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ARTICLE INFO ABSTRACT

The human head can be subjected to numerous impact loadings such as those produced by a fall or during sport
activities. These accidents can result in skull fracture and in some complex cases, part of the skull may need to
be replaced by a biomedical implant. Even when the skull is not damaged, such accidents can result in brain
swelling treated by decompressive craniectomy. Usually, after recovery, the part of the skull that has been
removed is replaced by a prosthesis. In such situations, a computational tool able to analyse the choice of
prosthesis material depending on the patient's specific activity has the potential to be extremely useful for
clinicians. The work proposed here focusses on the development and use of a numerical model for the analysis
of cranial implants under impact conditions. In particular, two main biomaterials commonly employed for this
kind of prosthesis are polyether-ether-ketone (PEEK) and macroporous hydroxyapatite (HA). In order to study
the suitability of these implants, a finite element head model comprising scalp, skull, cerebral falx, cerebrospinal
fluid and brain tissues, with a cranial implant replacing part of the skull has been developed from magnetic
resonance imaging data. The human tissues and these two biocompatible materials have been independently
studied and their constitutive models are provided here. A computational model of the human head under
impact loading is then implemented and validated, and a numerical comparison of the mechanical impact
response of PEEK and HA implants is presented. This comparison was carried out in terms of the effectiveness
of both implants in ensuring structural integrity and preventing traumatic brain injury. The results obtained in
this work highlight the need to take into account environmental mechanical considerations to select the optimal
implant depending on the specific patient: whereas HA implants present attractive biointegration properties,
PEEK implant can potentially be a much more appropriate choice in a demanding mechanical life style. Finally,
a novel methodology is proposed to assess the need for further clinical evaluation in case of impact with both
implants over a large range of impact conditions.
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1. Introduction

The human head is often subjected to impact loading during
automobile accidents, falls or sport-related events. These impact
conditions can lead to mechanically-induced head injury, which con-
stitutes one of the major causes of accidental death (Sahoo et al., 2016).
Head injuries are generally grouped into three categories: scalp
damage, skull fracture, brain injury, or a combination of these (Khalil
and Hubbard, 1977). Skull fracture occurs when the tolerance limit of
the skull is exceeded due to mechanical loading. These fractures result
in permanent damage and account for 32% of all head injuries
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sustained by pedestrians, motorcyclists, vehicle occupants and sports-
men (Fredriksson et al., 2001). In some cases, where there is
contamination from a laceration, the fractured zone of the skull can
be removed and later replaced by a biomedical implant whose main
functions are cosmetic and to act as a structural component protecting
the brain against external loads. However, the replacement of part of
the skull does not necessarily result from skull fracture. In this regard,
cranial implants are also widely used after decompressive craniectomy.
This has become a relatively common intervention when managing
traumatic brain injury (TBI), subarachnoid hemorrhage, severe intra-
cranial infection and stroke (Honeybul and Ho, 2016). In these terms,
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the main aim of neurosurgeons dealing with the reconstruction of large
and complex-formed bone defects is a predictable and stable functional
and aesthetic result (Eolchiyan, 2014). Often, when decompressive
surgery is needed, the use of an autologous bone for large cranial
reconstructions is not possible due to size, unacceptable appearance, or
infection, fragmentation and bone resorption after grafting (Rosenthal
et al., 2014). Neurosurgeons have to choose a material to be used;
polyether-ether-ketone (PEEK) and macroporous hydroxyapatite (HA)
are the most common biomaterials selected due to their biocompat-
ibility and mechanical properties.

PEEK is a semi-crystalline thermoplastic polymer considered as an
engineering material for use in high-quality applications due to its
excellent mechanical and thermal properties as well as good chemical
resistance (Garcia-Gonzalez et al., 2015a, 2015b). Large cranial defects
are often dealt with through cranioplasties involving PEEK implants
designed from preoperative high-resolution computed tomography
(CT) scans. The direct contact between the implant and bone tissue
is ensured by the customisation of the implant from the CT images thus
achieving a precise definition of its contour and curvature (El Halabi
et al., 2011). The suitability of using PEEK for implants is known and
its biocompatibility has been studied and demonstrated (Horak et al.,
2010; Jockisch et al., 1992; Rivard et al., 2002).

Macroporous HA is a bioceramic material which constitutes 60% of
bone, and has similar mechanical characteristics. This material exhibits
a number of properties which make it suitable to be used in skull defect
reconstructions: biocompatible, sterilisable, adequate weight, compa-
tible with diagnostic imaging and easy to design and manufacture
(Stefini et al., 2013). The presence of calcium and phosphate ions
(similarly to natural bone) participates to the formation of new bone
tissues on the surface of the implant (Chistolini et al., 1999).
Furthermore, HA mimics the macroporous structure of the living bone.
This structure allows new bone to grow by filling not only the voids on
the surface of the cranioplasty, but also the pores within the internal
structure (Frassanito et al., 2013). As such, once the prosthesis has
been placed in the skull and bone has grown within, the implant can be
treated as a composite material where HA acts as the matrix and bone
as the reinforcement. Moreover, HA shows excellent biocompatibility
due to the absence of host immune reactions (Boyde et al., 1999;
Marcacci et al., 1999; Olmi et al., 1984). However, despite these
advantages, HA implants are rigid and offer a considerably lower
resilience than human bone. This fact implies a minor mechanical
resistance and minor energy absorption capability with respect to
human bone (Frassanito et al., 2013).

