

UNIVERSIDAD CARLOS III DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

WINDKESSEL MODELING OF THE HUMAN

ARTERIAL SYSTEM

Bachelor Thesis

Trabajo Fin de Grado

Biomedical Engineering

Oral presentation date:

Author: Nuria Peña Pérez

Supervisor: Manuel Desco Menéndez

Leganés, June 2016

2

3

ACKNOWLEDGEMENTS

I would like express my gratitude to the following people for their support. This thesis means

the end of four very special years, and as probably the greatest challenge of this period, this

would not have been possible without them.

To my supervisor Manuel Desco Menéndez, for giving me the opportunity to work in this

project, allowing me to work independently and being available always that guidance was

needed. Thank you for trusting me.

To Guillermo Vizcaíno, for his patience, time and endless knowledge. For teaching me so much.

This would not have been possible without you. To all the people working in the lab, always

opening the door with a smile, thank you for making my days special and transforming my time

there into a great experience.

To all my friends for being such a source of encouragement and inspiration. I feel incredibly

lucky of being surrounded by such amazing people.

To all my family, for having faith in me and for their care and support to succeed in making my

dreams come true. Specially, to Ana and Javier, my parents, thank you for giving me

everything, I will never be able to thank you enough. To my brother Raúl, for his understanding

and support.

To Álvaro, for believing in me. For letting me believe in you. It´s been such a good year.

Nuria Peña, June 2015.

4

5

ABSTRACT

Cardiovascular diseases are a major concern of our society. Millions of patients all around the

world are affected by disorders such as arrhythmias or atherosclerosis. Moreover, finding new

diagnostic techniques and treatments is of increased difficulty due to the complexity of

cardiovascular medicine. In this context, the upcoming generations of experts must be well

prepared for overcoming such a challenge. This project aims to develop an educational tool

that will allow students to improve their understanding on cardiovascular fluid mechanics and

physiology and will allow them to gain practical experience before dealing with real patients. A

system modelling the arterial system, available at the Universidad Carlos III de Madrid, is used

for this purpose. The educational tool is composed by a theoretical simulation interface and an

acquisition and control program, created using MATLAB, and a practical environment based on

a physical pneumatic-hydraulic device. A laboratory practice for the students has been

developed describing how to work with both platforms.

Key words:

Cardiovascular physiology, arterial modelling, Windkessel model, models in education,

MATLAB.

6

RESUMEN

Las enfermedades cardiovasculares constituyen uno de los mayores problemas médicos de la

sociedad actual. Millones de pacientes a lo largo del mundo se ven afectados por

enfermedades como arritmias o arterosclerosis. Además, la búsqueda de nuevos tratamientos

y métodos de diagnóstico se ve complicada por la dificultad inherente a la medicina

cardiovascular. En este contexto, los futuros profesionales del sector médico deben estar

perfectamente preparados para afrontar el reto. En este proyecto se ha creado una

herramienta educativa orientada a mejorar la compresión en los temas de fisiología y

mecánica cardiovascular y a proporcionar a los estudiantes una plataforma a través de la cual

completar su educación con formación práctica, de cara a futuros retos con casos reales. La

herramienta propuesta está compuesta por una interfaz de simulación teórica y un programa

adquisición y control, creados utilizando MATLAB, y un aparato de simulación hidroneumático.

Se ha creado también una práctica de laboratorio, describiendo a los estudiantes como

interactuar con ambas plataformas.

Palabras clave:

Fisiología cardiovascular, modelado arterial, modelo Windkessel, modelos de uso educativo,

MATLAB.

7

8

GENERAL INDEX

CONTENTS

ACKNOWLEDGEMENTS ... 3

ABSTRACT .. 5

RESUMEN .. 6

Figure Index ... 10

Table Index .. 11

1. GENERAL INTRODUCTION ... 13

1.1 Motivation ... 13

1.2 Objectives .. 14

1.3 Structure .. 15

1.4 Legal Framework ... 16

2. THEORETICAL FRAMEWORK .. 17

5.1. Vascular Anatomy and physiology ... 17

5.2. Cardiovascular diseases ... 20

5.3. Arterial Models ... 21

5.4. The Windkessel Model ... 22

5.4.1. Two Elements Windkessel Model ... 23

5.4.2. Three Elements Windkessel Model ... 24

5.4.3. Four Elements Windkessel Model ... 25

5.5 State of the Art .. 25

3. SYSTEM DESIGN ... 29

3.1 System requirements .. 30

3.2 Software requirements ... 31

3.3 Hardware requirements .. 33

4. PROJECT DEVELOPMENT ... 33

4.1. Theoretical Simulation ... 33

4.1.1 Mathematical Models .. 35

4.1.2. Simulation Data ... 38

4.1.3. Simulation Interface .. 42

4.2. Physical Device ... 45

4.2.1. Description of the device .. 45

4.2.2. Electronic Improvements .. 48

4.2.3. Device to computer communication ... 50

9

4.2.4. Reading Codes and Interface .. 53

4.3. Practice for Students .. 58

5. RESULTS ... 59

5.1. Assessment of the Models ... 59

5.1.1. Analysis of features represented .. 59

5.1.2. Initial condition analysis .. 62

5.1.3. Impedance analysis ... 62

5.1.4. Parameter modification analysis ... 64

5.2. Characterization of the Device ... 65

6. CONCLUSIONS AND FUTURE WORK .. 68

6.1. Conclusions .. 68

6.2 Future Work .. 68

References ... 70

ANNEXES ... 75

I. General costs ... 75

II. Practice: Cardiovascular Physiology .. 77

III. Schemes .. 81

IV. Full Mathematical Development ... 84

V. Codes ... 89

10

Figure Index
Figure 1: Internal structure of the heart ... 17

Figure 2: Subsystems of the cardiovascular system .. 18

Figure 3: Steps of the heart cycle .. 19

Figure 4: Comparison between aortic, ventricular and atrial pressure. 19

Figure 5: Prevalence of high blood pressure in adults .. 20

Figure 6: Dimensional description of arterial models ... 21

Figure 7: Analogy between Ohm’s and Poiseuille’s law .. 22

Figure 8: two-element Windkessel (hemodynamic and electrical presentation) 23

Figure 9: three-element Windkessel (hemodynamic and electrical presentation) 24

Figure 10: Four-element-series Windkessel model .. 25

Figure 11: Techniques involved in Computational Hemodynamics .. 26

Figure 12: Model of a heart ... 27

Figure 13: Different cardiovascular models offered by United Biologics 27

Figure 14: SynDaver Patient .. 28

Figure 15: SynDaver EKG simulator ... 28

Figure 16: Generic structure of a system .. 34

Figure 17: Two-element Windkessel diagram. .. 35

Figure 18: Three-element windkessel diagram. .. 36

Figure 19: Four-element-series Windkessel diagram... 36

Figure 20:Four-element-parallel Windkessel diagram. .. 37

Figure 21: Flow over a heart cycle. Obtained using MATLAB. .. 40

Figure 22: Pressure in the Aorta.. 42

Figure 23: Simulation interface: welcome page .. 43

Figure 25: Simulation Interface: four-element-parallel model, flow display. 44

Figure 24: Simulation Interface: four-element-parallel model, pressure display. 44

Figure 27: Main diagram of the physical device. .. 46

Figure 28: Picture of the physical device with the main components highlighted. 46

Figure 29: Pneumatic components inside the Control Case ... 47

Figure 30: Original electronic board. ... 48

Figure 31: New electronic board. .. 48

Figure 32: New electronic circuit inside Control Case .. 49

Figure 33: New electronic circuit inside Transducer Case. ... 50

Figure 34: RS-232 pin diagram .. 51

Figure 35: Pressure sensor compatible with the EG 02000. ... 51

Figure 36: Ultrasonic transit-time method to measure volumetric flow 53

Figure 37: Reading Interface: general flow diagram. .. 55

Figure 38: Reading Interface: welcome page .. 56

Figure 39: Reading Interface: Software timing, pressure recording (diastole). 57

Figure 40: Reading Interface: Software timing, pressure recording (systole). 57

Figure 41: Comparison between obtained simulated pressure waveforms. 59

Figure 42: Aortic pressure during diastole fitting curve ... 60

Figure 43: Comparison of the Windkessel models used in the interface 61

Figure 44: Comparison of the performance of the system using the two considered initial

conditions. ... 62

Figure 45: Bode diagrams of the different models. .. 63

Figure 46: System impedance comparison ... 63

Figure 47: Simulation Interface: four-element-parallel Windkessel model 64

file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401169
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401174
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401177
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401178
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401179
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401180
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401185
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401187
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401188
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401189
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401191
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401195
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401196
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401198
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401199
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401201
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401202
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401203
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401204
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401207
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401207
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401208
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401209
file:///C:/Users/Nuria/Desktop/TFG/TFG%20NURIA%20PEÑA%20PÉREZ.docx%23_Toc454401210

11

Figure 48: Real time recording of the flow ... 65

Figure 49: Real time recording of the flow while the input pressure is being altered. 66

Figure 50: Real time pressure recording. .. 66

Figure 51: Real time pressure recording while input pressure to the system is being altered. . 67

Table Index
Table 1: Normal hemodynamic parameters for a healthy adult ... 39

Table 2: Windkessel parameter values for a healthy adult human ... 40

Table 3: Data format sent by flow transducer. ... 53

Table 4: Systolic and diastolic pressure Values comparison. .. 62

12

“There is no certainty in sciences where

one of the mathematical sciences

cannot be applied, or which are not in

relation with these mathematics”.

 Leonardo Da Vinci.

13

1. GENERAL INTRODUCTION

1.1 Motivation

Medicine has evolved greatly from its origins. As time progresses it tries to adapt to the

necessities of the new society. Emerging technologies contribute to this purpose while novel

focus areas offer alternative perspectives to solve medical problems. However, as new

treatments are found for existing diseases, aiming to eradicate some of them, new medical

challenges arise. This is the case of vascular diseases which nowadays have become one of the

most worrying conditions, affecting millions of patients all around the world [1].

Biomedical engineering emerged as one of the disciplines committed to help medical sciences.

It has expanded considerably in the last decades, establishing itself as a fundamental field in

the improvement of disease prevention, diagnosis, treatment and rehabilitation. Through the

application of engineering concepts to solve medical issues it provides a singular point of view

and favors the cooperation of biologists, physicist and doctors in multidisciplinary teams.

Thus, engineering has become fundamental in the healthcare industry. One of the most

remarkable tools that biomedical engineering provides is the possibility of using mathematics-

based sciences to model biological processes.

When dealing with vascular diseases, mathematics (together with physics, electronics, etc.)

may be used to model the anatomy and physiology of the circulatory system. These models,

and their implementation in physical devices, offer significant advantages against traditional

techniques and methods. In vascular research, models can be used when it is complicated or

not practical to create experimental conditions. This allows to observe the system’s

performance in specific circumstances and provides with a better understanding of it,

therefore helping in the search for new treatments. In training and education, models give the

students the opportunity to work with an actual experiment, when they can adjust the

parameters of the system and observe its response. Real system modelling also prevents them

from committing failures during experimentation, offering them an environment to practice

before dealing with real patients. All of this converts modelling in a very useful tool for the

field of biomedicine, and in particular of biomedical training.

This project emerged from the availability of a physical device that models the arterial system

located at the laboratories of the Universidad Carlos III de Madrid. For the system to be

converted in a reliable and effective educational tool, it had to be completed, improved and

14

adjusted to the teaching necessities. Once implemented, it would constitute a very useful

instrument for making use of the advantages that models offer to education. Biomedical

engineering students must be prepared to overcome any type of challenge related to any of

the disciplines integrated in biomedical sciences and engineering. This demands a broad

education where theoretical knowledge must be completed with practical instruction. In this

context, including a tool such as the proposed in this thesis, might be of huge help in the

instruction of students. It would help them to learn in a more realistic environment without

the need of treating directly with patients, and it would improve their understanding of a field

as complex and important as vascular physiology. All of this will contribute to keep a high

quality, cutting-edge instruction.

1.2 Objectives

The general goal of this project is to set up an educational tool for training students, focusing

on the topic of human vascular fluid mechanics. Two different learning platforms will be

provided, allowing the students to improve both their theoretical and practical knowledge. In

this way, the specific goals of this project are:

 To create a “theoretical” educational software platform. The platform will be

constituted by a simulation interface where the students will be able to improve their

knowledge on vascular physiology. By using this platform, students will be able to

observe the role that different physiological parameters (e.g., changes in the heart

rate) have in the circulatory system, and to understand how they affect to aortic

pressure and flow.

 To set up a “practical” environment where students can reinforce the concepts learnt

during the lessons. This will make use of the physical device available at the university.

The students will be able to define simulation parameters and acquire data coming

from the simulated vascular device in a software platform specifically designed for this

purpose.

 To design a laboratory practice that defines the workflow to be followed in the

experience with both platforms. This will allow the students to observe and discuss the

differences and similarities between the output given by the theoretical model itself

and by its implementation in a physical device, and to see how these are related to

real data from human patients.

15

1.3 Structure

This thesis is structured into six main chapters, each containing different subsections.

The first chapter of this thesis explains the context and the origin of the motivation that

inspired this project, defining the main goals that will be pursued during its development. It

also includes a brief description of the legal framework, explaining what considerations have

been taken.

The second chapter provides with the necessary background required to understand the

proposed solution and its implementation. It also discusses currently available techniques and

devices based on the use of models that aim to contribute to the field of vascular medicine.

