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a b s t r a c t 

In this work, a continuum constitutive framework for the mechanical modelling of soft tis- 

sues that incorporates strain rate and temperature dependencies as well as the transverse 

isotropy arising from fibres embedded into a soft matrix is developed. The constitutive 

formulation is based on a Helmholtz free energy function decoupled into the contribu- 

tion of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion 

dependent transverse isotropy. The proposed framework considers finite deformation kine- 

matics, is thermodynamically consistent and allows for the particularisation of the energy 

potentials and flow equations of each constitutive branch. In this regard, the approach de- 

veloped herein provides the basis on which specific constitutive models can be potentially 

formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive 

framework is particularised here for animal and human white matter and skin, for which 

constitutive models are provided. In both cases, different energy functions are considered: 

Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the exper- 

imental behaviour of the two soft tissues is confirmed. 

© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

A wide variety of materials combines viscous behaviours with transverse isotropy. Examples of these are soft tissues in

humans, animals or plants ( Zulliger et al., 2004; Gasser et al., 2006; Wang et al., 2014 ). The mechanical behaviour exhibited

by these soft tissues is known to involve complex phenomena such as large deformation and nonlinear response. These

features of the mechanical behaviour of soft tissues can be suitably modelled by using hyperelastic theories ( Fung, 1981 ).

Moreover, while some authors assume isotropy for their modelling, these biological tissues are commonly embedded with

bundles of fibres that present a preferred direction ( Murphy, 2013 ). The presence of these fibres into the tissue generally

results in a stiffer response in their preferred direction, also identified as transverse isotropic behaviour ( Fung, 1981; Cowin

and Humphrey, 2001; Guo et al., 2007 ). Overall, the incorporation of this directional preference in soft tissues has be-
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come an essential step to develop reliable mathematical models able to predict the mechanical behaviour of these materials

( Murphy, 2013 ). 

A considerable effort has been made in order to experimentally characterise soft tissues. In this regard, experi-

mental work has been carried out on different human and animal tissues embedded with collagen fibres: arteries

( Arroyave et al., 2015 ), soft connective tissue such as skin or tendons ( Annaidh et al., 2010 ; Carniel and Fancello, 2017 ),

muscles ( Mohammadkhah et al., 2016 ) or myocardium in the heart ( Humphrey et al., 1990 ; Murphy, 2013 ), among others.

Another relevant experimental work is the white matter of the brain, where the transverse isotropic behaviour arises from

the alignment of the bundles of axons ( Prange and Margulies, 2002 ). 

In parallel to these effort s, several authors have modelled biological soft materials by defining their overall mechanical

response as the sum of matrix and fibres contributions. Human arteries were studied by Gasser et al. (2006) with the de-

velopment of a continuum framework accounting for the dispersion of the collagen fibre orientation through a hyperelastic

free energy function that also encompassed the anisotropic elastic properties. Skin can be modelled following the same as-

sumptions. It consists of collagen fibres embedded in a ground substance, thus presenting a transversely isotropic nonlinear

behaviour ( Valero et al., 2015 ). The tendons are another example of structures characterized by axially oriented bundles

of collagen fibres embedded into a ground substance. This prevalent unidimensional fibre orientation is responsible for a

greater stiffness and resistance in the axial direction ( Maurel et al., 1997; Natali et al., 2005 ). Natali et al. (2005) formulated

an anisotropic elastic constitutive model where a main free energy function was defined as the sum of an isotropic matrix

contribution and an anisotropic contribution due to the fibres. Moreover, Velardi et al. (2006) used a transversely isotropic

hyperelastic model originally proposed by Meaney (2003) to study the mechanics of the brain under uniaxial tensile tests.

Chatelin et al. (2012) proposed a visco-hyperelastic model which takes into account the rate dependency and anisotropy

arising from the axonal orientation. More recently, Labus and Puttlitz (2016) developed an anisotropic hyperelastic constitu-

tive model for white matter based on a strain energy density function that also incorporates the anisotropic contribution of

the axons. 

The dependence of the mechanical behaviour of soft tissues on strain rate and temperature has also been the subject of

many research programmes. Pietsch et al. (2014) carried out compression tests at multiple strain rates in both transverse

and longitudinal directions using porcine muscle specimens. A stiffer response with higher strain rate was observed. Sim-

ilarly, Clemmer et al. (2010) investigated the structure of collagen fibril by testing patellar tendon samples from rabbits at

different strain rates. Again, an increase in stiffness with strain rate was observed. Similar results were observed by Ng et al.

(2004) for chicken tendons. Kulkarni et al. (2016) proposed a transversely isotropic visco-hyperelastic constitutive model

for soft tissues in order to account for strain rate effects. In this model, a viscous potential was introduced to describe the

rate dependent short-term memory effects. Experiments conducted by Zhou et al. (2010) confirmed a rate-induced harden-

ing for skin, along with a softening response with temperature. Liu et al. (2016) have recently demonstrated a temperature

dependence in the brain mechanical properties. 

To the authors’ knowledge, there is no constitutive model available in the literature that accounts simultaneously for

strain rate sensitivity, temperature dependency and anisotropy due to fibres for transversely isotropic soft tissues, in a ther-

modynamically consistent fashion. In this work, a continuum framework for soft tissues embedded with fibres of different

natures is developed. The formulation is based on a Helmholtz free energy function additively decoupled into a viscous-

hyperelastic contribution associated with the response of the matrix, which is assumed isotropic; and an anisotropic con-

tribution associated with the response of the fibres, as suggested by Holzapfel et al. (20 0 0) . The constitutive framework is

applied to white matter of the brain and skin in order to illustrate its versatility. In addition, a methodology based on imag-

ing techniques to incorporate structural information (regarding fibre orientation and dispersion) to the proposed model is

presented. For these soft tissues, three different commonly used energy functions are considered in this work: Neo-Hookean

( Rivlin, 1948 ), Gent ( Gent, 1996 ) and Ogden ( Ogden, 1972 ). The identification process of the model parameters depending

on each energy function is carried out by applying an optimisation process for each soft tissue. For both soft tissues, a good

correlation between experimental data available in the literature and model predictions is found. More generally, this con-

stitutive framework can be used to model specific soft tissues with strain rate and temperature dependencies through the

selection of the free energy functions and flow equations of each constitutive branch. 