When dealing with large cranial defects, an important aspect to take
into account is the load-bearing capacity of the structural prostheses,
since the patients need to go back to active life, with their heads
potentially subjected to future impact loadings. While the use of
biocompatible materials such as PEEK and HA in cranial implants is
widely accepted, there is a lack of knowledge in terms of their
mechanical response under potential future impact loads arising from
the patient life style. The main aim of the research presented in the
current paper is to develop a computational tool able to simulate the
mechanical behaviour of implants under impact loading which can help
clinicians to determine the optimal patient-specific implant material.
As a second contribution, a numerical tool is proposed to evaluate the
risk of implant failure when a patient has been involved in a given
accidental impact. To this end, a finite element head model (FEHM)
has been developed from magnetic resonance imaging (MRI) data
comprising scalp, skull, cerebral falx, cerebrospinal fluid (CSF), brain
tissues and an implant replacing part of the skull. The constitutive
models of the human tissues included in the FEHM are individually
chosen from the literature. For the PEEK, a constitutive model
previously developed and validated for this specific material by the
authors is used (Garcia-Gonzalez et al., 2017). An experimental
programme aimed at characterising experimentally macroporous HA
has been carried out with specimens manufactured from a real cranial
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implant. As a second step, its mechanical properties after bone
regrowth have been numerically estimated. The FEHM is then used
to study the mechanical response under a wide range of impact
conditions. Numerical simulations were conducted in order to compare
the mechanical response of PEEK and HA cranial implants. This
analysis was carried out by focussing on the implant effectiveness in
avoiding failure and TBI, while covering an impact velocity range from
1 m/s to 7m/s for several impact locations on the skull along three
different paths: from the parietal zone to vertex; from the parietal zone
to occipital; and from the parietal zone to frontal. Ultimately, selection
criteria for implant materials and a roadmap for further clinical
assessments of bone and/or implant failure in case of post-operative
impact are proposed.

2. Materials and methods

This section introduces the methodology followed in the develop-
ment of the numerical head model for impact loading. Special attention
is first paid to the mechanical characterisation of each human tissue
and the correct identification of the boundary conditions during the
impact process. The FEHM is then presented.

2.1. Mechanical behaviour of human head tissues and biomaterials

In this section, the constitutive modelling of each tissue and
biomaterial is discussed in detail.

2.1.1. Scalp

Ottenio et al. (2015) tested skin specimens from a human back and
identified an anisotropic rate-dependent behaviour of the skin. These
properties are known to vary with its localisation in the human body as
has been observed in experimental studies (Annaidha et al., 2012;
Dunn and Silver, 1983; Khatam et al., 2014; Jacquemoud et al., 2007;
Vogel, 1972; Zahouani et al., 2009).

More particularly, Gambarotta et al. (2005) carried out an experi-
mental and numerical study of the mechanical behaviour of human
scalp. The authors finally proposed a rate-independent, isotropic and
hyperelastic constitutive model based on the phenomenological scheme
developed by Tong and Fung (1976). However, because of the
computational cost of numerical simulations which involve a full head
model, most previous FEHM traditionally define scalp as an isotropic
and homogeneous material through linear elastic constitutive laws
(Horgan and Gilchrist, 2003; Liu et al., 2007; Sahoo et al., 2014;
Willinger et al., 2000; Zhang et al., 2001). In this work, the scalp
mechanical behaviour has thus been assumed to be rate-independent,
isotropic, homogeneous and linear elastic, see Table 1. Note that, when
a cranial implant is needed, the mechanical properties of this tissue can
vary both in time and space in the zone affected by the surgery. While
fully integrated HA could potentially be considered to be surrounded
by the same surrounding tissue mechanical properties as in a normal
situation (with full skull), such argumentation is not straightforwardly
justifiable in the case of PEEK. However, as the immediate surrounding
tissue (damaged or not) is in any case much softer than either the
implants or the bone, it most likely does not influence significantly the

Table 1
Material properties for scalp.

Scalp
Density Poisson's Young's Reference
(kg/m>) ratio modulus
(MPa)
1100 0.42 16.7 (Horgan and Gilchrist, 2003;

Liu et al., 2007; Sahoo et al.,
2014 Zhang et al., 2001)
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Table 2
Material properties for skull bone and falx.
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Table 3
Material properties for CSF.

Tissue Density Poisson's Young's Reference
(kg/m?3) ratio modulus
(MPa)
Skull bone 1728 0.22 8000 (Wood, 1971)
Falx 1133 0.45 31.5 (Chafi et al., 2010;

Takhounts et al.,
2008)

different failure modes. Additionally, it must be emphasised that we do
not consider any postoperative complication that can arise from the
implant integration (or lack thereof). Therefore, we assume herein that
a potential difference in the mechanical response of scalp can be
neglected with respect to the overall response of the head-structure,
thus defining the same material properties for both cases when the
cranial implant is considered and otherwise.

2.1.2. Skull and falx

The bone microstructure is a complex, heterogeneous, multiphasic
and anisotropic composite (Doblaré et al., 2004; Tse et al., 2015).
However, most of the FEHM published before have constitutively
defined the skull bone behaviour as isotropic, homogeneous and linear
elastic as a first approximation (El Halabi et al., 2011; Sahoo et al.,
2014; Takhounts et al., 2008; Tse et al., 2015; Willinger et al., 1995;
Zhang et al., 2001). In this work, following the material description
assumed by these authors, the skull bone structure is treated as an
isotropic, homogeneous and linear elastic material. However, since
skull bone is composed by two external layers of cortical bone and a
core of cancellous bone, a homogenised Young's modulus has been
defined based on the modulus of each layer and their thicknesses, see
Table 2. The mechanical properties for cortical bone are based on the
experimental data reported by Wood (1971), where the data defining
the Young's modulus (GPa) of the cranial human bone for different
strain rates was fitted as:

E = 16 + 1. 93log(¢) (€]

where E is the Young Modulus and ¢ the strain rate.