Relevant characteristics of the different studies will be considered for achieving a feasible and

successful solution to a real need.

The third chapter comments the limitations and obstacles to take into account for the

development of a solution. It describes the user and technical requirements.

Along the fourth chapter the different solutions adopted for achieving each of the specific

objectives are presented in detail. It explains why the selected approach accomplishes with the

user requirements and describes the considerations taken for each of the elements integrating

the system. In this way, the chapter includes the core of the development of the project,

providing the necessary material for arriving to the first functional implementation.

The fifth chapter shows some of the results obtained and some significant figures regarding

the behavior of the system and its characteristics.

Finally, a conclusion will be provided together with future work suggestions.

Additional sections are defined outside the principal chapters:

 Acknowledgements

 Abstract, including its Spanish translation

 References

 Annex, containing the following relevant information:

o General costs

o Practice for students

o Schemes

o Full Mathematical Development

o Codes

16

1.4 Legal Framework

As previously explained, the system has been developed as an educational tool, aimed to be

used at the Universidad Carlos III de Madrid for training students. Since the device will not be

distributed, and no commercial transactions will take place, the device is exempt from

following regulation stated by the European legislation.

European Union market regulation is managed by the Directorate-General for Internal market,

Industry, Entrepreneurship and SMEs. Products in the European Economic Area (EEA) require

an evaluation to ensure their high safety, health, and the requirements of environmental

protection. This is achieved through CE marking. By affixing the CE marking on a product, the

manufacturer declares that the product complies with all legal requirements for CE marking

and can be sold throughout the EEA. Products that are manufactured in other countries and

sold in the EEA also follow this regulation [2]. The latest legislative framework was adopted in

2008, through a packet of measures that aim to improve market surveillance and boost the

quality of conformity assessments.

Since the development of the device did not require animal experimentation it is exempt from

the guidelines set by order 53/2013 [3].

Moreover, since the system will not be used in clinical trial and it is not defined as medicinal

product for human use, it is exempt from following the regulation stated by the European

Union. In this context, all clinical trials performed in the European Union are required to be

conducted in accordance with the Clinical Trials Directive [4]. On May 28th 2016 the

new Clinical Trials Regulation (CTR) EU No 536/2014 will become applicable.

The device meets however UNE-EN ISO 12100 requirements specific for risk management and

security in machinery design [5]. This order provides the procedure for risk identification and

evaluation during the relevant phases of a machine life cycle. This includes considering aspects

such as geometric and physical characteristics, electric and hydraulic risks, etc.

http://ec.europa.eu/health/files/eudralex/vol-1/dir_2001_20/dir_2001_20_en.pdf
http://ec.europa.eu/health/files/eudralex/vol-1/reg_2014_536/reg_2014_536_en.pdf

17

2. THEORETICAL FRAMEWORK

5.1. Vascular Anatomy and physiology

In order to understand the theoretical model included in this project and the functioning of the

physical device, it is important to understand some of the concepts of vascular anatomy and

physiology.

The cardiovascular system is composed by the heart, the blood and the blood vessels.

The heart is a relatively small, four-chambered muscle that rests on the diaphragm, close to

the midline of the thoracic cavity. It is in charge of enabling the circulatory flow, pumping

blood through the blood vessels. As continuous flow is demanded, the heart is required to

beat approximately 100,000 every day, which supposes 2.5 billion beats in an average lifetime

[6].

Fig. 1 shows the internal structure of the heart, which is divided in two sections each

containing an atrium and a ventricle.

Figure 1: Internal structure of the heart [7].

The right atrium (RA) collects the un-oxygenated blood from all the body except the lungs.

Blood flows from the RA, to the right ventricle (RV), where it is pumped to the lungs to receive

oxygen. Oxygenated blood returns from the lungs and enters to the left atrium (LA) and travels

into the left ventricle (LV). The left ventricle finally pumps the oxygenated blood to the aorta,

one of the major arteries in the body. The aorta branches out into a series of major and then

18

minor arteries (arterioles, with smaller diameter), and finally into a series of capillaries where

gas exchange and diffusion occur.

To ensure the switch from deoxygenated blood entering the heart to oxygenated blood leaving

the heart, the vascular system has two different subsystems: the pulmonary system and the

systemic system.

Figure 2: Subsystems of the cardiovascular system [7].

Each of the ventricles is providing blood to a different subsystem during the cardiac cycle, to

guarantee no deoxygenated blood travels to systemic circulation without entering the lungs

first. The cardiac cycle is typically described in two phases, diastole and systole, happening in a

controlled time period T. The first step of diastole consists in the filling of the right and left

atria, while the ventricles are relaxing (isovolumetric relaxation, which lowers their pressure).

After the tricuspid and mitral valve open due to the increase of pressure in the atria, the

second step of diastole arrives and both ventricles are filled with blood. The first stage of

systole consists in the isovolumetric contraction of the right and left ventricles. Once pressure

inside the ventricle is high enough the second stage starts: aortic and pulmonary semilunar

valves open and blood is ejected to the aorta and pulmonary arteries respectively [8]. Fig. 3

shows each of the described steps.

19

Figure 3: Steps of the heart cycle [9].

The description of systole and diastole above, demonstrates the mechanics happening at the

aortic valve. It is clear that changes in ventricular pressure causes the aortic valve to open and

close, and initiates the flow of blood through the valve. It is important to mention that this

project will consider pressure and flow just outside the left ventricle, once the blood has

traversed the aortic valve. In the fig. 4, differences between the pressures at the left atrium,

ventricle and aorta are shown, together with contrasts between aortic flow and ventricular

volume.

Figure 4: Comparison between aortic, ventricular and atrial pressure. Comparison between ventricular volume and
aortic flow [8].

20

Figure 5: Prevalence of high blood pressure in adults ≥20 years of age by age and sex (National Health and Nutrition Examination Survey:
2007–2012) (a). Age-adjusted prevalence trends for high blood pressure in adults ≥20 years of age by race/ethnicity, sex, and survey
(National Health and Nutrition Examination Survey: 1988–1994, 1999–2006, and 2007–2012) (b) [10].

Some of the characteristics that will be used to generate the theoretical model may be

recognized in the image, such as the absence of flow at the aorta during systole or the range of

values for the aortic pressure (that never decreases to zero).

5.2. Cardiovascular diseases

Cardiovascular diseases are a group of disorders that are related to the circulatory system and

therefore affect to the heart or the blood vessels. According to the World Health Organization

[1] cardiovascular diseases are currently the leading cause of dead in the world.

Disorders such as sudden cardiac arrest, atrial fibrillation, peripheral artery disease, stroke or

heart failure caused approximately 1 death each 40 seconds in the United States (USA)

according to data from 2013 [10]. This issues are strongly influenced by habits such as poor

diet, lack of exercise or smoking, and by other factors such as genetic predisposition. As an

example, one of the major risk factors for cardiovascular diseases, high blood pressure (HBP),

affects to more than 50% of the population aged between 55 and 64 in the USA (Fig. 5a). The

prevalence of this condition has generally increased over the last decades (Fig. 5b). If this

tendency continues, the search for a solution will require from all the efforts of the upcoming

generations of experts. This is why education in the field of vascular medicine is such a critical

matter, for all students aiming to work in biomedical sciences.

21

5.3. Arterial Models

The complicated interactions between the different physiological processes and control

mechanisms of the cardiovascular system, convert it in one of the most complex to

understand. In order to provide a better diagnosis and a better understanding of its

physiology, different approaches have been used. Nowadays, mathematical description and

modeling of the human cardiovascular system plays an important role in the comprehension of

cardiovascular disorders, providing tools such as computer modeling and simulation in physical

devices.

Many different models exist, aiming to provide a representation of the arterial system. These

models can be classified according to the features of the system they represent. It is important

to take into account that in general there are not “good” or “bad” models, but models that suit

the requirements of different applications [11]. Each model has a different goal but all of them

aim to understand the vascular system in a non-invasive way. The principal arterial models are:

Anatomically based distributed models, tube models and lumped models [12].

For the development of this project a lumped model is going to be considered. Lumped models

are described as being 0-dimensional models since they consider that the distribution of the

fundamental variables of the cardiovascular system (pressure, flow, etc.) is uniform along all its

compartments (different organs and vessels) at every moment of time. If an experiment wants

to take into account spatially distributed phenomena a different type of model must be

selected. In 1-dimensional models, wave transport effect can be readily represented, and the

variation of the velocity of the flow along a blood vessel can be described. In 2-dimensional

models radial changes of the flow velocity can be easily represented in tubes showing axial

symmetry. For some applications, where a complex description of the flow at specific locations

of the arterial tree (bifurcations of the vessels, inside ventricles, through heart valves, etc.)

needs to be done, 3-dimensional models may be used [11].

Figure 6: Dimensional description of arterial models [11]

22

The main limitations of lumped models are therefore their incapability to study wave

transmission phenomena, variations in the blood flow distribution and effects of local vascular

changes. However, complexity may be added to these models by building multiple

compartment models. These allow to avoid considering the entire systemic tree as a single

block, permitting to establish differences in the fundamental variables between distinct

segments of a vessel. Each of the segments is described as an independent lumped model. This

has the advantage of allowing to develop a flexible model that provides more detail in the

areas of interest [13].

For this project, as that much detail is not required, a single compartment lumped model,

representing the entire systemic arterial tree will be used.

5.4. The Windkessel Model

The Windkessel model of the human arterial system is a lumped model that represents the

systemic arterial tree. This model was designed by the German physiologist Otto Frank in the

late 1800’s [14]. The name of the model comes from the German word that means air

chamber.

The Windkessel model describes the systemic arterial system as an analogy of a hydraulic or

electric circuit. This may be observed in Fig. 7.

Figure 7: Analogy between Ohm’s and Poiseuille’s law [15].

In Otto Frank’s original design, the circuit contained a water pump connected to a chamber,

filled with water except for a pocket of air. When the pump starts working the water

compresses the air, which pushes the water outside the chamber. This analogy may be also

established with an electric circuit and it resembles the mechanics of the heart. However,

when considering an electric circuit, the blood is no longer represented by water, but it is

23

represented by electrons. The driving force of these electrons is no longer the pressure (𝑃),

but a voltage difference (𝑈). The flow is no longer the volume change over a certain time (𝑉),

but the variation of charge over time (𝑞), which is the intensity (𝐼).

The main parameters of the original Windkessel model (also called two-element Windkessel

model) are the peripheral resistance and the arterial compliance [16]. It order to improve it,

some other parameters can be included building Windkessel models of higher complexity [17].

5.4.1. Two Elements Windkessel Model

As previously mentioned, the two-element Windkessel model describes artery behavior by

means of two parameters: peripheral resistance and aortic compliance.

Peripheral resistance refers to the resistance to the flow of blood as it flows through the

systemic arterial system. The higher the resistance, the higher the pressure difference for a

given rate of flow.

𝑅𝑝 =
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
=

𝑃1 − 𝑃2

𝑄1 − 𝑄2

=
∆𝑃

∆𝑄

Regard the similarities of the formula above with electric Ohm’s law, by using the analogies

described in the previous section. This causes peripheral resistance to be represented with an

electric resistor in the electrical presentation. (See Fig. 8)

 𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: ∆𝑃 = 𝑅𝑝 ∙ ∆𝑄

𝑂ℎ𝑚′𝑠 𝑙𝑎𝑤: 𝑉 = 𝑅 ∙ 𝐼

Hydraulic resistance depends on the length and the radius of the vessel, and the viscosity of

the fluid [18]. In this way, more resistance is encountered in small vessels, which means that

the part of the system accounting for most of the resistance will be arterioles and capillaries.

𝑅𝑝 =
8𝜇𝑙

𝜋𝑅4

Figure 8: two-element Windkessel (hemodynamic and electrical presentation) [17]

24

Nevertheless, big arteries are characterized by a different parameter: compliance. Which may

be defined as [18]:

𝐶 =
𝐴

𝜌𝑔

This parameter is related to the elasticity and extensibility of the arteries. Compliance refers to

the volume change produced in an artery when subjected to a certain pressure [17]:

𝐶 =
∆𝑉

∆𝑃

Realizing that the flow is the variation of volume over time, a relationship between

compliance, pressure and flow may be defined:

𝑄 =
𝑑𝑉

𝑑𝑡

∆𝑄 = 𝐶
𝑑𝑃

𝑑𝑡

This shows why aortic compliance is represented as a capacitor in the electrical presentation,

as the same procedure can be used to define capacitance (𝐶𝑎) in terms of the intensity

(current) and the derivative of the voltage.

𝐶𝑎 =
∆𝑞

∆𝑈

𝐼 = 𝐶𝑎 ∙
𝑑𝑈

𝑑𝑡

5.4.2. Three Elements Windkessel Model

For developing the three-element Windkessel model a new parameter is included:

characteristic impedance (𝑍𝑎). The resulting model can be considered a link between a lumped

model and a model including wave travel aspects. This arises from the fact that characteristic

impedance is defined as wave speed times blood density divided by (aortic) cross-sectional

area [17].

𝑍𝑎 =
𝑣𝜌

𝐴

When developing a dimensional analysis, it can be observed that characteristic impedance has

the same units as peripheral resistance [19]. More detail is given in section 4.1.2.