Section 2 details the proposed continuum mechanics framework. Its particularisation to white matter and skin is then

described in Sections 3 and 4 , and the corresponding results and discussion in Section 5 . Section 6 finally concludes this

work. 

2. Continuum mechanics framework 

The proposed continuum mechanics framework is presented here, including the description of the rheological scheme,

the finite deformation kinematics, the continuum representation of distributed fibre orientation and the assumptions

adopted for the Helmholtz free energy function. 

2.1. Rheological model 

The rheological model is composed of three constitutive branches: the viscous (V) and the purely elastic (E) branches

associated to the matrix behaviour; and the fibres behaviour branch (F), see Fig. 1 . Note that the viscous contribution is
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Fig. 1. General rheological scheme. 

Fig. 2. Kinematics of the framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

governed by a yield function if the friction element shown in dash lines is present; and it is permanently active otherwise.

This model is largely motivated by general observations of the deformation mechanisms of anisotropic hyperelastic soft

tissues. 

The mechanical response of a variety of transversely isotropic soft tissues has been modelled by many authors by consid-

ering the total stress response of the material as the sum of the stress contribution due to fibres embedded in an isotropic

matrix, and the one of the matrix itself ( Gasser et al., 2006; Kulkarni et al., 2016 ). Most of the subsequently developed mod-

els that follow this assumption describe the matrix response under quasi-static conditions as purely hyperelastic ( Chatelin

et al., 2012; Labus and Puttlitz, 2016 ). In this regard, if no strain rate dependency is considered, the matrix behaviour can

be described by only defining the hyperelastic spring of the purely elastic branch. As these materials can also exhibit strain

rate dependency, the matrix behaviour can instead be captured by being defined as a combination of elastic and viscous

responses, the latter being introduced to this effect. The fibres can be modelled with a direction dependent spring which

introduces the anisotropy due to fibre orientation. 

According to the description of the rheological model (see Fig. 1 ), the total stress of the transversely isotropic material is

postulated as a combination of the stress contributions of each phase: 

σ = σM 

+ σF (1)

where σM 

and σF are the Cauchy stress contributions of the matrix and the fibres, respectively. The total stress due to the

matrix response is obtained as the sum of both viscous and elastic resistances, σM 

= σV + σE . 

2.2. Kinematics framework 

The finite deformation kinematics is defined by three configurations described next, see Fig. 2 . An infinitesimal line

element in the reference configuration �o can be mapped to the current configuration � through the total deformation

gradient F . Note that the deformation gradient is the same for all the constitutive branches. Thus, F = F V = F E = F F where

F V refers to the viscous resistance, F E to the purely elastic resistance, and F F to the fibres resistance. While the latter two

resistances are defined as purely elastic, F e 
E 
and F e 

F 
, respectively, the viscous resistance contribution is decomposed into an

elastic F e 
V 
and a viscous part F ν

V 
. Following a multiplicative decomposition of the viscous resistance, an additional interme-

diate configuration, designated as the relaxed configuration �̄, is defined to account for the viscous effects. The following

expression for the total deformation gradient is thus obtained: 

F = F e V F 
ν
V = F e E = F e F (2)
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Fig. 3. Characterisation of the unit fibre orientation vector a o by means of spherical coordinates. 

 

 

 

 

 

 

The velocity gradient l can be written in terms of the different kinematics of the constitutive branches as: 

l = 

˙ F F −1 = l e V + F e V ̄L 
ν
V F 

−e 
V (3.1) 

l = l e E = l e F (3.2) 

where l e 
V 

= 

˙ F e 
V 
F −e 
V 

, l e 
E 

= 

˙ F e 
E 
F −e 
E 

and l e 
F 

= 

˙ F e 
F 
F −e 
F 

are respectively the elastic parts of the viscous, elastic and fibre velocity gradi-

ent expressed in �. L̄ ν
V 

= 

˙ F ν
V 
F −ν
V 

is the viscous part of the viscous velocity gradient expressed in �̄. 

2.3. Continuum representation of the distributed fibre orientation 

This section describes a methodology defining a scalar parameter that represents the average deformation along the fibres

direction ( Gasser et al., 2006 ). In the following sections, the representation of distributed fibre orientation is particularised

for different transversely isotropic materials. The orientation of the fibres and their distribution is introduced in a continuum

sense through a symmetric structure tensor A o depending on the orientation density function ρ( a o ) which characterises the

fibre distribution ( Advani and Tucker, 1987; Gasser et al., 2006 ): 

A o = 

1 

4 π

∫ 
W 

ρ( a o ) a o � a o dW (4) 

where W is a unit sphere and a o an arbitrary unit fibre orientation vector defined in �o , that can be expressed by using

two spherical coordinates α ∈ [0, π ] and γ ∈ [0,2 π ], see Fig. 3: 

a o ( α, γ ) = sin α cos γ e 1 + sin α sin γ e 2 + cos αe 3 (5) 

where e i =1 , 2 , 3 denote the Cartesian coordinate basis. 

The compact form of the structure tensor of orientation can be written as: 

A o = A oij e i � e j (6) 

where the coefficients A oij = A oji (symmetric tensor) are defined as proposed by Gasser et al. (2006) : 

A o11 = 

1 

4 π

∫ 2 π
0 

∫ π

0 

ρ( α, γ ) sin 
3 αcos 2 γ d αd γ

A o22 = 

1 

4 π

∫ 2 π
0 

∫ π

0 

ρ( α, γ ) sin 
3 αsin 

2 γ d αd γ

A o33 = 

1 

4 π

∫ 2 π
0 

∫ π

0 

ρ( α, γ ) cos 2 α sin αd αd γ

A o12 = 

1 

4 π

∫ 2 π
0 

∫ π

0 

ρ( α, γ ) sin 
3 α sin γ cos γ d αd γ

A o23 = 

1 

4 π

∫ 2 π
0 

∫ π

0 

ρ( α, γ ) sin 
2 α cos α sin γ d αd γ

A o13 = 

1 

4 π

∫ 2 π
0 

∫ π

0 

ρ( α, γ ) sin 
2 α cos α cos γ d αd γ

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(7) 

The average stretch of the fibres λ̄F can then be defined as: 

λ̄F = 

√ 

I 4F (8) 
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where I 4F is the fourth strain invariant that depends on A o and on the elastic right Cauchy-Green deformation tensor of the

fibres C e 
F 
through: 

I 4F = tr 
(
A o C 

e 
F 

)
(9)

In soft tissues, the structure tensor is commonly given in a compact form considering transversely isotropic distribution

of the fibres. This is the case of brain white matter in which the distribution of axons can be extracted from experimental

techniques, see following sections. 