The mechanical properties of cancellous bone core, also known as
diploe, can be obtained from the experimental work published by
Melvin et al. (1969). Both cortical and cancellous bones' Young's
moduli were selected for a strain rate of 157, the average strain rate
observed on the skull structure in the numerical simulations of this
work.

The falx cerebri is a layer of the dura mater located between the
cerebral hemispheres which plays an important role in restricting brain
motion. Here, it is geometrically defined as isolated from the dura
mater and in direct contact with bone. The constitutive behaviour of
the falx is defined as linear elastic (Chafi et al., 2010; Kleiven et al.,
2002; Takhounts et al., 2008; Zhou et al., 1995), see Table 2.

2.1.3. Mechanical behaviour of CSF and ventricles

CSF is a biological fluid with Newtonian characteristics that fills the
space between the skull and the brain tissues, as well as the ventricles
(Ommaya, 1968). Under impact conditions, the CSF plays a protective
role by damping brain movement and reducing shear stresses. In
previous works where a FEHM has been used, some authors described
the CSF mechanical behaviour as linear elastic (Gao, 2007; Giovanni
et al., 2005; Horgan and Gilchrist, 2003; Horgan and Gilchrist, 2004;
Sahoo et al., 2014; Zhang et al., 2001). However, due to the Newtonian
behaviour of the CSF and its similarity with water in terms of viscosity
(Horgan and Gilchrist, 2004; Ommaya, 1968), a more accurate
description of the CSF viscous constitutive behaviour is adopted here
with the mechanical properties of water:
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CSF and ventricles

Density (kg/ ¢o (m/s) s ) n (Pas) Reference
m?)
1000 1450 1.99 0.11 0.00089 (Jérusalem and Dao,
2012)
6=—PI+2n¢’' 2)

where P is the pressure, I is the identity tensor, n is the dynamic
viscosity and ¢’ is the deviatoric strain rate. The viscosity of the material
drives the shear stress contribution while the pressure P corresponds to
the volumetric stress contribution. Under shock conditions, P depends
on the current density p through the Mie-Griineisen equation of state:

__PoCes
(1 = sg

1- &)+FopoEm

2 3)

where ¢ = 1 — p./p is the nominal volumetric compressive strain with p,
as the initial density. ¢, is the speed of sound in water, s is the slope of
the us—u, curve in the Hugoniot formulation, where u, and u, are the
shock and particle velocities. T, is the Griineisen coefficient and E,, is
the internal energy per unit mass. The values of the material
parameters for CSF are given in Table 3.

The ventricles being filled with CSF are assumed here to have CSF
mechanical properties (Zhang et al., 2001).

2.1.4. Brain tissue

Human brain tissue as a whole has been defined as a nonlinear solid
with very small volumetric drained compressibility and viscous con-
tributions to its solid phase deformation (Goriely et al., 2015). In this
work, the human brain was separated into gray and white matters. This
division allows for a more accurate determination of the brain injuries
induced by the impact loading. Some authors, who have considered the
brain tissue as a whole, describe the brain mechanical behaviour as
linear elastic (Khalil and Hubbard, 1977; Liu et al., 2007; Ruan et al.,
1991; Shuck and Advani, 1972; Ueno et al., 1989; Willinger et al.,
1999; Willinger et al., 2000). Other authors include a linear viscoelastic
law with a relaxation shear modulus for the whole brain (Jirousek
et al., 2005; Rashid et al., 2014; Sahoo et al., 2014; Tse et al., 2015;
Willinger et al., 2000; Zhang et al., 2001). However, the distinction
between gray and white matters is mechanically necessary, since white
matter has been found to be stiffer than gray matter in compression
and shear (Budday et al., 2015). The authors following this approach
usually follow a linear viscoelastic law for the relaxation shear moduli
(Al-Bsharat et al., 1999; Horgan and Gilchrist, 2004; Zhang et al.,
2001). In addition, some authors introduced the anisotropy of white
matter arising from the presence of axons in the description of the
mechanical behaviour through an anisotropic visco-hyperelastic mate-
rial law (Sahoo et al., 2014).

Because the type of impacts considered here is assumed to mostly
affect the gray matter, one unique set of parameters is used for the
mechanical behaviour of both gray and white matters. The value for the
bulk modulus was determined experimentally by Stalnaker (1969). The
effects of the brain viscoelasticity in shear behaviour are taken into
account through the following expression:

G(=GooH(Go—Goo)e ™ 4)

where G,, G,, and f represent the short-time modulus, the long-time
modulus and the decay constant. Note that for simplicity, the expres-
sion is presented under a constant strain condition; its full formulation
and implementation involved the usual convolution used in viscoelastic
constitutive modelling. These parameters for brain tissue were deter-
mined by Shuck and Advani (1972), and have been used in subsequent
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Table 4
Material properties for brain tissue.
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Gray and white matters

Density (kg/m3) Bulk modulus (GPa) G, (kPa) Gy (kPa)

()

Reference

1040 2.19 528 168

35

(Tse et al., 2014; Shuck and Advani, 1972; Willinger et al., 1999; Stalnaker, 1969)

FEHMs (Tse et al., 2015; Willinger et al., 1999). The parameters for
both bulk and shear brain responses are given in Table 4.