Figure 9: three-element Windkessel (hemodynamic and electrical presentation) [17]

25

Figure 10: Four-element-series Windkessel model (a), four-element-parallel
Windkessel model (b) [17]

5.4.3. Four Elements Windkessel Model

For describing a more complex Windkessel model, a parameter representing the fluidic inertia

of the blood as it is cycled through the system. This parameter, called inertance (𝐿), may be

included in the model in two different ways, defining the four elements-series Windkessel

model and the four elements-parallel Windkessel model [20].

Fig. 10a shows the four-element Windkessel in its series configuration, while fig. 10b shows

the parallel configuration of the model.

As described by the relationship below [21], inertance depends on the length and the cross-

sectional area of the vessel and on the fluid density.

𝐿 =
𝑙𝜌

𝐴

This parameter is related to flow and pressure through the following equation:

∆𝑃 = 𝐿
𝑑𝑄

𝑑𝑡

This shows why inertance appears as an inductor (𝐿𝑖) in the electrical representation, since:

∆𝑈 = 𝐿𝑖

𝑑𝐼

𝑑𝑡

5.5 State of the Art

One of the fields that has benefited the most from the use of models is cardiovascular

medicine. Models in this area are used with three main purposes, contributing to research,

training, and marketing demonstrations.

26

Models in Research

Nowadays models are commonly used for different applications as they offer serious

advantages compared to traditional experimentation, such as cost reduction and shortening of

the time required to perform the experiments. However, when using a model for research, it is

important to remember that they cannot completely replace measurements as they are not

fully accurate; models are only approximations to reality. Nevertheless, if the assumptions

used to elaborate the model are taken into account when interpreting the results, they can be

of huge help.

Although traditionally animal models were the most used with research purposes [22] and in

the cardiovascular filed animals with vessels of small diameter were the most demanded [23],

currently computational hemodynamics has arisen as a powerful tool for improving the

efficiency of scientific experimentation, knowledge transfer and technology development [24].

Figure 11: Techniques involved in Computational Hemodynamics [24].

This technique allows to observe flow patterns that are difficult, expensive or impossible to

study using traditional (experimental) techniques [25]. In this way, lumped models such as the

Windkessel model are not usually used for research purposes, being anatomical distributed

models the preferred option. Most of the work developed in the field is related to graft

generation [26], design of artificial valves and stents [27] and study of cerebral aneurysms [28].

Marketing Demonstrations

Models may be used as interactive tools for effectively communicating new procedure ideas or

the products offered by a company. These type of models can be found at corporate meetings

and customer demonstrations. As an example, the brand Pulse (Medical demonstration

Models) [29] offer biomedical companies different anatomical models manufactured according

to their criteria. The purpose of these models is to respond as the human organisms to the tool

27

manufactured by the biomedical company. In this way, products manufactured (e.g. a

catheter) will be showed to clients working in a realistic environment.

Figure 12: Model of a heart (manufactured by Pulse) used to show the performance of a device [29]

Training

Finally, models can be used in education. By looking at the bibliography it has been observed

that there are two main types of models used in training.

Firstly, physical models can be used in education. These models are mainly used in physician

training, aiming to improve patient care by offering a training environment that replicates

interventional scenarios. The use of vessel, valves and organ replicas, combined with

diagnostic tools and devices can help in the demonstration of surgical procedures, treatment

of pathologies and diagnostic techniques. Companies such as United Biologics [30] offer

different products for its use in patient demonstrations, professional training or courses

offered at medical schools. This models may cost around 5000$.

Figure 13: Different cardiovascular models offered by United Biologics [30]

28

Figure 14: SynDaver Patient (a) and its controlling open-source engine (b) [31].

One of the most complete physical model observed during the bibliography review was the

“SynDaver Patient” (Fig. 14a) [31]. It consists on a complex anatomical model of the entire

human body, which includes also some of its physiological functions such as respiration rate,

tidal volume, end-tidal CO2, heart rate, heart waveform, arrhythmia, systemic

vasoconstriction, system-wide blood volume, body temperature, blink rate and pupil dilation.

Body motions are controlled by an open-source physiology engine (Fig. 14b).

The cost of this device is of around 85000 $ [32]. This model can be ideal for preparing a

physician for all type of interventions. However, since the aim of this model is to represent

general body functions, cardiovascular signals are not modeled so thoroughly.

Secondly, software models can be used in education. Again, the company SynDaver Labs,

offer an interactive electrocardiogram (EKG) simulator [33]. It allows the user to observe

variables such as the heart rate, systolic pressure, diastolic pressure, respiration rate, SpO2,

and temperature.

Figure 15: SynDaver EKG simulator (a) and controls (b) [33].

29

However, observing the pressure waveform (red line), and comparing it with a measured

pressure signal, still differences can be found. Meaning that the model is not completely

accurate.

Several mobile applications are also available providing with different software models (mainly

focusing on ECG signals) of the cardiovascular system and available to any student that has a

cell-phone [34]. This proves the increasing importance of the use of cardiovascular models in

education.

Two more studies related with software models must be mentioned:

 In the first place, MATLAB offers a SIMULINK toolkit specialized in cardiovascular

simulation [35]. The main advantage of this toolkit is that any type of circuit

configuration may be implemented by using the predefined SIMULINK programming

blocks, as most of the elements present in the cardiovascular system are available (e.g.

specific valves and vessels). However, this tool requires the user to know how to

program and to be familiarized with SIMULINK language and structure. Moreover, the

toolkit has an additional cost, even for users with a MATHWORKS license.

 In the second place, PhysioNet offers a cardiovascular simulator. The model is capable

of generating reasonable human hemodynamic waveforms by using a two-element

Windkessel model [36]. This tool allows access to the code in case the user wants to

modify it. This seemed as a useful feature, so it was decided to use it in the developed

system.

In conclusion, models are very used in the field of vascular medicine. Regarding models used in

education there are many tools available for physical simulation or software simulation.

However, it seems there are not many tools aiming to integrate both aspects, allowing the

students to improve both their theoretical and practical education. With this project an

accurate, both physical and computational, representation of selected cardiovascular variables

will be achieved.

3. SYSTEM DESIGN

Different tasks were identified in order to achieve the proposed goals. The main tasks defined

were:

 To identify the current situation of the system

 To establish a plan defining the steps to comply with user and technical specifications

30

 Regarding software simulation:

o To develop mathematical models

o To program the user interface

 Regarding physical simulation:

o To upgrade the device

o To establish device-computer communication

o To program the user interface

 To assess the final models and write a practice for students

The context for developing a successful solution is described in three sections: system

requirements, which studied the situation of the device and what features are required;

software requirements, for both interfaces; and hardware requirements, regarding specific

components. For more detail, specifications of individual components will be included in the

annex and design considerations will be discussed in chapter four.

3.1 System requirements

The existing platform intended to be used in this project is a pneumatic-hydraulic device,

located at the Universidad Carlos III de Madrid. This system is a prototype that simulates the

arterial system using a Windkessel configuration, and it was manufactured by the company

SEDECAL. Two major issues were considered in order to work with this device.

Firstly, the device had to be fixed as it was not working. The problem was found to be an issue

with the valves and the membrane pump due to prior erroneous use.

Secondly, the configuration of the device does not enable measuring pressure or flow inside

the heart, although allows easily measuring aortic pressure and flow, which are the main

variables obtained using the Windkessel model. This was found not to be a problem

considering that the Windkessel model is a very effective tool to explain the concepts that are

required for the instruction of a biomedical engineer. It only requires few parameters and its

analogy to an electric circuit makes of it an easy model to explain during lessons. Moreover,

even for students who does not know the configuration of the model and with no previous

background on electricity or fluid mechanics, it is easy to relate each of the parameters to

simple characteristics of the vascular system (e.g. compliance to elasticity) and therefore with

factors influencing diseases (e.g. decrease compliance and hypertension). In this way, the

device seemed adequate for its use with educational purposes [37].

31

3.2 Software requirements

Two user interfaces will be developed, one in charge of the theoretical simulation and another

that reads and displays data from the hydraulic device (practical simulation interface). The

general user requirements for both interfaces are:

 They must be user-friendly, all buttons must be labeled and clear instructions must be

provided

 No extra programming must be required, the graphic interface will be the intermediary

between user and code

 Graphs must be relevant and clear, axes must be labeled and units must be the same

in both interfaces for allowing easier comparisons

 They must be understandable both for engineers and physicians

 They must be simple, allowing users with poor vascular physiology background to use

the interface

Moreover, both codes must be well structured and described, allowing to add more features in

the future and facilitating interested users the reading of the code. In this way both codes will

be structured in functions, so that each section can be easily accessed, and it will be heavily

commented.

The specific user requirements for the theoretical simulation interface are:

 Navigation must be easy, so a pull down menu will be available at any moment that

allows switching to different windows and returning to the origin

 User should not be required to know the characteristic value of any of the parameters.

In this way, sliders will be included for a straight forward interaction with the interface

and a reset button will allow the return to a reference

 Precision must be allowed, so the possibility of manually introducing values will be also

included

 Both International System (SI) units and medical units must be displayed, so that users

with different backgrounds will understand data values

 It must allow the user to observe aortic pressure and flow waveforms, as well as aortic

pressure-volume loops.

 Different Windkessel configuration should be included so that the user can simulate

simpler or more complex arterial representations.

32

 The interface must allow users to define and modify the main Windkessel parameters

for each of the models included:

o Parameters common to all models

 Heart rate, which determines heart period

 Systole duration, which determines duty cycle

 Number of cycles to represent

 Cardiac output

o Two-element Windkessel

 Peripheral resistance

 Aortic compliance

o Three-element Windkessel

 Characteristic impedance

o Four-element parallel Windkessel

 Inertance

The specific user requirements for the practical simulation interface are:

 Navigation must be easy, so a pull down menu will be available at any moment

allowing switching between the different options and returning to origin

 The user must be able to decide between reading pressure or flow data and select the

amount of data desired

 The interface must allow the user to observe pressure and flow data acquired from the

device in real-time

 In addition to the real-time display, a file must be generated for storing the data, so

that it is downloadable by the user.

 Timing (systole or diastole cycle) was manually controlled by the user in the original

device. The user should also be able to control timing through simulation software, so

both working modes must be available at the interface.

 In the software timing control mode, the user must be able to select between a few

selected, device-compatible, pulse rate and duty cycle options.

In both cases MATLAB has been chosen as the program environment to be used, more details

on this choice are given in section 4.1.

33

3.3 Hardware requirements

Regarding the elements used in the computer-device communication, two transducers (one

for reading flow and another one for reading pressure) will be used. Both transducers support

RS-232 interface. This determined that the communication protocol used to receive and send

data would be serial communication. However, in order to communicate with the serial ports

at the computer, as it lacks in RS-232 ports, an USB-to-RS-232 converter cable will be used.

Regarding the components used to upgrade the device, electronic circuits designed and boards

manufactured must be modular, safe and everything must be well documented. When the

device was opened to modify the electronics, it was observed that documentation provided by

the company did not match the actual components used and their distribution. Providing a

faithful representation of the circuits used is of critical importance for allowing future

maintenance and upgrades, as well as for safety issues. The modified circuits and diagrams are

described in section 4.2.2. and included in the annex.

4. PROJECT DEVELOPMENT

4.1. Theoretical Simulation

Three main tasks have been identified in order to perform the theoretical simulation. Firstly,

mathematical models representing each of the Windkessel models have been developed.

Secondly, the necessary data for simulating the system have been obtained and the functions

have been evaluated. Finally, the layout of the user interface that allows working with the

models has been designed. Some design considerations for developing the theoretical

simulation are:

 MATLAB has been selected as the tool for implementing and evaluating the models:

o It is the language that is most familiar to the students at the UC3M, so using it

seems appropriate in case further code manipulation is required.

o In contrast to other languages such a C++ or Python, which are general

purpose languages, MATLAB is a specialized language for technical and

scientific computing.

o It has an extensive library of predefined functions, so for many calculations

there is no need of writing new subroutines or adding external libraries. This

makes it extremely easy to work with mathematical functions.

34

Figure 16: Generic structure of a system

o It allows to easily write programs and modify them within the built-in

environments and integrated debugger.

o A lot of technical support is provided, both through the MATLAB environment

and in forum discussions.

o It has its own graphical user interface development environment (GUIDE),

which will be used to build the interface.

 To simulate the system an input signal is required. Also, an appropriate transfer

function must be selected to obtain the desired output. Since the heart is a volumetric

pump, flow has been selected as input and pressure as output. The transfer function

will be defined differently for each of the Windkessel models used.

 Electric analogy will be used for obtaining the equations governing each of the

Windkessel configurations. Voltage and current will be labeled all the time as pressure

and flow respectively for a better comprehension of the development.

 The pressure-flow relationships obtained are differential equations that need to be

solved in order to plot the pressure as a function of the flow.

 In this project differential equations will be solved using a simple numerical method:

o MATLAB, in order to plot a function, needs to assign values to each of its

points in a discrete way. By using a numerical method, the function is directly

discretized and implemented into MATLAB.

o The simulated pressure signal may be discretized by expressing it as a function

of a discrete input flow signal, the choice of this signal is discussed in section

4.1.2.

o The transformations from continuous to discrete functions that will be used

are:

𝑓(𝑡) → 𝑓(𝑖)

𝑑𝑓(𝑡)

𝑑𝑡
→

𝑓(𝑖) − 𝑓(𝑖 − 1)

∆𝑡

𝑑2𝑓(𝑡)

𝑑𝑡2
→

𝑓(𝑖) − 2 · 𝑓(𝑖 − 1) + 𝑓(𝑖 − 2)

∆𝑡2

35

Where 𝑖 is the current sample and ∆𝑡 is the time interval between two

consecutive samples. ∆𝑡 has been selected to be 0.001 𝑠 so that samples are

represented each 1 𝑚𝑠. This time interval seems ideal for the representation

of both the flow and the pressure as these variables vary along the heart cycle

and the heart cycle is not normally longer than 1 𝑠.