2.4. Derivation of the stress tensors from the Helmholtz free energy function 

The Helmholtz free energy function �o per unit volume in �o is defined here as depending on the elastic right Cauchy–

Green deformation tensors C e 
V 

= F eT 
V 
F e 
V 
, C e 

E 
= F eT 

E 
F e 
E 
and C e 

F 
= F eT 

F 
F e 
F 
, temperature θ and structure tensor A o . In addition, it is

decoupled into its matrix ( �oM 

) and fibres ( �oF ) contributions: 

�o = �oM 

(
C e V , C 

e 
E , θ

)
+ �oF 

(
C e F , A o , θ

)
(10)

Furthermore, the matrix part can be assumed to be the combination of the viscous ( �o 
V 
M 

) and elastic ( �o 
E 
M 

) resistances:

�o M 

= �o 
V 
M 

(
C e V , θ

)
+ �o 

E 
M 

(
C e E , θ

)
(11)

Note that the consideration of the viscous contribution to the energy function of the matrix results in an isotropic viscous

response. 

Starting from the first and second Thermodynamics Principles and considering the expression of the Helmholtz free

energy assumed herein, the following expression for the Clausius–Duhem inequality is obtained: 

− ˙ �o − ˙ θηo + M o V : D 

ν
V + S o V : F 

T D 

e 
V F + S o E : F 

T D 

e 
E F + S o F : F 

T D 

e 
F F −

1 

θ
q ∇ x θ ≥ 0 (12)

where S o V , S o E and S o F are the second Piola-Kirchhoff stresses in �o of the viscous, elastic and fibre resistances; M o V =
F T F S o V , is the Mandel stresses in �o of the viscous resistance; D 

e 
V 
, D 

e 
E 

and D 

e 
F 
are the symmetric parts of the velocity

gradient tensors in �o of the viscous, elastic and fibre resistances; D 

ν
V 
is the symmetric part of the viscous velocity gradient

tensor in �o ; ηo is the specific entropy per unit volume in �o ; and q = −k ∇ x θ is the heat flux per unit volume in �o , with

k being the thermal conductivity. ˙ �o can then be derived as 

˙ �o = 

∂ �o 

∂C e 
V 

: ˙ C e V + 

∂ �o 

∂C e 
E 

: ˙ C e E + 

∂ �o 

∂C e 
F 

: ˙ C e F + 

∂ �o 

∂θ
˙ θ (13)

Therefore, by substituting Eq. (13) into Eq. (12) , the Clausius–Duhem inequality can be rewritten as: (
F νV S o V F 

νT 
V − 2 

∂ �o 

∂C e 
V 

)
: F eT V D 

e 
V F 

e 
V + 

(
S o E − 2 

∂ �o 

∂C e 
E 

)
: F eT E D 

e 
E F 

e 
E + 

(
S o E − 2 

∂ �o 

∂C e 
F 

)
: F eT F D 

e 
F F 

e 
F + M o V : D 

ν
V 

+ 

(
−∂ �o 

∂θ
− ηo 

)
˙ θ − 1 

θ
q ∇ x θ ≥ 0 (14)

From this equation, the second Piola-Kirchhoff stress associated to each constitutive branch and the specific internal

entropy per unit volume can be obtained using the Coleman and Noll method ( Coleman and Noll, 1963; Coleman and

Gurtin, 1967 ): ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S o V = F −ν
V 

2 
∂ �o 

∂C e 
V 

F −νT 
V 

( 15 . 1 )

S o E = 2 
∂ �o 

∂C e 
E 

( 15 . 2 )

S o F = 2 
∂ �o 

∂C e 
F 

( 15 . 3 )

ηo = −∂ �o 

∂θ
( 15 . 4 )

It can be demonstrated that the heat conduction term is always positive. Note that for the inelastic dissipation term, the

associated flow rule must also satisfy the Clausius-Duhem inequality ( M o V : D 

ν
V 

≥ 0 ). 

The continuum mechanics framework presented herein allows for its particularisation to the specific matrix and fibres

to be modelled. 
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3. Particularisation of the energy functions and flow rules 

In this work, the versatility of the model is illustrated by defining the framework for two transversely isotropic soft tis-

sues: skin and white matter of the brain. The brain tissue can be divided into grey and white matters. While the grey matter

generally exhibits an isotropic mechanical response ( Velardi et al., 2006; Pervin and Chen, 2009 ), the bundles of axons in

the white matter induce transverse isotropy. In this work, the mechanical behaviour of the white matter has been modelled

as the combination of an isotropic response associated to the glial matrix and an anisotropic response associated to the

axonal contribution ( Feng et al., 2013; Ning et al., 2006; Velardi et al., 2006 ). The mechanical response of skin can be un-

derstood as the sum of the ground substance contribution (matrix) and the collagen fibres contribution ( Valero et al., 2015 ).

The orientation of these collagen fibres is defined by the Langer’s lines, within the dermis, that induce a stiffer mechanical

resistance to deformation along this direction. The aim of this section is to demonstrate that under the assumptions made

in the general framework of this work, it is possible to provide new constitutive models to predict the mechanical behaviour

of a wide variety of soft tissues. In order to show the versatility of the model, a set of different free energy functions are

defined for brain and skin tissues. 

3.1. Particularisation of the isotropic matrix response 

The isotropic matrix contribution is defined by the combination of a purely elastic branch with a viscous branch. The

purely elastic contribution governs the mechanical response under quasi-static loads whereas the viscous contribution ac-

counts for hardening effects due to strain rate sensitivity ( Garcia-Gonzalez et al., 2017a ). 

3.1.1. Elastic branch 

This part of the model has been defined by using a hyperelastic strain energy function. Three different functions have

been considered here whose suitability for each soft tissue is presented in the next section: Neo-Hookean energy function,

Eq. (16.1) ( Rivlin, 1948 ); Gent energy function, Eq. (16.2) ( Gent, 1996 ); Ogden energy function, Eq. (16.3) ( Ogden, 1972 ). 