2.1.5. PEEK implant

The stress-strain behaviour of semi-crystalline thermoplastic poly-
mers is dictated by the combination of two mechanisms: an inter-
molecular resistance and a network resistance acting in parallel (Boyce
et al., 2000; Haward and Thackray, 1968). The material behaviour of
PEEK depends on many mechanical variables such as strain rate,
temperature and stress state (Rae et al., 2007). This complex behaviour
has been studied by many authors and many constitutive models have
been proposed (Chen et al., 2016; El-Qoubaa and Othman, 2016;
Garcia-Gonzalez et al., 2015a, 2015b; Garcia-Gonzalez et al., 2017). In
this work, the mechanical behaviour of PEEK is defined using the
hyperelastic-thermoviscoplastic constitutive model previously devel-
oped by Garcia-Gonzalez et al. (2017). This model accounts for
pressure dependency, and strain rate and temperature sensitivities
within a thermodynamically consistent framework. This model has
been calibrated and validated for PEEK for a wide range of loading
conditions including impact.

The kinematics basis of the model relies on a multiplicative
decomposition of the deformation gradient tensor into thermal (F®)
and mechanical (FM) parts: F=FMF® While the mechanical contribu-
tion of the network resistance is assumed to behave as purely elastic,
the mechanical contribution of the intermolecular resistance is as-
sumed to behave elastoplastically. The network resistance contribution
to the stress is defined through a hyperelastic spring following the
modified eight-chain model proposed by Anand (1996), whereas the
one of the intermolecular resistance is defined by a Neo-Hookean
spring in series with a viscoplastic dashpot activated when a yield
function based on the Raghava equivalent stress is satisfied.

The details of this constitutive model and its material parameters
for PEEK can be found in the work of Garcia-Gonzalez et al. (2017).

2.1.6. Macroporous HA implant

The mechanical properties of macroporous HA vary considerably
with the porosity of the material, the size and the distribution of the
pores (Hing et al., 1999). The lack of knowledge and literature about
the mechanical properties of the exact macroporous HA material
employed in cranial implants made it necessary to conduct character-
isation tests on specimens manufactured from a real prosthesis.

2.1.6.1. Mechanical characterization of macroporous HA. Specimens
were manufactured from a cranial implant (Custombone, Finceramica,
Italy). As these implants are curved, regions of low curvature were first
selected in order to produce specimens. Square sections were cut from
these regions, which were then ground into cylinders of 10 mm
diameter and 6 mm height; exact heights varied but were measured
for each specimen prior to testing. These specimens were then tested in
compression. Preliminary experiments were performed using a
commercial screw-driven testing machine (Instron 5982). In view of
the small strains-to-failure, displacements were measured using a
contacting extensometer attached to the loading platens close to the
specimen, and then confirmed using image correlation software (DaVis
version 8, LA Vision) to track the deformation of the specimen from a
series of photographs taken during the loading. The results for three
tests are shown in Fig. 1. They exhibit a high repeatability with the

3 - S S

Engineering stress (MPa)

0 0.005
Engineering strain (-)

0.01 0.015 0.02

Fig. 1. Engineering stress-engineering strain experimental results of the compression
tests carried out on macroporous HA specimens.

onset of failure at about 2.2 MPa and an apparent Young's modulus of
approximately 0.265 GPa. In order to provide further data for the
constitutive model, the material was compressed in situ in an X-ray
tomography system (Zeiss 510 Versa), using a 5 kN compressive stage
(Deben). 360° full scanning with 1601 projections and 85/319 mm of
source/detector  distances were performed applying x0.4
magnification, 14.26 pm pixel size, a source operated at 140 kV and
71 pA and 2 s exposure time. The reconstructed geometries provided
the porosity of the specimen, 30%, that, in combination with the
measurement of the apparent density of the specimens, 1,700 +
110kgm™, allowed us to determine the density of HA,
2,500 kg m~3. In addition, the reconstructed geometries were then
used in finite element (FE) simulations described in the next section.

2.1.6.2. Constitutive modelling of macroporous HA cranial
implant. In order to assess the relevant mechanical properties of the
implant, its homogenised behaviour after bone growth needs to be
considered. In the first stage, the non-porous HA properties were
obtained by reproducing numerically the experimental tests carried out
on the specimens manufactured from a real cranial implant. The
tomography images taken from a specific specimen allow for the
generation of a FE model accounting for a realistic pore distribution,
see Fig. 2(a) and (b). The boundary conditions for this model are
defined accordingly to the experimental conditions. Under the
assumption of linear elastic mechanical response until fracture, the
numerical model provides force-displacement curves in a good
agreement with the experimental data, see Fig. 2(c). The calibrated
values for the Young's modulus and ultimate strength obtained for pure
HA are, respectively, 0.75 GPa and 58 MPa.

The experimental results showed a very brittle behaviour of the
macroporous HA bioceramic material. This is in agreement with
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Fig. 2. Proposed methodology to obtain the stress-strain behavior of macroporous HA+Bone: a) tomography images of a HA specimen are retrieved; b) from which a numerical model
of HA compression test is built; ¢) and calibrated against experimental force-displacement curves; d) a numerical model of HA+Bone specimen is then created by filling the pores with
bones; e) the resulting numerical model predictions are used to calibrate the proposed homogenised model for HA+Bone mechanical behaviour.

previous studies on ceramic materials (Hing et al., 1999). However, it
has been observed that when reinforcement is added into a ceramic
matrix, not only is the fracture toughness significantly increased but
also the propensity for catastrophic failure is reduced (Deng et al.,
2016). In this regard, the composite HA+Bone can be considered as a
particulate reinforced material composite where HA acts as the matrix
and bone as the reinforcement. In such materials, a common assump-
tion is to consider that the composite yielding or breaking starts when,
in any material point inside the matrix phase, the yield stress or
ultimate strength are reached (Zahr Vinuela and Pérez-Castellanos,
2015). In this work, the ultimate strength of the homogenised HA
+Bone was obtained following this assumption since it is the most
conservative one.

