
This is a postprint version of the following published document:

de Fuentes, J.M., González-Manzano L., Tapiador J., Peris-Lopez, P. (2017).
PRACIS: Privacy-preserving and aggregatable cybersecurity information sharing.
Computers & Security, vol. 69, pp. 127-141,
Available in https://doi.org/10.1016/j.cose.2016.12.011

© 2017 Elsevier Ltd.

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288499668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.cose.2016.12.011

PRACIS: Privacy-preserving and Aggregatable
Cybersecurity Information Sharing

José M. de Fuentes, Lorena González-Manzano, Juan Tapiador, and
Pedro Peris-Lopez

Department of Computer Science. Universidad Carlos III de Madrid
Avda. Universidad, 30, 28911 Leganés, Madrid, Spain

{jfuentes, lgmanzan, jestevez, pperis}@inf.uc3m.es

Abstract. Cooperative cyberdefense has been recognized as an essential strat-
egy to fight against cyberattacks. Cybersecurity Information Sharing (CIS), es-
pecially about threats and incidents, is a key aspect in this regard. CIS provides
members with an improved situational awareness to prepare for and respond to
future cyberthreats. Privacy preservation is critical in this context, since organiza-
tions can be reluctant to share information otherwise. This is particularly critical
when CIS is facilitated through an untrusted infrastructure provided by a third
party (e.g., the cloud). Despite this, current data formats and protocols for CIS do
not guarantee any form of privacy preservation to participants. In this paper we
introduce PRACIS, a scheme for CIS networks that guarantees private data for-
warding and aggregation. PRACIS leverages the well-known Structured Threat
Information Expression (STIX) standard data format. Remarkably, PRACIS can
be seamlessly integrated with existing STIX-based message brokering middle-
ware such as publish-subscribe architectures. PRACIS achieves these goals by
combining standard format-preserving and homomorphic encryption primitives.
We discuss experimental results obtained with a prototype implementation de-
veloped for a subset of STIX. Results show that entities may create up to 689
incidents per minute, far beyond the estimated average of 81. Moreover, aggrega-
tion of 104 incidents can be carried out in just 2.1 seconds, and the transmission
overhead is just 13.5 kbps. Overall, these results suggest that the costs incurred
by PRACIS are easily affordable in real-world scenarios.

Keywords: cybersecurity information sharing; cyberthreat management; format
preserving encryption; homomorphic encryption; cooperative cyberdefense

1 Introduction

The number and sophistication of cybersecurity incidents has increased substantially in
the last years. According to a 2016 report by PricewaterhouseCoopers, around 59 mil-
lion security incidents were identified in 2015 alone, which constitutes a 38% increase
with respect to the previous year [51]. Moreover, these incidents are also growing in
complexity, as it is the case of large-scale coordinated attacks [64].

In order to defend against this evolving type of threats, novel detection and pro-
tection mechanisms are being developed. Among them, Intrusion Detection Systems

(IDSs) have received extensive research attention [23]. One critical issue is that iso-
lated IDSs are not always effective against coordinated attacks, since their traces may
be spread across different domains [64]. Thus, collaboration between entities (the so
called cooperative cyberdefense) is essential for properly detecting these attacks [28].

To enable cooperative cyberdefense, mechanisms for timely sharing actionable cy-
bersecurity information (e.g. vulnerabilities, detection signatures, or indicators of com-
promise) are paramount [28], [15]. Over the past decade, MITRE Corporation and
others have developed numerous languages, data formats, and standards to codify cy-
bersecurity information [45]. Moreover, other approaches aim to facilitate automatic
sharing, e.g., through protocols such as Trusted Automated eXchange of Indicator In-
formation (TAXII) [46]. A recent survey by the European Union Agency for Network
and Information Security (ENISA) provides an overview of existing standards and tools
in this area [19].

Cooperative cyberdefense and, in particular, Cybersecurity Information Sharing (CIS),
has been nurtured and encouraged by governments worldwide through a number of re-
cent legal initiatives [57]. For example, in the US the CIS Act has recently proposed
the creation of a government-managed structure to gather and distribute information
about cybersecurity threats [60]. A similar effort, known as the CIS Partnership, is a
joint industry-government initiative launched in 2013 in the UK to share cybersecurity
information [10]. Additionally, in 2015 the International Organization for Standard-
ization (ISO) and the International Electrotechnical Commission (IEC) published an
international standard to provide guidance in the sensitive information exchange. This
standard also serves for the implementation of information security management within
information sharing communities [31].

CIS has also received much attention from the research community under different
perspectives. Research interest has range from pure technical questions (such as the in-
frastructure needed for this exchange) to socio-economical issues. For instance, Gal-Or
and Ghose [22] identified clear economical benefits for information sharing as a result
of better security prevention and increased reputation. Despite this, organizations are
not inclined to share cybersecurity intelligence (including ongoing or past cyberinci-
dents) neither with governments nor with other partners or competitors. Reasons in-
clude the lack of trust in the sharing infrastructure, particularly if it is run by a potential
competitor or adversary, and the way sharing is carried out. For example, in networks
in which the government is involved, companies prefer to remain anonymous in case
of incidents that uncover infringement of rules, i.e., leakage of unprotected personal
data. To address this issue, previous works have proposed data sharing schemes based
on encrypting exchanged data [2, 38, 42], working with aggregated messages [35, 58],
or guaranteeing some form of sender anonymity [16, 39]. While interesting, the main
drawback of these schemes is that they are not compatible with currently deployed CIS
infrastructures, including widely adopted standards to exchange cybersecurity informa-
tion.
Contributions. In this paper we introduce PRACIS (PRivacy-preserving and Aggre-
gatable Cybersecurity Information Sharing), a scheme that provides privacy-preserving
data forwarding and aggregation in a data sharing network. PRACIS is intended for
semi-trusted (i.e., honest-but-curious) message-oriented middlewares, which are one

2

of the most common architectures for CIS. Thus, PRACIS guarantees that the shar-
ing infrastructure (i.e., the message broker) can perform its store-and-forward functions
without learning anything relevant about the messages in the process. In particular, the
broker cannot link the identity of the reporting entity and the type of reported inci-
dent. We achieve this by adapting existing format-preserving encryption techniques to
cybersecurity information messages, particularly the Structured Threat Information Ex-
pression (STIX) standard data format [4], thus allowing the message broker to privately
forward messages. Additionally, our scheme also leverages homomorphic encryption to
provide some network members with simple statistics about reported information (e.g.,
global or per-type counts and averages) in a privacy-preserving way. All in all, the main
novelty PRACIS does not rely on innovative cryptographic primitives, but in the com-
bination of existing ones to achieve the pursued goals in already-existing STIX-based
CIS infrastructures.

We have developed a proof-of-concept implementation of PRACIS to assess the
overhead imposed by the encryption. The average time to build a STIX message in
which three fields are sensitive, is 87.4 ms while its decryption and verification requires
105 ms. Both figures are very low and appropriate for information sharing in nearly real
time. In terms of data size, our scheme introduces non-negligible yet affordable over-
head in each message field. Depending on factors such as the field length, the frequency
of message delivery, or the number of members in the sharing network, such overhead
ranges between 2 and less than 1300 bytes. In summary, in this work we make the
following contributions:

– We introduce the idea of using privacy-preserving data forwarding and aggregation
for CIS networks. We argue that this is an essential service for this communities to
succeed, as otherwise partners might not trust the infrastructure nor provide other
members with their data.

– We describe PRACIS, a scheme that applies format-preserving and homomorphic
encryption techniques to the STIX data format to achieve these goals. Our exper-
imental results suggest that PRACIS introduces an affordable overhead in today’s
applications.

– We make freely available a prototype implementation of PRACIS to foster further
research in this area.

Organization. The rest of this paper is organized as follows. Section 2 provides some
background concepts on CIS and the cryptographic techniques used in this work. In
Section 3 we introduce the system and adversarial models, along with the protocol
goals. Section 4 describes our proposal in detail, and Section 5 provides an evaluation
based on experimental results. An overview of related work in this area is provided in
Section 6, and Section 7 concludes the paper.

2 Background

We next provide some necessary background on the main concepts used in our work:
the STIX format, homomorphic cryptography and format-preserving encryption.

3

Fig. 1: An example of a STIX message [4].