�E 
oM 

| 
NH 

(
C e E , θ

)
= 

μ( θ ) 

2 
( I ∗1E − 3 ) + 

1 

2 
κ( J E − 1 ) 

2 (16.1) 

�E 
oM 

| G 
(
C e E , θ

)
= −μ( θ ) 

2 
j m 

ln 

(
1 − I ∗1E − 3 

j m 

)
+ 

1 

2 
κ( J E − 1 ) 

2 (16.2) 

�E 
oM 

| O 
(
C e E , θ

)
= �E 

oM 

| O 
(
λe 
E 1 , λ

e 
E 2 , λ

e 
E 3 , θ

)
= 

μ( θ ) 

α

[ (
λe 
E 1 

)α + 

(
λe 
E 2 

)α + 

(
λe 
E 3 

)α − 3 

] 
+ 

1 

2 
κ( J E − 1 ) 

2 (16.3) 

where I ∗
1E 

= tr C e ∗
E 

is the isochoric first strain invariant, λe 
E i 

are the elastic principal stretches of the isochoric part of de-

formation with i = 1,2,3 and κ is the bulk modulus. The distortional right Cauchy–Green deformation tensor is defined by

C e ∗
E 

= (F ∗
E 
) T F ∗

E 
where F ∗

E 
= J −1 / 3 

E 
F E , and j m 

and α are dimensionless parameters. The shear modulus of the matrix depends

on the temperature through μ(θ ) = μo + c( θ − θref ) , where c is a material parameter, θ ref is the reference temperature

and μo is the shear modulus at reference temperature. This linear dependence of brain tissue and skin shear response on

temperature is derived from the experimental results obtained by Liu et al. (2016) and Zhou et al. (2010) . Note that in the

Ogden model, the equivalent shear modulus results from μ( θ ) α/2. In this regard, the physical consistent condition μ( θ ) α ≥0

must be verified ( Ogden et al., 2004 ). The volumetric term 

1 
2 κ( J E − 1 ) 2 , although defined in the free energy of the matrix,

represents the volumetric response of the overall soft tissue. 

The constitutive equation for the network resistance can be derived by using Eq. (15.2) and the stress tensors relation

σE = J −1 
E 

F S o E F 
T . For the Ogden free energy function, the Eq. (15.2) can be alternatively written in terms of the principal

stretches λe 
E i 

and the principal referential directions N i as S o E = 

∑ 3 
i =1 

1 
λe 
E i 

∂ �o 
∂λe 

E i 

N i � N i . 

3.1.2. Viscous branch 

This part of the model introduces the mechanical dependence on strain rate. As for the elastic branch, three differ-

ent functions have been considered here whose suitability for each soft tissue is presented in the next section: Neo-

Hookean energy function, Eq. (17.1) ( Rivlin, 1948 ); Gent energy function, Eq. (17.2) ( Gent, 1996 ); Ogden energy function,

Eq. (17.3) ( Ogden, 1972 ). 

�V 
oM 

| NH 
(
C e V 

)
= 

μV 

2 
( I e ∗1V − 3 ) (17.1) 

�V 
oM 

| G 
(
C e V 

)
= −μV 

2 
j V ln 

(
1 − I e ∗1V − 3 

j V 

)
(17.2) 

�V 
oM 

| O 
(
C e V 

)
= �V 

oM 

| O 
(
λe 
V 1 , λ

e 
V 2 , λ

e 
V 3 

)
= 

μV 

β

[ (
λe 
V 1 

)β + 

(
λe 
V 2 

)β + 

(
λe 
V 3 

)β − 3 

] 
(17.3) 
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where μV , j V and β are material parameters. Note that here, I e ∗
1V 

= tr C e ∗
V 

and λe 
V i 

are referred to as the isochoric first strain

invariant and the elastic principal stretches (with i = 1,2,3) of the viscous resistance (V in Fig. 1 ). The distortional right

Cauchy–Green deformation tensor of the viscous branch is defined by C e ∗
V 

= (F e ∗
V 

) T F e ∗
V 

where F e ∗
V 

= J −1 / 3 
V 

F e 
V 
. Note that the

physical consistent condition μV β ≥0 must also be verified ( Ogden et al., 2004 ). 

The constitutive equation for the network resistance can be derived by using Eq. (15.1) and the stress tensors relation

σV = J −1 
E 

F S o V F 
T . For the Ogden free energy function, Eq. (15.1) can be alternatively written in terms of the principal stretches

λe 
V i 

and the principal referential directions N i as S o V = F −ν
V 

( 
∑ 3 

i =1 
1 

λe 
V i 

∂ �o 
∂λe 

V i 

N i � N i ) F 
−νT 
V 

. 

The viscous part of the deformation gradient is determined by the viscous flow rule. The evolution of this viscous flow

is defined as: 

L̄ νV = 

˙ F ν∗
V F 

−ν∗
V = ˙ γ v N̄ 

v (18)

where L̄ ν
V 
is the viscous component of the velocity gradient in �̄, ˙ γ v is the viscous multiplier and N̄ 

v provides the direction

of the viscous flow following: 

N̄ 

v = 

σdev 
V 

τV 
(19)

where σdev 
V 

is the deviatoric part of the Cauchy stress tensor and τV = 

√ 

tr ( σdev 
V 

σdev 
V 

) is the effective stress driving the

viscous flow. The rate equation for viscous flow is given by Bergstrom (2015) : 

˙ γ v = ˙ γ v 
o 

( √ 

σdev 
V 

: σdev 
V √ 

2 σVT 

) n 

(20)

where ˙ γ v 
o is a dimensional scaling constant, and σ VT and n are material properties. 