Under the assumption that the macroporous HA material filled with
bone is going to fail through the matrix, a numerical model of the HA
+Bone specimen was developed by substituting the pores of the
previous HA model for bone, see Fig. 2(d). The boundary conditions
applied were the same used as in the model without bone. The
properties of cancellous bone were used for bone tissue grown inside
the HA pores: a density of p=1,500 kg m™>, a Young's modulus of
E=4.6 GPa and a Poisson's ratio of v=0.05 (Sahoo et al., 2014). This
numerical model was finally used for the evaluation of the macroscopic
mechanical properties of the HA+Bone specimen as a whole, see
Fig. 2(e). The homogenised density, Young's modulus and ultimate
strength were found to be 2,224.65 kg m™3, 1.25 GPa and 20.50 MPa,
respectively. A summary of the constitutive assumptions used in this
work is presented in Appendix A.

2.2. Finite element human head

2.2.1. Geometry and mesh generation from MRI

In this work, a detailed finite element model of a human head has
been developed in order to study the suitability of two different cranial
implants subjected to impact loads. The head model comprises the
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scalp, the skull, the cerebral falx, the CSF, the ventricles, the brain and
a cranial implant replacing part of the skull, see Fig. 3(a). The
geometrical information was obtained from full-head, high resolution
anatomical T1 and T2-weighted MRI images of a subject available from
the Human Connectome Project (HCP Subject ID: 100307) (Van Essen
et al.,, 2013). The anatomical images were used as input to “BET2”
(Smith, 2002; Jenkinson et al., 2005) in the FSL software library
(Smith et al., 2002), to extract inner skull, outer skull and outer scalp
surfaces. The skull-stripped brain was further segmented into white
matter, gray matter and ventricles using the Amira software (FEI
Amira 6.0.1, 2015). In order to guarantee the anonymity of the patient
from which the images were obtained, the MRI images are released
“de-faced” by the HCP (Milchenko and Marcus, 2013), i.e. blurred
at the eyes, nose and ears. These parts in the scalp and skull
components were manually reconstructed in our model without affect-
ing the brain. The implant geometry was designed in accordance with
the average dimensions used when dealing with unilateral decompres-
sive craniectomy.

The resulting multi-component (see Fig. 3) optimised FE model
weighs 3.91 kg and is composed of 792,773 tetrahedral elements, for
which spatial convergence was verified.

2.2.2. Loading conditions

In order to study the load-bearing capacity of the structural
prostheses and their effectiveness in protecting brain tissues, simula-
tions have been conducted for impact conditions representative of falls.
Many scenarios involving the fall of a person result in serious head
injuries. A common scenario is the fall from bed, where the head is
usually the most frequent body part injured (Sadigh et al., 2004).
Schulz et al. (2008) reproduced falls from a bed and obtained, for an
impact of 4.2 ms™!, a resultant head velocity normal component to
ground between 3.44 ms™! and 3.86 ms™'. Another example of fall
which involves serious head injuries is observable in bicycle accidents.
A fall from a bike can occur in many different ways and the variation of
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(b.1)

(b.3)

Fig. 3. Full head finite element model showing various components: (a.1) scalp; (a.2) skull+implant; (a.3) brain tissues; (b.1) gray matter; (b.2) white matter; (b.3) ventricles; (c) whole

head model.

kinematics, head orientation and velocity can be large (Fahlstedt et al.,
2012). Fahlstedt et al. (2012) simulated a real bike accident and
obtained a resultant linear velocity of the head just before impact of
5.3 m s~ with a normal component to ground of 4 m s™!. The FEHM
presented here was validated in terms of kinematics against three
scenarios and the impact velocity range was thus defined from 1 m s™!
to 7ms~! covering the range observed in these different falls. The
simulations herein were carried out by using the FE solver Abaqus
(2012).

The mechanical response of the head was observed to vary depending
on the impact location. This fact is basically due to the non uniformity of
the skull thickness and the structural influence of its shape. In addition,
in the peripheral zone of the implant, where some screws are located to
fix it to the bone, the stresses around the screws can localise with higher
values, thus leading to lower impact velocities at which implant fails.
Therefore, the head orientation was varied in the simulations with the
aim of studying the critical impact velocity which results in implant or
skull failure depending on the impact location. As a consequence, the
impact locations were chosen along three skull paths: from parietal bone
to vertex; from parietal bone to occipital bone; and from parietal bone to
frontal bone. The assumption in all simulations is that the body impacts
before the head does using the neck as a pivot, thus reducing the inertial
effects to the weight of the head.

For the analysis of the implant effectiveness in protecting brain
tissue, a specific impact scenario was selected as worst-case reference
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for comparison. For this purpose, an orientation angle of 30° between
head and ground was selected because a) it was found to be the critical
value which introduces a perpendicular impact directly on the implant
and, b), it is in the parietal zone where the skull thickness is thinner,
see Fig. 4.

The ground was defined as a rigid body since it is much stiffer than
the head tissues. Following Fahlstedt et al. (2012), this contact was
modelled which a penalty contact algorithm with a constant friction
coefficient value set to 0.4.

2.2.3. Injury criteria and evaluation procedure

In this work, the effectiveness of each implant is determined
following two methodologies: the structural integrity of the implant
and the potential TBI.