2.1 The STIX format

In the last years, much effort has been devoted to develop common formats for the
exchange and processing of actionable security information, such as vulnerabilities, de-
tection signatures, or indicators of compromise, among others. As of today, the number
of such formats is relatively high and some of them have become de facto standards.
The interested reader can find a comprehensive survey in a 2014 report by ENISA [19].
One of the most widely used of such formats is the Structured Threat Information Ex-
pression (STIX) [4], which was designed to specify, characterize, and communicate cy-
ber threat intelligence information. STIX is an XML-like structured language in which
issues related to threats (e.g., malware descriptions or indicators of compromise) can
be expressed. For the interest of this proposal, Figure 1 shows an example of a STIX
incident. Thus, aspects such as the affected assets, the nature of the threat, start and
recovery times, or the perceived risk can be formalized.

2.2 Format-preserving encryption

Format-preserving encryption (FPE) is a cryptographic technique in which the output
of the encryption operation (i.e., the ciphertext) has the same format than the input
(i.e., the plaintext) [5]. The idea has been traditionally motivated by the problems as-
sociated with integrating encrypted data into some legacy applications that expect data
items in a particular format. One prominent example is social security or credit card
numbers, which after encryption may no longer have the required length and may in-
clude alphanumeric or special characters. In general, the notion of “format” in FPE can
be extended to almost any structured data item, but typically only finite domains are
supported.

One of the simplest examples of FPE is an n-bit block cipher, which is an FPE on
the set {0, . . . , 2n−1}. In a more general setting, Black and Rogaway [8] provided the
first provable-security approach to construct a block cipher with an arbitrary domain
X , though their solution focused on X = Zn, i.e. the integers {0, 1, . . . , n − 1}. Bel-
lare et al. [5] later provided a more general construction called the rank-then-encipher
approach. This assumes that the format space X is a collection of a finite number of
domains called slices, i.e., X = ∪NXN . The points in each slice can be arbitrarily
numbered, say XN = {X0, . . . , Xn−1}, with |XN | = n. To encrypt Xi, the rank-then-
encipher strategy first finds the index i of X in the enumeration of XN ; then encrypts
i to j using an integer-to-integer cipher; and finally returns Xj as the encryption of X .
This construction is based on an integer FPE cipher Enc : K × Zn → Zn that can
encrypt on Zn for an arbitrary n, and a ranking function rank that maps each (N,X),
with X ∈ XN , to an element of Zn, where rank(N, ·) : XN → Zn is a bijection for
all N . In [5] it is shown how to build ranking functions for domains that are regular
languages.

4

2.3 Data aggregation using homomorphic cryptography

A homomorphic encryption scheme is a cryptographic primitive that produces cipher-
texts with two properties: (i) only parties knowing the key can retrieve the original
plaintext; and (ii) it is possible to perform operations (e.g., addition [3], multiplica-
tions [34], or counts [37]) over ciphertexts that result in a desired transformation of the
original plaintexts. One representative example of a cipher with homomorphic proper-
ties is the Paillier cryptosystem [48]. This scheme is a public-key cryptosystem whose
encryption function is additively homomorphic. Thus, the product of two ciphertexts
decrypts to the sum of their associated plaintexts, i.e.,

D(E(m1)E(m2) mod n2) = (m1 +m2) mod n,

where E(mi) is the encryption of plaintext mi, D(·) is the decryption function, and
n is the Paillier modulus. This property can be used to compute some basic statistics
of a set of plaintexts, such as the sum and the mean value, using only the ciphertexts.
In fact, the prototype implementation in this paper makes use of this cryptosystem.
However, it must be noted that any other mechanism providing homomorphic addition
(e.g., Benaloh’s [7]) could be applied as well.

3 System Model and Goals

In this section, we first discuss the main elements of the CIS network model, including
its entities, information and privacy models (Section 3.1). We next describe the adver-
sarial model (Section 3.2) and the goals of our proposal (Section 3.3). The notation used
throughout the paper is presented in Table 1.

Table 1: Notation

3.1 Cyber security information sharing network

Information model. Nodes in an information sharing network produce messages that
encode relevant intelligence about a particular cyber threat. In this work, our focus is on
messages reporting cyber incidents. One remarkable aspect is that PRACIS is format-
agnostic. This means that it could be adapted to any incident format, though in the
following we adopt the STIX format [4]. Each message, which will be an incident It,
includes at least the following data items: an identifier; a definition of when, where
and what happened; the identity of the victim; the identity of the entity reporting the
incident; an assessment of the incident’s impact; and the confidence of the publisher
on the reported information. As discussed later, extending the protocol to support other
STIX objects is trivial.

5

Fig. 2: Overview of PRACIS

Network model. We assume a distributed information sharing network implemented
through an standard message-oriented middleware such as a publish-subscribe archi-
tecture, see Figure 2. This is one of the most used alternatives for CIS (the other being
a peer-to-peer network among partners) and is fully compatible with standard shar-
ing protocols such as TAXII [46]. Publishers Di post messages to a message broker
AF , which normally implements a store-and-forward function to deliver messages to
subscribers ISi. For simplicity, subscriptions are topic-based, so nodes subscribe to
messages tagged as belonging to a particular topic. The delivering mechanism can im-
plement additional restrictions based, for example, on security attributes of the message
(e.g., a classification level) and the subscriber (e.g., its clearance). We assume a dis-
tinguished subscriber StS called the statistics subscriber. It is an entity interested in
receiving from the message broker statistics (e.g., averages or counts) of the incidents
registered in a given time span. The realization of any of these entities could be done
either in a standalone machine or in a distributed fashion (e.g., cloud computing infras-
tructure). However, this network model is technology-agnostic and valid regardless of
the actual implementation.
Information privacy model. The said data items in an incident It can be divided into
sensitive and non-sensitive elements. Sensitive values are the type of asset, the effect
and the confidence. We believe that these three attributes have to be hidden from the
adversary since they leak information from the type of incident. For example, a database
asset with a data loss effect with high confidence reveals a breach into the corporate
storage systems. Although there are other attributes that convey private information,
the described scenario does not make these fields sensitive. For example, the name of
the victim is privacy-critical in a general setting, but in the considered scenario the
adversary (i.e., AF) already knows this value beforehand. This could be the case if, for
example, a different communication port is used in AF for each entity’s incidents. Thus,
the remaining data items are considered non-sensitive herein. Of course, this definition
could be easily adapted for other CIS scenarios.

3.2 Adversarial model

Most nodes (i.e., publishers Di and subscribers ISi, including the statistics subscriber
StS) in the CIS network are assumed to be honest. This means that they trust each
other [18], they do not attempt to attack the system, and that they cooperate by publish-
ing incidents shortly after their occurrence.

Nodes are distrustful of the sharing infrastructure, since this can be deployed in a
third-party server and compromised by an attacker. We assume that the message broker
AF is considered a semi-trusted (i.e., honest-but-curious) entity. It will behave correctly
in its storing, aggregation, and forwarding functions. However, AF will eavesdrop on
received messages and will be interested in learning the types of incidents occurred in
each entity. This is similar to adversarial models adopted in other schemes in which

6

storage, aggregation, and forwarding is delegated to a semi-trusted entity (see, e.g., [20,
26, 55]).

We assume that nodes connect to the message broker AF using a secure channel
such as TLS. This is a reasonable assumption for sharing protocols such as TAXII [46],
which is essentially XML over HTTP.

3.3 Goals

Considering the system and adversarial models described above, the goals of our scheme
are:

– Privacy-preserving message forwarding. Subscribers ISi must be able to choose
the type of incidents they are interested in. The message broker AF must be able to
forward them incidents without learning any sensitive data about the incident itself
(recall Section 3.1).

– Privacy-preserving data aggregation. AF must be able to aggregate (i.e., tally)
incidents per type (as requested by StS) without learning the result of the operation.
Furthermore, StS must be able to verify the correctness of the result.

4 PRACIS: Privacy-preserving and Aggregatable Sharing

This Section describes each phase of our proposal, namely the setup phase (Section 4.1),
how incidents are prepared and delivered (Section 4.2), how they are processed and ag-
gregated (Section 4.3), how they are finally decrypted (Section 4.4), and how aggregated
incidents are verified (Section 4.5). A formal description of all algorithms in PRACIS
is provided in Appendix A.