3.2. Particularisation of the anisotropic fibres response 

Helmholtz free energy 

The free energy associated to the fibres contribution and accounting for the resulting anisotropy can be defined by the

free energy function proposed by Gasser et al. (2006) : 

�̄F 
oF 

(
C e F , A o , θ

)
= 

⎧ ⎨ 

⎩ 

k 1 (θ ) 

2 k 2 
{ exp [ k 2 ( I ∗4F − 1 ) 

2 
] − 1 } i f I ∗4F ≥ 0 

0 Otherwise 

(21)

where k 1 (θ ) = k 1 o + c( θ − θref ) quantifies the increase of stiffness in the fibre direction. k 1 o is the value of k 1 at the refer-
ence temperature θ ref , and c and k 2 are material parameters (c is assumed to be the same as the one of the ground matter,

as a first approximation). The isochoric fourth strain invariant I ∗
4F 

= tr ( A o C 
e ∗
F 

) = J −2 / 3 
F 

I 4F depends on the distortional right

Cauchy–Green deformation tensor C e ∗
F 

= (F ∗
F 
) T F ∗

F 
where F ∗

F 
= J −1 / 3 

F 
F e 
F 
. Note that the fibre anisotropic contribution to the free

energy only appears when the fibres are in tension ( I ∗
4F 

≥ 0 implies λ̄F ≥ 0 according to Eq. (8) ). Additionally, more complex

switch condition can easily be adopted if needed, e.g., Li et al. (2017) . 

The constitutive equation for the network resistance can be derived by using Eq. (15.3) and the stress tensors relation

σF = J −1 
F 

F S o F F 
T : 

σF = 

⎧ ⎨ 

⎩ 

2 k 1 (θ ) 

J F 
( I ∗4F − 1 ) exp [ k 2 ( I 

∗
4F − 1 ) 

2 
] dev ( F ∗F A o F 

∗T 
F ) i f I ∗4F ≥ 0 

0 Otherwise 

(22)

4. Particularisation of the structure tensor 

In this section, a particularisation of the continuum representation of the distributed fibre orientation is presented for: i)

axons in the white matter; and ii) collagen fibres in skin. 

4.1. Continuum representation of the distributed axonal orientation in the white matter 

Many research initiatives on the brain white matter have focussed on the development and use of novel experimental

techniques aimed at identifying its underlying axonal structure ( Goriely et al., 2015 ). The main objective of this section

is the definition of the structure tensor, Eq. (4) , from diffusion tensor imaging (DTI). DTI leverages the use of magnetic

resonance imaging (MRI) to measure directional water diffusion in soft tissues predominantly following the fibres paths.

The application of DTI to the white matter provides a diffusion tensor from which information on axonal orientation and

axonal dispersion within the tissue can be identified for each voxel. 
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In order to define the particularised structure tensor ˆ A o as a function of a single dispersion parameter ξ and the preferred

axonal orientation ˆ a o , Gasser et al. (2006) have proposed the following compact form: 

ˆ A o = ξ I + ( 1 − 3 ξ ) ̂ a o � ˆ a o (23) 

Significant effort s have recently been made to incorporate the information obtained from DTI into finite element models

( Chatelin et al., 2012 ). This is generally done by mapping a fractional anisotropy (FA) coefficient that represents the degree

of anisotropy as well as the preferred axon orientation into the finite element mesh. The coefficient FA is defined from the

eigenvalues λi of the diffusion tensor as proposed by Pierpaoli and Basser (1996) : 

FA = 

√ 

3 
[
( λ1 − λ) 

2 + ( λ2 − λ) 
2 + ( λ3 − λ) 

2 
]

√ 

2 
(
λ2 
1 

+ λ2 
2 

+ λ2 
3 

) (24) 

where 

〈 λ〉 = ( λ1 + λ2 + λ3 ) / 3 (25) 

According to the definition of FA, this is a non-dimensional measure that represents the degree of anisotropy in the axon

orientation for each voxel volume. This coefficient adopts a value of 0 in the case of an isotropic distribution of the axons

and a value of 1 in the case of an ideal co-alignment of the axons. Note that an absence of axons also leads to FA = 0. As

a consequence, the use of FA as an anisotropic distribution parameter has often been disputed. While we acknowledge this

limitation, we adopt the use of FA as a first approximation of anisotropic distribution. 

The definition of the structure tensor presented in Eq. (23) has been previously used by Wright et al. (2013) to incorpo-

rate neural tract alignment through DTI and a functional dependence on FA was proposed for the dispersion parameter ξ :

ξ = 

1 

2 

−6 + 4F A 

2 + 2 
√ 

3F A 

2 − 2F A 

4 

−9 + 6F A 

2 
(26) 

Therefore, when ξ adopts a value of 1/3, an isotropic distribution of the axons is expected and, in this case, the structure

tensor is spherical. When ξ adopts a value of 0, an ideal coalignment of the axons is expected and the structure tensor

reduces to ˆ A o = ̂  a o � ˆ a o . Thus, the anisotropic behaviour of the white matter due to both axon orientation and axon disper-

sion can be taken into account in the constitutive modelling through ˆ A o by connecting experiments with modelling. With

respect to the preferred axon orientation, an anisotropic unit vector ˆ a o is defined as the mean orientation of the axons in

each voxel volume. The direction of the unit vector ˆ a o is given by the eigenvector associated with the maximal eigenvalue

of the diffusion tensor ( Chatelin et al., 2012 ). 

Giordano and Kleiven (2014) have demonstrated that the white matter stiffness is region-dependent and that there is a

direct relation between stiffness and FA whereby the former increases with the latter. The use of the previous definition of

the particularised structure tensor ˆ A o in Eqs. (21) and (22) , allows us to account for this region dependent stiffness through

FA. This approach presents the drastic advantage that the material parameters k 1 and k 2 are the same for the whole white

matter, while the anisotropy arises through the experimental knowledge of the FA. This allows for the consideration of not

only the anisotropy associated to axon orientation but also for the difference in terms of stiffness depending on regional

axon dispersion. Note that the relatively high isotropy of the grey matter (mainly constituted of cell bodies) can equally be

modelled by taking a value of FA equal to 0 ( Cercignani et al., 2001; Wright et al., 2013 ). Also, for the ovine white matter,

as no DTI was provided only the axonal perfect coalignment case FA = 1 was considered. 

4.2. Continuum representation of the distributed orientation of collagen fibres in the skin 

Mesoscopically (centimetre scale), skin collagen fibres along Langer’s lines can be considered as quasi-perfectly coaligned:
ˆ A o = ̂  a o � ˆ a o , see also Eq. (23) . 

5. Analysis and discussion 

With the aim of illustrating the versatility of the model, this section presents the predictions of the model for: i) animal

(ovine) and human white matter tissues; ii) animal (pig) and human skin tissues. To this end, the model was implemented in

MATLAB where the model parameters calibration was carried out by means of optimisation techniques for each soft tissue.

