

PROYECTO FIN DE CARRERA

Desarrollo de una aplicación

móvil mediante la integración

de realidad aumentada y

comunicación oral

Autor: Edel Alejandro Pérez Cuellar

Tutor: David Griol Barres

Leganés, Septiembre 2016

Ingeniería de Sistemas Audiovisuales

Título: Desarrollo de una aplicación móvil mediante la integración de realidad

aumentada y comunicación oral

Autor: Edel Alejandro Pérez Cuellar

Director: David Griol Barres

EL TRIBUNAL

Presidente:

Vocal:

Secretario:

Realizado el acto de defensa y lectura del Proyecto Fin de Carrera el día __ de
_______ de 20__ en Leganés, en la Escuela Politécnica Superior de la Universidad
Carlos III de Madrid, acuerda otorgarle la CALIFICACIÓN de

VOCAL

SECRETARIO PRESIDENTE

Agradecimientos

En primer lugar me gustaría mostrar mis agradecimientos a mi tutor David Griol por

su apoyo y optimismo durante el desarrollo de este proyecto.

A mi maravillosa novia, que siempre ha estado para animarme cuando lo necesitaba.

Y a mi familia, mi padre, mi madre y mi hermana por siempre ofrecerme su apoyo.

Abstract

This Bachelor project aims to create an augmented reality application which uses

computer vision algorithms and technologies to provide assistance to the visually

impaired in their daily tasks. The specific purpose of the application is to recognize

scenes and objects after capturing them using the device’s native camera. Colour

recognition is also present to aid in identifying objects and their properties such as

their size and distance from the capturing device, such functionality may also help

individuals which suffer from colour blindness. The application also interacts with the

user by speech, effectively establishing a Speech Dialogue System (SDS).

The general planning of this project was done considering the gained knowledge from

project development courses done within the University of Carlos III, Madrid. In such,

the required research and development was divided in a set number of stages, each

with an independent number of tasks. This methodology has allowed us to define three

major stages: Planning, Execution and Closing.

A Work Breakdown Structure (WBS) has been used to make the structuring of the

project’s planning easier.

For the development of the application, JAVA programming language was used within

the Android Studio development environment. OpenCV libraries were imported and

used to implement the functionalities of the developed system.

The final version of the application has thus used computer vision as a tool to provide

additional information over real world scenes both with on screen representation and

audible messages.

As future work it would be interesting to reduce the computational load of computer

vision algorithms. It would perhaps be convenient to further improve the OpenCV

library and its recent API on Android.

Keywords: Android, Augmented Reality, Computer Vision, OpenCV,

 Speech Dialogue Systems

General Index

 1. INTRODUCTION 1

 1.1 Introduction 1

 1.2 Objectives 2

 1.3 Development Stages 4

 1.4 Resources used 7

 1.5. Structure of the report 7

 2. STATE OF THE ART 9

 2.1 Augmented Reality Systems 9

 2.1.1. Introduction to Augmented Reality Systems 9

 2.1.2 History of augmented reality 10

 2.1.3 Applications of augmented reality 12

 2.2 Computer Vision 13

 2.2.1 Introduction to computer vision 13

 2.2.2. Applications of computer vision 14

 2.3 Spoken Dialogue Systems 15

 2.3.1 Introduction to spoken dialogue systems 15

 2.3.2 Architecture of a spoken dialogue system 15

 2.3.2.1 Automatic Speech Recognition module 16

 2.3.2.2. Natural Language Understanding module 17

 2.3.2.3. Dialogue Management module 17

 2.3.2.4. Natural Language Generation module 18

 2.3.2.5. Text to Speech synthesis module 18

 2.4 Voice recognition in Android 18

 2.5 Text to speech synthesis in Android 21

 2.6 Android Apps for the disabled and visually impaired 26

 2.7 OpenCV Library 27

 2.7.1 Introduction to OpenCV 27

 2.7.2 Installing OpenCV on Android Studio 27

 2.7.3 The OpenCV Manager 30

 2.7.4 OpenCV sample applications 30

 2.7.5. OpenCV Architecture 31

 2.7.5.1 Core functionality module 32

 2.7.5.2. HighGUI module 33

 2.7.5.3 Image processing module 33

 2.7.5.4 Video module 34

 2.7.5.5 Calib3d module 35

 2.7.5.6 Features 2D module 35

 2.8 OpenCV Android Apps for the visually impaired 37

 3. SYSTEM DESCRIPTION 38

 3.1 General overview 38

 3.2 The Welcome Screen 39

 3.3 The Main Menu 43

 3.4 Object capture 50

 3.5 Object recognizer 53

 3.6 Colour recognizer 65

 4. SYSTEM EVALUATION 68

 4.1 System evaluation methodology and results 68

 4.2 Conclusions 76

 5. FINAL CONCLUSIONS AND FUTURE STUDY 77

 5.1 Final conclusions 77

 5.2 Future study 78

 6. PROJECT MANAGEMENT 79

 6.1 Temporal planning 79

 6.2 Budget 80

 DEFINITIONS 82

 REFERENCES 84

Figure Index

Figure 1.1: WBS defined for the project 5

Figure 2.1: Components of an AR system 10

Figure 2.2: Pipeline approach for processes of a Spoken Dialogue System 16

Figure 2.3: Permission settings in Android Studio 19

Figure 2.4: Gesture detector code on Android Studio 19

Figure 2.5: Recognizer intent configuration code 19

Figure 2.6: Activity result fetching code 20

Figure 2.7: Settings page for Android 4.1.2 21

Figure 2.8: Language & input settings on Android 4.1.2 22

Figure 2.9: Text-to-speech output settings on Android 4.1.2 22

Figure 2.10 Speech rate settings on Android 4.1.2 23

Figure 2.11: Text to Speech initialization code 23

Figure 2.12: ConvertTextToSpeech method for text to speech conversion 24

Figure 2.13: OpenCV page downloads selection 27

Figure 2.14: OpenCV page platform selection 28

Figure 2.15: Module import in Android Studio 28

Figure 2.16: OpenCV gradle selection in Android Studio. 29

Figure 2.17: Project dependencies selection in Android Studio 29

Figure 2.18: OpenCV modules diagram 32

Figure 3.1: Screen image of the Welcome screen activity 39

Figure 3.2: Welcome activity configuration in manifest file 40

Figure 3.3: TTS module configuration in Welcome activity 40

Figure 3.4: ConvertTextToSpeech method implementation in Welcome activity 41

Figure 3.5: screenTapped method implementation in Welcome activity 41

Figure 3.6: Flow chart for Welcome activity functionality 42

Figure 3.7: Layout configuration for Welcome activity 43

Figure 3.8: Screen image of the Main Menu activity 44

Figure 3.9: Action Bar configuration in the Main Menu activity 44

Figure 3.10: Action Bar layout configuration in Main Menu activity 45

Figure 3.11: gestureDetector configuration in Main Menu activity 45

Figure 3.12: Speech recognition intent configuration in Main Menu activity 46

Figure 3.13: Main menu activity speech interaction configuration code 46

Figure 3.14: Flow chart for Main Menu activity functionality 48

Figure 3.15: Main Menu layout configuration 49

Figure 3.16: Screen image of the object capture activity 50

Figure 3.17: Came instance fetching for Object Capture activity 51

Figure 3.17: Picture saving on the Object Capture activity 51

Figure 3.18: Object name list save in Object Capture activity 52

Figure 3.19: Flow chart of Object Capture activity functionality 53

Figure 3.20: Screen image of the Object Recognizer activity 54

Figure 3.21: OpenCV library load in Object Recognizer activity 55

Figure 3.22: Camera frame processing in Object Recognizer activity 56

Figure 3.23: Handler configuration in Object Recognizer activity 57

Figure 3.24: Draw features on camera frames in Object Recognizer activity 58

Figure 3.25: Detected key points in database images in Object Recognizer activity 59

Figure 3.26: Searching the database for matches in Object Recognizer activity 60

Figure 3.27: Using the KNN algorithm to find matches in Object Recognizer activity 61

Figure 3.28: Filtering matches using ratio test and RANSAC algorithm in Object Recognizer

activity 62

Figure 3.29: Finding the minimum mean distance in the Object Recognizer activity 63

Figure 3.30: Finding the recognized object's name in the Object Recognizer activity 63

Figure 3.30: Flow chat for the Object Recognizer activity functionality 64

Figure 3.31: Screen image of the Colour Recognition activity 65

Figure 3.32: Screen image of the Color Recognizer activity when scanning. 66

Figure 3.33: Finding colours in the Colour Recognition activity 67

Figure 3.34: Flow chat for the Colour Recognition activity 67

Figure 3.1: First question pairs of the system evaluation survey 68

Figure 4.2: First question results 68

Figure 4.3: Second question results 69

Figure 4.4: Third question of the system evaluation survey 70

Figure 4.5: Results for the third question 70

Figure 4.6: Second set of questions in the system evaluation survey 71

Figure 4.7: Fourth question results 71

Figure 4.8: Results for the fifth question 72

Figure 4.9: Question six and seven of the system evaluation survey 72

Figure 4.10: Results of the sixth question 73

Figure 4.11: Results of the seventh question 73

Figure 4.12: Question eight and nine of the system evaluation survey 74

Figure 4.13: Result for question eight 74

Figure 4.14: Question ten of the system evaluation survey 75

Figure 4.15: Results for question 10 76

Figure 6.1: Table of project stages shown within the Gantt Project tool 79

Figure 6.2: Gantt diagram drawn using the Gantt Project software 80

1

Chapter 1

INTRODUCTION

This chapter will introduce the present bachelor thesis and the issue under study.

The general structure and study of this project will be described and how it

contributes to solve the problems and circumstances found. A contrast will be made

in how the Android application developed in this study contributes to what is already

present.

Furthermore, the context of the current study will be described explaining the issues

present regarding the physically disabled and vision impaired. The regarded objectives

of this study will be listed and the budget required to accomplish them. This will further

require an accurate planning which will be laid out in this chapter in a Work Breakdown

Structure (WBS) diagram.

1.1 Introduction

The advance of technology aims to make tasks easier in an open field of

applications, such as quality of life improvements, increased efficiency in industry

and retail, military advancements and so on. The level of research and accelerated

technological development have allowed complex algorithms which were historically

inaccessible for computer systems of the era to now be endured by powerful

processors. The cost of technological research have also decreased greatly in recent

years, motivating further investigation by large companies and governmental

organisations. The medical field has taken a giant leap in technological progress,

now greatly relying on devices and complex machines to increase the efficiency and

accuracy of diagnostics and treatment methodology.

Great progress has also been made in retail, with the product of technological

research reaching the general public and sparking a great deal of interest. This has

2

been translated to an increase in revenue as devices and internet technologies have

intensively begun to participate in world markets. The increased presence of portable

technology has also emphasized on the public’s interest. Such technology makes it

possible for the general user to carry the hardware and software piece independently

of the location. This has majorly come in the form of smart devices as smartphones,

tablets, portable computers and watches.

The research in computer vision has had great results, as initially a product of

military and university academic development it is now present to the public for

private use or as general services provided by companies and governments. As an

example, there is now a great efficiency in surveillance systems, authentication

algorithms, and traffic security. The field has also greatly contributed to artificial

intelligence research allowing now the introduction of autonomous robotic devices

and vehicles with relevant use in medical fields, space travel and public transport.

The increased interest of the general public in technologies have also motivated

investment in research of augmented reality systems that are able to add additional

layers of information upon the already existing physical world scenes. This has also

had great success in entertainment, providing new ways of enjoying video games

and movies. Digital characters that were before confined to the computer screen now

seem to travel to the three dimensional physical world, presenting themselves before

the user.