4.1 Setup

In the setup phase, all entities are provided with the appropriate cryptographic material
to participate in the information sharing network. This phase can take place during one
of the face-to-face meeting suggested by ENISA [18] for trust building. Specifically,
key exchanges are specified in Algorithm 1 and described next.

– Each publisher Di shares two keys with all incident subscribers ISi authorized to
receive its incidents. The first one is a Format-Preserving Encryption (FPE) key
(KFPE(Di)) to encrypt security incidents. The second one is a symmetric key
(Ks(Di)(ti)) per type of incident ti to allow incident forwarding (Algorithm 1,
lines 1-10).

– StS creates a homomorphic key (KH) and shares it with all Di. This key allows
computing statistics over the shared incidents. StS also creates a random number
per Di, referred to as rDi

. This number enables verifying the incident aggregation.
Furthermore, StS specifies the maximum size in bits (Nbrnd

) of the addition of
the said random numbers. This value ensures that homomorphic additions do not
overflow (lines 11-19).

7

Fig. 3: Example of STIX incident format to apply PRACIS.

– All Di, AF and ISi share a HMAC key (KHMAC) to perform incident integrity
checking (lines 20-28).

Once cryptographic materials have been prepared, the last step of the setup phase
is incident subscription, in which every ISi subscribe to incidents of its interest (Algo-
rithm 3). For this purpose, each ISi sends AF chosen set of incident types ti symmet-
rically encrypted using the key Ks(Di)(ti) already introduced. Thanks to encryption,
AF is unaware of the particular incident that ISi is subscribing to.

4.2 Preparation and delivery of security incidents

Once an incident takes place in a given Di, it is shared with interested ISi (Algo-
rithm 4). In order to convey all fields of an incident, a simple STIX incident structure is
adopted (Figure 3). It consists of 10 fields, namely, Title, Description, Affected Asset:Type,
Effect, Confidence:Value, Initial Compromise, Incident Discovery, Restoration Achieved,
Incident Reported and Victim:name, and 3 ID tags involved in “Incident”, “Descrip-
tion” and “Victim” (Incident:id, Description:id and Victim:id respectively). This struc-
ture contains the information elements contained in the abstract description of It (recall
Section 3.1). Instead of storing the actual values in each field, our protocol pre-processes
them to: (1) only allow authorized ISi to access the actual content; and (2) enable in-
cident aggregation so that StS can receive incident statistics. With respect to the first
goal, the three sensitive attributes (recall Section 3.1), that is, the Affected Asset:Type,
Effect and Confidence:Value fields are encrypted applying FPE. Except for the cases
discussed next, the remaining fields are sent in plaintext1 as long as they do not convey
any valuable information for the considered adversary. The second goal requires the
aggregation by AF of values in the Incident:id field.

There are two additional fields which are pre-processed, namely Description:id and
Victim:id. The first one is prepared to enable matching the event type to ISi interests. It
must be noted that AF is not aware of the actual type of package, but it should be able
to forward it to appropriate ISi. The idea behind is to store in this field the same value
as the one sent by ISs to subscribe (recall Section 4.1). On the other hand, “Victim:id”
is used to enable file integrity checking of the remaining contents. For this purpose, it
stores the result of HMACing all remaining STIX fields, using KHMAC as key. One
important remark is that the election of fields for incident aggregation, subscription
and integrity checking could be different than the one proposed herein. Our decision is
based on the fact that these fields contain identifiers, which can be freely adopted by
Di. Therefore, these fields are suitable to contain random-like values such as the results
of encryption or HMAC operations. However, different decisions could be taken in this
regard, such as splitting these values among different fields in a single incident or even
among several incidents, but this does not affect our proposal.

1 They are sent without an explicit encryption by the sender. However, transport mechanisms
such as TLS could be applied, thus providing encryption by default.

8

Preparing Incident:id. The Incident:id field is intended to allow the aggregation of
incidents by AF . The result of aggregating this piece of information will be sent to
StS. Therefore, it must be possible to gather this field from all incidents It and operate
them to obtain their aggregation, that is, the amount of incidents received per type t in
a given time frame.

In PRACIS, aggregation is performed by adding the values of Incident:id in all Iti .
For this purpose, it is necessary to prepare a data structure to store a maximum of Imax

incidents per type ti. This data structure must allocate a set of bits Nbt for each type ti
to represent Imax. Thus, considering nt types of incident, this structure needs Nbtotal

bits to represent them all (Equation 1).

Nbtotal
= nt ·Nbt = nt · dlog2(Imax)e bits. (1)

Given an incident Iti of type ti, the aforementioned data structure is prepared by setting
to 1 least significant bit of the set of Nbt bits for this type. The remaining bits are set to
zero. In order to conceal the type of incident to third parties, the said data structure is
encrypted using the Paillier cryptosystem.

To provide aggregation verification, the random number rDi is inserted in this struc-
ture. The rationale behind is that the aggregation (i.e. addition) of these numbers enables
StS to conclude if the aggregation is correct, with a low probability of identifying the
particular Di. The total amount of bits needed for this purpose is given by NbAV

(Equa-
tion 2). Thus, NbAV

is calculated as the number of bits to express Imax multiplied by
the maximum bit length of random numbers (Nbrnd

) as specified by StS:

NbAV
= dlog2(Imax · (2Nbrnd − 1))e. (2)

Besides, Nbrnd
should be established considering Nbrnd

> log2(|Di|) to reduce the
possibilities of choosing the same random number for multiple Di. Considering the
previous equations, the total length of the cleartext of Incident:id is given by Equation
3:

NbIncident:id
= Nbtotal

+NbAV
. (3)

Example: setting Incident:id. To illustrate how an incident identifier is prepared, con-
sider an scenario with |Di| = 10 and 7 types of incidents, numbered from 0 to 6. As-
sume that an incident of Malicious code (e.g., t = 4) takes place in D1 whose random
number is rD1=49 (with Nbrnd

=6). AF aggregates up to Imax=100 events. Considering
these parameters, Nbtotal

= 7×dlog2(100)e= 49, and NbAV
= dlog2(100× (26− 1))e

= 13. Thus, Incident:id is formed by NbIncident:id
= 62 bits as follows:

Incident : id = HE(KH , 0000000 0000000 0000000 0000001 0000000
0000000 0000000 0000000110001)

(4)

where HE(k, x) represents homomorphic encryption of x with key k.

4.3 Forwarding and aggregation of incidents

Once incidents are sent by Di, AF processes each message (Algorithm 2). Firstly, it
checks the message integrity by comparing the HMAC of all fields against the value

9

stored in the Victim:id field. If the integrity remains, AF finds ISs subscribed to this
type of event. This is done by comparing their subscription packages (sent during setup)
against the value of Description:Id. If both elements match, Iti is forwarded to ISi.
On the other hand, after a maximum of Imax authentic security incidents have been
received by AF , it aggregates them. For this purpose, the values of the packet fields
Incident:id are combined using homomorphic addition. Such homomorphic addition is
dependent upon the cryptosystem at stake – in the Paillier crytosystem it consists of the
multiplication of Incident:id (recall Section 2.3). The number of incidents received per
Di is appended to the previous result, and this structure is sent to StS. Note that the
attachment of the number of incidents is related to the aggregation verification protocol
presented in Section 4.5.

Example: aggregating Incident:id values. Using the numerical example presented
above, consider now that D2 and D3 have reported a t4 (Malicious Code) incident and
a t5 (e.g. Improper Usage) incident, respectively. Their random numbers are rD2

=20
and rD3

=21, respectively. The value of each Incident:id field, as well as the result of
their homomorphic aggregation, is shown in Table 2. This is the information to be sent
along with the indication of the amount of incidents reported by Di. For the sake of
clarity, the underlying, non-encrypted values are shown. However, it must be recalled
that sent values are the encrypted versions of these data structures.

Table 2: Example of Incident:id aggregation.

4.4 Decrypting security incidents

Upon reception of an incident forwarded by AF , each ISi needs to decrypt their ac-
tual content (Algorithm 6). First of all, the message integrity is verified computing its
HMAC using KHMAC (lines 1-5). If the result is equivalent to “Victim:id”, the en-
crypted fields are decrypted using format-preserving decryption with KFPE(Di) being
Di identified in “Victim:Name”.