A detailed analysis of the energy functions suitability and the optimisation of the model parameters is presented next. The

subsequent results and discussion presented in this section are based on the optimal solution found for the mechanical

modelling of each tissue studied. 
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Table 1 

Coefficients of determination R 2 for ovine and human white matters 

for the energy functions considered. 

Coefficient of determination 

Neo-Hookean Gent Ogden 

Axon direction (ovine) 0.9920 0.9931 0.9934 

Transverse direction (ovine) 0.8177 0.9400 0.9822 

Corpus callosum (human) 0.9802 0.9803 0.9807 

Corona radiata (human) 0.9098 0.9097 0.9131 

Table 2 

Coefficients of determination R 2 for pig and human skins for the energy 

functions considered. 

Coefficient of determination 

Neo-Hookean Gent Ogden 

Axon direction (human) 0.9628 0.9641 0.9651 

Transverse direction (human) 0.6158 0.9020 0.9302 

Mean: strain rate curves (pig) 0.9067 0.9895 0.9826 

Mean: temperature curve (pig) 0.9246 0.9822 0.9807 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Analysis of the energy functions and determination of model parameters 

This section presents the optimisation procedure used to calibrate the model parameters. To this end, the calibration for

each energy function (Neo-Hookean, Gent and Ogden) aims at minimising the following objective function: 

s = 

m ∑ 

j=1 

∑ n 
i =1 | y i − f i | 

m 

(27)

where m is the number of curves of each data collection, f i are the interpolated values of stress model predictions at ex-

perimental strain data, y i are the experimental stress values and n the number of experimental data points. Two algorithms

were employed for this purpose: an unconstrained derivate-free method ( fminseach , in MATLAB terminology) and a sequen-

tial quadratic programming method ( fmincon , in MATLAB terminology). In addition, the coefficient of determination R 2 was

calculated for each energy function and soft tissue considered to evaluate the accuracy (goodness) of fit: 

R 2 = 1 − s res 

s tot 
(28)

where s res = 

∑ n 
i =1 ( y i − f i ) 

2 and s tot = 

∑ n 
i =1 ( y i − ȳ ) 2 , with ȳ being the mean of the experimental data. 

This optimisation process was carried out for the animal and human tissues considered. In this regard, different examples

collected from literature are analysed and the model parameters are identified and provided for them. The coefficients of

determination for each energy function are provided in Table 1 for white matters and in Table 2 for skins. In addition, a

section with the parameters of each tissue model is included in the Appendix A . 

5.2. Discussion 

Although some authors have defined the matrix response of transversely isotropic soft tissues with a Neo-Hookean func-

tion ( Limbert and Middleton, 2004; Kulkarni et al., 2016 ; Garcia-Gonzalez et al., 2017b ), such choice was not found to pro-

vide reliable predictions for the tissues and conditions studied herein, while the Gent or Ogden energy functions were

shown to perform adequately (see accuracy of the fit for the different models in Tables 1 and 2 by means of R 2 ). In the

following, we discuss in detail the results for both tissues. 

5.2.1. White matter 

The mechanical behaviour dependence of white matter on applied loading direction, temperature and brain region are

incorporated in the proposed constitutive framework. In this section, we focus our discussion on the axonal orientation and

corresponding FA. 

Animal white matter: axon orientation and temperature dependent properties. Some authors have observed that white mat-

ter tissue exhibits a significantly stiffer response when the loading is applied in the axon direction as opposed to the trans-

verse direction ( Velardi et al., 2006; Labus and Puttlitz, 2016 ). A first analysis of the energy functions and calibration of

material parameters was carried out for experimental data of uniaxial tensile tests for animal (ovine) white matter with

FA = 1 (in the absence of DTI information) ( Labus and Puttlitz, 2016 ). In the experimental data used for white matter, only

one loading rate was used. Consequently, as any rate-dependent calibration would be meaningless (and non unique), the
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Fig. 4. Stress-stretch experimental curves of ovine white matter in transverse and axon directions ( Labus and Puttlitz, 2016 ) versus models predictions for 

the three energy functions. 
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Fig. 5. Experimental data for ovine brain tissue ( Liu et al., 2016 ) and linear regression to determine the temperature-sensitivity parameter c of the model 

(slope of the linear regression). 

 

 

 

 

 

 

 

 

 

 

 

viscous branch was not considered here for both the ovine and human models. The loading is applied in both axonal and

transverse directions and a comparison between the model predictions and experimental data is shown in Fig. 4 . While a

good agreement was found for the three energy functions for the tensile tests in the axonal direction, the Neo-Hookean

energy function is not able to capture the nonlinear behaviour in the transverse direction (see Table 1 ). Moreover, although

both Gent and Ogden strain energy functions faithfully capture the mechanical behaviour of white matter, the Ogden energy

function provides a slightly better fit with a coefficient of determination R 2 = 0 . 9934 . 

The recent study carried out by Liu et al. (2016) also exhibited a temperature dependence of the brain mechanical prop-

erties. In the proposed model, the apparent shear modulus of the white matter (overall response of glial matrix and axons)

depends on the temperature through Eqs. (16) and (21) . A linear regression with the experiments provided by Liu et al.

(2016) was computed to provide the temperature-sensitivity parameter c (slope of the linear regression) over a temperature

range from 293 K to 313 K, see Fig. 5 . 

Human white matter: fractional anisotropy dependent properties. Recent studies have confirmed that the mechanical be-

haviour of human brain tissue is region dependent ( Giordano and Kleiven, 2014 ; Budday et al., 2017 ). This means that the
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Fig. 6. True stress-stretch experimental curves of different human white matter regions in the mean axonal direction ( Giordano and Kleiven, 2014 ) versus 

models predictions for the three energy functions (FA = 0.8 for corpus callosum; FA = 0.5 for corona radiata). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stress–strain response of the brain depends on the local microstructure of the tissue, and thus, the FA ranges from 0 to 1

depending on the axonal dispersion. Several works have demonstrated that regions with higher FA exhibit a stiffer response

( Velardi et al., 2006; Johnson et al., 2013; Giordano and Kleiven, 2014 ). In this regard, the corpus callosum –the region that

connects the two hemispheres of the brain with a quasi-uniaxial orientation of axons– presents the highest FA (0.6–1.0)

with a mean value of 0.8. The other regions of white matter present lower FA, such as the corona radiata (0.4–0.6) with a

mean value of 0.5. Focussing on these two regions, Giordano and Kleiven (2014) have proposed a model similar to ours and

calibrated its parameters against experimental tests on the human brain ( Giordano and Kleiven, 2014 ). 