As a consequence of these technological developments it is only natural that the

physically or mentally disabled gain access to these systems and greatly decrease

their difficulties in general everyday tasks. Those individuals which suffer from vision

impairment take great benefit by using computer vision systems which may aid them

in identifying objects, people and areas.

With the introduction of Android and iOS operating systems on smartphones and

tablets, these advancements make the development of aid and assistance

applications easier and quicker. This greatly decreases the costs of the end product

and in such for the disabled or visually impaired users there is now great level of

accessibility to these applications.

3

Google has made a great effort in increasing the accessibility on Android devices.

Most devices now come with speech recognition systems which allow the visually

impaired who may not be able to identify what is being presented on screen to

communicate with the applications by speech. Furthermore, text-to-speech systems

now also naturally come with every Android device, allowing the applications to

easily communicate with the user by send relevant voice messages.

1.2 Objectives

With the research, study done in this project and the application’s development it is

intended that an effective system is provided for the visually impaired to assist in

everyday tasks. A computer vision library and basic augmented reality is used to not

only present a usable application for the visually impaired but also to those

individuals who would provide personal aid. Strictly speaking, this application

requires at some point the intervention of a non-visually impaired individual to

configure the detection process. At key moments and situations this application

should be able to provide the same feedback a visually healthy individual would

obtain. In general situations, however, it is difficult to design a system which would

completely replicate a healthy human visual sense. It is nevertheless intended that

this application somehow increases the quality of life of visually impaired individuals

and their assistants.

In such, the Android application developed will prove the users with the following

benefits:

 A speech-based interactive application where it isn’t required for the user to

be able to see what is represented on screen. The application will use text-to-

speech systems to tell the user what may be accessed and use speech

recognition to understand the user’s utterance. The application will however

provide visible interfaces on screen so that not visually-impaired users may

choose to interact with the systems through standard touches.

4

 Well defined and independent modules which adapt to a great variety of

situations provided by the nature of computer vision systems development.

 A module dedicated to capturing and storing still images of objects saved by

identification number and name.

 A module dedicated to recognize objects using the prestigious open-source

computer vision OpenCV library. The module will use the database of

previous stored objects or scenes and identifiers to periodically scan for

objects which may appear on the scene captured by the live camera feed.

 Detection of colours also using the OpenCV library. The user may say what

colour is to be detected and the system will scan the pixels for the colour in a

range of HSV mapped values. The pixels detected in the HSV range will be

set to white and the pixels not corresponding to the HSV range will be, in

change, set to black. This might have a low-vision user distinguish an object

due to the sudden high level of contrast present on the screen. Additionally,

the module is to tell the user by speech the percentage of pixels present in

that scene, giving the user a sense of distance and size of the object.

 Basic visual and audible augmented reality to efficiently provide information

towards the user.

1.3 Development Stages

The general planning of this project was done considering the gained knowledge from

project development courses done within the University of Carlos III, Madrid. In such,

the required research and development was divided in a set number of stages, each

with an independent number of tasks. This methodology has allowed us to define three

major stages: Planning, Execution and Closing.

A Work Breakdown Structure (WBS) has been used to make the structuring of the

project’s planning easier. Each stage consists of a set of tasks to be completed before

the execution of the next stage begins.

5

In the next figure the project’s corresponding WBS can be observed. At the top of the

figure, the three major stages can be observed and continuing towards the bottom

their separate tasks.

Figure 1.1: WBS defined for the project

6

On the first stage of the project, the following tasks are defined:

1. Research on Android the platform: A study was conducted on the Android

OS and the development of applications for Android devices.

2. Research on Augmented Reality Systems: A study was conducted on

augmented reality solutions currently present on all platforms. Then, Android

systems which implement augmented reality applications were studied in detail.

3. Research on computer vision systems: A study was conducted on computer

vision and its applications.

4. Investigation on already established solutions: The present solutions were

studied for all platforms and in detail for Android devices. A study was made on

the viability of an Android application to help the visually impaired.

5. Research on the OpenCV library: A study was made on OpenCV and what it

offers for Android development.

The next stage of the project, execution, consisted of the following tasks:

6. Design study: A detailed planning of the system’s design was made, studying

the functionalities of each module.

7. Application development: The code for the application was written using the

Android Studio development environment.

8. Unit and integration testing: The code was tested for each functionality and

the application was installed and executed in several Android devices.

9. System evaluation: The complete functionality was evaluated in different

types of scenarios.

The final documentation stage consisted of the following tasks:

10. Final thesis report: The final report was written, detailing every aspect of the

project’s development.

11. Presentation: The project was presented.

7

1.4 Resources used

The following resources were used for the project’s research and development:

Hardware resources:

- Desktop computer

- Samsung Galaxy Tab 4

- Sony Xperia S Smartphone

- USB cable

Software resources:

- Android Studio development environment for Android applications

- Android SDK (Software Development Kit).

- Java JDK (Java Development Kit)

- OpenCV Android SDK: A development API for Android applications

- Google TTS synthesizer for Android devices

- Google speech recognition on Android devices

- Google Drive cloud storage

- Draw.io online software tool for the composition of flow charts.

1.5 Structure of the report

Chapter 1: Introduction. The project’s purpose is described in detail, the issues it

tries to solve, the planning and the structure.

Chapter 2: State of the Art. A detailed study is made on the environment surrounding

the project’s study. Augmented reality and computer vision systems are studied, as

the OpenCV library is explained in detail.

Chapter 3: System description: A detailed description is made on the developed

system in each of its functionalities and modules

Chapter 4: System evaluation. A methodology is followed to evaluate the application

in several scenarios and for several users. The evaluation model is defined in detail

and the extracted results.

8

Chapter 5: Final conclusions and future study. In this chapter the final conclusions

are exposed as well as considerations for future studies in the present field.

Chapter 6: Project management. The temporal planning is shown in detail and the

general costs are exposed.

Definitions. In this section the most important terms for this project’s study are

defined.

References. In this section the sources of information which were consulted for the

project’s study will be listed.

9

Chapter 2

STATE OF THE ART

2.1 Augmented Reality Systems

2.1.1. Introduction to Augmented Reality Systems

The goal of augmented reality systems is to present virtually registered or generated

information directly into the physical environment. AR systems seek to shorten the gap

between the real physical word and the virtual world, spatially and cognitively.

Augmented reality allows to add digital information as an intrinsic part of the real world

(Hölleler & Schmalstieg, 2016). This principle presents differences with virtual reality

(VR) systems, where the goal is to include the user in a completely virtual environment

as a substitute to a real world experience.

Many areas of computer science contribute to the development of complex AR

systems, yet the definition of augmented reality as a concept is at many times not

clear. AR systems must combine several characteristics. First of all it is essential that

the system combines real world information and virtual information in a single scene.

Furthermore the system must provide real time interactivity with the virtual information.

Depending on the application, the system must register the information in 3D (Azuma,

1997). The latter is flexible, however, as text or image information may also be

represented on a real world scene, or interactive voice communication for registering

real time data (as in the case of this project) is also considered an AR system.

Augmented reality then presents additional information added to a real world scene in

real-time so as to allow the brain to process real and virtual information

instantaneously through the senses (Craig, 2013).

According to Hölleler & Schamstieg (2016), to achieve its goals, it is essential for an

AR system to contain three main components: a tracking component (with the goal of

capturing real world information in real-time), a registration component (so as to adapt

the input information to the virtual model managed by the system), a visualization

component (for the representation of real and virtual data on the same scene) and a

10

spatial model (a database to store information of the real world and the virtual world

separately and the relations made between them). In the figure below we can observe

a general schema of this concept.

Figure 2.1: Components of an AR system

With the concept of augmented reality, it is essential to consider the idea of spatial

registration where the information has a physical space or location in the real world in

the same way the physical counterpart to the digital information would have (Craig,

2013). In other words, a virtual object must be placed and positioned by the AR system

in the same way a physical object is placed, abiding physical laws.

2.1.2. History of augmented reality

It could be said that there has been a long history of events in which additional

information has been overlaid over the real physical world, however the biggest

advances in computer-generated augmented reality can be traced to the 1960s

(Hölleler & Schmalstieg, 2016). Ivan Sutherland was one of the first researchers in

setting the scene in which both virtual reality and augmented reality systems would

later be developed with the introduction of the ultimate display. According to

Sutherland (1965), the ultimate display would be a room which can control the

existence of matter. Objects generated in such an area would have the same physical

properties and their existence would cause the same consequences and events upon

the world as their naturally generated counterparts. Sutherland would later proceed to

construct the first VR system in 1968, a heavy head-mounted display.

11

Other works have continued the research into augmented reality systems. In 1974,

Myron Krueger built an “artificial reality” laboratory by the name of “The Videoplace”.

It consisted of combined projectors with video cameras that emitted onscreen

silhouettes, surrounding users in an interactive environment.

The military domain would quickly take notice of the advantages in augmented reality

systems, researching, developing and researching their own. In 1992, Louis

Rosenberg developed the named “Virtual Fixtures” AR system for the United States

Airforce. It allowed for the military to control a full upper-body exoskeleton which

allowed them to guide machinery and perform tasks from a remote operating space.

The concept of augmented reality would later make its appearance in the

entertainment scene, with the arrival of the “1st and Ten” line computer system in 1998,

casting a virtual yellow marker on an NFL game. Research on AR system would later

drastically increase, with only a year later the military working on the Battlefield

Augmented Reality System (BARS) devices for soldier training. Later that same year

NASA would use augmented reality terrain and navigation display to fly the first X-38

spacecraft.

In the year 2000, Hirokazu Kato released the open-source software library ARToolkit,

still widely used today. The library uses video tracking to overlay computer graphics

on video cameras ARToolkit would later support augmented reality on web browsers

in 2009. Print media would also take advantage of AR systems in 2009, with Esquire

Magazine prompting readers to scan the example cover to make Robert Downey Jr.

come alive on stage.

In recent years, car manufacturers have integrated augmented reality for vehicle

service manuals. In 2013, the Volkswagen MARTA app was released which provided

a virtual guide with step-by-step instructions on vehicle service. The system allowed

technicians to foresee how a repair process would look on the present vehicle.

Google was quick to step onto the scene with the announcement of the Google Glass

device in 2014, starting a trend of wearable augmented reality devices. Investments

on AR systems increased dramatically in the following years. Going from fifty million

dollars to one billion in only two years from 2014 to 2016.

12

2.1.3. Applications of augmented reality

Augmented reality research presents itself as a significant promise in decreasing the

challenges in cyber and physical system visualization and interaction for multiple

domains such as medicine, construction, advertising, manufacturing and gaming

(White, 2014). The concept however is increasingly challenging with research to

overcome these challenges based on precise localization, information fusion and

complex information visualization among others. Many AR system applications have

appeared throughout history and the trend has increased in recent years.

The industrial field has risen up as an important part of AR practice and research. AR

devices have historically proven to be expensive and of non-efficient use in industry.

However the appearance of smartphones has proven to be an inflection point

decreasing the costs and difficulty to access augmented reality mediums. Many

current-generation mobile devices, smartphones and tables contain a great variety of

sophisticated sensors, powerful processing and storage systems and persistent

network connections (White, 2014). Recently appearing head-mounted devices such

as Google Glass are also gaining relevance in the industrial and medical scheme.