4.5 Aggregation verification

Once the aggregated incident types are received by StS, it decodes the received mes-
sage contents and verifies its correctness. Regarding the first issue, StS simply needs
to identify how many bits are devoted to each incident type and it proceeds accordingly.
Thus, going back to the example used above, it is straightforward for StS to identify
that there are two Malicious Code and one Improper Usage incidents, as well as check-
ing that the received addition of random numbers (referred to as rsum) is 90 (that is,
20+21+49).

With respect to data correctness, StS verifies that aggregated data is unpolluted.
For this purpose the amount of incidents per Di attached to aggregated data comes

10

into play. Algorithm 5 shows the steps that StS needs to carry out. Particularly, StS
first gathers the status of the (initially random) counter value rDi

of each Di (lines 1-
2). Afterwards, StS computes the sum based on received amount of incidents per Dj

(|I(Di)|) and each chosen rDi (lines 3-6). This is computed as

∑
∀Di

(

Di+(|I(Di)|−1)∑
rDi

(rDi)), (5)

and if the result matches rsum, the claimed amount of incidents received per entity is
correct. StS then accepts the data and updates Di counters accordingly; otherwise, data
is discarded.

Example: Aggregated data verification. To show how aggregated data is verified,
let us follow the previous example. Let us consider that D2 and D3 report one addi-
tional incident each one. Thus, recall that the initial counters were rD1

=49, rD2
=20 and

rD3
=21, and that Nbrnd

= 13. When StS receives rsum=133, it verifies the aggregation
computing Eq. 6. Given that the result is equal to rsum, the aggregation is correct:

(

rD1
+(1−1)∑
rD1

(rD1
) +

rD2
+(2−1)∑
rD2

(rD2
) +

rD3
+(2−1)∑
rD3

(rD3
))

mod (2Nbrnd − 1) = (49 + 20 + 21 + 21 + 22) mod 8191 = 133

(6)

5 Evaluation

We next discuss how our proposal meets the established goals (Section 5.1) and then
report experimental results obtained with a prototype implementation (Section 5.2). To
facilitate the reproducibility of our results and foster further research in this area, we
make our implementation freely available2.

5.1 Goals

Privacy-preserving message forwarding. Each incident It includes its type t in en-
crypted form within the Description:id field. Then, AF is able to match incidents with
interested subscribers without gaining any information about the actual type. This al-
lows a given ISi to receive only the It of interest. Incidents are encrypted to prevent
AF from identifying the actual attack types suffered by each Di. Thanks to FPE, three
pieces of information from the incident are hidden for the attacker. Particularly, the type
of asset involved in the incident, the type of incident and the confidence of the reported
information are encrypted using FPE. The remaining fields of the incident are not as-
sumed to give any information for the attacker or, in other cases, are already known
(e.g., the reporting time). In any case, if required other fields can be FPEed too.

2 https://github.com/jmdefuentes/SPCIS.

11

PRACIS also inserts a HMAC in the Victim:id field to enable that ISi verifies the
correct transmission of incidents and to guarantee that they come from valid publishers.
Similarly, the trusted key exchange performed in the setup phase prevents the introduc-
tion of fake ISi.
Privacy-preserving aggregation. Homomorphic encryption is used for aggregation. In
this way StS knows existing incidents of each type without identifying their sources.
One important remark is that StS has some probability of reidentification of incidents.
In other words, there is a chance for StS to link which types of incidents every Di has
reported. Table 3 illustrates this issue. StS already knows the marginals of that table,
since it knows the total per ti and per Di.

The hardness of reidentification is to find out which are the values for the cells in
italics in Table 3. Thus, the probability of discovering the distribution of event types
among publishers is thus the same of finding the right table that satisfies the said
marginals. Indeed, the probability Preident of this event is given by Equation 7 in which
|T | is the total amount of tables satisfying the given marginals.

Preident = 1/|T |. (7)

The value of |T | can be calculated following the method proposed by Gail and
Mantel [44]. Intuitively, this amount grows with the size of the table. For example,
considering Table 3, the total amount of tables of the same dimensions is 40,500, which
leads to Preident = 2.47e−5. Even if this probability is significantly low, bigger tables
(for example, 4 Di and 6 ti) may lead to |T | = 68e6 [13], which cause Preident to be
negligible.

Apart from privacy preservation, StS is still able to verify the proper aggregation of
incidents. This verification is based on a sum of random numbers included in Incident:id
(recall Section 4.5). If the sum received by StS matches with the computed one, the
aggregation will be considered correct.

Table 3: Example of contingency table of event types and deliverers. Cells in bold are the val-
ues known to StS after PRACIS, whereas values in italics are the ones to be discovered in the
reidentification attack.

5.2 Performance analysis

We have considered two factors to assess the performance of our scheme. First, we
have studied the expected computation time per entity. The goal here is to determine
if the time taken is acceptable considering the pace at which incidents might occur in
the real world. On the other hand, we analyze the overhead incurred by exchanging
messages. As PRACIS modifies some fields of a classical STIX package, it is important
to determine whether the introduced information produces an excessive overhead that
may result in network issues.

12

Experimental settings. An implementation of PRACIS has been developed to assess
the performance of the approach. It has been implemented in Python 3 using various
libraries, in particular libFTE3 to implement FPE; Charm4 to implement the Paillier
cryptosystem; and the Python STIX library5 for managing STIX packets. For FPE, we
adopt the ranking-then-encryption algorithm provided by Luchaup et al. [41]. AES-
256 is applied for symmetric encryption and 1024-bit keys are used for the Paillier
cryptosystem. We consider 33 incident types, 5 levels of confidence, 34 affected assets
and 14 effects, these being values taken from STIX. More values for each element could
be added to our prototype, although the expected impact in performance is negligible
as the complexity of involved operations is not affected by this factor.

The results shown in the remaining of this section have been obtained by averag-
ing 50 executions on a single machine 4-core Intel(R) Xeon(R) CPU E5645 2.40GHz
with 1GB of RAM. Note that these settings are far from representing a realistic CIS
network. For example, AF could be implemented in a distributed infrastructure such
as a cloud computing platform. This leads to significantly better performance figures in
what comes to computation times. However, these settings may serve as a worst-case
scenario in which the CIS network runs with limited resources.

Computation time. We first study the time taken by Di to prepare a STIX message, the
time taken by ISi to decrypt and verify the integrity of received STIX messages, and
the time taken by AF to perform the aggregation of STIX messages. Creating a STIX
message involves different tasks: the setup phase to create all applied cryptographic pa-
rameters; the homomorphic encryption of the incident id; FPEing the affected asset, the
effect and the confidence; the HMAC of all fields for integrity purposes; and the cre-
ation of the STIX message. Table 4 presents results of our experiments. According to
this, format-preserving encryption and decryption operations are the most computation-
ally demanding. On the other side, homomorphic encryption and HMACs are extremely
fast operations. The setup phase needs less than a second in computation time.

To contextualize the implications of these figures, the 2015 Global State of Infor-
mation Security Survey states than an average of 81 incidents per minute might be
detected by an entity [51]. Our experimental results suggest that a party could create
up to 689 incidents per minute. Another important finding is the time required to ag-
gregate packets by AF is extremely low, needing around 2.1 seconds to group 104

messages. Considering the said average of incidents per minute, PRACIS would be fea-
sible even for big information sharing networks. For example, assuming 100 Di, such
an amount of messages would allow to aggregate incidents produced in an interval of
104/(100 · 81) = 1.23 minutes.

Table 4: Creation, decryption, verification and aggregation of STIX messages (average)

3 https://libfte.org
4 http://python-paillier.readthedocs.org/en/latest/alternatives.
html

5 https://github.com/STIXProject/python-stix

13

In order to study the scalability of the incident creation and aggregation, different
scenarios may be devised depending on the amount of incidents per minute and the
amount of Di at stake. Table 5 summarizes the analysis. For the first issue, values
from 40 (i.e., half the average) to 1280 (i.e., roughly 16 times the average, which is
a reasonable limit in the short term) are considered. Concerning the amount of Di, the
analysis is carried out considering networks that ranges from small size (i.e., 10 Di) to
very big ones (i.e., 800 Di).