The analysis of the human white matter is then focussed on the region-dependent mechanical response of the tissue

while limiting the loading to the mean axonal direction in all cases. This particular dependence is included in the model

through the FA correlation within the different white matter regions. Experimental data of uni-axial tensile tests for hu-

man specimens taken from corpus callosum and corona radiata ( Giordano and Kleiven, 2014 ) are compared in Fig. 6 with

their corresponding model predictions for the three energy functions (FA = 0.8 for corpus callosum and FA = 0.5 for corona

radiata). These model predictions show a good agreement with experiments despite a certain discrepancy in hardening be-

haviour of corona radiata for large stretches. Since the models were solely calibrated against axonal direction tensile tests,

the energy function describing the contribution of the fibres plays a dominant role and the three energy functions con-

sidered for the matrix contribution show a similar fit (a complementary calibration against transverse tensile tests would

probably have separated them more). As for the animal white matter, the Ogden energy function best fits the experimental

results with an average coefficient of determination R̄ 2 = 0 . 9469 . 

The results show a softer mechanical response than that reported by Labus and Puttlitz (2016) for ovine brain. By first

identifying the region independent values of k 1 and k 2 for the overall region independent white matter, the model proposed

herein can account for the difference between both regions through the FA difference. It must be noted that a recent study

carried out by Budday et al. (2017) has shown a stiffer response in the zones with lower values for FA. This discrepancy

could be explained by a region dependent stiffness of the glial matrix not accounted for in our model. In this regard, more

experimental tests should be conducted in order to clarify this question. 

Finally, unlike the other models previously proposed ( Wright et al., 2013; Giordano and Kleiven, 2014 ), the model pro-

posed herein not only accounts for region dependent behaviour associated with axon orientation and dispersion, but it is

doing so by coupling it with matrix contributions within a thermodynamically consistent framework able to additionally

account for temperature and strain rate dependencies. Such considerations are paramount when considering very high rate

deformations and will be explored in a future work. 

5.2.2. Skin 

The dependence of the mechanical behaviour of skin on applied loading direction (axial and transverse), strain rate and

temperature are integrated in the proposed framework. In this section, we focus our discussion on the effects of collagen

fibres orientation, strain rate and temperature dependencies. 
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Fig. 7. True stress-stretch experimental curves of human skin in transverse and axon directions ( Annaidh et al., 2010 ) versus model predictions for the 

three energy functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Human skin: fibres orientation dependent properties. The natural orientation of collagen fibres within the dermis leading

to the tissue transverse isotropic mechanical behaviour is determined by Langer’s lines. These are topological lines that go

through the human skin. The work of Annaidh et al. (2010) on human skin was used to study the anisotropy induced by

the orientation of the collagen fibres within the tissue. In this study, Annaidh et al. (2010) analysed the influence of this

orientation on the mechanical behaviour of skin by carrying out uniaxial tensile tests using specimens excised from the back

of seven human cadavers and varying the loading direction. 

The model predictions for the different ener gy functions are compared with the corresponding experimental data for

tensile tests in Fig. 7 , showing a good correlation between them for both longitudinal and transverse loading conditions.

A significant influence of the orientation of collagen fibres was observed. As occurred with white matter, a similar fit was

found for all energy functions in the fibres direction due to their predominant contribution in such conditions. Moreover,

the Neo-Hookean function failed again to capture the nonlinear behaviour of the transverse direction (see Table 2 ). The best

correlation was also found for the Ogden energy function ( Table 2 ). However, none of the energy functions could capture

the toe region of the stress–strain curves in the longitudinal direction. 

Animal skin: strain rate and temperature dependent properties . With the aim of illustrating the ability of the model to ac-

count for strain rate and temperature dependencies, the work carried out by Zhou et al. (2010) on pig skin was used. In this

work, the authors conducted uni-axial tensile tests using pig belly skin at different strain rates and testing temperatures.

The tensile tests showed a stress-stretch behaviour defined by a three-stage strain hardening related to the fibres reorienta-

tion during the deformation process: a low stiffness region at low stretches; a transition region at medium stretches; and a

high stiffness region at large stretches. 

Because of the absence of information about the fibres directions within the experimental samples ( Zhou et al., 2010 ),

the model predictions were conducted herein assuming full fibres dispersion. This assumption was implemented by defining

the structure tensor, according to Eq. (23) , as ˆ A o = ξ I with ξ = 1 / 3 . For the different energy functions, the apparent shear

modulus ( μ for Neo-Hookean and Gent; μα/2 for Ogden) and the fibre parameter k 1 are of the same order, indicating

consistency in the identification process of the model parameters. In addition, to be consistent with the human case, the

ratio apparent shear modulus /k 1 was retained in the same order of magnitude for the animal skin. The model predictions

for the three energy functions are compared against experimental tensile tests in Fig. 8 . Gent and Ogden energy functions

satisfactorily represent the experimental data in terms of stress-stretch shape, strain rate and temperature dependencies.

However, the Neo-Hookean model is not able to capture the mechanical behaviour depending on variations in strain rate

and temperature. The best fit was found for Gent and Ogden energy functions with a slightly better prediction of the Gent

energy function. 

The results confirm the ability of the proposed model to predict the hardening increase with increased loading rate,

as observed from experiments with loading rates ranging from 0.25 s −1 to 1 s −1 . Moreover, the model also provides good

predictions when varying testing temperature for hyperthermic temperatures. In this regard, a softening response of the

tissue is observed with higher temperatures. 
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6. Conclusions 

The main contribution of this work is the development of a thermodynamically consistent continuum framework for

transversely isotropic soft tissues. This framework accounts for transversely isotropy together with strain rate and tempera-

ture dependencies. The proposed formulation is based on a Helmholtz free energy function decoupled into the contributions

of a viscous-hyperelastic matrix and of the transverse isotropy of fibres. 