Material fracture and plastic deformation have been established as
reliable indicators of structural integrity (Goh and Lee, 2002). When
dealing with a general case where the influence of screws in the stress
distribution along the implant is neglected, fracture and plastic
deformation are estimated at the macroscale by the ultimate strength
and yield stress of the material used. The ultimate strength for bone
has been estimated to be 92.72 MPa (Wood, 1971; Zhou et al., 2016).
For HA+Bone this value is evaluated to be 20.50 MPa from the analysis
carried out earlier. In PEEK, the deformation experienced along the
impact process is more localised than in the case of HA or bone because
its ductile behaviour. It results in different strain rates along the PEEK
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Fig. 4. Boundary and initial conditions for the critical impact study on the parietal zone (orientation angle of 30° between head and ground).

implant structure and, consequently, different stress thresholds to
reach yielding because of its rate-dependent properties. Since a
constitutive model has been defined taking into account rate depen-
dencies, it can be determined when the PEEK implant reaches yielding
depending on the strain rate in each zone. Moreover, when the impact
takes place close to the peripheral zone of the implant, the effect
introduced by the screws in concentrating the stress must be consid-
ered. As the FEHM does not include the screws, a complementary
analysis is done in order to capture the stress concentration effect
which should be applied to the surroundings of the screws location.

To this end, a numerical model of a representative volume of the
bone-implant interface has been developed and the stress distribution
was analysed when screws are considered and when they are not.
Different stress states were applied to a 120x60x6 mm?® plate. The
thickness of the plate was selected to be representative of the skull and
the other two dimensions were optimised to avoid introducing a
geometrical influence on the stress distribution. These results were
compared with simulations under the same conditions but including
two screws of 1.5 mm rigidly attached together with a distance of
12 mm between them. Thus, the concentration ratio to be applied in
the peripheral zone of the implant was selected as the maximum one
found from uniaxial compression; uniaxial tension; shearing; and out-
of-plane stress states. The concentration ratio for the bone zone
affected by the screws was found equal to 1.29; the average one for
the PEEK zone affected by the screws was found equal to 1.28; and the
one for the HA zone affected by the screws was found equal to 1.32.

In order to define a common framework to analyse the efficiency of
both implants in protecting the brain against impact loads, some
indicators have been used for TBI assessment in terms of mechanical
variables such as pressure, shear stress, von Mises stress and strain.
These post-traumatic biomechanical parameters are compared with
brain tissue tolerance thresholds in the literature as collected by Tse
et al. (2014), see Table 5. Following the methodology presented by
these authors, the critical anatomical locations are reported and a
dimensionless parameter is used as a mechanical equivalent of brain
injuries. This dimensionless parameter is defined in a similar way as
the cumulative strain damage measure proposed by Takhounts and
Eppinger (2003). It is thus chosen as the ratio between the number of
elements reaching the critical value associated to damage and the total
number of elements which compose the brain tissue.

3. Results and discussion

Numerical simulations of impacts on the FEHM were conducted for
an impact velocity range of 1ms™ to 7ms™! for three possible
scenarios: when the subject has a PEEK implant; when the subject
has a HA implant; and when the subject's skull presents no previous
damage. The results and discussion of these simulations are introduced
in three sections: acceleration-time predictions, critical impact velocity
predictions, and TBI predictions.

348

Table 5
Thresholds of brain injury criteria (Tse et al., 2014).

Parameter Thresholds Reference

Criterion 1
> 235 kPa—injury
<173 kPa—minor or no injury

Pressure (Ward et al., 1980)

Criterion 2
11-16.5 kPa—severe injury

Shear stress (Kang et al., 1997)

Criterion 3

> 18 kPa—50% probability of
moderate neurological lesions
> 38 kPa—50% probability of
severe neurological lesions
Criterion 4

>26 kPa—axonal damage

Von Mises stress (Baumgartner and

Willinger, 1997)

(Deck and Willinger,
2008)

Criterion 5 (Galbraith et al., 1993)
> 0.25—structural damage

> 0.20—functional damage

> 0.10—reversible damage

Strain

3.1. Acceleration-time validation

In this section, the model predictions for acceleration-time curves are
compared with available data from the literature in order to ensure that
the impact conditions imposed are representative of real accidents and
falls. In addition, a comparison between the mechanical response of the
head when PEEK implant, HA implant and no implant are incorporated,
is done in terms of acceleration-time curves. Three cases are considered
here for comparison. Schulz et al. (2008) reported experimental data of
the fall of a person from a bed and Fahlstedt et al. (2012) reported
numerical data of a bike accident reconstruction. The resultant velocity
component in the perpendicular direction to the ground was estimated
between 3.44 m s™! and 3.86 m s™! for the fall from the bed and 4 m s™*
for the bike accident. The third set of data corresponds to measurements
performed during experiments in which human heads cut from cadavers
were impacted against a rigid plate (Loyd et al., 2014).

In Fig. 5(a), the model predictions for the acceleration-time curves
of the perpendicular head drops when no implant is included in the
FEHM are compared with literature data. The numerical acceleration-
time data presented herein were obtained from the force-time curves
by dividing the force values by the mass of the whole head. It can be
observed that both fall from the bed and bike accident cases are within
the impact velocity and acceleration ranges simulated. The effective
impact velocity estimated by Loyd et al. (2014) was 2.42 m s™* and the
head drop was conducted on the vertex location. The model prediction
shows a slightly overestimation of the maximum acceleration reached
compared with the experiment. This can be explained by the lower
mass of the head tested post-mortem (~3.2 kg) thus implying a lower
inertial contribution to the impact process. From the results shown in
Fig. 5(a), it can be concluded that the model predictions conducted
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Fig. 5. Acceleration-time numerical predictions of the model: (a) comparison with published data; and (b) comparison between PEEK implant, HA implant and no implant predictions.

cover the impact velocity and acceleration ranges found in common
accidents which involve head impacts.