Based on the aforementioned settings, incident creation time does not depend on
the amount of Di since all of them may create incidents in parallel. Thus, it can be seen
that PRACIS can cope with up to 640 incidents per minute. With respect to aggregation
time, the amount of Di is critical – aggregation is centralized on AF , which will receive
all events. The greater the amount of Di, the bigger amount of events to aggregate for
a given rate of incidents per minute. In particular, PRACIS can work with up to 800 Di

if the rate of incidents is up to 160 per minute. Beyond that limit, two issues may be
noticed. On the one hand, the aggregation takes more than one minute, which means
that a growing queue would appear. In other words, aggregating the incidents produced
in one minute would take more than that minute. This makes the system potentially
unusable. On the other hand, the sum of both creation and aggregation is bigger than
one minute under some settings (e.g., 640 incidents per minute and 100 Di). Again,
this is not desirable since it threats immediacy and requires memory resources on AF
to manage an incident queue.

Despite this subset of settings, Table 5 shows that PRACIS can work under most
configurations, supporting big incident rates with reasonable amounts of Di. Con-
versely, PRACIS can also work with smaller incident rates in bigger CIS networks.

Table 5: Incident creation and aggregation scalability analysis

Message overhead. Message overhead refers to the amount of extra bytes that are
inserted into STIX incident packets to achieve the desired goals. This overhead is caused
by four issues: (1) the homomorphically encrypted value stored in Incident:id; (2) the
HMAC value stored in Victim:id; (3) the encrypted type stored in Description:id; and
(4) the values concealed with FPE regarding confidence, effect and asset. The remaining
data of STIX messages do not cause overhead because its size is not altered from its
creation to its reception.

Regarding the first three items, note that no reference value can be considered. STIX
data model for incidents6 does not impose any minimum or maximum lengths for these
fields. Nevertheless, it is still possible to carry out a worst-case analysis by comparing
the length of PRACIS fields against the smallest length of these fields (i.e., 1 byte). In
our experiments, Victim:id is 28 bytes long and Description:idis 16 bytes long. There-
fore, their overhead is 27 and 15 bytes, respectively.

6 http://stixproject.github.io/data-model/1.2/incident/
IncidentType/

14

As for Incident:id, its size is determined by the amount of Di at stake and the
aggregation interval (i.e., how frequent AF has to compute the aggregation). Table 6
shows the analysis for 10, 100 and 1000 Di and 1, 5 and 10 minutes. Using said average
of incidents per minute and assuming Nbrand

= 20, the maximum size for Incident:id
is 88 bytes. In order to have the maximum encryption size, we adopt the highest value
for Incident:id (i.e. of 288 − 1). According to our experiments, the encrypted value
of Incident:id is 1136 bytes long. Therefore, a maximum overhead of 1135 bytes is
introduced. Both figures are reasonable in today’s storage capabilities and networking
speeds.

Table 6: Overhead in Incident:id size after encryption depending on Di and aggregation intervals

With respect to the confidence, effect, and asset fields, there is an implicit reference
value. By applying FPE results to one value of the set, it is possible to assess the max-
imum overhead. For example, the values of confidence are low, medium, high, none,
and unknown. Therefore, if the actual value is low and after FPE it turns into unknown,
an overhead of 4 bytes is introduced. Following this approach, Table 7 presents the
minimum, average, and maximum amount of bytes of the three fields, as well as the
involved overhead. The results show that the maximum overhead for all three fields is
76 bytes with an average of 29 bytes. For the sake of generality, in these figures we
omit some implementation-dependent extra bytes that are needed for our prototype, as
a consequence of the chosen libraries.

Putting all values together, the worst-case overhead is 1253 bytes. Using the average
of 81 incidents per minute discussed above, the imposed overhead for each entity is
101,493 bytes per minute; or, equivalently, 13,533 bits per second, which is negligible
for existing transmission technologies.

Table 7: Overhead of FPE fields (bytes)

6 Related Work

In the cybersecurity field information sharing is a requirement in a threat intelligence
management system [9]. For instance, an initiative has been developed to facilitate CIS
between the UK industry and the government [47]. Indeed, CIS is a challenging issue
which has been studied from different angles. For comparison purposes we distinguish
approaches that analyze the need of information sharing, present a theoretical approach
to information sharing or propose a specific scheme towards information sharing. The
comparison study is presented in Table 8. Concerning the first group, [49] studies the
problems and challenges of information sharing in coalitions formed with international

15

cooperation. [63] discusses the necessity of information sharing and a guidance of the
type of information to be shared. [25] analyses, from an economic point of view based
on the investment, how sharing cybersecurity related information among firms has the
potential to offset the tendency by firms to defer much of their cybersecurity investments
until a cybersecurity breach occurs. Finally, works such as [21, 24, 32, 59] study the
interests, possibilities and implications of cybersecurity information sharing and to do
so, they use, as many other works, game theory.

Several proposals have focused on developing theoretical foundations for informa-
tion sharing. A model to share classified security information between organizations
with the lowest possible risks is proposed in [33]. This is a theoretical model that re-
lies on the use of STIX and TAXII. [14] presents Cyber Security Data Exchange and
Collaboration Infrastructure (CDXI) capability, a knowledge management tool for the
cyber security domain. A set of high level requirements are introduced. One last re-
markable approach in this regard is SKALD [61], an architecture to create systems that
can perform feature extraction at a scale and provide a robust platform for analytic col-
laboration and data sharing. It provides the infrastructure, from a theoretical point of
view, needed to allow industry peers to perform analyses across collective knowledge
while protecting sensitive data.

Conversely, several works propose specific schemes to share cybersecurity infor-
mation. In [52] proxy-re-encryption is applied to ensure secure submission and storage
of private information. Also concrete but quite theoretical, [29] presents a platform to
share security information over multiple service infrastructures keeping damages of
a DDoS attack at a minimal. Though some techniques are described, e.g. identifying
well-known ports, many details are omitted. Besides, though not particularly focused
on cybersecurity, privacy in relation to information sharing has been addressed through
different means in this context. Such concerns include the need to prevent third parties
from identifying shared information, and the need to prevent the identification of infor-
mation providers. The first issue is mainly solved by the used of encryption techniques,
either asymmetric [12] or symmetric [50] schemes. By contrast, guaranteeing providers’
anonymity in this context has been mostly explored through aggregation [2,35]. Several
techniques have been suggested based on identity-based ring signatures [30]; iterative
anonymous assignation of identifiers to nodes [16]; group signatures and broadcast en-
cryption [39]; or certificateless encryption [56].

Table 8: Related work in cybersecurity information sharing

FPE emerged as a cryptographic technique initially focused on simple data types
such as numbers, since this is the case of credit cards [5]. A credit card number can
be encrypted by FPE to get another credit card number. Similarly, IP addresses can be
also encrypted with this scheme [11] as well as social security numbers [62]. Several
proposals have applied FPE to other data formats, e.g., data and times [40] or strings of
characters of a fixed length [36]. Recently, Weiss et al. [62] have looked for practical
solutions for FPE including numbers and other elements like variable-length strings.

16

Despite the availability of recent FPE algorithms [6, 43], in most cases they have to be
adapted to each particular context. Agbeybor et al. have recently explored the applica-
tion of FPE in the field of critical infrastructure protection [1]. Although the domain
and goals are very different from ours, the motivation for using is FPE in this context is
very similar.

The use of homomorphic cryptography for privacy-preserving aggregation has been
explored in multiple applications, including wireless sensor networks [53], smart me-
tering [3], and collaboration systems [54]. In all these cases, the use of homomorphic
encryption and the adversarial models follow a common pattern and are very similar
among them and to our proposal.

From this analysis we can conclude that while some works present information shar-
ing schemes, no approach support privacy-preserving and aggregatable CIS. Indeed,
just [2] mentions the necessity of privacy together with aggregation but any specific
mechanism is proposed. Concerning the approach taken, not a single proposal discusses
the application of homomorphic encryption in this field. Moreover, though [17] points
out the potential and significance of FPE for CIS, no previous proposals apply this
technique either.