AR driving experiences have also become greatly relevant. Challenges and risks are

present however, greatly increasing the possibility of distractions and endangering

safety. New safety systems for automobiles are working to ensure the safety of the

occupants such as automatic steering and breaking systems. This allows the AR

research on this field to have more freedom. Companies such as BMW have begun

research on AR windshield displays, allowing additional information to be presented

for the driver such as road hazards, weather reports and GPS information.

The medical field has found great use in augmented reality systems for anatomic

study, with mobile devices being able to track the position of objects or markers to

render muscle and bone structure in 3D which would be located in the specific location.

The recent trend for the use of commercial and non-commercial unmanned aerial

vehicles (UAVs) has allowed for many potential AR applications by increasing the

user’s perception of the real world. By the use of UAVs information can be gathered

for use in augmented reality systems such as terrain topological data and construction

3-D modelling.

13

The tourism industry takes advantage of AR systems with the use of smartphone and

tablet apps which are able to locate and describe relevant touristic or historical areas,

restaurants, hotels and services. By using both VR and AR system advances, touristic

companies are able to offer complete alternate reality experiences in leading touristic

sites by overlaying 3-D information.

2.2. Computer Vision

2.2.1 Introduction to computer vision

Humans and many animal species are able to perceive the three-dimensional world

through a complex visual system which begins at the eyes and culminates in the brain

where the visual nerve impulse signal travelling through the optical nerve is interpreted

and thus we experience what we call vision. This happens with apparent ease, yet

many complex processes occur, much of which are still under intense study as we

struggle to understand how interconnected neurons are able to create vision. In such,

the brain is able to not only perceive real world objects but also make out detail within

them, such as colour, shape, translucency, subtle patterns. In the case of other

humans we are quickly able to determine their emotions from their facial appearance

(Szeliski, 2010).

Research in computer vision is done with the goal to simulate or replicate this

phenomenon with the inclusion of complex algorithms and mathematical techniques

to study three-dimensional objects and their properties within a scene. Many

breakthroughs have been made, devising systems which are able to create 3-D model

representations of real world objects through spatial photography, track people that

move along complex scenery or backgrounds and even recognise people within a

crowd studying their facial features and clothing. However, it is still not possible to

devise a system that works with the clarity of the human visual system. In great part,

it is because developing vision systems requires us to tackle an inverse problem where

the goal is to recover unknown data given insufficient information to come to a solution

(Szeliski, 2010).

Due to this lack of information, we find ourselves forced to use physics-based

probabilistic models to come to potential solutions to the problem. This is called

14

modelling and it also has a limit. Modelling the complexity of the world requires great

processing power.

Computer vision has a great variety of applications but the approach for solving this

problem usually requires several separate tasks:

- Recognition: Tackles the classical problem where the system has to determine

if the object is present in the scene, or if a certain feature is apparent. The best

algorithms for this task handle convolutional neural networks where an

approach is made to the animal visual cortex.

- Motion analysis: An estimation is made regarding the motion or velocity of the

object in a particular scene or even of the camera device itself (egomotion). An

effort is made then to follow the object’s trajectory throughout the scene.

- Scene reconstruction: An attempt is made to reconstruct the scene into a 3-

D model representation in a digital coordinate system.

- Image restoration: Several filters are applied to improve the quality of the

image for its processing. Gaussian or median filters are relevant for noise

removal.

2.2.2. Applications of computer vision

Computer vision is being used in the modern world in several research and application

areas such as:

- Optical character recognition (OCR): Systems which are able to identify

written letters and produce a meaning.

- Machine inspection: By the use of stereo vision (algorithm in which multiple

overlapping images are taken to produce a detailed 3D version of the object) a

detailed study is made on the state of a machine’s parts or shapes.

- Retail: Presence recognition to control customer check-in and check-out of

retail areas.

- Medical imaging: Dermatological study of skin conditions, brain morphology

with age or pre-operative and post-operative studies.

- Automotive safety: Detection of obstacles to ensure driver and pedestrian’s

safety in crowded areas or dangerous roads.

15

- Surveillance: Detection of intruders, highway traffic counting and speed

estimation.

- Security: Fingerprint, retina and facial recognition to control user access

systems (authentication).

2.3. Spoken Dialogue Systems

2.3.1. Introduction to spoken dialogue systems

Spoken Dialogue Systems allow interaction with a certain application through speech

and additional input and output modalities. Such interaction is made possible through

Speech Recognition processes and Text-to-Speech algorithms. Thus, it is essential

for any application which makes use of the features of the Spoken Dialogue System

to contain the former and latter functionalities. These systems are useful when we wish

to simulate human-to-human interaction when visibility of a UI is not readily available.

Academic researchers on dialogue systems often have the goal of exploring how

systems may allow more spontaneous language use (Skantze, 2007).

The process, however, may face risks in its correct functioning due to certain variations

in the input process. Language based differences and pronunciation can produce a

variability which may hinder the complete Spoken Dialogue System. Errors may also

be induced from unpredictable ambient noise during the capture process. To face this

dilemma, the algorithm must be well equipped to face these variations increasing the

system’s robustness.

2.3.2. Architecture of a spoken dialogue system

Spoken Dialogue Systems present complex processes and algorithms hence their

operation may be divided in different sub-processes and technologies. The entire

process may be represented in a pipeline approach with a system that takes user

utterance as input and delivers system utterance as output (Skantze, 2007).

16

Figure 2.2: Pipeline approach for processes of a Spoken Dialogue System

From the figure above we can observe that the module that will directly process the

user’s speech will be the Automatic Speech Recognition module (ASR). From this

input, the module will create a text based hypothesis which will serve as input for the

next module, the Natural language Understanding module (NLU). The NLU module

will not consider the dialogue context, it will attempt to resolve the input text utterance

and produce a semantic based response. That is, it will attempt to find the meaning of

the input hypothesis and determine if it is useful for the implementation. Such response

will be managed by the Dialog Manager (DM) which will establish operations based

on the input, accessing system resources of databases or registering the user’s

instructions. It will then decide which action is to be taken or the response the system

must produce.

The response will be naturally an output dialog, thus a semantic-based response must

be given to be handled by the Natural Language Generation module (NLG). The NLG

module will use the input semantic to produce a text based response which will be

used by the Text-to-Speech module to produce an acoustic signal, the output or

response of the entire system in the form of speech.

2.3.2.1. Automatic Speech Recognition module

The Automatic Speech Recognition module (ASR) as a feature of computational

linguistics will be able to transform speech into text in readable format for the

application. In other words, the module with attempt to recognize the utterance of the

user and serve as output a sequence of recognized words by the use of sound signal

treatment techniques. Acoustic modelling and language modelling are important

concepts to make the system’s recognition process more effective. Thus, the system

17

usually consists of several stages, an acoustic signal modelling stage where the signal

will be treated to remove noise and interference and a language modelling stage

where the system will attempt to relate sounds with language semantic sequences.

Many modern speech recognition systems use Hidden Markov Models. That is,

statistical models which serve a series of symbols or quantities in its output phase.

HMMs take advantage of the property of an acoustic speech signal which can be

considered stationary during a certain amount of time (around milliseconds). In other

words, in a small amount of time speech can be approximated as a stationary

stochastic process.

Other speech recognition systems may make use of dynamic time warping. An

algorithm that measures the similarity between two sequences which may be different

in time or speed. This is especially useful when we wish to consider different speaking

speeds for a ground of individuals.

2.3.2.2 Natural Language Understanding module

The Natural Language Understanding module (NLU) will attempt to obtain a sematic

representation of the recognized sequences obtained from the speech recognition

module. In other words, the system will perform what can be considered a conversion

from natural language to a semantic language. However, still maintaining the original

meaning of the transmitted message. The NLU module will thus need to perform a

language based analysis dividing individual words into tokens or lexemes (parts of the

word which are invariable and contain the semantic meaning) and morphemes

(additional parts of the words which will alter its original meaning). The system will

further analyse the complete phrases attempting to deduce their meaning from that of

the individual words obtained previously. As a final step, the system may attempt to

alter the deduced meaning by analysing the context in which each individual phrase

is detected.

2.3.2.3. Dialogue Management module

The Dialogue Management module may be considered the ‘core’ of the complete

speech dialogue system. It will handle the input commands from the user by

interpreting the semantic meaning of the identified message then start processes or

obtain information in the application accordingly.

18

Furthermore, the Dialogue Management module must update the dialogue context and

handle the context according to the obtained interpretation. All participant modules

with the dialogue system must be handled and coordinated according to each of their

individual function in the general scheme.

2.3.2.4. Natural Language Generation module

The Natural Language Generation module will receive the semantic representation of

the response of the system and will further perform the conversion into natural

language phrases which can be easily understood by the user. This is essential if we

wish to simulate human-to-human interaction and make our system seem less

“robotic”.

2.3.2.5. Text to Speech synthesis module

The Text to Speech synthesis module (TTS) has the purpose of taking the response

of the system in natural language and transform it into an acoustic speech signal

understandable by the user. TTS modules usually consist of back end processes

(conversion of words and symbols into spoken phrases) and front end processes

(acoustic signal generation with human characteristics).

2.4. Voice recognition in Android

Voice recognition in Android can be managed through a special type of intent called

RecognizerIntent. An intent in Android is defined as a mechanism which allows users

to coordinate functions and activities to achieve a certain task. It can be seen as the

action of flipping a switch, actions are taken for an event occurring after the switch

change state. By handling different actions taken by the RecognizerIntent it will call

different activities which will perform specific actions. Commonly used actions are

listed as the following:

- ACTION_GET_LANGUAGE_DETAILS: Send a broadcast intent that will take the

broadcast metadata of an activity under ACTION_WEB_SEARCH.

- ACTION_RECOGNIZE_SPEECH: Begin an activity that will listen for user speech

upon a trigger event or gesture and send it through a speech recognizer.

19

- ACTION_VOICE_SEARCH_HANDS_FREE: Begin an activity that will listen for user

speech but without the need for a trigger event or gesture. It will then send it through

a speech recognizer to initiate a web search or trigger another action.

- ACTION_WEB_SEARCH: Begin an activity that will listen for user speech upon a

trigger event or gesture then send it through a speech recognizer for use in a web

search or to trigger another action.

Speech recognition will be handled by Google which will make use of a server

database to identify the input message. Thus, internet access will be required, either

from mobile data or Wi-Fi-access. Thus, the following line of code in the figure below

must be added to the android manifest in order to ask permission from the application

to make use of the internet service installed on the phone.

Figure 2.3: Permission settings in Android Studio:

Additionally, the trigger event for the voice recognition system must be handled in

Android as a gesture on screen. A tap-on-screen, hold-on-screen or swipe-on-screen

event is sufficient. In the following figure, we can observe the aforementioned

requirements:

Figure 2.4: Gesture detector code on Android Studio

As we can observe in the figure above, by instantiating the GestureDetector class we

handle a LongPress event which will detect when a touch has been held on the screen

for two or three seconds. If such event occurs, the method which initiates the voice

recognition is called. In the following figure we observe this method in detail:

Figure 2.5: Recognizer intent configuration code

20

In the previous figure we may observe how the Intent class is instantiated to be able

to call upon its methods. The type of intent is passed as argument with the action set

to ACTION_RECOGNIZE_SPEECH so as to begin the activity responsible for speech

recognition with Google. Additionally, we give information to the speech recognizer

about the language using the putExtra method EXTRA_LANGUAGE_MODEL is to

inform the speech recognizer that additional language information is to be considered

and LANGUAGE_MODEL_FREE_FORM is to inform the recognizer to use a

language model based on free-form speech recognition. The EXTRA_PROMPT action

indicates to the recognizer that an additional text prompt should be shown to the user

when required to speak.