Only main equations are included in this chapter, the full mathematical development can be

checked at the annex.

4.1.1 Mathematical Models

Two-element Windkessel

Figure 17: Two-element Windkessel diagram.

Flow may be expressed as a function of the pressure with the described equation:

𝑄(𝑡) = 𝐶 ·
𝑑𝑃(𝑡)

𝑑𝑡
+

𝑃(𝑡)

𝑅𝑝

The equation may be transformed into Laplace domain, this definition will be used in section

5.1.3 to analyze the frequency behavior of the system.

𝑄 = 𝐶 · 𝑠 · 𝑃 +
𝑃

𝑅𝑝

= 𝑃 (𝑠 · 𝐶 +
1

𝑅𝑝

)

Now, solving for the pressure as a function of previous samples by using the method described

in the previous section, the final solution is:

𝑃(𝑖) =
1

𝑅𝑝 +
∆𝑡
𝐶

· [𝑄(𝑖) ·
𝑅𝑝 · ∆𝑡

𝐶
+ 𝑃(𝑖 − 1) · 𝑅𝑝]

Realize that for evaluating this function, an input signal 𝑄 is needed. The obtained P signal will

have the same number of points as 𝑄. Also an initial condition 𝑃(𝑖1) is required. The effect of

choosing this initial condition is discussed in section 5.1.2.

36

Three-element Windkessel

Figure 18:Three-element windkessel diagram.

The relationship between pressure and flow would be the following in temporal domain:

𝑄(𝑡) · (1 +
𝑅𝑎

𝑅𝑝

) + 𝐶 · 𝑅𝑎 ·
𝑑𝑄(𝑡)

𝑑𝑡
= 𝐶 ·

𝑑𝑃(𝑡)

𝑑𝑡
+

𝑃(𝑡)

𝑅𝑝

And in Laplace domain:

𝑄 · (1 +
𝑅𝑎

𝑅𝑝

+ 𝐶 · 𝑅𝑎 · 𝑠) = 𝑃 (𝐶 · 𝑠 +
1

𝑅𝑝

)

Again, Laplace definition will be used in the frequency behavior analysis. Finally, the current

pressure sample is defined as:

𝑃(𝑖) =
1

1 +
𝐶 · 𝑅𝑝

∆𝑡

· {𝑃(𝑖 − 1) ·
𝐶 · 𝑅𝑝

∆𝑡
+ 𝑅𝑝 · {𝑄(𝑖) · [1 +

𝑅𝑎

𝑅𝑝

+
𝐶 · 𝑅𝑎

∆𝑡
] − 𝑄(𝑖 − 1) ·

𝐶 · 𝑅𝑎

∆𝑡
}}

Four-element-series Windkessel

Figure 19: Four-element-series Windkessel diagram.

The solution in temporal domain:

𝑄(𝑡) · (1 +
𝑅𝑎

𝑅𝑝

) +
𝑑𝑄(𝑡)

𝑑𝑡
· (

𝐿

𝑅𝑝

− 𝐶 · 𝑅𝑎) + 𝐶 · 𝐿 ·
𝑑2𝑄(𝑡)

𝑑𝑡2
= 𝑃(𝑡) · (

1

𝑅𝑝

) + 𝐶 ·
𝑑𝑃(𝑡)

𝑑𝑡

Solution in Laplace domain:

𝑄 · [(1 +
𝑅𝑎

𝑅𝑝

) + 𝑠 · (
𝐿

𝑅𝑝

− 𝐶 · 𝑅𝑎) + 𝐶 · 𝐿 · 𝑠2] = 𝑃 · (
1

𝑅𝑝

+ 𝐶 · 𝑠)

37

Finally:

𝑃(𝑖) =
1

1
𝑅𝑝

+
𝐶
∆𝑡

· {𝑃(𝑖 − 1) ·
𝐶

∆𝑡
+ 𝑄(𝑖) · [(1 +

𝑅𝑎

𝑅𝑝

) +

(
𝐿

𝑅𝑝
− 𝐶 · 𝑅𝑎)

∆𝑡
+

𝐶 · 𝐿

∆𝑡2
] − 𝑄(𝑖 − 1)

· [

(
𝐿

𝑅𝑝
− 𝐶 · 𝑅𝑎)

∆𝑡
+

2 · 𝐶 · 𝐿

∆𝑡2
] + 𝑄(𝑖 − 2) ·

𝐶 · 𝐿

∆𝑡2
}

Four-element-parallel Windkessel

Figure 20:Four-element-parallel Windkessel diagram.

Due to the complexity of this circuit it was solved in the Laplace domain:

𝑄(𝑠) · [𝑠2 · 𝐿 + 𝑠 · (
𝐿

𝐶 · 𝑅𝑎

+
𝐿

𝐶 · 𝑅𝑝

) +
1

𝐶
] · 𝐶 · 𝑅𝑝 · 𝑅𝑎

= (𝑠 · 𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝑅𝑎 + 𝐿 · 𝑠2 · 𝐶 · 𝑅𝑝 + 𝑠 · 𝐿) · 𝑃(𝑠)

And later transformed into temporal domain applying the transformation: 𝑠𝑛 =
𝑑𝑛

𝑑𝑡𝑛

𝑑2𝑄(𝑡)

𝑑𝑡2
· 𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎 +

𝑑𝑄(𝑡)

𝑑𝑡
· (𝐿 · (𝑅𝑝 + 𝑅𝑎)) + 𝑄(𝑡) · 𝑅𝑝 · 𝑅𝑎

=
𝑑2𝑃(𝑡)

𝑑𝑡2
· 𝐿 · 𝐶 · 𝑅𝑝 +

𝑑𝑃(𝑡)

𝑑𝑡
· (𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝐿) + 𝑃(𝑡) · 𝑅𝑎

The final solution is:

𝑃(𝑖) =
1

𝐿 · 𝐶 · 𝑅𝑝

∆𝑡2 +
𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝐿

∆𝑡
+ 𝑅𝑎

· {𝑃(𝑖 − 1) · [
2 · 𝐿 · 𝐶 · 𝑅𝑝

∆𝑡2
+

𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝐿

∆𝑡
] − 𝑃(𝑖 − 2) ·

𝐿 · 𝐶 · 𝑅𝑝

∆𝑡2
+ 𝑄(𝑖)

· [
𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎

∆𝑡2
+

𝐿 · (𝑅𝑝 + 𝑅𝑎)

∆𝑡
+ 𝑅𝑝 · 𝑅𝑎] − 𝑄(𝑖 − 1)

· [
2 · 𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎

∆𝑡2
+

𝐿 · (𝑅𝑝 + 𝑅𝑎)

∆𝑡
] + 𝑄(𝑖 − 2) ·

𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎

∆𝑡2
}

Realize that for the four-element model (both series and parallel configuration) two pressure

initial conditions 𝑃(𝑖1) and 𝑃(𝑖2) are required.

38

4.1.2. Simulation Data

Input signal: Flow

The input signal used for the model is the flow of blood through the aorta. Recall that the

heart behaves as a flow pump. If the entire systemic arterial system (arteries, arterioles and

capillaries) was considered as simply a resistor (𝑅), opposing to the flow of blood, the

relationship between flow and pressure could be defined by the following configuration of

Ohm’s law.

𝑃 = 𝑄 ∙ 𝑅

Where the pressure in the aorta is the dependent variable, implying that the heart would be

modeled as a current source instead of as a voltage source. The opposite case would be the

one represented below. This relationship may be used for example when studying the inner

vascular bed of an organ, where pressure depends on external factors and so it is fixed. By

adjusting resistance (i.e. contracting arterioles) flow would vary.

𝑄 =
𝑃

𝑅

In order to simulate the flow waveform, it must be defined for the two different periods of the

heart cycle. During systole, aortic valve will be opened and therefore there will be flow. During

diastole, aortic valve is closed, and so there will not be any flow. No negative flow can be

allowed, and so signal during systole may be approximated as a squared sinusoidal.

The definition of the flow used [38] is described below:

𝑄(𝑡) = {
𝑄0 ∙ (sin (

𝜋 ∙ 𝑡

𝑇𝑆
))

2

 𝑡 ∈ (0, 𝑇𝑆)

 0 𝑡 ∈ (𝑇𝑆, 𝑇)

Where 𝑇𝑆 is the time in systole, and 𝑇 is the heart period. The time in diastole can be therefore

defined as 𝑇𝐷 = 𝑇 − 𝑇𝑆. The maximum flow reached in one period is 𝑄0, so it can be identified

as the maximum flow during one heart period.

39

Regular parameters for healthy adults can be observed in Table 1.

Parameter Normal Units

𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 (𝐻𝑅) 72
𝑏𝑒𝑎𝑡𝑠

𝑚𝑖𝑛

𝐻𝑒𝑎𝑟𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 (𝑇) 0.83̂
𝑠

𝑐𝑦𝑐𝑙𝑒

𝑇𝑖𝑚𝑒 𝑖𝑛 𝑆𝑦𝑠𝑡𝑜𝑙𝑒 (𝑇𝑆) 0.33 𝑠

𝑇𝑖𝑚𝑒 𝑖𝑛 𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑒 (𝑇𝐷) 0.5 𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑙𝑜𝑤 (𝑄0) 500
𝑚𝐿

𝑏𝑒𝑎𝑡 ∙ 𝑠

𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝑂𝑢𝑡𝑝𝑢𝑡 (𝐶𝑂) 5.9
𝐿

𝑚𝑖𝑛

𝑆𝑡𝑟𝑜𝑘𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑆𝑉) 82
𝑚𝐿

𝑏𝑒𝑎𝑡

Table 1: Normal hemodynamic parameters for a healthy adult [39].

The systole duration for a healthy subject has been obtained considering the following duty

cycle: 𝑇𝑆 =
2

5
 ∙ 𝑇 . The maximum flow ejected to the aorta during each beat [lavho] may be

related to the cardiac output, heart rate, time in systole and stroke volume as shown below.

𝑄0 =
2 ∙ 𝐶𝑂

𝐻𝑅 ∙ 𝑇𝑆

=
2 ∙ 𝑆𝑉

𝑇𝑆

The previous relationship arises from the fact that the stroke volume may be calculated as the

area under the flow waveform. Realize simplification is possible since 𝐶𝑂 = 𝑆𝑉 ∙ 𝐻𝑅.

Code in MATLAB to generate the flow is specified in the annex. The general idea is to discretize

the given flow definition, evaluating the flow at different times separated by the time

interval ∆𝑡. The total number of samples 𝑖𝑁 for which the flow is to be evaluated depends on

the heart period and number of heart cycles represented. As ∆𝑡 = 0.001𝑠 for a period 𝑇 =

0.833𝑠 the number of samples represented (and so the length of the flow vector) will be

of 833. If ten heart cycles were to be represented the final vector would have a total length of

8330 samples. Fig. 21 shows the obtained flow waveform for a single heart cycle.

40

Figure 21: Flow over a heart cycle. Obtained using MATLAB.

Transfer function

As previously mentioned the transfer function is defined differently for each of the models

used. In this way, the circuit configuration and the number of elements used in a model will

determine its transfer function. As the input flow is considered to be the same for all models,

the transfer function is also responsible for giving an output signal, different for each model.

In order to determine the transfer functions, two steps are required:

 To develop the circuit equations, which was done in section 4.1.1.

 To find the values for the different parameters: peripheral resistance, compliance,

characteristic impedance and inertance (Table 2).

Parameter SI units Medical Units

Peripheral Resistance 133.28 ∙ 106
𝑘𝑔

𝑠 ∙ 𝑚4
 16.66

𝑚𝑚𝐻𝑔 ∙ 𝑚𝑖𝑛

𝐿

Aortic Compliance 0.75 ∙ 10−8
𝑠2 ∙ 𝑚4

𝑘𝑔
 1

𝑚𝐿

𝑚𝑚𝐻𝑔

Characteristic Impedance 6.66 ∙ 106
𝑘𝑔

𝑠 ∙ 𝑚4
 0.83

𝑚𝑚𝐻𝑔 ∙ 𝑚𝑖𝑛

𝐿

Inertance 6.66 ∙ 105
𝑘𝑔

𝑚4
 5

𝑚𝑚𝐻𝑔 ∙ 𝑠2

𝐿

Table 2: Windkessel parameter values for a healthy adult human [38].

41

Aortic impedance has the same units as resistance, this comes from the definition:

𝑍𝑎 =
𝑣𝜌

𝐴

 [𝑍𝑎] = [
𝑣𝜌

𝐴
] = [

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∙ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑎𝑟𝑒𝑎
] = [

𝑚

𝑠
∙

𝑘𝑔

𝑚3
∙

1

𝑚2
] = [

𝑘𝑔

𝑠 ∙ 𝑚4
]

However, the characteristic impedance is not exactly a resistance and its role needs to be

understood in terms of oscillatory phenomena. This concept is related to the question: why is

it needed to add complexity to the models? Why is it not enough to work with the two-

element model? There are two answers to this question:

1. Firstly, more complexity in the model means more physiological features are being

represented.

2. Secondly, distinct models behave differently at distinct frequencies.

Therefore, in order to determine if the obtained transfer functions are suitable the behavior of

each of the systems must be analyzed to make sure its performance is correct. This analysis is

provided in chapter five, in the results section.