7 Conclusions

Sharing cybersecurity information has been identified as a key element to develop coop-
erative cyberdefense strategies and to prepare against cyberthreats. Privacy is paramount
to foster cooperation, particularly when insecure infrastructures are used to support
sharing. In this paper, we have addressed this issue by proposing PRACIS, a protocol
that provides privacy-preserving and aggregatable cybersecurity information sharing.
PRACIS provides these properties by leveraging existing format-preserving and ho-
momorphic encryption techniques and adapting them to the particularities of standard
message formats such as STIX. To the best of our knowledge, this is the first scheme that
addresses this issue. To evaluate its feasibility in a real-world setting, we have devel-
oped a freely available proof-of concept implementation of PRACIS. Our experimental
results suggest that members of an information sharing network can afford the over-
head introduced by our scheme even in a regular desktop PC. At the moment, we are
extending our prototype to support sharing other STIX objects, such as Indicators-of-
Compromise (IoC), and Courses-of-Action (CoA). Studying and optimizing the perfor-
mance of PRACIS in high performance scenarios (such as cloud computing infrastruc-
ture) is a potential research work direction, relevant to assess the real-world suitability
of the proposal.

Acknowledgments

Funding: This work was partially supported by the MINECO grant TIN2013-46469-R
(SPINY); the CAM grant S2013/ICE-3095 (CIBERDINE), which is co-funded by Eu-
ropean FEDER; J. M. de Fuentes and L. González were also supported by the Programa
de Ayudas para la Movilidad of Carlos III University of Madrid, Spain.

17

Authors would like to thank the anonymous reviewers for their comments and sug-
gestions, which helped us to significantly improve this work.

References

1. Agbeyibor, R., Butts, J., Grimaila, M., Mills, R.: Evaluation of format-preserving encryption
algorithms for critical infrastructure protection. In: Critical Infrastructure Protection VIII,
pp. 245–261. Springer (2014)

2. Atabakhsh, H., Larson, C., Petersen, T., Violette, C., Chen, H.: Information sharing and
collaboration policies within government agencies. In: Intelligence and Security Informatics,
pp. 467–475. Springer (2004)

3. Bae, M., Kim, K., Kim, H.: Preserving privacy and efficiency in data communication and
aggregation for ami network. Journal of Network and Computer Applications 59, 333–344
(2016)

4. Barnum, S.: Standardizing cyber threat intelligence information with the structured threat
information expression (stix) (2014)

5. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryption. In: Se-
lected Areas in Cryptography. pp. 295–312. Springer (2009)

6. Bellare, M., Rogaway, P., Spies, T.: The ffx mode of operation for format-preserving encryp-
tion. NIST submission 20 (2010)

7. Benaloh, J.D.C.: Verifiable secret-ballot elections. Yale University. Department of Computer
Science (1987)

8. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) Topics in
Cryptology — CT-RSA 2002: The Cryptographers’ Track at the RSA Conference 2002 San
Jose, CA, USA, February 18–22, 2002 Proceedings. pp. 114–130. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2002)

9. Brown, S., Gommers, J., Serrano, O.: From cyber security information sharing to threat man-
agement. In: Proceedings of the 2nd ACM Workshop on Information Sharing and Collabo-
rative Security. pp. 43–49. ACM (2015)

10. CERT-UK: Cyber-security information sharing partnership (cisp) (2013)
11. Chandrashekar, P., Dara, S., Muralidhara, V.: Efficient format preserving encrypted

databases. In: Electronics, Computing and Communication Technologies (CONECCT), 2015
IEEE International Conference on. pp. 1–4. IEEE (2015)

12. Choi, J.J.U., Ae Chun, S., Kim, D.H., Keromytis, A.: Securegov: secure data sharing for
government services. In: Proceedings of the 14th Annual International Conference on Digital
Government Research. pp. 127–135. ACM (2013)

13. Cyrus R. Mehta, N.R.P.: A network algorithm for performing fisher’s exact test in r c con-
tingency tables. Journal of the American Statistical Association 78(382), 427–434 (1983),
http://www.jstor.org/stable/2288652

14. Dandurand, L., Serrano, O.S.: Towards improved cyber security information sharing. In:
Cyber Conflict (CyCon), 2013 5th International Conference on. pp. 1–16. IEEE (2013)

15. Denning, D.E.: Framework and principles for active cyber defense. Computers and Security
40, 108 – 113 (2014)

16. Dunning, L.A., Kresman, R.: Privacy preserving data sharing with anonymous id assignment.
Information Forensics and Security, IEEE Transactions on 8(2), 402–413 (2013)

17. Dupont, B.: The cyber security environment to 2022: trends, drivers and implications. Drivers
and Implications (2012)

18. ENISA: Good practice guide network security information exchanges. ENISA reports (2009)

18

19. ENISA: Standards and tools for exchange and processing of actionable information. ENISA
reports (2014)

20. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with
smart meters. In: Applied Cryptography and Network Security. pp. 561–577. Springer (2012)

21. Gal-Or, E., Ghose, A.: The economic consequences of sharing security information. In: Eco-
nomics of information security, pp. 95–104. Springer (2004)

22. Gal-Or, E., Ghose, A.: The economic incentives for sharing security information. Informa-
tion Systems Research 16(2), 186–208 (2005)

23. Garca-Teodoro, P., Daz-Verdejo, J., Maci-Fernndez, G., Vzquez, E.: Anomaly-based net-
work intrusion detection: Techniques, systems and challenges. Computers and Security
28(12), 18 – 28 (2009), http://www.sciencedirect.com/science/article/
pii/S0167404808000692

24. Garrido-Pelaz, R., González-Manzano, L., Pastrana, S.: Shall we collaborate?: A model to
analyse the benefits of information sharing. In: Proceedings of the 2016 ACM on Workshop
on Information Sharing and Collaborative Security. pp. 15–24. ACM (2016)

25. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Zhou, L.: The impact of information sharing on
cybersecurity underinvestment: a real options perspective. Journal of Accounting and Public
Policy 34(5), 509–519 (2015)

26. Groat, M.M., He, W., Forrest, S.: Kipda: k-indistinguishable privacy-preserving data aggre-
gation in wireless sensor networks. In: Proceedings of INFOCOM. pp. 2024–2032. IEEE
(2011)

27. He, D., Wang, H., Wang, L., Shen, J., Yang, X.: Efficient certificateless anonymous multi-
receiver encryption scheme for mobile devices. Soft Computing pp. 1–10 (2016)

28. Hernandez-Ardieta, J.L., Tapiador, J.E., Suarez-Tangil, G.: Information sharing models for
cooperative cyber defence. In: Cyber Conflict (CyCon), 2013 5th International Conference
on. pp. 1–28. IEEE (2013)

29. Hu, B., Murata, Y., Murayama, J.: Security information sharing platform over multiple ser-
vices. In: Information and Telecommunication Technologies (APSITT), 2015 10th Asia-
Pacific Symposium on. pp. 1–3. IEEE (2015)

30. Huang, X., Liu, J.K., Tang, S., Xiang, Y., Liang, K., Xu, L., Zhou, J.: Cost-effective authentic
and anonymous data sharing with forward security. Computers, IEEE Transactions on 64(4),
971–983 (2015)

31. ISO/IEC JTC 1/SC 27: Information technology – security techniques – information secu-
rity management for inter-sector and inter-organizational communications (2015), iSO/IEC
27010:2015

32. Khouzani, M., Pham, V., Cid, C.: Strategic discovery and sharing of vulnerabilities in com-
petitive environments. In: International Conference on Decision and Game Theory for Secu-
rity. pp. 59–78. Springer (2014)

33. Kokkonen, T., Hautamỳki, J., Siltanen, J., Hỳmỳlỳinen, T.: Model for sharing the information
of cyber security situation awareness between organizations. In: Telecommunications (ICT),
2016 23rd International Conference on. pp. 1–5. IEEE (2016)

34. Kumar, M., Verma, S., Lata, K.: Secure data aggregation in wireless sensor networks using
homomorphic encryption. International Journal of Electronics 102(4), 690–702 (2015)

35. Li, H., Xiong, L., Zhang, L., Jiang, X.: Dpsynthesizer: differentially private data synthesizer
for privacy preserving data sharing. Proceedings of the VLDB Endowment 7(13), 1677–1680
(2014)

36. Li, M., Liu, Z., Li, J., Jia, C.: Format-preserving encryption for character data. Journal of
Networks 7(8), 1239–1244 (2012)

37. Li, X., Chen, D., Li, C., Wang, L.: Secure data aggregation with fully homomorphic encryp-
tion in large-scale wireless sensor networks. Sensors 15(7), 15952–15973 (2015)

19

38. Liu, Q., Wang, G., Wu, J.: Time-based proxy re-encryption scheme for secure data sharing
in a cloud environment. Information Sciences 258, 355–370 (2014)