It is highly convenient to get the recognized speech from the activity in charge of the

speech recognition. For this purpose, we can make a call to the startActivityForResult

method which will return the recognized speech through the onActivityResult method.

The VOICE_RECOGNITION_REQUEST_CODE tag is added in order to identify the

activity which made the call to the intent in the first place.

As mentioned earlier, the identified speech must be taken from the result of the speech

recognition activity. In the code, we can override the corresponding OnActivityResult

method whereas arguments we receive the returning

VOICE_RECOGNITION_REQUEST_CODE as an identifier of the intent that executed

the activity and the identified speech data as well as shown in the following figure:

Figure 2.6: Activity result fetching code

As we can see in the figure above, we receive the identifier code in the argument

requestCode, the second argument resultCode will indicate the status of the

conversion, and the third argument data will provide the Intent with the identified

speech from the recognizer activity.

In the method’s implementation body we make an if statement to check if the identifier

code is the correct one (to check if this is the speech conversion we asked for) and we

21

also check with the resultCode if the conversion had no errors. In the case in which

statement is true, we enter the ‘if’ statement and save the data in an ArrayList (a

collection of data with individual elements or positions akin to a matrix or vector) by

calling to the getStringArrayListExtra method. In the first element or position of the

array we will find the most likely recognized word or phrase, the system’s assurance

decreases as we access the higher positions.

2.5. Text to speech synthesis in Android

Text to speech conversions in Android development can be done in a simple manner

by the use of the integrated TextToSpeech class. By instantiating the class we are

able to call its methods which allow to configure the converter and to easily convert

any given string to spoken language. Furthermore, Androids allows the users to

configure the text to speech module through its settings, without having to access any

sort of code.

The user must first open the system’s settings page. In the following figure we can

observe the settings page for a Sony Xperia S on Android version 4.1.2.

Figure 2.7: Settings page for Android 4.1.2

22

From here the user must access the option “Language & input” which will show the

configuration page for system language and speech settings. In the following figure

we can observe a screen picture of the page.

Figure 2.8: Language & input settings on Android 4.1.2

By setting the system’s language, the output Text-to-speech language will also change

accordingly. The user may also access the settings for the input soft keyboard of the

device on this page. Under the SPEECH section the user can gain access to the Text-

to-speech output settings which will open the page observed in the figure below.

Figure 2.9: Text-to-speech output settings on Android 4.1.2

23

From this area the user may choose the preferred speech output engine. In this case

only one engine is installed on the device. Text-to-speech output engines are readily

available on the Google Play store for download. If more than one engine was installed

on the example device, several options would be present for election and

configuration. The user may additionally listen through the device’s loudspeaker to an

example of the configured speech output. Finally, the user may alter the speed at

which the output voice speaks the converted message as observed in the figure below.

Figure 2.10: Speech rate settings on Android 4.1.2

For the application to use the configured Text-to-Speech module, the developer must

instantiate the class, as mentioned earlier. This has to necessarily be done within the

onCreate method since this is our main method in the activity, the first to be called

when the activity initiates its lifecycle. In the following figure we observe how this is

done:

Figure 2.11: Text to Speech initialization code

24

In the figure we can observe how the TextToSpeech class is instantiated and

implemented within Android. First a check is made on the status of the module, if it

returns a positive response we proceed inside the ‘if’ statement. Then, we must set

the language for the module, in this case to English UK, the method call returns a

status report. If the status returns as LANG_MISSING_DATA or

LANG_NOT_SUPPORTED that means that the language is not installed on the device

or the language is not supported on the speech engine respectively. If such is not the

case a method call to the ConvertTextToSpeech method is made, which will be the

method involved in converting written text to spoken language. In the following figure

we can observe the implementation of this method.

Figure 2.12: ConvertTextToSpeech method for text to speech conversion

The method shown in the figure above makes a direct call to the speak method in the

TextToSpeech class will directly convert the text inserted in the first argument call.

First, in terms of convenience, the text to be converted should be stored in the string

variable (variable type for storing information without the purpose of performing

arithmetic operations).

 An ‘if’ statement follows checking if there was actually information stored in the

variable. If there isn’t the text stored is set to indicate “Content not available” and a

method call to the speak method is made so as to make the message audible.

However, if there is in fact information stored in the variable, the ‘if´ statement will

proceed to its ‘else’ statement where we simply proceed to convert the stored text into

an audible message.

In the second argument we handle the QUEUE_FLUSH and QUEUE_ADD constants.

When text is added to the TextToSpeech converter, it will include the text information

inside its playback queue as a new entry. The text will then be converted when all

25

other entries proceeding it in the queue finish their conversion into audible messages.

By specifying the QUEUE_ADD constant in the second argument of the speak method

call we indicate that the text entry is to be added to the playback queue. In the other

case, where the QUEUE_FLUSH constant is specified, all entries in the playback

queue (media to be played and text to be synthesized) are dropped and replaced by

the new entry.

The third argument indicates intent bundle parameters for the request. In the case

shown in the figure above it can be set to null but supported parameters are:

KEY_PARAM_STREAM (key to specify the audio stream type to be used when

speaking text or playing back a file), KEY_PARAM_VOLUME (key to specify the

speech volume relative to the current stream type volume used when speaking text)

and KEY_PARA_PAN (key to specify how the speech is panned from left to right when

speaking text).

26

2.6. Android Apps for the disabled and visually

impaired

The aforementioned technologies and many others have been used to help people

who have movement difficulties or sensory impairments. By the use of android devices

their daily tasks can become simpler by using built in Google apps or custom made

apps installed on the device. In the table below, we can find a list of several relevant

apps which can be found on the google play store.

Name Description Language Android version

Google Talkback

TalkBack is an

accessibility service that
helps blind and vision-
impaired users interact

with their devices.
TalkBack adds spoken,
audible, and vibration

feedback to your
device.

All Android OS
languages.

Varies with device.
Available free for

download.

Voice Access

Voice Access is an

accessibility service that
helps users who have

difficulty manipulating a
touch screen.

English, Spanish,

French and several.

Android 5.0. Lollipop
and above. Available

free for download.

BrailleBack

BrailleBack is an

Accessibility Service
that helps blind users
make use of braille

devices.

All Android OS
languages

Android 4.1 JellyBean
and above. Available

free for download.

Tecla Access

Tecla is a set of tools

that provides access to
mobile devices, such as

smartphones and
tablets, for those who

are unable to
manipulate them due to

disease or disability.

English

Android 2.0. Éclair and
above. Available free

for download.

Magnifying Glass

Allows for magnifying
areas of the screen on

the device.

English

Android 4.0 Ice Cream
Sandwich and above.

Available free for
download with optional

pro version.

Big Launcher

BIG Launcher makes
the smartphone suitable

for people with eye
diseases, motor

problems or the legally
blind.

English

Android 2.1 Éclair and
above. Purchasable for

€9.99.

27

2.7. OpenCV Library

2.7.1. Introduction to OpenCV

OpenCV is an open-source library distributed under a BSD free software licence which

allows the source code to be used and changed freely for commercial and academic

purposes if certain conditions are met although with minimal requirements. The

OpenCV library, originally developed by Intel, is currently mostly used within computer

vision and image processing based development. Since its initial appearance in 1999

the library has been used in varied applications, from security systems with the use of

motion tracking systems and face recognition algorithms to process control

applications where object detection is needed. The library consists of more than 2500

algorithms divided in elaborate sets of classic computer vision and machine learning

algorithms. The latter is provided by a general purpose Machine Learning Library

(Bradski, 2008).

OpenCV provides interfaces for the C++, C and Python programming languages.

Recently support for Java and Android has been added. The library places importance

in efficiency and real-time processing. Its support for hardware acceleration and multi-

core processing makes this possible.

2.7.2. Installing OpenCV on Android Studio

In this section we will list the steps required to include the latest OpenCV SDK in an

Android Studio project for application development. After correctly importing the SDK,

all available functions and data structures contained in the Java API should be

accessible to the developer.

The first step is to download the latest SDK file from the OpenCV website. For that,

we must open the opencv.org webpage and click on the Downloads section.

Figure 2.13: OpenCV page downloads selection

28

In the “Downloads” section, we may observe that the latest version available for

Android OS is OpenCV 3.1, the second step is to click on the Android download link

to get the zip file.

Figure 2.14: OpenCV page platform selection

After the download is complete, we must decompress the zip file and place it in an

easily accessible folder. Afterwards in Android Studio, the third step is to choose the

unzipped SDK folder from File -> New -> Import Module.

Figure 2.15: Module import in Android Studio

A new build gradle will be added to the project corresponding to that of the imported

OpenCV SDK, the fourth step is to make it match the build gradle of our native project

29

changing the compileSdkVersion, buildToolsVersion, minSdkVersion and

targetSdkVersion parameters.

Figure 2.16: OpenCV gradle selection in Android Studio.

Now we must add the module dependency for our project. We must find the

dependencies tab from Application -> Module Settings. The fifth step is to click on the

‘+’ icon then on “Choose Module Dependency” and last on the imported OpenCV

module we will have established the dependency within our project.

Figure 2.17: Project dependencies selection in Android Studio

30

The last step is to copy the libs folder under sdk/native and paste it in our app/src/main

folder. Afterwards, we must rename the folder to jniLibs. This is done because Android

Studio expects native libs in the app/src/main/jniLibs folder location instead of the older

libs folder.

2.7.3. The OpenCV Manager

The OpenCV Manager was introduced by NVIDIA after the release of OpenCV version

2.4.2. It has become essential for any Android device that wishes to run an Android

based application. The OpenCV manager is readily available on the Google Play Store

or installable by using the Tegra Android Development Pack. The goal of the OpenCV

manager is to manage the libraries, update them and selecting the most optimized

versions depending on the device.

By dynamically linking the OpenCV libraries (instead of statically linking them where

they form part of the application), the OpenCV Manager can more efficiently install any

available updates. Dynamically linking the libraries means they are linked on runtime,

when the application is launched. In the case of static linking, the libraries and the

application would need to be updated strictly together, this meaning that upon any

update of an OpenCV library, the application would need to be re-released entirely.

By the use of dynamic linking, the OpenCV Manager is also able to detect hardware

automatically.

2.7.4. OpenCV sample applications

The OpenCV SDK provides sample applications and five tutorials which help with the

initial development steps in OpenCV. These tutorials and samples are meant to work

as frameworks or foundation for the application’s development. The samples and

tutorials are listed in the following:

- Android Camera: This tutorial does not use OpenCV libraries at all, but it

presents itself as a skeleton for any application which uses the Android native

camera.

- Add OpenCV: A tutorial which demonstrate a simple example of how a call to

the OpenCV library is done.

31

- OpenCV Camera: This sample is similar to the Android native camera sample

but provides a framework for using the OpenCV camera instead.

- Add Native OpenCV: This tutorial teaches how to set OpenCV as a native part

of the application development by the use of JNI.

- JAVA/C++: This tutorial demonstrates how to use C++ and Java OpenCV APIs

in the same application.

- Image- manipulations: A sample which shows how OpenCV is sued for

processing and manipulating input images.

- 15-puzzle: A sample which is an implemented game showing what possible

development is with OpenCV. Readily available on the Google Play Store.

- Face-detection: A sample which serves as a simple implementation of a face-

detection system on Android.

- Colour-blob-detection: A sample showing a simple implementation of a colour

blob tracker in real-time.

2.7.5. OpenCV Architecture

The OpenCV library presents a modular structure. The distributed package consists

of several individual shared or static libraries such as the following:

- Core functionality module (core): This module presents the basic functions

that will be used within other modules, including the multi-dimensional array

Mat and other basic data structures

- HighGUI module: Module that makes possible the representation of

information and basic UI capabilities.