The constitutive framework was particularised for two transversely isotropic soft tissues in order to illustrate its versa-

tility. The main outcomes of the present work are the following: 

• A constitutive model was proposed for white matter. This model takes into account axonal orientation dependent as well

as region dependent properties by calibrating two anisotropic parameters for the entire white matter and by making use

of the direct value of the FA extracted from DTI measurements for region specialisation. Additionally, our formulation

accounts for temperature and, potentially, strain rate dependencies in a consistent manner. This constitutive model was

applied to the modelling of animal and human white matters and the results exhibited a good agreement between

numerical predictions and experimental data. 
• A constitutive model was proposed for skin. This model takes into account strain rate and temperature dependencies, as

well as the transverse isotropy arising from the fibre orientation. This constitutive model was applied to the modelling

of animal and human skins and the results exhibited a good agreement between numerical predictions and experimental

data. 
• A methodology for the particularisation of the general constitutive framework was developed. This methodology allows

for the adequate identification of the corresponding model parameters depending on the specific soft tissue and the

potential energy functions considered. In this work, three different energy functions (Neo-Hookean, Gent and Ogden)

were studied for each soft tissue and compared in terms of prediction accuracy of the mechanical behaviour of such soft

tissues. 
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Appendix A. Material parameters for the different energy functions applied to each soft tissue 

This appendix provides the tables that summarise the material parameters of the different energy functions and the

different soft tissues analysed in this work. The model predictions carried out in this work assume incompressibility for

both tissues since the bulk modulus of the materials considered here is much higher than the shear modulus. 

A.1. White matter 

The material parameters for animal and human white matter are provided in Table A.1 and Table A.2 respectively. 
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Table A.1 

Material parameters for ovine white matter identified from the experiments reported by Labus and Puttlitz (2016) and 

Liu et al. (2016) . 

Neo-Hookean Glial matrix elastic response Axonal response 

μ0 (Pa) θ ref (K) c (kPa/K) k 1 (Pa) k 2 
1261 298 −43.757 171.64 18.244 

Glial matrix viscous response 

μv (Pa) ˙ γ v 
o (s 

−1 ) n σ VT (Pa) 

- - - - 

Gent Glial matrix elastic response Axonal response 

μ0 (Pa) j m θ ref (K) c (kPa/K) k 1 (Pa) k 2 
1350 0.17 298 −43.757 55 24 

Glial matrix viscous response 

μv (Pa) j v ˙ γ v 
o (s 

−1 ) n σ VT (Pa) 

- - - - - 

Ogden Glial matrix elastic response Axonal response 

μ0 (Pa) α θ ref (K) c (kPa/K) k 1 (Pa) k 2 
500 23 298 −43.757 72 20 

Glial matrix viscous response 

μv (Pa) β ˙ γ v 
o (s 

−1 ) n σ VT (Pa) 

- - - - - 

Table A.2 

Material parameters for human white matter identified from the experiments reported by Giordano and Kleiven (2014) . Tem- 

perature dependence is not considered. 

Neo-Hookean Glial matrix elastic response Axonal response 

μ0 (Pa) θ ref (K) c (Pa/K) k 1 (Pa) k 2 
580.046 - - 258.982 1.805 

Glial matrix viscous response 

μv (Pa) ˙ γ v 
o (s 

−1 ) n σ VT (Pa) 

- - - - 

Gent Glial matrix elastic response e Axonal response 

μ0 (Pa) j m θ ref (K) c (Pa/K) k 1 (Pa) k 2 
580.045 84.57 - - 257.973 1.798 

Glial matrix viscous response 

μv (Pa) j v ˙ γ v 
o (s 

−1 ) n σ VT (Pa) 

- - - - - 

Ogden Glial matrix elastic response Axonal response 

μ0 (Pa) α θ ref (K) c (Pa/K) k 1 (Pa) k 2 
583.5 1.934 - - 264.586 1.692 

Glial matrix viscous response 

μv (Pa) β ˙ γ v 
o (s 

−1 ) n σ VT (Pa) 

- - - - - 
A.2. Skin 

The material parameters for human and animal skin are provided in Table A.3 and Table A.4 respectively. 

Table A.3 

Material parameters for human skin identified from the experiments reported by Annaidh et al. (2010) . 
Neo-Hookean Ground substance elastic response Collagen response 

μ0 (kPa) θ ref (K) c (Pa/K) k 1 (MPa) k 2 
927 - - 6.925 0.72 

Ground substance viscous response 

μv (kPa) ˙ γ v 
o (s 

−1 ) n σ VT (MPa) 

- - - - 

Gent Ground substance elastic response Collagen response 

μ0 (kPa) j m θ ref (K) c (Pa/K) k 1 (MPa) k 2 
845 0.738 - - 6.656 0.696 

Ground substance viscous response 

μv (kPa) j v ˙ γ v 
o (s 

−1 ) n σ VT (MPa) 

- - - - - 

Ogden Ground substance elastic response Collagen response 

μ0 (kPa) α θ ref (K) c (Pa/K) k 1 (MPa) k 2 
98.44 15.815 - - 6.971 0.633 

Ground substance viscous response 

μv (kPa) β ˙ γ v 
o (s 

−1 ) n σ VT (MPa) 

- - - - - 
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Table A.4 

Material parameters for pig skin identified from the experiments reported by Zhou et al. (2010) . 

Neo-Hookean Ground substance elastic response Collagen response 

μ0 (kPa) θ ref (K) c (Pa/K) k 1 (kPa) k 2 
1 318 −1.3 �10 −4 4.22 0.65 

Ground substance viscous response 

μv (kPa) ˙ γ v 
o (s 

−1 ) n σ VT (MPa) 

27 0.0025 0.02 20 0 0 

Gent Ground substance elastic response Collagen response 

μ0 (kPa) j m θ ref (K) c (Pa/K) k 1 (kPa) k 2 
1 15.098 318 −9.8 �10 −5 3.2 0.825 

Ground substance viscous response 

μv (kPa) j v ˙ γ v 
o (s 

−1 ) n σ VT (MPa) 

14 4.255 0.0025 0.019 20 0 0 

Ogden Ground substance elastic response Collagen response 

μ0 (kPa) α θ ref (K) c (Pa/K) k 1 (kPa) k 2 
0.35 5.115 318 −3.4 �10 −5 2.13 1.062 

Ground substance viscous response 

μv (kPa) β ˙ γ v 
o (s 

−1 ) n σ VT (MPa) 

1.1 8.31 0.0025 0.025 20 0 0 
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