Output signal: Pressure

Once the transfer function is determined and the values for each of the parameters are

defined, the next step is to evaluate the different transfer functions to obtain the aortic

pressure. An example for the simplest case (2-element Windkessel) is developed below, and

the exact same procedure is followed for higher complexity models.

Starting with the following equation:

𝑃(𝑖) =
1

𝑅𝑝 +
∆𝑡
𝐶

· [𝑄(𝑖) ·
𝑅𝑝 · ∆𝑡

𝐶
+ 𝑃(𝑖 − 1) · 𝑅𝑝]

Recall that the reference values for the required parameters are 𝑅𝑝 = 1
𝑚𝑚𝐻𝑔∙𝑠

𝑚𝐿
, 𝐶 = 1

𝑚𝐿

𝑚𝑚𝐻𝑔

and ∆𝑡 = 0.001𝑠. Considering 𝑃(𝑖1) = 0 𝑚𝑚𝐻𝑔.

42

𝑃(𝑖2) =
1

1
𝑚𝑚𝐻𝑔 ∙ 𝑠

𝑚𝐿
 +

0.001𝑠

1
𝑚𝐿

𝑚𝑚𝐻𝑔

· [𝑄(𝑖2) ·
1

𝑚𝑚𝐻𝑔 ∙ 𝑠
𝑚𝐿

· 0.001𝑠

1
𝑚𝐿

𝑚𝑚𝐻𝑔

+ 0 · 1
𝑚𝑚𝐻𝑔 ∙ 𝑠

𝑚𝐿
]

=
1

1
𝑚𝑚𝐻𝑔 ∙ 𝑠

𝑚𝐿
 + 0.001

𝑠 ∙ 𝑚𝑚𝐻𝑔
𝑚𝐿

∙ [𝑄(𝑖2) ∙ 0.001
𝑚𝑚𝐻𝑔2𝑠2

𝑚𝐿2
+ 0]

=
1

1.001
𝑚𝑚𝐻𝑔 ∙ 𝑠

𝑚𝐿

 ∙ [𝑄(𝑖2) ∙ 0.001

𝑚𝑚𝐻𝑔2𝑠2

𝑚𝐿2
] =

0.001

1.001
∙ 𝑄(𝑖2)

𝑚𝑚𝐻𝑔 ∙ 𝑠

𝑚𝐿

As flow units are
𝑚𝐿

𝑠
, final units will be 𝑚𝑚𝐻𝑔, so pressure is being evaluated correctly. This

process will be automatically performed by MATLAB until 𝑖 = 𝑖𝑁.

The resulting pressure waveform can be observed in Fig. 22.

Figure 22: Pressure in the Aorta obtained using the two-element Windkessel model. Obtained using MATLAB.

4.1.3. Simulation Interface

A simulation interface has been created using GUI MATLAB. It is structured into four main

different windows. The first one is the main welcome page, which allows the user to select

between working with the two-element, three-element and four-element-parallel Windkessel

Each of them allows displaying three different graph types: pressure, flow and pressure-

volume loop. The four-element series Windkessel has not been included in the interface.

Although the output pressure obtained by the model was not far from the expected, the

performance of the model was observed to be unstable at high frequencies (see section 5.1.3).

43

Although the system is not intended to work under those conditions, it seemed enough to

show the students only one model configuration with four elements, so the more stable 4-

element parallel Windkessel was chosen.

Some examples of the layout of the interface are presented in this section. Fig. 23 shows the

main welcome window, where the user can select between the different Windkessel model

options. Fig. 24 shows the window for the four-element-parallel Windkessel, when the user

has selected to display the pressure. Fig. 25 shows the same window but it displays flow.

Finally, Fig. 26 shows the simulated pressure-volume loop for the same window.

Figure 23: Simulation interface: welcome page

44

Figure 25: Simulation Interface: four-element-parallel model, pressure display.

Figure 245: Simulation Interface: four-element-parallel model, flow display.

45

4.2. Physical Device

The physical device is a prototype manufactured by the company SEDECAL that was acquired

by the university a few years ago. The device represents the arterial systemic tree by means of

several elements that will be described in the following section, each in charge of a specific

function. Regarding this physical device, work has been developed in three main aspects:

improving the electronics, establishing communication with the computer (both in the device-

computer and computer-devices directions) and developing the necessary software to

interpret acquired pressure and flow data.

4.2.1. Description of the device

The device is a hydraulic-pneumatic device, which includes electric and electronic components

for control and data acquisition. Fig. 27 shows the main diagram of how the different levels of

the device interact together. Detailed schemes for each of the levels are provided in the annex.

Figure 26: Simulation Interface: four-element-parallel model, pressure-volume loop display.

46

Figure 26: Main diagram of the physical device. Scheme developed using Microsoft Office VISIO.

Regarding the main parts forming the device, they are highlighted in Fig. 28. Each of the parts

plays an important role, and the ensemble allows the device to behave as a physical model of

the arterial system.

1.-Membrane pump simulating the heart.

2.-Compliant element representing the elastic large arteries.

3.-Fluid Reservoir.

4.-Peripheral resistance modeling smaller vessels.

5.-Heart cycle controls, allowing to manually modify the heart rate and duty cycle.

6.-Flow transducer, recording flow data just after the peripheral resistance.

Figure 27: Picture of the physical device with the main components highlighted.

47

7.-Flow port, sending data to the computer.

8.-Pressure transducer (8’ is still part of the pressure transducer), recording simulated

aortic pressure.

9.-Pressure port, sending data to the computer.

10.-Pressure-vacuum regulators (rotatory knobs).

Heart cycle controls and pressure-vacuum rotatory knobs are located at the control case,

which serves as the link between the electronic and the pneumatic levels of the device.

Figure 28: Pneumatic components inside the Control Case, and links to other levels of the device. Scheme developed
using Microsoft Office VISIO.

In the electronic board a timing circuit, implemented with a LM 555 timer, is in charge of

controlling the action of the main electric valves that induce the heart to pump. The timing of

this circuit is can be modified by the heart cycle controls, which are basically two

potentiometers.

The “strength” of the membrane pump depends on the pressure-vacuum regulators, which

allow the flow of a determined amount of compressed air. At times specified by systole, the

main electric valve is activated introducing form the air deposit the selected amount of air

inside the heart chamber. This displaces the membrane downwards, which pumps water into

the hydraulic circuit. At times specified as diastole, the main electric valve is no longer

connected to the air deposit. It therefore helps removing the selected amount of air from the

heart chamber. This causes water to flow into the heart chamber. In this way, it can be

observed that the control the user has over the heart refers to the modification of its cardiac

output. Aortic pressure is therefore not a parameter that the user can modify, and so, when

48

talking about changing the pressure input of the system it will refer to changing the amount of

compressed air supplied to the membrane.

4.2.2. Electronic Improvements

The existing electronics have been improved. The new design achieves the goal of allowing the

user to control heart rate parameters and duty cycle from software, while keeping the manual

control in case the user decides to use this one. Some problems were found in the existing

board: the circuits used were not well documented, the voltage regulator was overheating and

several connections were not properly secured. To solve this, the entire circuit was replaced by

a new board.

Figure 29: Original electronic board.

Figure 30: New electronic board.

Some advances have been included in the manufactured electronic board. In the first place,

two voltage regulators have been included so that voltage decreases in two steps, first from

24 𝑡𝑜 12 𝑉 and then from 12 𝑡𝑜 5 𝑉, which is the level required for all the components. A heat

sink and thermal conductance paste, have also been added to help dissipating the heat. This

will help components to work more efficiently, avoiding overheating and lasting longer. In the

second place, connection terminals have been included for all the cables communicating the

49

circuit at the board with outside components such as the electric valves. This allows easier

identification and access to the different components. Besides, this will ease further

improvements as it is simpler to replace and modify components in a modular board. All

connections with other elements, such as RS-232 pins, have been secured with heat shrinking

tube. In this way no connections will be removed, or touched by accident, and the device will

be safer. Moreover, the provided documentation is now correct and agrees with reality, so

future maintenance will be much easier.

Regarding the addition of the timing control through software, extra components have been

added to the board. The added elements are have been located in two different regions, one

part has been placed with the main board at the control case and the other at the transducer

case. The general idea is to make use of the voltage provided by one of the RS-232 pins, which

can be set to a HIGH or LOW state during a specified time from the computer, to substitute the

signal originally supplied by the LM 555 timer. A switch to select between supplying the signal

with the timer or by using the computer has been included.

Figure 31: New electronic circuit inside Control Case. It includes a switch that allows selecting between the signal generated by
the LM 555 or the signal coming from the optoisolator (which is transmitted from the circuit inside the Transducer Case). Final
signal is in charge of activating the electric valves). Circuit designed using MULTISIM.

50

4.2.3. Device to computer communication

As previously mentioned the communication between the device and the computer is

established through serial protocol as the two transducer used are available for RS-232

interfacing. A RS-232-to-USB converter cable is used since computer has no RS-232 ports. This

communication protocol has determined the way of sending pulses from the computer to the

device to control heart cycle parameters. Other design options such as using an Arduino

microcontroller were considered. Both pulses through the RS-232 and Arduino can be

controlled using MATLAB (to have everything in the same programming environment).

However, the first option was selected as the original design wanted to be preserved, and the

microcontroller would require from another USB port connection.

The pin that is being used to replace the pulses created by the timer is the Data Transmission

Ready pin (DTR). MATLAB allows to set this pin to a HIGH or LOW state by means of a specific

function

Figure 32: New electronic circuit inside Transducer Case. A signal obtained from the RS-232 interfacing the computer is sent to the
Control Case. Voltage is obtained from the DTR pins of the RS-232 (see section 4.2.3), transducer not used for reading at the
moment is set to periodic HIGH and LOW states. After inverting it (to avoid the constant high value of the pin belonging to the
reading transducer) the resulting signal is sent to activate the electric valves.

51

Figure 34: Pressure sensor compatible with the EG 02000 [42].

Figure 33: RS-232 pin diagram [40].

The two available transducers communicate in a different way. The pressure transducer uses

software handshaking, which means it only requires three of the nine pins of the RS-232 to

establish serial communication (RXD, TXD and GND, plus 𝑉𝑐𝑐). The flow transducer uses

hardware handshaking, for which all the nine pins are required. These transducers were

manufactured and distributed by different companies, they acquire and send data in a

completely different way. For this reason, in order to decode and understand the information

sent by each transducer each of them needs to be studied as a separate case.

Pressure transducer:

The board used is the MEDLAB EG 02000 [41]. This module works with all sensors that offer a

sensitivity of5μV/V/mmHg. In order to read using this transducer, the serial port will have to

be defined as 9600 baud rate, 8 data bits, one stop bit, and no parity, to meet with the

specifications. The transducer does not transmit 16 bit pressures values, as it is not considered

to be economical. This impedes the device from sending negative pressure values. To fix this,

since only pressure values in the interval from -99 to 300 mmHg have to be transmitted, all

values are transmitted with an offset of +100 mmHg. This must be considered by the receiver

side, and a value of 100 (decimal) must be subtracted before any display or storage of the

data.

52

This transducer sends three types of regular data packets: waveform packets, status packets

and value packets. For displaying and storing the pressure waveforms, only the waveform

packet is necessary. However, other packets will affect to the filtering process.

 Waveform packets: contains three bytes.

o The first byte is the waveform-packet-characteristic-byte which serves as

identification (ID) that a waveform packet is being transmitted. It is recognized

as its most significant bits are always “1100”

o Second byte corresponds to the waveform recorder by channel one

o Third byte corresponds to the waveform recorder by channel two

As only channel one of the two available will be used, during the filtering process it

must be considered that only the middle value of a waveform packet is a relevant

value for the application.

 Status packet, which also contains three bytes. An ID byte (whose most significant bits

are “1101”), and two bytes reporting the status of the transducer (e.g. if it is

connected), one relative to channel one and another to channel two.

 Information packet, which contains nine bytes. An ID byte (which starts by “10”), four

bytes with information relative to channel one (systolic pressure, mean arterial and

diastolic pressure) and four relative to channel two.

Realize that in the decoding process a single value must be selected between at least three

of the bytes transmitted. In order to be used, this transducer has been calibrated, and in

the software an offset of 70 𝑚𝑚𝐻𝑔 is being added.

Flow transducer:

Both the board and the sensor used have been manufactured by EMTEC [43]. In order to read

using this transducer, the serial port will have to be defined as 38400 baud rate, 8 data bits,

one stop bit, and no parity, to meet with the specifications. This transducer works by using the

ultrasonic transit-time method to measure volumetric flow through the tube as described in

Fig. 36.

53

Figure 35: Ultrasonic transit-time method to measure volumetric flow [43].

Table 3: Data format sent by flow transducer [43].

Considering the values sent by the flow transducer, the filtering process will be simpler. This

transducer sends a string containing different parameters each time the receiver side requests

it. An example can be observed in Table 3.

The only parameter of interest will be the fourth one as it represents the actual flow value

in
𝑚𝑙

𝑚𝑖𝑛
. The other set of parameters represent features such as additional information for

calibration purposes, status information of the flow measurement board or signal amplitude of

the acoustic receiving signal. In this way, for the reading and decoding process it must be

considered that the data arriving is a string, so the positions of interest within the string must

be selected before converting it to a number to avoid errors.