- Image processing module (imgproc): Module for the processing of images

providing geometric transformations, perspective deviation, filtering, colour

manipulation, etc.

- Video module: This module, dedicated to real-time video processing, allows

for object tracking algorithms and motion estimation.

- Calib3d module: Containing 3D reconstruction algorithms, this module

additionally implements multiple-view geometry algorithms and object pose

estimation.

32

- Features2D module: By using this module the developer is able to work with

descriptor detecting algorithms and feature matching.

- Objdetect module: This module allows instancing of pre-defined classes for

object detection (for example, face and eye detection, vehicle detection).

- Videoio module: Mainly used for video capturing and video codecs.

- GPU module: This module allows the GPU acceleration of processes and

algorithms.

2.7.5.1. Core functionality module

OpenCV works fundamentally with matrix representations of digital images obtained

via digital capturing devices such as cameras and scanners, or artificially created

images (OpenCV 3.1.0 Tutorials). Within the cells of the stored matrix relevant

information of each pixel is stored for future access and manipulation.

With the use of the Mat class, OpenCV is able to handle the numeric data information

contained in these matrices. The Mat class is in itself composed of the matrix header,

which contains relevant information on the nature of the stored data matrix (such as

size, storing method, etc.), and a pointer towards the matrix itself containing the pixel

values in its cells. Other simpler data structures may also be defined using OpenCV,

such as Point which is a simple data structure class with two integer parameters x and

OpenCV

core

imgproc

video

calib3d

features2D

objdetect

Videoio

gpu

Figure 2.18: OpenCV modules diagram

33

y (Bradski, 2008). Others such as Rect may be defined in a more elaborate manner

by specifying its parameters x, y, width and height. Furthermore, Scalar is described

as a set four double-precision numbers, it contains a single member val which points

to an array containing the aforementioned information in floating-point format (Bradski,

2008). In any case, constructor methods are available for the developer to define and

initialize these data structures.

2.7.5.2. HighGUI module

The HighGUI module keeps operations such as interactions with hardware and file

systems simple for the developer. With the HighGUI we are able to easily display, read

and write on images and video or to display additional UI elements for extra

functionality.

From the hardware perspective, the HighGUI module allows to easily access the latest

feed from the camera, which can be tedious if done directly working with the operating

system.

The module also allows to load and save images. For this purpose the module offers

a pair of load and save functions which, if correctly supplied with the required

parameters, handle the task of decoding and encoding for the developer.

Furthermore, we are able to handle mouse and keyboard interactions on any window

and element we render by using the HighGUI module. The task of creating a simple

UI with buttons and sliders becomes quick and simple.

2.7.5.3. Image processing module

With this module we are able to perform more advanced operations for manipulating

image structures than in the core and highgui modules. In other words, using this

module we are able to process images in a more generic way, as images instead of

arrays and matrices of values.

Frequent image processing operations such as smoothing or blurring become possible

when using the imgproc module. Sometimes it is of interest to reduce noise on an

image, for which smoothing operations become relevant. OpenCV applies a filter to

the image which in itself may be of different types (linear, median, bilateral, guassian)

the most common being the linear filter.

34

Morphological transformations such as dilation and erosion are also available and they

allow us to remove noise, joining disparate elements in an image or isolating individual

elements. Morphology is also used to find intensity bumps or holes in an image and to

find image gradients. The operation consists of convoluting an image A with a kernel

B (OpenCV 3.1.0 Tutorials).

Other operations such as opening, closing, morphological gradient, image resize, top

hat and black hat are available for use with the module in image transformation

purposes.

2.7.5.4. Video module

The video module provides methods and algorithms to real-time object tracking which

becomes relevant in video processing when we focus on a single or determined set of

objects in a scene. Such can be done with the use of the image processing modules

by working with each video frame, however with this module we are able to understand

the motion of the object.

Although not absolutely required, the first task is usually to identify the object to study

in each frame so that we may track it in subsequent frames. Techniques for tracking

unidentified objects typically involve tracking visually significant key points where we

may observe differentiating details (Bradski, 2008).

The second task, modelling, will allow us to take the variable information obtained from

object or key point tracking and use mathematical approximations for the objects

trajectory.

Additionally, with background subtraction (BS) techniques we are able to filter or

isolate the object of interest by generating a binary image containing the pixels

belonging to the moving objects in the scene (OpenCV 3.1.0 Background Subtraction

Tutorial). The binary image or foreground mask is mainly obtained by subtracting the

current frame and a background model containing everything that can be considered

as background in the current scene.

35

2.7.5.5. Calib3d module

With the calib3d module we are able to handle camera calibration to mathematically

correct deviations imposed by the pinhole model when the real three dimensional

world scene is captured by camera lenses. The physical world is also handled in real

physical units, thus it is important to find a good relation with the cameras

measurement units (pixels) if we wish to reconstruct the three-dimensional scene. For

this purpose we are able to perform the mathematical homography transformation.

2.7.5.6. Features2D module

The features2D module implements the methods and algorithms for the detection of

features and descriptors on input images. Moreover, it allows feature matching

between two distinct images. Features of a certain object or scene can be defined in

terms of OpenCV as characteristics of the scene which we can easily identify (OpenCV

3.1.0 Features2D Tutorials). The feature detection algorithms search for different

types of features, those being edges, corners (also known as interest points) and blobs

(also known as regions of interest). Corners represent an area where two edges

intersect, the direction of the edges change thus a high variation of the gradient will be

present in that region, something OpenCV can easily detect. A similar situation is

present with edges, where from a set of pixels to another a detectable change occurs.

The features2D module implements the necessary functions and interfaces to also

draw the key points or matches between two images as small coloured or black circles.

Several algorithms are available within the library for the feature detection itself. The

OpenCV 3.1.0 base package contains the following:

- BRISK: Feature detection algorithm used to construct binary key points using

a sampling pattern (where the sampling points will take place) composed of

concentric rings. Afterwards, a smoothing Gaussian filter is applied to each

sample and the binary key points are determined by performing intensity

comparisons. The algorithm additionally works with an orientation

compensation mechanism, thus becoming to a certain extent invariant to key

point rotation.

- BRIEF: Algorithm for constructing binary key points and descriptors, it has the

distinct feature of not having a defined sampling patterns and thus samples for

descriptor construction are taken in random manner. It makes use of a

smoothing Gaussian filter to make the sampling stage less sensitive to noise.

36

- ORB: Similar to BRIEF AND BRISK it constructs binary key points and is

supported by an orientation compensation mechanism which adds robustness

for rotated key points. ORB additionally learns the most optimal sampling pairs

instead of choosing them randomly. Sampling pairs are later used to compare

and thus build the final descriptor.

- FAST: A computationally efficient feature and descriptor extraction algorithm it

uses a circular sampling pattern of 16 pixels (Bresenham circle of radius 3) to

detect features. It further makes use of machine learning to improve the

algorithm’s detection

- SURF: This algorithm is well known for its robustness and effectivity at

detecting features within a scene. However it is also computationally intensive.

It makes use of multi-resolution techniques to obtain coordinates from the input

images. It then creates different versions of the input image but with a reduced

bandwidth using Laplacian or Gaussian Pyramids. A blur effect will occur in the

image and thus constructing a Scale-Space. This makes the interest points

invariant to scale.

- FREAK: This feature detection and descriptor extractor algorithm shares

features from both BRISK and ORB. It makes use of a pre-defined retinal

sampling pattern and additionally uses machine learning processes to get the

most optimal sampling pairs. It contains an orientation compensation

mechanism similar to that of BRISK.

- MSER: Algorithm used for blob detection in a given scene it extracts from the

image a certain amount of co-variant regions called MSERs. The MSER regions

are stable connected components of the image. The algorithm is based on

taking regions which a nearly the same through a wide range of thresholds.

- SIFT: Predecessor to SURF it can robustly identify objects in the presence of

visual noise our partial occlusion. It presents itself as invariant to scale changes

and orientation or illumination changes.

37

2.8. OpenCV Android Apps for the visually

impaired

Research on the OpenCV library endures to create augmented reality and computer

vision systems which can aid the visually impaired or individuals with mental illnesses.

With the introduction of OpenCV on the Android platform, many apps are being

developed which can provide such aid on Android devices and allow those individuals

who have difficulties with vision or discerning objects with artificial on-board vision in

the provided app.

Name

Description

Languages

Android version

Colour Assist

This app aids people
with colour-blindness
and assists them with
distinguishing different

colours using the
camera on their phone.

English

Android 2.2 Froyo and
above. Application is
free for download and

use.

Visual Coin Counter

This app uses computer

vision algorithms to
detect coins and then

add up the values.

English

Android 2.2 Froyo and
above. Application is
free for download and

use. Pro version
available to remove

ads.

ICsee

ICSee applies special
filters to the real-time
image taken from the

camera of the
smartphone/ tablet,
making identifying

indiscernible objects
and texts easier.

English

Android 4.0 Ice Cream
Sandwich. Application

is free for download and
use.

Sign Language

Interpreter

Sign Language

Interpreter will convert
signs from ASL and ISL
to appropriate text and

audio.

English

Android 2.2 Froyo and
above. Application is
free for download and

use.

ReadEasy

ReadEasy is a mobile

application designed to
help visually impaired to

read signs.

Italian

Android 4.0 Ice Cream
Sandwich. Application

is free for download and
use.

38

Chapter 3

SYSTEM DESCRIPTION

3.1 General overview

The Vision Guide application consists of four main modules each with independent

processes which contribute to the general functionality of the system. These modules

are named as the following:

- Main Menu: This is the core of the application. By use of this activity the user

will be able to launch the other modules by touching on their icons on the screen

or by communicating their name through speech recognition.

- Object Capture: This activity is in charge of capturing still images of objects

and saving them in the database giving them a name and identifier.

- Object Recognizer: This activity’s main objective is to launch the OpenCV

library to process camera frames, recognize objects in real time, and show

information on screen and by audible message.

- Colour Recognizer: This activity applies an algorithm to calcite the amount of

colour on the scene in a pre-defined HSV range.

On the application’s start up, a welcome screen greets the user with the application’s

name on screen and by an audible message. By touching on the screen the user will

be able to access one of the most important modules of the application: The Main

Menu.

The main goal in this implementation style is to allow separate functionalities

independent of each other, providing a multi-purpose application ideally to provide aid

in different facets of human vision.

In this chapter a detailed study will be done on the general functioning of the system.

The functionality of each module and activity will be studied independently. From the

front-end coding of what the user sees or hears to the back-end coding of how the

algorithms that makes the core functionalities possible such as the object recognition.

39

3.2. The Welcome Screen

Upon the application’s start up, the Welcome Screen activity is launched. A full screen

image is shown containing the application’s name and with the Action Bar (area of the

screen in an activity where titles, icons and menus are located) hidden. Since the main

functionalities of the application require a landscape horizontal view, this is already

imposed on this activity. Thus, the entire application will strictly work in landscape

mode.

Figure 3.1: Screen image of the Welcome screen activity

To ensure that the Action Bar stays hidden, the activity must be configured in the

AndroidManifest.xml. There are several options, we can either make the applications

theme be Theme.NoTitleBar.Fullscreen or set configChanges to screenSize. In this

activity, the latter method was chosen.