39. Liu, X., Zhang, Y., Wang, B., Yan, J.: Mona: secure multi-owner data sharing for dynamic
groups in the cloud. Parallel and Distributed Systems, IEEE Transactions on 24(6), 1182–
1191 (2013)

40. Liu, Z., Jia, C., Li, J., Cheng, X.: Format-preserving encryption for datetime. In: Intelligent
Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on. vol. 2,
pp. 201–205. IEEE (2010)

41. Luchaup, D., Dyer, K.P., Jha, S., Ristenpart, T., Shrimpton, T.: Libfte: A toolkit for construct-
ing practical, format-abiding encryption schemes. In: 23rd USENIX Security Symposium
(USENIX Security 14). pp. 877–891. USENIX Association, San Diego, CA (Aug 2014)

42. Makedon, F., Sudborough, C., Baiter, B., Conalis-Kontos, M.: A safe information sharing
framework for e-government communication (2015)

43. Mattsson, U., Blomkvist, K.: Data type preserving encryption (Aug 26 2008), uS Patent
7,418,098

44. Mitchell Gail, N.M.: Counting the number of r c contingency tables with fixed margins.
Journal of the American Statistical Association 72(360), 859–862 (1977), http://www.
jstor.org/stable/2286475

45. MITRE: Making security measurable. https://makingsecuritymeasurable.
mitre.org/, accessed: 2016-04-28

46. MITRE: Trusted automated exchange of indicator information (taxii). http://
taxiiproject.github.io, accessed: 2016-04-22

47. Murdoch, S., Leaver, N.: Anonymity vs. trust in cyber-security collaboration. In: Proceedings
of the 2nd ACM Workshop on Information Sharing and Collaborative Security. pp. 27–29.
ACM (2015)

48. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) Advances in Cryptology — EUROCRYPT ’99: International Conference on
the Theory and Application of Cryptographic Techniques Prague, Czech Republic, May 2–6,
1999 Proceedings. pp. 223–238. Springer Berlin Heidelberg (1999)

49. Phillips Jr, C.E., Ting, T., Demurjian, S.A.: Information sharing and security in dynamic
coalitions. In: Proceedings of the seventh ACM symposium on Access control models and
technologies. pp. 87–96. ACM (2002)

50. Prasad, K., Poonam, J., Gauri, K., Thoutam, N.: Data sharing security and privacy preser-
vation in cloud computing. In: Green Computing and Internet of Things (ICGCIoT), 2015
International Conference on. pp. 1070–1075. IEEE (2015)

51. PriceWaterHouseCoopers: Global state of information security survey 2015.
http://www.pwc.com/gx/en/consulting-services/information-
security-survey/assets/the-global-state-of-information-
security-survey-2015.pdf, last access: 2016-11-09

52. Raj, A., Arunprasath, R., Vigneshwari, S.: Efficient mechanism for sharing private data in a
secured manner. In: Circuit, Power and Computing Technologies (ICCPCT), 2016 Interna-
tional Conference on. pp. 1–4. IEEE (2016)

53. Ramotsoela, T., Hancke, G.: Data aggregation using homomorphic encryption in wireless
sensor networks. In: Information Security for South Africa (ISSA), 2015. pp. 1–8. IEEE
(2015)

54. Rieffel, E.G., Biehl, J.T., Lee, A.J., Van Melle, W.: Private aggregation for presence streams.
Future Generation Computer Systems 31, 169–181 (2014)

55. Savi, M., Rottondi, C., Verticale, G.: Evaluation of the precision-privacy tradeoff of data
perturbation for smart metering. Smart Grid, IEEE Transactions on 6(5), 2409–2416 (2015)

20

56. Seo, S.H., Nabeel, M., Ding, X., Bertino, E.: An efficient certificateless encryption for secure
data sharing in public clouds. Knowledge and Data Engineering, IEEE Transactions on 26(9),
2107–2119 (2014)

57. Skopik, F., Settanni, G., Fiedler, R.: A problem shared is a problem halved: A survey on the
dimensions of collective cyber defense through security information sharing. Computers &
Security 60, 154–176 (2016)

58. Tandon school of enfineering: Mapping the next frontier of open data: Corporate data sharing
Last access Nov. 2015

59. Tosh, D., Sengupta, S., Kamhoua, C., Kwiat, K., Martin, A.: An evolutionary game-theoretic
framework for cyber-threat information sharing. In: 2015 IEEE International Conference on
Communications (ICC). pp. 7341–7346. IEEE (2015)

60. USGovernment: Cybersecurity information sharing act (in progress) (2015)
61. Webster, G.D., Hanif, Z.D., Ludwig, A.L., Lengyel, T.K., Zarras, A., Eckert, C.: Skald: A

scalable architecture for feature extraction, multi-user analysis, and real-time information
sharing. In: International Conference on Information Security. pp. 231–249. Springer (2016)

62. Weiss, M., Rozenberg, B., Barham, M.: Practical solutions for format-preserving encryption.
arXiv preprint arXiv:1506.04113 (2015)

63. Zhao, W., White, G.: A collaborative information sharing framework for community cyber
security. In: Homeland Security (HST), 2012 IEEE Conference on Technologies for. pp.
457–462. IEEE (2012)

64. Zhou, C.V., Leckie, C., Karunasekera, S.: A survey of coordinated attacks and collabora-
tive intrusion detection. Computers and Security 29(1), 124 – 140 (2010), http://www.
sciencedirect.com/science/article/pii/S016740480900073X

21

José Marı́a de Fuentes is visiting lecturer in the Computer Science
and Engineering Department at University Carlos III of Madrid, Spain.
He is Computer Scientist Engineer and Ph.D. in Computer Science by
the University Carlos III of Madrid. His main research interests are
cybersecurity as well as security and privacy in the internet of things

and ad-hoc networks. He has published several articles in international conferences and
journals. He is participating in several national R+D projects.

Lorena González-Manzano is assistant professor working in the
Computer Security Lab at the University Carlos III of Madrid, Spain.
She is Computer Scientist Engineer and Ph.D. in Computer Science
by the University Carlos III of Madrid. Her Ph.D. focuses on security
and privacy in social networks. She is currently focused on Internet of
Things and cloud computing security, as well as, on cybersecurity. In-

deed, she has published several papers in national and international conferences and
journals and she is also involved in national R+D projects.

Juan Tapiador is Associate Professor of Computer Science in the
Computer Security Lab (COSEC) at Universidad Carlos III de Madrid,
Spain. Prior to joining UC3M, he was Research Associate at the Uni-
versity of York, UK. His research interests are in computer security,
including malware analysis, anomaly and intrusion detection, attack
modeling and cyberdefense systems. He holds a M.Sc. (2000) and a
Ph.D. (2004) in Computer Science from the University of Granada.

Pedro Peris-Lopez is Visiting Lecturer at the Department of Com-
puter Science, Universidad Carlos III de Madrid, Spain. He holds a
M.Sc. in Telecommunications Engineering and Ph.D. in Computer Sci-
ence. His research interests are in the field of protocols design, prim-
itives design, lightweight cryptography, cryptanalysis etc. Nowadays,
his research is focused on Radio Frequency Identification Systems (RFID)
and Implantable Medical Devices (IMD). In these fields, he has pub-

lished a great number of papers in specialized journals and conference proceedings. For
additional information see: www.lightweightcryptography.com/.

22

A PRACIS Algorithms

input : -
output: Keys are stored by the affected entities. Parameters initialized

1 foreach Di in [D] do
2 Di : KFPE(Di) = createFPEKey();
3 Di : [KDi(t)] = createSymKeyPerType();
4 Di: [selectedIS] = findAlliedIS();
5 foreach ISj in [selectedIS] do
6 Di→ ISj : send(KFPE(Di), [KDi(t)]);
7 Di : storeKeys(ISj ,KFPE(Di),[KDi(t)]);
8 ISj : storeKeys(Di, KFPE(Di),[KDi(t)]);
9 end

10 end
11 StS: KH = createHomomorphicKey();
12 StS: Nbrnd = maxRandom();
13 foreach Di in [D] do
14 StS : rDi = createRandom();
15 StS→Di : send(KH ,rDi , Nbrnd);
16 Di : storeKey(KH);
17 Di : storeRandom(rDi);
18 Di : storeMaxSizeRandom(Nbrnd);
19 StS: storeKey(KH);
20 StS: storeRandom(Di, rDi);
21 end
22 AF : KHMAC = createHMACKey();
23 AF : storeKey(KHMAC);
24 foreach Di in [D] do
25 AF →Di : send(KHMAC);
26 end
27 AF → StS : send(KHMAC);
28 foreach ISj in [IS] do
29 AF → ISj : send(KHMAC);
30 end

Algorithm 1: Setup procedure.