Realize that one of the software requirements was that units of variables acquired from the

device had to agree with data displayed in the theoretical interface. Pressure is being sent by

default in 𝑚𝑚𝐻𝑔, but before displaying flow data it needs to be transformed from
𝑚𝑙

𝑚𝑖𝑛
 to

𝑚𝑙

𝑠
,

which is being done by simply multiplying by a conversion factor.

4.2.4. Reading Codes and Interface

As a strict control of the reading, decoding and sending functions must be maintained, the

code developed has been structured by using timers. Timers are sections of code that are

meant to happen periodically with a determinable interval. Each time their execution time

arrives, they run a callback function that is defined by the programmer.

54

The structure of the code allows the user deciding between four different options: read

pressure or flow while controlling timing through software and read pressure or flow while

manually controlling timing. Once one of the four options is selected a specific code for each

section is executed. This code can be described by looking at the different sections:

Manual control:

 Pressure reading: it uses one timer for reading, which executes each 0.001s. Acquired

data is stored in a vector that is always available for the rest of the code. Decoding and

painting the waveform is constantly being performed in the main function by means of

a while loop.

 Flow reading: again one timer for reading each 0.001s. However decoding is executed

also using a timer that executes each 0.1s. As the decoding step was taking more time

it was necessary to specify when to perform it so that it would not affect to the

painting waveform.

Software control:

It follows the same process for both pressure and flow reading. However, it adds an extra

consideration:

 A timer with period equal to the selected heart period, starting without any delay is

used to determine when the systole pulse (DTR set to HIGH).

 A timer with period equal to the selected heart period, starting with a delay

determined by the selected duty cycle is used to send a diastole pulse (DTR set to

LOW).

It is important to mention that as it is not possible to read and write at the same time in the

same port, when pressure is being read pulses are sent through the flow port and when flow is

being read pulses are sent through the pressure port.

55

Figure 36: Reading Interface: general flow diagram. Obtained using Microsoft Office VISIO.

However, MATLAB has a characteristic that hampers data acquisition code for the practical

simulation interface. MATLAB works sequentially unless the specialized parallel computing

toolbox is being used. This means that a function cannot be executed while a different one is

running; it has to wait until the previous function finishes working. This feature affects to the

56

timers. If their callback function takes too long, it may still be running at the time of execution

of the next timer. This limits the code structure possibilities, making it necessary to program

fast, short and effective lines to provide a real-time data visualization. The timers that are most

affected are the timers for reading and decoding data, so the most efficient way of decoding

each of the transducers has tried to be found.

Regarding the design of the interface, a similar layout to one used in the theoretical simulation

interface has been used. In this way it will be easier for the students to understand both

interfaces during the laboratory practice. As an example, the welcome page is showed in Fig.

38. Fig. 39 shows a pressure real time recording, using the software timing control method. As

it can be observed, at that exact moment software was sending a systole pulse (red mark). Fig.

40 shows a more advanced time of the same recording, when software is sending a diastole

pulse (green mark).

Figure 37: Reading Interface: welcome page.

57

Figure 38: Reading Interface: Software timing, pressure recording (diastole).

Figure 39: Reading Interface: Software timing, pressure recording (systole).

58

As it can be observed the window is composed by four main parts:

1. Allows the user to select three different heart rate and duty cycle options.

2. Allows the user to decide the number of pressure samples to record.

3. Starts the recording.

4. Provides with an easy visualization of every systole and diastole pulse.

Observe the irregularity in Fig. 40 at the beginning of the recording. This is caused by the fact

that the pressure and vacuum regulators are set to zero when the recording starts and once

the first data (with the value of the constant offset of 70 𝑚𝑚𝐻𝑔) is captured, both are

increased to induce the membrane to pump. The irregularity corresponds to those first

membrane pumps.

4.3. Practice for Students

The developed practice for students has been created based on other Biomedical Engineering

laboratory practices. It has been divided in three main parts:

 In the first part, the students will work with the theoretical simulation interface. The

main objectives for this part are:

o Allow students to become familiar with the different models and parameters,

as well as with the different waveforms displayed.

o They will answer questions on how parameters affect to physiological

variables and how the different heart cycle steps affect to the aortic pressure

and flow.

 In the second part, the students will work with the practical environment.

o They will learn which are the different components integrating the device and

their related physiological function.

o They will observe how device behaves under different input conditions.

 In the third part students will answer questions on how theoretically and physically

simulated relate and learn how they are different from measured physiological data.

The practice developed can be observed in the annex.

59

5. RESULTS

5.1. Assessment of the Models

In order to assess the performance of the developed models four main analysis have been

performed:

 Analysis of the waveforms and the physiological features represented.

 Analysis of the selected initial condition.

 Analysis of the frequency behavior of the system.

 Analysis of the interface response.

5.1.1. Analysis of features represented
 As it can be observed in Fig. 41, the simplest model (two-element Windkessel) is enough to

successfully predict the exponential pressure decay that takes place at the aorta during

diastole, when the aortic valve is closed.

𝑃𝑑𝑖𝑎𝑠(𝑡) = 𝑃𝑒𝑠 ∙ 𝑒
 −𝑡
 𝑅𝐶

Where 𝑃𝑒𝑠=end-systolic aortic pressure.

Figure 40: Comparison between obtained simulated pressure waveforms. Obtained using MATLAB.

60

In order to prove the accuracy of such prediction, the pressure waveform has been fitted with

an exponential function (Fig. 42) that has the following parameters:

𝑃(𝑡) = 𝑎 ∙ 𝑒𝑏∙𝑡

Where 𝑏 = −0.0009999
1

𝑚𝑠
= −0.9999

1

𝑠
 and 𝑎 = 173.7 [𝑚𝑚𝐻𝑔].

The fitted curve can be evaluated using its R-square coefficient, which is given by MATLAB and

is found to be R − square = 1. This means that the approximation is perfect.

Figure 41: Aortic pressure during diastole fitting curve. Obtained using MATLAB curve fitting toolbox.

The characteristic time (𝜏) is an interesting parameter describing the decay and may be

calculated as

𝜏 =
−1

𝑏
=

1

0.9999
1
𝑠

~1𝑠 = 𝑅 ∙ 𝐶 = 133.28 ∙ 106
𝑘𝑔

𝑠 ∙ 𝑚4
∙ 0.75 ∙ 10−8

𝑠2 ∙ 𝑚4

𝑘𝑔
= 1𝑠

Recall Fig. 22, where it could be observed that 𝑃𝑒𝑠~125 𝑚𝑚𝐻𝑔. However according to the

described model 𝑃𝑒𝑠 should be equal to 173.7 [𝑚𝑚𝐻𝑔]. This would only be achieved assuming

that the entire pressure waveform over one heart cycle is modeled by the exponential

equation, so that 𝑃(𝑡0) = 173.7 𝑚𝑚𝐻𝑔.

This shows how the two-element Windkessel model fails to accurately predict the behavior of

the system during systole.

61

However, the obtained equation might be really helpful to calculate relevant values belonging

to the decreasing section of the waveform. As an example, the value at the end of the

waveform, just before the next systole starts, may be used as the diastolic pressure value,

allowing to compare it with real data.

𝑃(𝑡 = 833 𝑚𝑠) = 173.7𝑚𝑚𝐻𝑔 ∙ 𝑒−0.0009999
1

𝑚𝑠
∙833𝑚𝑠 = 75.52 𝑚𝑚𝐻𝑔 = 𝑃𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐

A similar approximation may be used to calculate the systolic pressure, considering that the

highest point of the waveform takes place at 𝑡 = 280 𝑚𝑠:

𝑃(𝑡 = 280 𝑚𝑠) = 173.7𝑚𝑚𝐻𝑔 ∙ 𝑒−0.0009999
1

𝑚𝑠
∙280𝑚𝑠 = 131.31 𝑚𝑚𝐻𝑔 = 𝑃𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐

The poor prediction of pressure during systole is the reason why higher complexity models are

needed.

Fig. 43 shows how, in addition, more complex models can better represent feature such as the

specific point at which the aortic valve closes and diastole starts. In Fig. 43 it can also be

observed that the main difference between the three-element Windkessel and the 4-element-

parallel Windkessel is found at the pressure values, as the three-element model reaches higher

values. As it can be observed function decay during diastole follows the same function in all

the models although it happens later in the four-element configuration.

Figure 42: Comparison of the Windkessel models used in the interface. Obtained using MATLAB.

62

Figure 43: Comparison of the performance of the system using the two considered initial conditions. P(i1) = 0𝑚𝑚𝐻𝑔 (a)
and P(i1) = 75mmHg (b).

Data Origin 𝑃𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑃𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐

Healthy Adult Human [] 60 − 90 𝑚𝑚𝐻𝑔 100 − 140 𝑚𝑚𝐻𝑔

Two-element Windkessel 75.52 𝑚𝑚𝐻𝑔 131.31 𝑚𝑚𝐻𝑔

Three-element Windkessel ~75 𝑚𝑚𝐻𝑔 ~140 𝑚𝑚𝐻𝑔

Four-element-parallel Windkessel ~75 𝑚𝑚𝐻𝑔 ~130 𝑚𝑚𝐻𝑔
Table 4: Systolic and diastolic pressure Values comparison.

Table 4 shows how all models give pressure values within the range established by real data.

5.1.2. Initial condition analysis

The first initial condition selected was 𝑃(𝑖1) = 0, in order to check how the system evolved

from resting. After observing it stabilized at 𝑃~75 𝑚𝑚𝐻𝑔, this value was selected as initial

condition.

5.1.3. Impedance analysis

The behavior of the system at different frequencies is interesting for studying since the system

will work at different heart rates. Fig. 45 shows the Bode diagrams for each of the models,

obtained using the Laplace definition of the model presented in section 4.1.1. The results show

how all models are stable except in the case of the four-element-series Windkessel. This

instability is the why it has been excluded from the theoretical simulation interface.

63

Figure 45: System impedance comparison between obtained models (a) and literature models (b). Realize in (b) the four-element
model that is being used is the parallel one.

A comparison between the impedances of the developed models with an impedance analysis

found in the literature [17] is displayed in Fig. 46. The x-axis represents the frequency using a

linear scale, instead of a logarithmic one. The y-axis, instead of using a 20 log(|𝐴|) 𝑑𝐵

transform, uses a natural scale.

Figure 44: Bode diagrams of the different models. Obtained using MATLAB.

64

Excluding the unstable four-element-series configuration from the obtained plot, it can be

observed that the developed models behave similar to the literature at different frequencies.

The need of increasing the complexity of the models can be also observed through this

analysis:

 The two-element model proves to be stable but wrong, as there is not constant

stability at higher heart rates (it goes to zero).

 As mentioned in chapter four the characteristic impedance is not exactly a resistor, but

needs to be understood in terms of oscillatory phenomena. Due to the addition of this

parameter the three-element model is stable, showing a constant correct value, at

high frequencies. However it is far from the expected impedance at low frequencies.

 The four-element-parallel model has the best of both worlds. It shows a fast and

correct evolution at low heart rates and perfect stability at higher frequencies.

5.1.4. Parameter modification analysis

The aim of this section is simply to show how the user by modifying a parameter in the

interface can obtain the expected result in the displayed waveform. In Fig. 47 arterial

compliance has been decreased. As a result pressure has increased significantly,

from 𝑃𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐~130 𝑚𝑚𝐻𝑔 (Fig. 24) to 𝑃𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐~375 𝑚𝑚𝐻𝑔 (Fig. 47). This is expected as

decreased compliance is related to arterial stiffening which is the principal cause of increasing

systolic pressure with advancing years and in patients with arterial hypertension [44].

Figure 46: Simulation Interface: four-element-parallel Windkessel model, displaying pressure
with decreased arterial compliance over four heart cycles.

65

5.2. Characterization of the Device

Data obtained from the device has been analyzed in order to determine if the performance of

the model is successful. Fig. 48 shows the real time recording of the flow, and Fig. 49 shows

the real time recording of the flow while the input pressure to the system is being altered. As it

can be observed, the system success to show this alteration in real-time.

Figure 47: Real time recording of the flow. Obtained using MATLAB.

By using MATAB timing functions “tic” and “toc”, it was found out that the recording was taken

in 19.853369 𝑠 ~ 20𝑠. As 20 periods were recorded in that time, the heart rate can be

determined as 60
𝑏𝑒𝑎𝑡𝑠

𝑚𝑖𝑛
. This agrees with the heart rate that was set in the device.

The cardiac output of the system under these conditions can be calculated as 85
𝑚𝐿

𝑠
∙

60𝑠

𝑚𝑖𝑛
∙

𝐿

1000𝑚𝐿
= 5.1

𝐿

𝑚𝑖𝑛
, which is within the normal range for a healthy adult (see section 4.1.2.).

66

Figure 48: Real time recording of the flow while the input pressure is being altered.

The same process is followed for a pressure recording. Comparison between a normal

recording and an altered input pressure can be observed in Figs. 50 and 51 respectively.

Figure 49: Real time pressure recording.

67

Figure 50: Real time pressure recording while input pressure to the system is being altered.

Again 20 complete periods have been recorded in 19.962132 𝑠 ~ 20 𝑠. This makes sense as

heart cycle controls were not modified to perform this recording. This shows that the new

electronic board functions correctly and send pulses in a regular manner.

Again, the recorded values are within the normal range for a healthy adult human, as the

obtained systolic pressure is of ~130 𝑚𝑚𝐻𝑔 and the diastolic pressure is of ~80 𝑚𝑚𝐻𝑔.