Furthermore, also within the AndroidManisfest.xml. file it is necessary to indicate that

this activity will be the launcher activity, that is, the first activity that will show upon the

application’s start up. To do this, an intent filter must be specified. And thus combining

the former configuration and the intent filter, the configuration of the activity in the

manifest will be the following:

40

Figure 3.2: Welcome activity configuration in manifest file

Notice how the configuration is placed within the confines of the activity tags. The first

attribute to be specified is the name of the activity for Android Studio. The next line

states the aforementioned configuration for the full screen and horizontal image. A

label is specified to be able to identify the activity within Android Studio. By setting the

screenOrientation attribute to landscape, we force the activity to strictly run in

landscape mode, this means the layout will be horizontal and will prevent Android’s

automatic screen orientation adjustment system to change it. And, by specifying the

theme attribute, the colours and styles of the entire activity it set up.

With the goal of sending an audible welcome message to the user upon the activity’s

initiation, it is necessary to start the TTS module within the onCreate method, which

will be as an analogy to the Main method in Eclipse the first method to be executed.

This implementation is shown in the following figure:

Figure 3.3: TTS module configuration in Welcome activity

41

As we can observe in the figure above, the TTS module will make a call to the

ConvertTextToSpeech method if the set up returned no errors. This method will be in

charge of calling the speech conversion methods with the text we wish to convert as

argument. The implementation is shown in the next figure:

Figure 3.4: ConvertTextToSpeech method implementation in Welcome activity

In the figure above, we can observe that the text that will be converted to an audible

message will be “Vision Guide”, the name of the application. Thus it is expected that

the user hears the name of the application upon start-up.

Furthermore, to allow the user to advance to the next activity upon touching the screen,

a method must be added to handle this event. This method’s implementation is shown

in the next figure:

Figure 3.5: screenTapped method implementation in Welcome activity

42

In the next figure a flow chart is shown showing how this activity works following the

processes that have been explained.

Figure 3.6: Flow chart for Welcome activity functionality

The method shown in the figure above will handle an onClick event on the specified

View, it will then create an intent which will allow us to end the current activity’s lifecycle

and start the next activity. To specify which View in which this event is handled, we

must add the specification onto the layout file corresponding to the activity. The layout

file handles the graphic interface of the activity, thus here we will add or create UI

elements and establish their relation with the back-end JAVA code. The layout XML

file for the Welcome activity is shown in the next figure.

43

Figure 3.7: Layout configuration for Welcome activity

In the figure above we can observe how the activity contains a FrameLayout which

functions as a container for other Views or layout components. It is also able specify

a number of properties. In the android:background property we are able to specify a

background image for this layout. In this case we have chosen an image which is

present in the drawable container file which corresponds to the full screen image we

will see when starting the application. Last, the android:onClick property specifies

which method will be called when a click or touch event occurs on the screen. In this

case, the previous method mentioned which takes us to the next activity.

3.3. The Main Menu

As in the case of the Welcome activity, the device will send an audible message to the

user announcing the name of this activity so that in case the user has vision

impairment he/she will easily be able to know which module is currently active.

This activity contains an Action Bar which shows the user the name of the activity. It

will also contain three separate images on the screen, which upon touch will send the

user to the separate modules of the system. The screen for this activity is shown in

the following image:

44

Figure 3.8: Screen image of the Main Menu activity

Since this activity does contain a visible Action Bar this must be specified in the code.

Within the onCreate method the Action Bar must be obtained. The following figure

shows the set-up for this specific case.

Figure 3.9: Action Bar configuration in the Main Menu activity

On the first line of code, we first call to the method getActionBar() to obtain an instance

of the Action Bar, then the display is set to custom so that we may freely manipulate

its graphic style. On the next line of code, the layout for this Action Bar is set to an

XML file stored in the layout folder. The environment will search within this folder for

the XML file to organise the elements to be shown. When the layout file has been set,

we are able to access the title field and edit the title by making a call to the setText

method. Last, we disable the visibility of the application’s icon which is shown on the

Action Bar by default.

The layout file for the Action Bar is shown in the next figure:

45

Figure 3.10: Action Bar layout configuration in Main Menu activity

As we can observe the in the figure above, the basic container will be a LinearLayout.

The difference with the previously studied FrameLayout is that the LinearLayout strictly

places the elements below one another while the FrameLayout allows for more

placement freedom. A TextView element is added which is the one accessed when

we set the Action Bar title shown in the previous figure. To be able to find this TextView

we must specify an android:id. As we saw in the previous figure, we obtained this

TextView by searching for the specified android:id.

Since this activity will redirect the user to the modules of the system, it is necessary

for it to contain a voice recognition module. The user will be able to access the module

by holding a touch on the screen, after a few seconds the voice recognition system

will prompt the user for speech. This gesture must be set and handled within the code,

as shown in the following figure:

Figure 3.11: gestureDetector configuration in Main Menu activity

The method above will create a listener long press event which will occur when the

user holds a touch on the screen for longer than two seconds. When this happens, a

call to the startVoiceRecognitionActivity method is made, which will handle the start-

up configuration for the speech recognition module. The implementation of this method

is shown in the next figure:

46

Figure 3.12: Speech recognition intent configuration in Main Menu activity

As we can observe in the previous figure, an intent is created to configure the speech

recognition module. The first configuration begins when we make a call to the putExtra

method which allows us to set additional parameters. The language settings are thus

applied, and an additional prompt is added to the user upon initiation for the speech

recognition module. Last, the speech recognition activity is started by calling the

startActivityFoResult method. As arguments we specify the configuration intent we

have just created, and an identifier tag which we will use to know which activity is

returning results. With this, the activity in charge for Google’s speech recognition will

start and will return information as result, which we will be able to obtain by overriding

the onActivityResult method. The implementation of the previously mentioned method

is shown in the next figure.

Figure 3.13: Main menu activity speech interaction configuration code

47

In the previous figure we can observe that the @Override tag indicates that we are

overriding the method (replacing or writing its implementation code). This tag is not

strictly necessary, if we were to delete it, the code would compile. The onActivityResult

method receives three arguments: requestCode, resultCode, and data. The first

argument, requestCode, indicates the indentification code we had set up before, this

is to verify this is our corresponding method call. The second argument, resultCode,

indicates the status of the result returned. If RESULT_OK is specified then the

returned data is valid. The last argument, data, returns the Intent with the resultant

data from our method call.

Within the implementation of the method an ‘if’ statement checks for the identification

and status of the conversion. In case everything is according to the requirements we

enter the statement to recover the resultant data. To recover a list of strings of all

recognized words or phrases a call to the getStringArrayListExtra method is made and

additionally RecognizerIntent.EXTRA_RESULTS is set as argument to specify that

what we wish to retrieve is the results of the speech conversion. This is stored in the

matches variable.

At this point, we are able to search within the list if a certain word was recognized.

Since this speech recognition module will be used to access other modules of the

system, it is of our interest to search for words which the user might mention when

trying to access one of the modules. Thus, the first word we search for is “capture”.

Inside the ‘if’ condition statement, we make a call to the contains method which will

return “true” if the word specified in its argument is indeed present in the list. In this

case, the ‘if’ will proceed to its inner code where redirection can take place.

Before redirecting the user towards the module in charge of capturing objects, we

make a check to see if the present device has a camera since it is a strict requirement

for the module’s core functioning. If the device contains a functioning camera, the

intent is made to end this activity’s lifecycle and initiate the next one. If no camera is

present, a Toast message is displayed (a short message on the device’s screen).

This same process is repeated for the other cases, if we wish to access the object

recognition module we make a check to see if the list of recognized words contains

“recognizer”. And finally if we wish to access the colour recognition module we make

a check to see if the list of recognized words contains “colour”.

48

A flow chart is included in the next figure, summarizing the process that have been

explained:

Figure 3.14: Flow chart for Main Menu activity functionality

This system is designed to help the visually impaired navigating through the

application. Three functioning buttons are added, however, for users without vision

impairment. By touching these buttons the system’s corresponding module will be

launched. These buttons consist of images with a specified method when an onClick

event occurs. The layout file including these three buttons is shown in the next figure.

49

Figure 3.15: Main Menu layout configuration

As we can observe in the figure above, three images are added in the FrameLayout

container, which allows us freedom with their placement. For each image, a

layout_width and layout_height attribute is specified, to handle dimensions on the

screen. Their positions are set by adjusting the layout_gravity attributed. For the left-

most image “start|center_vertical” is specified, for the centered image “center” is

specified and for the right-most image “end|center_vertical” is specified. Furthermore,

to allow appropriate separation between each image, an amout of layout_margin is

specified.

Finally, to handle a touch event on each screen and effectively setting them as buttons

a different method is specified within the onClick attribute which will handle the

appropriate change of activity lifecycle for the corresponding button.

50

3.4. Object capture

When the user chooses to start the object capture module, the corresponding activity

will be launched. This activity will receive frames from the camera, thus the user will

be able to see what the camera captures on the activity’s screen. Additionally, a

button is added to capture an object. The idea is that the user places the object

which is to be saved in front of the camera and presses the capture button. The

interface will then ask the user to write the name of the object so as to store it in the

database. In the following figure we show a screen image of the activity:

Figure 3.16: Screen image of the object capture activity

This activity works with the Android native camera, thus we must obtain the camera

instance and initiate the preview that will be shown on screen. In the following figure

the code that configures this process is shown.

51

Figure 3.17: Came instance fetching for Object Capture activity

As we can observe in the previous figure, an instance of the Android native camera is

obtained by calling to the getCameraInstance method and stored within the Camera

variable mCamera. With the instance obtained, we are able to construct the preview

in the next line of code. This is what the user will be able to see on the screen. By

adding the next line of code, we ensure that the preview is placed within the UI

elements of the acitivity.

As with all modules of the system, this activity implements speech recognition. And

thus the user with visual impairment is able to capture an object by touching on the

screen to activate the speech recognition module and saying the word “capture”. At

this point, the application will save the current camera frame by making a method call.

In the next figure, this method call is shown.

Figure 3.17: Picture saving on the Object Capture activity

As we can observe in the previous figure, the first step is to load the previous list of

saved picture names so that we may add upon it the new picture. Then, by making a

call to the getOutputMediaFile method, we are able to obtain the file location in the

system where we will be able to place the image. Within the try/catch statement an

52

output stream is initiated onto the file directory configured earlier and the data transfer

is made. At this point, the image is saved into the device’s memory.

Furthermore, the device will ask the user to say the name of the captured object. After

the speech recognition module effectively gets the user’s utterance the

SharedPreferences are used so that we may save the name for this picture in local

storage. In the next figure we can observe the implementation of this code.

Figure 3.18: Object name list save in Object Capture activity

As mentioned earlier, in the first line of code the new name is added to the previous

list of names and by making a call to the commit method the data is effectively stored

in local. Since Android pauses the camera preview when an image is taken it is

necessary to restart it by calling to startPreview() on the mCamera object. The decider

and takenpicture are boolean variables (they take values of “true” or “false”) used to

control the speech dialogue with the user. Last, we use the Text-to-Speech module to

make the user know that the object has been saved in the database.

In the next figure, a flow chart of the activity’s functioning is shown.

53

Figure 3.19: Flow chart of Object Capture activity functionality

3.5. Object recognizer

The object recognizer activity launches the object recognition module where the

system will use the OpenCV library to run algorithms in order to look relevant key

points that describe an object stored in the database in real time. The algorithms will

first look for details in a scene: borders and corners upon a black and white version of

the input camera frames, it will then run filtering mechanisms to find the details which

may actually describe an object instead of background information and will then

periodically check for similar key point patterns of objects stored in the database.