Moreover, the acceleration-time response of the human head during
impact was analysed for both PEEK and HA. The results, presented in
Fig. 5(b), show the higher peaks of acceleration for PEEK at 2 m s™! and
4 m s~! impact velocities. In contrast, the deformation experienced by the
implant is more significant for HA. This is consistent with the lower HA
Young's modulus, which also results in a prolongation of the contact
duration. While the use of a softer material for the implant results in a
major deformation and thus trauma, it also implies a higher damping
effect in reducing brain motion.

3.2. Critical impact velocity predictions inducing implant failure

When considering the conditions for implant failure during impacts,
two factors have to be taken into account: the impact velocity and the
impact location. An increase in the impact velocity implies a higher impact
energy leading to higher stresses in the implant. This results in a higher
risk of implant failure as the impact velocity increases. The impact
location plays an important role not only because of the variation of
thickness and the variation of structural stiffness along the skull, but also
because of the presence of screws and their role in concentrating the
stress. As a consequence, a parametric study varying both impact velocity
and impact location was carried out along three different paths covering
the most common impact scenarios in fall accidents. This study allows us
to estimate the impact velocity which is expected to result in implant
failure for all the scenarios considered.

The three skull paths are: from parietal bone to vertex (Fig. 6(a.1));
from parietal bone to occipital bone (Fig. 6(a.2)); and from parietal
bone to frontal bone (Fig. 6(a.3)). The critical impact velocity resulting
in implant failure for each point is presented in Fig. 6(b) for PEEK
implant and in Fig. 6(c) for HA+Bone implant. In both cases the
parietal-vertex path is the weakest. In addition, there is a direct
relationship between critical impact velocity and distance to implant
interface, where the implant-bone interface where the screws are
located is the weakest and most critical zone. For the parietal-vertex
and parietal-occipital paths, the critical impact velocity presents a
minimum at the implant-bone interface (0 mm) due to the presence of
the screws. As the distance between impact location and the implant-
bone interface increases, the critical impact velocity continuously
increases until reaching the critical impact velocity of the impacted
material. However, while the parietal-frontal path also shows a
minimum in the implant-bone interface, the impact velocity does not
present a continuous increase by augmenting the distance to the main
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interface (0 mm). This is due to the closeness of the lower interface of
the implant, which is also affected by the possible presence of screws.
Accordingly, it can be established that lower velocities can result in
implant failure if the impact takes place closer to the peripheral zone of
the implant where the fixation system to bone is located. Note that the
proposed approach does consider a continuous distribution of screws
along the interface instead of just a few. This implies that the results
presented here are “worst-case scenarios”.

The mechanical properties of the material used in the implant are
found to play the predominant role in avoiding implant failure. For all
the scenarios tested, the PEEK implant exhibits a better mechanical
response against impact loading than the HA+Bone implant. A good
indicator of the load bearing capacity of these materials is the critical
impact velocity resulting in implant failure when the impact takes place
far enough from the peripheral zone of the implant where the effect of
the screws can be neglected. In this regard, this velocity was deter-
mined from impact simulations with an orientation angle of 30°
between the head and ground where the PEEK implant, the HA
+Bone implant and no implant were considered (see Fig. 4). The
critical impact velocity for PEEK was found to be 6.5 m s™* and, in the
case of bone and HA+Bone it was found to be 54% and 80% lower,
respectively. The difference between PEEK and HA+Bone in terms of
energy absorption capability results in different implant failure pat-
terns. When a PEEK implant is employed and subjected to an impact,
the implant failure occurs predominantly in the onlay-structure (the
closest zone of the bone to the implant interface) where the bone part is
fixed by the screws, and even in some situations in which the impact
takes place in the implant zone. However, when a HA+Bone implant is
employed, the implant failure occurs predominantly in the inlay-
structure of the implant zone instead of the bone. It must be noticed
that the critical impact velocities resulting in implant failure have been
obtained for a case where the ground is considered rigid. This
assumption corresponds to the most critical situation.

Overall, these results suggest that the biomaterial to be used for the
cranial implant should be selected depending on the specific patient
and his exposure to impact loadings. In this regard, the macroporous
HA-+Bone implant is observed to behave in a very brittle way when it is
subjected to impacts of different natures. This brittle behaviour and
associated catastrophic failure of the HA implant has already been
reported by Adetchessi et al. (2012), who presented a clinical case of a
25-year-old man. After a cranioplasty using macroporous HA prosthe-
sis, the patient had to undergo a second surgery following an implant
failure due to an impact during a generalised seizure. In the second
intervention a PEEK solution was finally used.
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3.3. TBI predictions

Since the main function of the implant is to protect the brain
against external loads, the effectiveness of both implants in avoiding
TBI is compared here. In the biomechanics community, the risk of TBI
has been determined based on intracranial biomechanical parameters.
The aim of this paper is not to determine the most suitable criterion for
evaluating TBI. Instead, this section focusses on comparing the
effectiveness of both cranial implants by applying different criteria
proposed in previous studies, see Table 5. Therefore, as mentioned
previously, a dimensionless parameter providing the percentage of
brain tissue with probability of damage is determined for each
biomechanical parameter depending on the impact velocity. For this
study, an orientation angle between the head and ground of 30° leading
to a perpendicular impact on the implant has been adopted as a
common impact scenario for comparison, see Fig. 4. More details on
the predictive variables, thresholds and boundary conditions used in
these numerical simulations are provided in Appendix B.