Realize that the pressure waveform is similar to the pressure obtained by the simulated 2-

element Windkessel model. This was expected as the physical device models the arterial

system by means of a compliant element and an adjustable valve modelling the peripheral

resistance.

68

6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

The main objective of this project was to develop an educational tool that would help students

to understand better the physiology of the cardiovascular system and would provide them

with a practical environment for completing their education with practical instruction, before

dealing with real cases.

All the three specific goals have been reached: the theoretical simulation is available, the

physical device is successfully functioning and the entire platform is ready to be used by

students during laboratory practices.

The models developed work well in comparison with the reviewed literature, being the four-

element configuration the one giving the best results. Moreover, their code implementation is

robust. Parameters are related to real elements of the cardiovascular system. User and

technical requirements have been satisfied.

The system is capable of reading real time pressure and flow data, and displaying it in a user

interface. The replaced electronic boards work in a safer, more efficient way and the original

design of the device has been conserved.

Finally, simulated variables, both theoretical and physical, represent successfully the

physiology of the human arterial system by means of a Windkessel model.

6.2 Future Work

In the future, the developed laboratory practice should be performed by Biomedical

Engineering students. In order to determine how useful the educational tool is and what other

improvements can be considered (e.g. to check if the interface layout is the most appropriate),

they should provide feedback after the laboratory session.

Two main improvements regarding the functioning of the physical device could be

implemented in the future.

Firstly, the accuracy of the software timing mode could be enhanced. At this moment, the user

can successfully induce the heart to pump at different rates and with different duty cycles.

However, if the timing switch is set to software mode while the code is not executing, there

will be a constant voltage value at the DTR terminal, so in order to avoid the membrane to

move while a recording is not being performed, pressure and vacuum regulators must be set

to zero. Once the reading code starts executing, pressure can be increased but the first

69

samples recorded will not have any meaning. Once the code stops executing, the regulators

need to be set to zero again. In the future, it should be allowed to the user to control timing

from the computer without concerning about the pressure regulator.

Secondly, it would be useful to allow the user reading real-time pressure and flow at the same

time. In this way pressure-volume loops could be obtained and compared with the simulated

ones. There are two main problems regarding this issue.

 In the first place, the differences between the transducers, the different

communication velocities and data format, make very difficult to program a code with

the needed timing requirements. The callback function of the timers would need to

execute not one but two different decoding routines and finish in time so that they do

not interrupt the next timer. This might be achieved if executing routines in parallel

was possible and with a tight control of the acquired raw data.

 In the second place, if this wanted to be achieved, a different way of controlling timing

through software should be considered, as at the moment the port which is not being

used for the recording is being used to send the pulses.

The fact that the electronic modifications have been designed in a modular way will make

easier any future work. Each module of the system may be replaced using components that

offer characteristics that fit better with the nature of the research being carried out at each

moment. This does not only apply to the physical modifications but also to all the codes

developed, which are structured in functions so that new pieces of code can be easily

integrated.

70

References

[1] World Health Organization. Cardiovascular Diseases: Key Facts. Retrieved 05 15, 2016, from

http://www.who.int/mediacentre/factsheets/fs317/en/

[2] European Commission. CE Marking. Retrieved 06 10, 2016, from

http://ec.europa.eu/growth/single-market/ce-marking/index_en.htm

[3] Ministerio de la Presidencia (Gobierno de España). (n.d.). Real Decreto 53/2013 (Boletín

oficial del Estado). Retrieved 06 10, 2016, from

https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-1337

[4] European Commission. Medicinal Products for Human Use. Retrieved 06 10, 2016, from

http://ec.europa.eu/health/human-use/clinical-trials/regulation/index_en.htm

[5] AENOR. Seguridad de las máquinas (ISO 12100:2012). Retrieved 06 10, 2016, from

http://www.aenor.es/aenor/actualidad/actualidad/noticias.asp?campo=4&codigo=22

995&tipon=2#.V2ExlbuLTIU

[6] Tortora, G. (2013). Princiles of Anatomy and Physiology (13 ed.). Wiley.

[7] Truant, R. (2013). Design of a Pulsatile Pumping System for Cardiovascular Flow PIV

Experimentation. University of Victoria, Faculty of Mechanical Engineering, Victoria,

British Columbia.

[8] Herman, I. P. (2007). Physics of the Human Body. Springer-Verlag Berlin Heidelberg.

[9] Beltina.org. Beltina enciklopedia of health: Cardiac Cycle. Retrieved 05 15, 2016, from

http://www.beltina.org/health-dictionary/cardiac-cycle-phases-diagram-

definition.html

[10] Mozaffarian, D. (2015). Heart Disease and Stroke Statistics-2016 Update, A Report From

the American Heart Association.

[11] Kokalari, I. (2013). Review on lumped parameter method for modeling the blood flow in

systemic arteries. Journal of Biomedical Science and Engineering, 6, 92-99 .

[12] Alfonso, M. R. (2014). Conceptual model of arterial tree based on solitons by

compartments. 2014 36th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (pp. 3224 - 3227). Chicago, IL: IEEE.

71

[13] Ursino, M. (1998). Interaction between carotid baroregulation and the pulsating heart: a

mathematical model. American Physiological Society.

[14] Savage, V. (2012). Modeling Vascular Networks. University of California, Los Angeles.

[15] Hyperphysics. Ohm's Law-Poiseuille's Law. Retrieved 03 17, 2016, from

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/watcir2.html

[16] Manning, T. S. (2002). Validity and Reliability of Diastolic Pulse Contour Analysis

(Windkessel Model) in Humans. Hypertension, 39, 963-968.

[17] Westerhof, N. (2008). The arterial Windkessel. Medical & Biological Engineering.

[18] University of Ottawa. (n.d.). Modeling Fluid Systems. Retrieved 03 03, 2016, from

http://www.site.uottawa.ca/~rhabash/ESSModelFluid.pdf

[19] Westerhof, N. (1971). An artificial arterial system for pumping hearts. Journal of Applied

Physiology, 31, 776-781.

[20] Segers, P. (2008). Three-and-four-element Windkessel models: Assessment of their fitting

performance in a large cohort of healthy middle-aged individuals. Journal of

Engineering in Medicine, 222, 417-428.

[21] Sullivan, C. (2004). Lumped Fluid Systems. Retrieved 03 25, 2016, from

http://www.dartmouth.edu/~sullivan/22files/Fluid_sys_anal_w_chart.pdf

[22] Biomedical Research Models. (n.d.). Animal Models. Retrieved 06 12, 2016, from

http://www.brmcro.com/Animal-Models.html

[23] Swartz, D. D. (2013). Animal Models for Vascular Tissue-Engineering. Current Opinion in

Biotechnology, 24 (5), 916-925.

[24] Tu. (2015). Computational Hemodynamics – Theory, Modelling and Applications. Springer.

[25] Kuzmin, D. Introduction to Computational Fluid Dynamics. University of Dortmund,

Institute of Applied Mathematics. Retrieved 06 12, 2016, from

http://www.mathematik.uni-dortmund.de/~kuzmin/cfdintro/lecture1.pdf

[26] Martorell, J. (2012). Engineered arterial models to correlate blood flow to tissue biological

response. Annals of the New York Academy of Sciences, 1254 (1), 51–56.

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/watcir2.html

72

[27] Sotiropoulos, F. (2009). A review of state-of-the-art numerical methods for simulating flow

through mechanical heart valves. Medical & Biological Engineering & Computing, 47

(3), 245–256.

[28] Cebral, J. R. (2005). Characterization of Cerebral Aneurysms for Assessing Risk of Rupture

By Using Patient-Specific Computational Hemodynamics Models. American Journal of

Neuroradiology, 26, 2550-2559.

[29] Pulse. Custom Medical Exhibit Models. Retrieved 06 13, 2016, from

http://www.pulsemdm.com/custom-medical-exhibit-models/

[30] United Biologics. Products. Retrieved 06 12, 2016, from

http://www.unitedbiologics.com/products.html

[31] SynDaver Labs. SynDaver Patient. Retrieved 06 12, 2016, from

http://syndaver.com/shop/syndaver/synthetic-humans/syndaver-patient/

[32] Coxworth, B. (2015, 05 14). SynDaver Patient offers a lively alternative to cadavers.

Retrieved from http://www.gizmag.com/syndaver-patient/37516/

[33] SynDaver Labs. EKG Simulator. Retrieved 06 12, 2016, from

http://syndaver.com/shop/synatomy/pumps-accessories/ekg-simulator/

[34] Medsby. ECG simulator. Retrieved 06 12, 2016, from

http://explore.coimbatorestartups.com/startup/medsby

[35] Ortiz-León, G. (2013). An updated Cardiovascular Simulation Toolbox. 2013 IEEE

International Symposium on Circuits and Systems (ISCAS2013) (pp. 1901 - 1904).

Beijing: IEEE.

[36] PhysioNet. A Cardiovascular Simulator for Research. Retrieved 06 12, 2016, from

https://www.physionet.org/physiotools/rcvsim/

[37] Gates, P. E. (2006). Decline in large elastic artery compliance with age: a therapeutic

target for habitual exercise. British Journal of Sports Medicine, 40(11), 897–899.

[38] Hlavác, M. (2004). Windkessel Model Analysis In MATLAB. Biomedical Engineering, Brno.

Retrieved from http://www.feec.vutbr.cz/EEICT/2004

[39] Edwards Lifesciences. Normal Hemodynamic Parameters – Adult. Retrieved 04 28, 2016,

from http://icverpleegkundige.com/files/Heamodynamische-parameters.pdf

73

[40] Punto Flotante S.A. Estándares de comunicaciones RS232, RS422, RS485. Retrieved 05 20,

2016, from http://www.puntoflotante.net/RS485.htm

[41] MedLab GmbH. Invasive blood pressure OEM module Data Sheet: EG 02000. Retrieved 03

10, 2016, from http://www.medlab-gmbh.de/english/downloads/ibp_oem202.pdf

[42] MedLab GmbH. IBP Monitoring: Invasive Blood Pressure Module. Retrieved 05 20, 2016,

from http://www.medlab-gmbh.de/english/modules/ibpmonitoring/index.html

[43] EmTec. Digiflow: OEM Ultrasonic Flow Measuring Board. Retrieved 03 10, 2016, from

http://manualzz.com/doc/4127354/digiflow-oem-ultrasonic-flow-measuring-board---

user-manual--

[44] O'Rourke, M. (1990). Arterial Stiffness, Systolic Blood Pressure, and Logical Treatment of

Arterial Hypertension. Hypertension, 15, 339-347.

74

75

ANNEXES

I. General costs

1.-Author

Nuria Peña Pérez

2.-Departament

Biomedical and Aerospace engineering

3.-Project description

 - Title: Windkessel Modelling of the Human Arterial System

 - Duration (hours): 695

4.-Project budget (€)

 17197,04

5.-Budget breakdown

Human resources

Category Human-hours Cost of human-hour Cost(€)

Technical Engineer 105 55 5775

Total 5775

Materials

Description Company Cost(€)

Windkessel prototype SEDECAL 5000

Total 5000

Details of material cost for timing control development

Description Price(€/piece) Quantity Price(€)

Optoisolator 0,43 2 0,86

LM7812 0,19 1 0,19

LM7805 0,22 1 0,22

76

Resistors (SMD) 0,02 6 0,12

Capacitor 0,1 2 0,2

TIP120 0,31 1 0,31

1N4007 0,05 3 0,15

Board 4,24 1 4,24

74C04 0,41 1 0,41

Wires, connectors 0,8

Total 7,5

Other direct costs

Description Company Cost(€)

Internet Telefonica 530

Windows 8 Microsoft 99,95

Visio 2007 Microsoft 79,99

Multisim National Instruments 640

MatLab MathWorks 2000

Office 2013 Microsoft 79,99

Total 3429,93

6.-General costs and industrial benefit

On direct human resources costs

Total 924 16%

7.-Summary of costs

Description Budget on total costs (€)

Personnel 5775

Materials 5007,5

Funtioning costs 3429,93

Total without IVA 14212,43

IVA 21% 2984,61

Estimated total 17197,04

77

II. Practice: Cardiovascular Physiology

Note: The answers to questions marked in blue should include in your Lab notebook, to be

evaluated.

Equipment used

Simulation Interface

In this practice we will use an interface that allows learning from different arterial models.

Windkessel Hydraulic Device

Prototype manufactured by the company SEDECAL.

Practice Outline

Section 1

Before using the hydraulic device we will get familiar with the Windkessel model using the

theoretical simulator at the computer.

Download the folder “WK_Interface_Simulation_FINAL”. Open MATLAB 2015b (or newer

versions) and run the code “WK_Main _Interface”. Make sure all the files in the compressed

folder are in the MATLAB directory. You should see the following window:

78

Once you have accessed to the main page of the interface, please answer the following

questions:

1: Access to the 2-element Windkessel window. Pay attention to the aortic pressure

waveform, taking into account that by default one heart period is represented. Can you

identify the different heart cycle steps? Explain the relationship each of them has with the

shape of the function. Now, go to the 3 and 4 element models, what differences do you

observe in the pressure and why do you think that happens? Tip: take into account adding

more elements to a model means more complexity is represented.

2: Calculate the cardiac output for a patient with a maximum flow per beat of 424 ml/s, a

heart rate of 180 beats/min and a systole duration of 0.1s. Include/draw the aortic flow that

patient will have. Which would be the systolic and diastolic pressure values for that patient?