The module will additionally add information on the screen indicating the name of the

recognized object, if no object is detected it will also show the according message. It

will also indicate the number of objects stored in the database and as additional

information the mean distance and variance of the matches between the object

54

present on the screen and the object the object stored in the database, as a measure

of certainty.

Since the scan is periodic, a countdown for the next scan is shown on screen. This

countdown will increase as the database increases since the algorithms are expensive

on system resource this criteria ensures stability.

In the next figure a screen image of the interface is shown for this module.

Figure 3.20: Screen image of the Object Recognizer activity

In order to make use of the OpenCV libraries, it is convenient to load them first. This

comes from the fact that the load takes a certain amount of time, and the code might

execute faster than the loading process resulting in an error as the called methods

and variables are not found.

In the figure below we can observe an implementation of this process.

55

Figure 3.21: OpenCV library load in Object Recognizer activity

As we can observe in the figure, a BaseLoaderCallback is created, this will allow us to

initialize the OpenCV libraries before the activity code is executed. By overriding the

onManagerConnected method we can state the functionalities that are to take place

when the OpenCV Manager runs. In this case, a switch statement is made. This

implementation will check if the statement in each state is true and in such a case

execute the code held within the statement. In this implementation, the system checks

for a success in loading the libraries by the OpenCV manager. It will then make a call

to enableView to show the activity’s interface, showing the live camera feed using

OpenCV.

Upon initiation the system will be begin processing each camera frame, it will draw the

detected scene features on each frame and the information regarding the detection.

This approach will update the features and information at a high rate. In the next figure,

we see the implementation of this system.

56

Figure 3.22: Camera frame processing in Object Recognizer activity

By overriding the onCameraFrame method we are able to alter the frames coming

from the camera feed and show the modified frame on the camera preview instead. A

call is first made to the drawfeatures method which will run the OpenCV algorithms to

detect and show the features or details detected in the scene. Next, several lines of

code are dedicated to screen representation of relevant information such as the name

of the object detected, the mean and variance distance of the detected math and the

number of objects stored in the database. Additionally the countdown for the next scan

is shown.

Since the detection is done periodically, a boolean takeframe is handled to begin the

object detection. This Boolean value (true or false) is set by a handler whose function

is to activate section of code every set amount of seconds. In the next figure we can

observe an implementation of the handler.

57

Figure 3.23: Handler configuration in Object Recognizer activity

In the figure above we can observe that after the handler’s instantiation a Runnable is

created. This is what the handler will manage. Within the runner we make a call to the

run method and inside we implement the code that is to be executed. The Boolean

value is immediately set to true and later within the finally statement the time for the

next scan when the boolean will be set to true again is set. In this case, the time for

the next scan is set depending on the size of the database. A simple mathematical

operation is then done and an ‘if’ statement ensures that the timer is never too small. Last,

the handler sets the time for the next execution of this runnable.

Nevertheless, a call is made to the drawfeatures on every camera frame to update the

detected features in real time. In the next figure the implementation of the drawfeatures

method is shown.

58

Figure 3.24: Draw features on camera frames in Object Recognizer activity

This method receives the image as argument in the form of a Mat object which is

OpenCV’s data matrix representation of digital images. First, a call is made to OpenCV

library methods to create the feature detector and descriptor extractor. The feature

detector is in charge of finding borders and corners which may define the details in a

relevant object. The descriptor extractor will use the detected features to define the

most relevant detected details that define the object.

Next, the image is converted to a grey colour space. This makes the detection of

borders and corners easier for the algorithm. A call is made to the detect method to

get the localization of the key points and to store them in the MatOfKeyPoint variable

keypoints1. These key points are then used to create the descriptors by making a call

to the compute method in the descriptor interface. Finally, by calling the drawKeypoints

OpenCV method within the Features2D interface module and passing as arguments

the image to be modified, the detected key points, the destination image and the colour

of the key points we will get the feature drawn image.

59

When a scan is to be made, the application will take a still image from the live camera

feed and compare it will the other still images saved in the database, looking for the

closest match. The closest match is produced when the mean distance between the

detected features is the smallest. When such event occurs the algorithm will fetch for

the name of the object corresponding to the still image and communicate it to the user

by the use of speech and on screen representation.

In the figure below the implementation of this functionality can be observed.

Figure 3.25: Detected key points in database images in Object Recognizer activity

As we can observe the first step is to detect features in a similar way it was done for

drawing features on each frame with the exception that in this implementation it is

done on a single camera frame when the scan is made. Now, a second image img2

will be scanned for features corresponding to the image stored in the database.

60

Figure 3.26: Searching the database for matches in Object Recognizer activity

We can observe in the figure above how the database scan is done. First we find within

the local store the size of the database, a value increased and stored each time a new

image is added. Next, if the database has images we proceed to scan for each image.

Within the database, each image is stored with the name dbimg and an identifier

number, which for convenient simplicity it correspond to its order withint he database.

Thus, the next thing that is done is the path towards the stored image is constructed.

The image is stored within the Pictures directory within the local storage. By calling to

the method getExternalStoragePublicDirectory and passing as argument the directory

we wish to obtain the method will return a path towards the folder. We then add the

subfolder the image is located in, its database name and identifier number which is

increased on every new iteration.

The next steps are to get the features and descriptors for the database image

corresponding to the current iteration and then find matches with the features of the

image coming from the live camera feed. First, a list of matches object is declared and

a method call is made to knn_matcher to find the most optimal matches between the

descriptors of both images. Then, the matches are filtered by making a call to the

ratio_homography method which does a ratio test and a RANSAC test to find the most

relevant matches, removing noise data.

61

The mean distance between the matches is calculated by making a call to the

match_mean method and the variance of the distance between all matches by calling

to the match_dev method.

Before we continue with the ‘for’ loop, it is convenient to study the aforementioned

methods in detail. The first, shown in the next figure, will be the knn_matcher method.

Figure 3.27: Using the KNN algorithm to find matches in Object Recognizer activity

In the figure above we can observe how the knn_matcher is implemented. The

descriptors corresponding to both images is passed as argument. Next the

DescriporMatcher is created from the OpenCV library. This object will be in charge of

finding the closest matches using bruteforce hamming (simple coordinate distance

comparison). By making a call to the knnMatch OpenCV method, it will compute the

most optimal matches by filtering with the K-Nearest-Neighbours algorithm, giving a

greater relevance to nearby points than isolated coordinates.

Now, as shown in the next figure, we will study in detail the ratio and RANSAC test.

62

Figure 3.28: Filtering matches using ratio test and RANSAC algorithm in Object Recognizer activity

As it can be observed in the previous figure, an iterator is used to go through the

matches list and find patterns using the ratio test for relevant key points. Each key

point is compared with the next by division, if the result is smaller than 0.9, it is

considered a relevant match and it is added to a new list of good matches. Then the

RANSAC algorithm is used which filters the points according to perspective changes.

In the next figure, returning to the for loop iteration, it is shown how the minimum mean

distance, corresponding to the recognized object is determined.

63

Figure 3.29: Finding the minimum mean distance in the Object Recognizer activity

The first ‘If’ statement checks if we are in the first iteration, in such a case the minimum

distance is set to the first scanned distance. Then, the next ‘if’ statement checks if

there is another scanned distance smaller than our stored minimum distance, in such

a case the minimum distance is set to that distance and the classifier variable is set to

the iteration number. This will allow us to locate which image in the database contains

the smallest distance since they are saved with their order number.

In the next figure, we exit the ‘for’ loop and the detection process is shown.

Figure 3.27: Finding the recognized object's name in the Object Recognizer activity

If we refer to the figure above, first a check is made to see if the minimum mean

distance is below a threshold. If the threshold is exceeded we deduce no relevant

detection was made, this is done to avoid false detections. In the other case however,

64

we conclude that there may be a relevant object within the camera scene and the

minimum mean distance and minimum variance is shown on screen. Furthermore, the

name of the object is fetched within the list of names stored in local storage, and the

exact position of the detected object is found within the list to extract its name. The

name is then put on screen and said to the user by speech using the text-to-speech

module. This name corresponds to that which the user inserted when the object was

captured.

As a summary, the complete functioning of this activity’s algorithm is shown in the next

flow chart figure.

Figure 3.30: Flow chat for the Object Recognizer activity functionality

65

3.6. Colour recognizer

The colour recognition activity’s goal is to be able to inform the user of the colours

present in a determined scene. On screen information will show the user the

percentage of that colour present in the scene according to the total number of pixels

present in that HSV range. The user may communicate to the application which colour

is to be scanned and flowingly the application will check and convert the pixels present

in that HSV range to white and the pixels not in the HSV range to black. With this

sudden high level of contrast it is intended for the users with low-vision to be able to

tell which object or scene is present in the camera scene or for users with difficulties

telling colours to be receive the colour information they require. In the next figure, the

main interface is shown.

Figure 3.31: Screen image of the Colour Recognition activity

And in the next figure a screen capture is shown when the algorithm scans for a colour.

66

Figure 3.32: Screen image of the Color Recognizer activity when scanning.

To detect colour, the system will use speech recognition to listen to what the user

wishes to scan. At that moment, the appropriate method will be called which uses

OpenCV’s libraries to read the image pixels in a fast and efficient manner and

determine if they are within the HSV range. The next figure shows the implementation

of this functionality.

Figure 3.33: Finding colours in the Colour Recognition activity

67

As it can be observed in the previous figure the camera frame is passed as input

argument, similar to the object recognition module and additionally the colour the user

requires, communicated by speech. This information is used to run multiple ‘if´

statements and accessing their inner code depending on the selected colour. In all

cases, however a call to the core method of the OpenCV library inRange is made,

whereas arguments the input image is set, the HSV range to be scanned and the

destination image. This OpenCV method will single-handedly convert the pixels

present in the defined HSV range to white and the others to absolute black.

As a summary of the functioning of this activity, the flow chart is shown in the next

figure.

Figure 3.34: Flow chat for the Colour Recognition activity

68

Chapter 4

SYSTEM EVALUATION

4.1 System evaluation methodology and results

For the evaluation of the present application several candidates were carefully

chosen since the nature of the developed system’s functionalities may only be useful

to the visually impaired and other individuals who wish to aid them by making use of

this application. The Android device was handed out to the participants with the

application installed and the tests were made in varying environments in an attempt

to imitate daily use.

After a week of testing, the users were given a questionnaire with questions

designed to evaluate the system’s quality and usefulness. The results were taken

and several statistics were made. The total number of participants were ten and

consisted of a mixed group of both visually and non-visually impaired individuals.

The first set of questions are designed to gather information regarding the

application’s general functioning. In the next figures the first and second questions

and their results are shown.

Figure 4.1: First question pairs of the system evaluation survey

69

Figure 4.2: First question results

Figure 4.3: Second question results

60%

30%

10% 0%0%

HOW LIKELY ARE YOU TO RECOMMEND THIS
APPLICATION?

Very likely Probably I don't know Unlikely Very unlikely

80%

20%

0%0%0%

OVERALL, HOW SATISFIED ARE YOU WITH THE
APPLICATION?

Very satisfied Satisfied I can't decide Not satisfied Very unsatisfied

70

Figure 4.4: Third question of the system evaluation survey

Figure 4.5: Results for the third question

In the next figures, the next pair of questions regarding general system satisfaction

are shown and their results:

64%

18%

0%

18%

0%

THE APPLICATION'S INTERFACES AND MENUS
PROVIDED USEFUL INFORMATION...

Strongly agree Agree I can't decide Disagree Strongly disagree

71

Figure 4.6: Second set of questions in the system evaluation survey

Figure 4.7: Fourth question results

60%20%

10%

10% 0%

THE APPLICATION'S TRANSITIONS WERE FLUENT AND
THE UI ELEMENTS RESPONSIVE...