23

input : stix, Di, currentAggregation, counterPkgsOrigin, KHMAC , KH

output: STIX packet sent to all subscribers, packet aggregated by AF , or false

1 // # integrity check
2 receivedChecksum = stix.VictimID stix.VictimID = null AF : checksum =

HMAC(stix,KHMAC) if checksum != receivedChecksum then
3 abort;
4 else
5 // # incident forwarding
6 AF : subscribers = findSubscribers(stix.type);
7 foreach sbs in subscribers do
8 AF → sbs : send(stix);
9 end

10 // # incident aggregation
11 AF : currentAggregation = HAdd(stix.IncidentID, currentAggregation);
12 AF : storeAggregation(currentAggregation);
13 AF : counterPkgsOrigin = addCounter(Di);
14 // # this is a matrix, one value per Di

15 end
Algorithm 2: Incident aggregation and forwarding by AF .

input : [symkey],type ti
output: IS is subscribed to events of type ti

1 foreach ISi in [IS] do
2 ISi : Ks(Di) = findKey(Di);
3 ISi : subsPkg = E(Ks(Di), ti);
4 ISi→ AF : send(subsPkg);
5 AF : storeSubscription(ISi,subsPkg);
6 end

Algorithm 3: Subscription to a event type.

input : ti, KFPE(Di), confidence, effect, asset, rDi , KH , KHMAC

output: STIX packet delivered to af

1 Di : stix = createSTIXPackage();
2 Di : symKey = findKeyPerType(ti);
3 Di : stix.type = E(symKey,ti);
4 Di : stix.confidence = FPE(KFPE(Di), confidence);
5 Di : stix.effect= FPE(KFPE(Di), effect);
6 Di : stix.asset = FPE(KFPE(Di), asset);
7 Di : stix.id = HE(KH , type,rDi);
8 Di : stix.victimID = HMAC(KHMAC , stix);
9 Di : rDi = (rDi + 1) mod (2Nbrnd − 1) ;

10 Di→ AF : send(stix);

Algorithm 4: STIX package preparation and delivery.

24

input : [currentAggregation,counterPkgsOrigin] sent by AF after Imax incidents (recall
Algorithm 2), Nbrnd

output: Incident statistics calculated by StS and updated random values for each rDi , or
false

1 StS : KH = loadHomomorphicKey();
2 StS : resultTypes, resultCount = HD(KH , [currentAggregation,counterPkgsOrigin]);
3 expectedSum=0;
4 foreach Di in [D] do
5 StS : finalRandomDi = (loadRandom(Di) + resultCount[Di]) mod (2Nbrnd − 1);
6 StS : expectedSum = expectedSum+finalRandomDi;
7 end
8 if expectedSum != resultCount then
9 abort;

10 else
11 StS: updateCounters(resultCount);
12 end

Algorithm 5: STIX processing by StS.

input : stix, Di, KHMAC , KFPE(Di)
output: STIX packet processed by subscriber or false

1 // # integrity check
2 receivedChecksum = stix.VictimID stix.VictimID = null AF : checksum =

HMAC(stix,KHMAC) if checksum != receivedChecksum then
3 abort;
4 else
5 ISi : KFPE(Di) = findFPEKey(stix.victimName);
6 ISi : RealConfidence = FPD(KFPE(Di), stix.confidence);
7 ISi : RealEffect= FPD(KFPE(Di), stix.effect);
8 ISi : RealAsset = FPD(KFPE(Di), stix.asset);
9 end

Algorithm 6: Incident verification and decryption by ISi.

25

Figures and tables

Fig 1. An example of a STIX message [4].

26

Table 1. Notation
Element Description
Di Publisher i
StS Statistics subscriber
AF Message broker
ISi Incident subscriber i
Iti Incident of type ti
KFPE(Di) Format-Preserving Encryption key of Di

Ks(Di)(ti) Secret/ Symmetric key of Di per type of ti
KH Homomorphic encryption key
KHMAC HMAC key
HE(k, x) Homomorphic encryption of x using key k
HAdd(x1, x2) Homomorphic addition of messages x1 and x2

rDi Random value unique per Di

Fig 2. Overview of PRACIS

Fig 3. Example of STIX incident format to apply PRACIS.

27

t1 t2 t3 t4 t5 t6 t7 rDi

I4(D1) 0000000 0000000 0000000 0000001 0000000 0000000 0000000 0000000110001
I4(D2) 0000000 0000000 0000000 0000001 0000000 0000000 0000000 0000000010100
I5(D3) 0000000 0000000 0000000 0000000 0000001 0000000 0000000 0000000010101
Aggregated 0000000 0000000 0000000 0000010 0000001 0000000 0000000 0000001011010

Table 2. Example of Incident:id aggregation.

Table 3: Example of contingency table of event types and deliverers. Cells in bold are the val-
ues known to StS after PRACIS, whereas values in italics are the ones to be discovered in the
reidentification attack.

t1 t2 t3 t4 t5 t6 t7 t8 t9 Marginal (per Di)
D1 1 1 1 0 0 0 1 3 3 10
D2 4 4 4 4 4 4 4 1 1 30

Marginal (per ti) 5 5 5 4 4 4 5 4 4

Entity Tasks Time (ms)

Di

Time setup 83.84
Homomorphic Encryption 21.15
Format-Preserving encryption 64.94
HMAC computation 0.04
STIX message fill-up 1.24
Build STIX message 87.37

ISi

Format-preserving decryption 104.94
HMAC computation & comparison 0.04
STIX message decryption & verification 104.98

AF
2 messages id aggregation 0.175
Aggregation of Imax = 100 16.06
Aggregation of Imax = 1000 180.153
Aggregation of Imax = 10000 2120.660

Table 4: Creation, decryption, verification and aggregation of STIX messages (average)

Table 5: Incident creation and aggregation scalability analysis
STIX incident creation time (ms) STIX incident aggregation time (ms)

Amount of Di

Incidents / minute Time 10 100 200 400 800
40 3494.8 54.15 540.1 1089.42 2213.19 4377.99
80 6989.6 110.63 1089.42 2213.19 4377.99 8682.56

160 13979.2 224.57 2213.19 4377.99 8682.56 17783.71
320 27958.4 450.07 4377.99 8682.56 17783.71 36100.93
640 55916.8 902.48 8682.56 17783.71 36100.93 72923.88
1280 111833.6 1831.71 17783.71 36100.93 72923.88 147306.24

28

|Di| Interval Imax Nbtotal (bits) NbAV (bits) len(Incident:id) (bits) len(Incident:id) (bytes)

10

1 810 330 30 360 45
5 4050 396 32 428 54

10 8100 429 33 462 58

100

1 8100 429 33 462 58
5 40500 528 36 564 71

10 81000 561 37 598 75

1000

1 81000 561 37 598 75
5 405000 627 39 666 84

10 810000 660 40 700 88
Table 6: Overhead in Incident:id size after encryption depending on Di and aggregation intervals

Min. Avg. Max. Max. overhead Avg. overhead
Confidence 3 5 7 4 2
Effect 11 33 71 60 22
Asset 3 8 15 12 5
Total 17 46 93 76 29

Table 7: Overhead of FPE fields (bytes)

29

Table 8: Related work in cybersecurity information sharing
Need

for CIS
Theoretical
approach to

CIS

Practical
mechanism to

CIS

Mechanism
technique(s)

Privacy-
preserving

CIS

Aggregation
of incidents

[49] X
[21] X
[63] X
[25] X
[59] X
[32] X
[24] X
[33] X
[14] X
[61] X
[52] X Proxy re-encryption X
[29] X Port scanning
[35] X Aggregation X
[2] X Aggregation X* X*
[30] X Identity-based ring

signature
[16] X Iterative anonymous ID

assignation
X

[39] X Group signatures and
broadcast encryption

X

[27] X Certificateless
encryption

X

PRACIS X Homomorphic
encryption and

format-preserving
encryption

X X

* mentioned but not detailed

30