The results are provided in Fig. 7. The intracranial pressure based
criterion (Criterion 1) was found not to vary significantly between the
two implants studied because the threshold values are reached in
almost the whole brain at relatively low impact velocities (lower than
3ms™1), and is not studied further here. For the remaining criteria, a
higher TBI level for macroporous HA+Bone implant than for PEEK
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implant is observed. In Fig. 7, the percentages of damaged tissue as a
function of impact velocity are presented for the remaining criteria.

TBI can be understood as a combination of the deformation processes
due to brain motion and indentation process on the skull. In this regard, the
stiffness of the material used in the implant, defined by its Young's
modulus, plays a predominant role in the brain deformation. On the one
hand, a lower stiffness has a beneficial effect due to its higher damping
effect of the implant which results in a reduction of the brain motion. This
damping effect is easily observed in the results shown in Fig. 5(b), where a
lower material stiffness results in lower acceleration values and in a
prolongation of the contact duration. On the other hand, a lower stiffness
leads to a larger trauma by a more important deflection of the implant
directly affecting the brain tissue. Fig. 8 shows the anatomical location and
extension of severe brain damage in dark colours and moderate brain
damage in light colours according to Criterion 3, see Table 5. It can be
observed that the predominant deformation is produced by the implant
bending and is localised at the contact zone where the impact takes place. A
direct relationship is here established between the Young's modulus of the
material used for the implant and the effectiveness of the prosthesis in
avoiding TBI under the specified loading conditions. In this case, bone is
the best TBI protective material, followed by PEEK, and eventually the HA
+Bone implant.

Finally, it is worth noting that since PEEK shows a much better
behaviour in terms of energy absorption capability with respect to bone
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Fig. 7. Percentage of damaged elements in brain tissue vs. impact velocity based on: (a) Criterion 2; (b) Criterion 3; (c) Criterion 4; and (d) Criterion 5. Predictions conducted for critical

impact conditions shown in Fig. 4.

but as its lower stiffness results in a worse protection against TBI, a
good alternative can be the reinforcement of PEEK matrix with short
fibres (Garcia-Gonzalez et al., 2015a, 2015b). Such approach balances
the excess of energy absorption capacity and the lack of stiffness in
comparison with bone. Furthermore, it can be manufactured by
injection moulding allowing for the customisation of implant designs,
and its biocompatibility and suitability for cranioplasty have been
demonstrated (Piitulainen et al., 2015; Posti et al., 2016).

4. Conclusions

A numerical head model from anonymous MRI has been developed
and used to compare the mechanical behaviour under impact loading
of two cranial implants: PEEK and macroporous HA+Bone. The model
was validated in terms of the kinematics of head under impact
conditions and used to:

(i) Compare the mechanical response of the two cranial implants
under a wide range of impact conditions. In terms of implant
failure and TBI, the numerical results showed a better mechanical
behaviour of PEEK implant under the loading conditions tested.

Additionally, a high risk of fracture was found when a HA implant
is subjected to impact loading.

(ii) Provide a roadmap for the determination of the risk of implant
failure when the subject has been exposed to any accident
involving impact loading.

There are of course many clinical considerations when choosing a
cranial implant. These include cost, availability and timescales, among
others. Manufacturers of such implants are frequently found to claim
greater biointegration, lower infection rates, easier implant techniques
and other rather hard-to-demonstrate benefits. Eventually, an implant
is required to provide: a) protection with b) an acceptable cosmetic
result. Both HA and PEEK (among others) provide these. However,
patients receiving implants are more likely to suffer from neurological
deficits and epilepsy than the general population, and these both
increase the risks of falls, and injury to the implant and underlying
brain. Additionally, the patients that have made a good enough
recovery may well wish to go back to sports and exercise, which may
well increase these risks further. As a conclusion, a patient specific
assessment of what the implant will need to withstand in the future is
recommended to tailor the choice of implant accordingly.
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Table A.1
Constitutive assumptions of the FEHM.
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Tissue/biomaterial Constitutive law Reference

Scalp Linear elastic (Horgan and Gilchrist, 2003; Liu et al., 2007; Sahoo et al., 2014 Zhang et al., 2001)
Skull Linear elastic (Wood, 1971)

Falx Linear elastic (Chafi et al., 2010; Takhounts et al., 2008)

CSF Equation of state+Newtonian viscosity Water (e.g., Jérusalem and Dao, 2012)

Ventricles Equation of state+Newtonian viscosity Water (e.g., Jérusalem and Dao, 2012)

Gray and white matters Viscoelastic (Tse et al., 2014; Shuck and Advani, 1972; Willinger et al., 1999; Stalnaker, 1969)
PEEK Hyperelastic-Thermoviscoplastic (Garcia-Gonzalez et al., 2017)

HA+Bone Linear elastic until fracture This work

Appendix B. Details of predicted variables, thresholds and boundary conditions used in the numerical simulations conducted

for evaluating TBI

The predicted variables, thresholds and boundary conditions used in the numerical simulations conducted in the evaluation of TBI are

schematically provided in Table B.1.

Table B.1

Predicted variables, thresholds and boundary conditions used in the numerical simulations conducted for TBI evaluation.

Predicted variables Thresholds Boundary conditions

Criterion 1 Pressure 235 kPa Impact velocity from 0 m/s to

Criterion 2 Shear stress 11 kPa 7m/s

Criterion 3 Von Mises 38 kPa Orientation angle of 30° between
Stress head and ground

Criterion 4 Von Mises 26 kPa
Stress

Criterion 5 Strain 0.25
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