the �uid and decreasing the pressure at the upper surface. Figure

4.3.1 shows for the same con�guration (standard conditions), the evolution of the pressure coe�cient (Cp) for three

di�erent time steps.
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(a) Cp and position of the vortices in the sheet as a function of y at instant t = 0.1

(b) Cp and position of the vortices in the sheet as a function of y at instant t = 1

(c) Cp and position of the vortices in the sheet as a function of y at instant t = 5

Figure 4.3.1: Pressure coe�cient (Cp) and shape of vortex sheet for di�erent time steps.
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It can be observed an increment on Cp between Figure 4.3.1a and Figure 4.3.1b due to the acceleration of

the �uid produced by the generation of the primary vortices, which are sketched on the right panels of these �gures.

At a later time, Figure 4.3.1c shows how the pressure coe�cient decreases as primary vortices go far from the wing.

From this last �gure it is also worth mentioning that the generation of the vortices that form the sheet develops a

small anti-symmetry with time, dealing to anti-symmetric distributions of the �ow.

Regarding the lift coe�cient, it varies with time as the vortex moves. At the beginning it takes a few instants

for the vortex sheet to stabilize. During this time variations, on the lift coe�cient are considerably high .The lift

coe�cient reaches its maximum when the vortices reach a stability and then stars decreasing as the vortices go far

from the pro�le. This evolution can be observed on Figure 4.3.2. The lift of the wing corresponding time instants

con�gurations of Figure 4.3.1 is represented on Figure 4.3.2 by triangles and its values are: Cl = 0.9044 for t = 0.1,

Cl = 1.2375for t = 0.1 and Cl = 0.8390 for t = 0.1.

Figure 4.3.2: Evolution of the lift coe�cient (Cl) with time

4.4 Thickness e�ect

Previous works have developed numerical methods which closely approximate the normal-force characteristics

of a plane delta wing ([8]). The purpose now is to start looking into the e�ects of thickness on this kind of wing

con�guration.

To see how vortices behave in presence of a wing with thickness, some simulations are carried out under

standard conditions, but with di�erent values of the thickness (c).
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(a) Position of the vortices with c = 0.5

(b) Position of the vortices with c = 0.05

(c) Position of the vortices with c = 0.005

Figure 4.4.1: Position of the sheet of vortices at t = 2 and t = 5 for di�erent wing thickness.
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4.4. THICKNESS EFFECT UC3M

Figure 4.4.1 shows how the sheet of vortices behaves for di�erent thickness. The time steps are shown for

each case. In the case where the wing is thicker (Figure 4.4.1a) the sheet goes faster from the pro�le than in the

other two cases, while the rolling up of the sheet takes longer times. When the thickness of the wing is reduced one

order of magnitude (Figure 4.4.1b) the vortices lose vertical velocity and the rolling up of the sheet starts at very

early times. If the thickness is decrease another order of magnitude the �ow is made more slender, the �uid goes

faster and the radius of the rolling up of the sheet is smaller.
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Chapter 5

Conclusions

The physics involved in the aerodynamics of delta wings is very complex, some assumptions have been made

to reach a �rst approximate solution to the behavior of a �uid in presence of a delta wing. The solutions given by

this code are a small insight on the aerodynamics of a delta wing.

One of the strongest assumptions that is made are the values given to the numerical parameters of the

problem. These values have been chosen by trial and error, until an acceptable combination has been found. In

some of them, like the panel size (i.e. number of nodes or panels), comparisons with analytical solutions have been

done to ensure that the values are appropriate. However, in others, such as the distance of the attached vortices,

etc. no comparison with analytical solution was possible. However, this choice is made at a guess and it has not

been veri�ed. To have more reliable results, experimental analysis or comparison with other simulation techniques

would be needed.

Also, it has been observed that solutions for long times can't be obtained as the vortex sheet becomes

unstable. Boundary-element methods are usually quite unstable, so di�erent smoothing techniques are used. In

the present paper, some of them are used (i.e. uniform spacing between the vortices of the sheets), although more

sophisticated techniques are obviously needed. Figure 5.0.1 shows what happens when equations do not hold. The

vortices that shape the sheet start to concentrate near the leading edge and provoke the disappearance of the sheet.

It has to be pointed out that a stationary solution can't be obtained from this analysis, since it does not hold for

long times.
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Figure 5.0.1: Shape of the sheet of vortices for t = 10, at standard conditions.

Moreover, for the objective of this study, the viscous e�ects that take place at the wall of the wing are not

taken into account. Considering the viscous solution, the suction peak is lower than the one calculated by an

inviscid approximation and there is not a fully pressure recovery once the separation has taken place (simulations

on the e�ect of boundary layer separations have been carried out by Kirkköprü and Riley [9]). Assuming an inviscid

problem, solutions obtained for lift and pressure distribution are ideal but far from being realistic.

It can be concluded that the code developed to compute numerically the sheet of vortices that rolls-up over

a delta wing �ying in an incompressible �ow gives suitable results.

Further investigations can be carried out developing this project. For instance, the e�ect of the cross wind

and its consequences on the stability of the aircraft can be studied. Also viscous e�ects and secondary separation

of the boundary layer can be included in the simulations.
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