Strongly agree Agree I can't decide Disagree Strongly disagree

72

Figure 4.8: Results for the fifth question
The next figures now show the second part of the survey where the questions

recovered information regarding the detailed functioning of the application as a

computer vision and augmented reality system for the visually impaired.

Figure 4.9: Question six and seven of the system evaluation survey

60%20%

20%

0%0%

HOW UNIQUE IS THE APPLICATION?

Extremely Unique Very unique Somewhat unique Not so unique Not at all unique

73

Figure 4.10: Results of the sixth question

Figure 4.11: Results of the seventh question

50%50%

0%0%0%

HOW OFTEN DID THE SPEECH RECOGNITION MODULE
RECOGNIZE WHAT WAS SAID?

Very often Sometimes I can't tell Almost never Never

70%

20%

0%
10% 0%

HOW OFTEN DID THE OBJECT RECOGNITION MODULE
RECOGNIZE THE PRESENTED OBJECT?

Very often Sometimes I can't tell Almost never Never

74

Figure 4.12: Question eight and nine of the system evaluation survey

Figure 4.13: Result for question eight

60%20%

20%

0%0%

HOW USEFUL WAS THE INFORMATION PROVIDED BY
THE COLOUR RECOGNITION MODULE?

Very useful Useful I can't decide Sometimes useful Never useful

75

Figure 4.14: Question ten of the system evaluation survey

Figure 4.15: Results for question 10

80%

20%

0%0%0%

HOW CLEAR WERE THE AUDIBLE MESSAGES SENT BY
THE APPLICATION?

Very clear Sometimes clear I can't decide Not clear Very unclear

76

4.2 Conclusions

From the results extracted from the survey it can be observed that there was general

satisfaction with the application’s quality. The UI elements were reportedly clear

enough and visually attractive. A majority of the users would recommend the

application.

Regarding the systems performance as an augmented reality and computer vision

system for the visually impaired, it seems the algorithms have proven sometimes slow

and the colour information provided not always useful.

77

Chapter 5

FINAL CONCLUSIONS AND

FUTURE STUDY

5.1 Final conclusions

During the development of this projects we have observed how complex computer

systems are progressively becoming more present in our daily lives. Technologies

which were before unfeasible and subject of fantasy writings and movies are now

becoming a reality. It is now possible to integrate advanced technologies for daily use

by the general public. Many years of intense research in computer vision are now

producing great applications in medical, surveillance and security systems.

Augmented reality systems are quickly becoming common place in entertainment and

academic investigation.

The sudden increase of digital technologies brings a great amount of interest from the

general public where many are willing to spend large amounts of money in expensive

technologies. This has motivated a bigger investment by companies in investigating

and developing new and more advanced technology.

Portable technologies are now becoming common-place. Smartphones, tablets, and

smart watches allow to carry technology everywhere and function independent of the

localization. Recent advances in Internet technologies allow to easily communicate

over vast distances.

With the development of faster processors in portable technology, it is now easier to

run complex algorithms with significant effects. Standard devices can now perform a

variety of tasks without suffering the side-effects of computationally heavy processes.

The costs of technological development have decreased greatly in recent years, and

much of it is now also present to the general public. This means that software

applications can readily be developed by standard users and sold freely. In the case

78

of Android applications, hundreds of applications are made by amateur developers

and sold freely on the Google Play Store.

The physically disabled and visually impaired can take great benefit from this great

and accelerated advance in technology. Present portable systems such as

Smartphones and tablets can install applications which may assist them in their daily

tasks. Augmented reality can help add additional layers of information which can aid

the disabled. Computer vision systems can assist the visually impaired in

communicating to them the world they cannot see.

The development of this project and the application has proven that creating a system

which completely replaces personal assistance is difficult, but technology can be

integrated to this process and motivate others to help the disabled.

With the completion of the application’s development it can be said that the objectives

have been met. The application can effectively aid a visually impaired individual in not

only identifying objects present in a scene but also to orientate and recognize areas

since the application studies the distinct features of any given scene. Additionally, the

colour recognition functionality can provide aid to individuals who suffer from colour

blindness.

It was also intended with the development of this application to motivate the

development of augmented reality and speech dialogue systems to provide assistance

to those who need it, independently from the entertainment domain.

5.2 Future study

As future work it would be interesting to reduce the computational load of computer

vision algorithms. As an open source project, the OpenCV library is open to

improvement. It would perhaps be convenient to further improve the OpenCV library

and its recent API on Android.

The application Vision Guide could be subject to several improvements upon its

functionalities. It might be interesting to combine the colour and object detection

modules to improve object or scene detection. Furthermore, the dialogue system could

be improved to provide a more fluent conversation with the user and an additional

module which reads to the user the text present in the scene captured by the camera.

79

Chapter 6

PROJECT MANAGEMENT

6.1 Temporal planning

The project’s temporal planning was managed by the free software tool GanttProject

with which Gantt diagrams can be created with relative simplicity. The purpose of the

Gantt diagram is to visually show the time dedicated to each individual tasks required

for the project’s completion.

The duration of each task has been set considering a dedication time of 3 hours per

day. The next figure shows a table with all tasks and their durations elaborated within

the GanttProject tool.

Figure 6.1: Table of project stages shown within the Gantt Project tool

80

In the next figure the Gantt diagram is shown which was drawn by the software using

the previous table.

Figure 6.2: Gantt diagram drawn using the Gantt Project software

The total duration of the project has been of 253 days. The total duration of the project

was longer than expected due to the required investigation on Android application

development which was previously not known.

6.2 Budget

In this section the project’s research and development costs are listed in order to

estimate the required budget.

Human resources:

For calculating the costs of human resources, the following formula is used extracted

from the template provided by the university (uc3m, 2014).

Cost = (duration (days) * daily hours) / (human dedication per month) * cost dedication

- Duration in days: 253

- Daily hours: 3

- Human dedication per month: 131,25

- Cost dedication (engineer): 2694,39

81

- Total cost result: 15 581,27 €

Hardware resources:

- Desktop computer: 600 €

- Smartphone Xperia S: 241,45 €

- Samsung Galaxy Tab 4: 281,95 €

- USB Cable: 5 €

Software resources:

- Android Studio development environment for Android applications: 0 €

- Android SDK (Software Development Kit): 0 €

- Java JDK (Java Development Kit): 0 €

- OpenCV Android SDK: A development API for Android applications: 0 €

- Google TTS synthesizer for Android devices: 0 €

- Google speech recognition on Android devices: 0 €

Other costs:

- Indirect costs: 3 525,80 €

- Redemption costs: 110,05 €

Total costs category Total budget costs

Human resources 15 581,27 €

Hardware resources 1 128,94 €

Software resources 0 €

Indirect costs 3 525,80 €

Redemption costs 110,05 €

Total costs without taxes 20 346,06 €

Total costs with taxes (0,21) 24 618,73 €

The total costs of the project is thus TWENTY-FOUR THOUSAND SIX HUNDRED

AND EIGHTEEN EURO AND SEVENTY-THREE CENT.

82

DEFINITIONS
Activity: Defined Class which corresponds to an independent screen of the

application.

Android Studio: Development environment for Android applications in JAVA code.

API: Set of methods and calls which provide functionalities and processes,

representing an abstraction layer for the developer.

Application: Set of activities and methods which compose basic and complex

functionalities in an Android software.

Augmented Reality (AR): Augmented reality is a real world environment view

whose elements have been augmented by computer generated data.

Automatic Speech Recognition (ASR): System in which the user’s utterance is

identified by the device in real time.

Computer Vision (CV): Field of study which deals how computers can simulate the

human visual sensory system and gain a high level of understanding of images and

videos.

Gantt Diagram: Graphical representation with the purpose of showing the duration
of project stages and tasks.

Intent: Android system component which expresses an action generally regarding a
set of data.

Java Development Kit (JDK): Set of tools that allow the developer to create
programs and applications in the JAVA programming language.

Layout: Android development component that defines the visual structure of the
user interface.

Object recognition: System by which a certain object presented in the camera

scene is identified.

OpenCV: Library for developing computer vision software.

OpenCV Manager: Control software that updates and links OpenCV libraries on

execution.

83

RecognizerIntent: Class of the android.speech packet which provides the

necessary constants for the integration of voice recognition systems in Android

applications.

Software Development Kit (SDK): Set of tools that allow the developer to create an

application in a determined programming language or platform.

Spoken Dialogue System (SDS): System which allows interaction with the device

through regular speech simulating human interaction.

Text to Speech Synthesis (TTS): System which allows the conversion of written

text to spoken language by the device.

Virtual Reality (VR): Virtual reality consists of using computer generated information

to replicate a real or imaginary environment.

Work Breakdown Structure (WBS): Tool used to visually analyze the project’s
planning with each of its stages and corresponding tasks.

84

REFERENCES
Schmalstieg, D., & Höllerer, T. (2016). Augmented reality: Principles and practice.

Retrieved September 18, 2016, from

http://proquest.safaribooksonline.com.strauss.uc3m.es:8080/9780133153217

Azuma, R. T. (1997, August). A Survey of Augmented Reality. Presence:

Teleoperators and Virtual Environments, 6(4), 355-385.

Craig, A. B. (2013). Understanding augmented reality: Concepts and applications.

Retrieved September 18, 2016, from

http://proquest.safaribooksonline.com.strauss.uc3m.es:8080/9780240824086

By Augment. May 12th, 2016. Industry & Augment News. Infographic: The History of

Augmented Reality - Augment News. Retrieved September 18, 2016, from

http://www.augment.com/blog/infographic-lengthy-history-augmented-reality/

White, Jules. Schmidt C., Douglas. Golparvar-Fard, Mani (2014, February).

Applications of augmented reality. Proceedings of the IEE. Vol 1002 No. 2

Szeliski, R. (2011). Computer vision: Algorithms and applications. Retrieved

September 18, 2016, from http://szeliski.org/Book/

Skantze, G. (2007). Error handling in spoken dialogue systems: Managing

uncertainty, grounding and miscommunication. Retrieved September 18, 2016, from

http://www.sciencedirect.com.strauss.uc3m.es:8080/science/article/pii/S0167639304

SpeechRecognizer. (n.d.). Retrieved September 19, 2016, from
https://developer.android.com/reference/android/speech/SpeechRecognizer.html

TextToSpeech. (n.d.). Retrieved September 19, 2016, from
https://developer.android.com/reference/android/speech/tts/TextToSpeech.html

Board, C. I. (n.d.). Apps for People with Disabilities and Older People. Retrieved
September 19, 2016, from
http://www.assistireland.ie/eng/Information/Information_Sheets/Apps_for_People_with
_Disabilities_and_Older_People.html

Gregori, B. E. (n.d.). Developing OpenCV computer vision apps for the Android
platform. Retrieved September 19, 2016, from
http://www.embedded.com/design/programming-languages-and-
tools/4406164/Developing-OpenCV-computer-vision-apps-for-the-Android-platform

Tutorial on Binary Descriptors – part 1. (2016). Retrieved September 19, 2016, from
https://gilscvblog.com/2013/08/26/tutorial-on-binary-descriptors-part-1/

OpenCV: Introduction. (n.d.). Retrieved September 19, 2016, from
http://docs.opencv.org/3.1.0/d1/dfb/intro.html

85

Bradski, G. R., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the
OpenCV library. Beijing: O'Reilly.

OpenCV - Google Play. (n.d.). Retrieved September 19, 2016,
from https://play.google.com/store/search?q=opencv