Are they physiologically normal? (Use the 2-element Windkessel for this question) Tip: to

observe drastic changes you may need to represent several heart cycles.

3: Compare the pressure-volume loop obtained by any of the models with the ones you have

seen at class. Why are they different?

4: Go to the 4-element model, vary each parameter independently and observe the effect they

have on aortic pressure and flow. Tip: to observe drastic changes you may need to represent

several heart cycles.

a) Do all parameters affect to both pressure and flow? Why?

b) Relate the effect of each of the parameters with a different disease (e.g. increasing

heart rate with tachycardia).

Section 2

Now, let’s start working with the hydraulic device.

1: Observe the device and locate the main parts on the picture:

1. Main switch

2. Pressure connection

79

3. Pressure/Vacuum rotatory knobs

4. Timing option switch (software versus manual)

5. Heart

6. Heart cycle controls (rotatory knobs)

7. Compliant element

8. Fluid reservoir

9. Peripheral resistance

10. Flow transducer location/Flow RS-232 port

11. Pressure transducer location/Pressure RS-232 port

Connect the arterial simulator to the pressure connection and turn it on. Make sure that

pressure and vacuum are set to zero before switching the device on! Connect the pressure

port to the computer COM7 and the flow port to the computer COM6, switch the transducer’s

boards on. Open in the MATLAB directory the folder “Read_Windkessel_Interface” and run the

main interface code.

80

Note- If you are going to use the software timing option make sure that you always increase

pressure and vacuum after you start running the code and set pressure and flow quickly to

zero after the recording is finished. Set the timing switch to software mode.

If you are using the manual timing option, set the timing switch to this mode. You will start

hearing the pulses. You can modify both the heart rate and the duty cycle using the heart cycle

controls. Increase both pressure and vacuum (turning both rotatory nodes to their right). Try

to supply even pressure-vacuum quantities, so that the membrane simulating the heart

remains pumping in the middle of its cavity. Otherwise you may produce a heart attack.

2: Go to pressure reading and press start for the default number of samples to observe the

pressure recording in real-time. A txt file with the name “PressureData” will be generated after

the process finishes, save this file in a different folder. Do this again, what happens when you

modify the pressure/vacuum rotatory knobs during the recording? Do the same for the flow

and file “FlowData”.

Section 3

By looking at the recorded data, please answer the following questions:

1: Plot the vectors stored in each of the files and answer to the following questions:

a) The heart is a flow pump. Describe the relationship it would have with the

pressure assuming the arteries, arterioles and capillaries are simply exerting a

resistance to the flow. However, when you varied the pressure knob during the

recording the flow waveform is altered. How is this possible?

b) Plot the normal pressure together with the altered pressure:

a. Which are the systolic and diastolic pressure values for each waveform?

b. Which of the models do you think is more similar to the obtained

waveform from the ones we saw in section 1?

c. Draw the electric circuit that corresponds to this model and explain the

relationship each of the elements have with the parts of the hydraulic

device. Tip: think of the role the following elements play in the hydraulic

device and the location they have: heart, compliant element, fluid

reservoir, peripheral resistance.

81

III. Schemes

General scheme:

Electrical scheme:

82

Electronic scheme: Part 1

Electronic scheme: Part 2

83

Pneumatic-Hydraulic scheme

84

IV. Full Mathematical Development

Two-element Windkessel

By using Kirchhoff’s laws and Ohm’s law, the circuit can be

solved:

 𝑄1(𝑡) = 𝐶 ·
𝑑𝑃(𝑡)

𝑑𝑡

 𝑄2(𝑡) =
𝑃(𝑡)

𝑅𝑝

𝑄(𝑡) = 𝑄1(𝑡) + 𝑄2(𝑡)

Flow may be expressed as a function of the pressure with the described equation:

𝑄(𝑡) = 𝐶 ·
𝑑𝑃(𝑡)

𝑑𝑡
+

𝑃(𝑡)

𝑅𝑝

↔ 𝐶 · 𝑠 · 𝑃 +
𝑃

𝑅𝑝

= 𝑃 (𝑠 · 𝐶 +
1

𝑅𝑝

)

The equation may be transformed into Laplace domain, this definition will be used in the next

section for performing the impedance analysis. Now, solving for the pressure as a function of

previous samples:

𝑄(𝑡) ≅ 𝑄(𝑖)

𝑄(𝑖) = 𝐶 ·
𝑃(𝑖) − 𝑃(𝑖 − 1)

∆𝑡
+

𝑃(𝑖)

𝑅𝑝

𝑅𝑝 · 𝑄(𝑖) · ∆𝑡

𝐶
=

∆𝑡 · 𝑃(𝑖)

𝐶
+ 𝑃(𝑖) − 𝑃(𝑖 − 1)

𝑅𝑝 · 𝑄(𝑖) · ∆𝑡

𝐶
= 𝑃(𝑖) · [𝑅𝑝 +

∆𝑡

𝐶
] − 𝑃(𝑖 − 1) · 𝑅𝑝

The final solution is:

𝑃(𝑖) =
1

𝑅𝑝 +
∆𝑡
𝐶

· [𝑄(𝑖) ·
𝑅𝑝 · ∆𝑡

𝐶
+ 𝑃(𝑖 − 1) · 𝑅𝑝]

Three-element Windkessel

The circuit is solved following the same procedure.

 𝑄(𝑡) =
𝑃(𝑡)−𝑃𝑥(𝑡)

𝑅𝑎
→ 𝑃𝑥(𝑡) = 𝑃(𝑡) − 𝑄(𝑡) · 𝑅𝑎

 𝑄1(𝑡) = 𝐶 ·
𝑑𝑃𝑥(𝑡)

𝑑𝑡
= 𝐶 ·

𝑑(𝑃(𝑡) − 𝑄(𝑡) · 𝑅𝑎)

𝑑𝑡

85

𝑄2(𝑡) =
𝑃𝑥(𝑡)

𝑅𝑝

=
𝑃(𝑡) − 𝑄(𝑡) · 𝑅𝑎

𝑅𝑝

Assembling these equations:

𝑄(𝑡) = 𝑄1(𝑡) + 𝑄2(𝑡)

𝑄(𝑡) = 𝐶 ·
𝑑(𝑃(𝑡) − 𝑄(𝑡) · 𝑅𝑎)

𝑑𝑡
+

𝑃(𝑡) − 𝑄(𝑡) · 𝑅𝑎

𝑅𝑝

Rearranging the terms, the relationship between pressure and flow can be found:

𝑄(𝑡) · (1 +
𝑅𝑎

𝑅𝑝

) + 𝐶 · 𝑅𝑎 ·
𝑑𝑄(𝑡)

𝑑𝑡
= 𝐶 ·

𝑑𝑃(𝑡)

𝑑𝑡
+

𝑃(𝑡)

𝑅𝑝

 ↔ 𝑄 · (1 +
𝑅𝑎

𝑅𝑝

+ 𝐶 · 𝑅𝑎 · 𝑠) = 𝑃(𝐶 · 𝑠 +
1

𝑅𝑝

)

Again, Laplace definition will be later useful for the impedance analysis.

Transforming every term from a continuous to a discrete function:

𝑄(𝑖) · (1 +
𝑅𝑎

𝑅𝑝

) + 𝐶 · 𝑅𝑎 ·
𝑄(𝑖) − 𝑄(𝑖 − 1)

∆𝑡
= 𝐶 ·

𝑃(𝑖) − 𝑃(𝑖 − 1)

∆𝑡
+

𝑃(𝑖)

𝑅𝑝

𝑅𝑝 · {𝑄(𝑖) · [1 +
𝑅𝑎

𝑅𝑝

+
𝐶 · 𝑅𝑎

∆𝑡
] − 𝑄(𝑖 − 1) ·

𝐶 · 𝑅𝑎

∆𝑡
} = 𝑃(𝑖) · (

𝐶 · 𝑅𝑝

∆𝑡
+ 1) − 𝑃(𝑖 − 1) ·

𝐶 · 𝑅𝑝

∆𝑡

Finally:

𝑃(𝑖) =
1

1 +
𝐶 · 𝑅𝑝

∆𝑡

· {𝑃(𝑖 − 1) ·
𝐶 · 𝑅𝑝

∆𝑡
+ 𝑅𝑝 · {𝑄(𝑖) · [1 +

𝑅𝑎

𝑅𝑝

+
𝐶 · 𝑅𝑎

∆𝑡
] − 𝑄(𝑖 − 1) ·

𝐶 · 𝑅𝑎

∆𝑡
}}

Four-element Windkessel Series

The circuit is solved following the same procedure.

 𝑃𝐿(𝑡) = 𝐿 ·
𝑑𝑄(𝑡)

𝑑𝑡

𝑄(𝑡) =
𝑃(𝑡) − 𝑃𝐿(𝑡) − 𝑃𝑥(𝑡)

𝑅𝑎

→ 𝑃𝑥(𝑡) = 𝑃(𝑡) − 𝐿 ·
𝑑𝑄(𝑡)

𝑑𝑡
− 𝑄(𝑡) · 𝑅𝑎

𝑄1(𝑡) = 𝐶 ·
𝑑𝑃𝑥(𝑡)

𝑑𝑡
= 𝐶 ·

𝑑 (𝑃(𝑡) − 𝐿 ·
𝑑𝑄(𝑡)

𝑑𝑡
− 𝑄(𝑡) · 𝑅𝑎)

𝑑𝑡

𝑄2(𝑡) =
𝑃𝑥(𝑡)

𝑅𝑝

=
𝑃(𝑡) − 𝐿 ·

𝑑𝑄(𝑡)
𝑑𝑡

− 𝑄(𝑡) · 𝑅𝑎

𝑅𝑝

86

𝑄(𝑡) = 𝑄1(𝑡) + 𝑄2(𝑡)

Assembling the previous equations:

𝑄(𝑡) = 𝐶 ·
𝑑 (𝑃(𝑡) − 𝐿 ·

𝑑𝑄(𝑡)
𝑑𝑡

− 𝑄(𝑡) · 𝑅𝑎)

𝑑𝑡
+

𝑃(𝑡) − 𝐿 ·
𝑑𝑄(𝑡)

𝑑𝑡
− 𝑄(𝑡) · 𝑅𝑎

𝑅𝑝

𝑄(𝑡) = 𝐶 ·
𝑑𝑃(𝑡)

𝑑𝑡
− 𝐶 · 𝐿 ·

𝑑2𝑄(𝑡)

𝑑𝑡2
+ 𝐶 · 𝑅𝑎 ·

𝑑𝑄(𝑡)

𝑑𝑡
+

𝑃(𝑡)

𝑅𝑝

−
𝐿

𝑅𝑝

·
𝑑𝑄(𝑡)

𝑑𝑡
−

𝑅𝑎

𝑅𝑝

· 𝑄(𝑡)

Finally arriving to the solution in the temporal domain:

𝑄(𝑡) · (1 +
𝑅𝑎

𝑅𝑝

) +
𝑑𝑄(𝑡)

𝑑𝑡
· (

𝐿

𝑅𝑝

− 𝐶 · 𝑅𝑎) + 𝐶 · 𝐿 ·
𝑑2𝑄(𝑡)

𝑑𝑡2
= 𝑃(𝑡) · (

1

𝑅𝑝

) + 𝐶 ·
𝑑𝑃(𝑡)

𝑑𝑡

And to the solution in the Laplace domain:

𝑄 · [(1 +
𝑅𝑎

𝑅𝑝

) + 𝑠 · (
𝐿

𝑅𝑝

− 𝐶 · 𝑅𝑎) + 𝐶 · 𝐿 · 𝑠2] = 𝑃 · (
1

𝑅𝑝

+ 𝐶 · 𝑠)

Transforming the solution into a function of the previous samples:

𝑄(𝑖) · (1 +
𝑅𝑎

𝑅𝑝

) +
𝑄(𝑖) − 𝑄(𝑖 − 1)

∆𝑡
· (

𝐿

𝑅𝑝

− 𝐶 · 𝑅𝑎) + 𝐶 · 𝐿 ·
𝑄(𝑖) − 2 · 𝑄(𝑖 − 1) + 𝑄(𝑖 − 2)

∆𝑡2

= 𝑃(𝑖) · (
1

𝑅𝑝

) + 𝐶 ·
𝑃(𝑖) − 𝑃(𝑖 − 1)

∆𝑡

𝑄(𝑖) · [(1 +
𝑅𝑎

𝑅𝑝

) +

(
𝐿

𝑅𝑝
− 𝐶 · 𝑅𝑎)

∆𝑡
+

𝐶 · 𝐿

∆𝑡2
] − 𝑄(𝑖 − 1) · [

(
𝐿

𝑅𝑝
− 𝐶 · 𝑅𝑎)

∆𝑡
+

2 · 𝐶 · 𝐿

∆𝑡2
] + 𝑄(𝑖 − 2) ·

𝐶 · 𝐿

∆𝑡2

= 𝑃(𝑖) · (
1

𝑅𝑝

+
𝐶

∆𝑡
) + 𝑃(𝑖 − 1) ·

𝐶

∆𝑡

Finally:

𝑃(𝑖) =
1

1
𝑅𝑝

+
𝐶
∆𝑡

· {𝑃(𝑖 − 1) ·
𝐶

∆𝑡
+ 𝑄(𝑖) · [(1 +

𝑅𝑎

𝑅𝑝

) +

(
𝐿

𝑅𝑝
− 𝐶 · 𝑅𝑎)

∆𝑡
+

𝐶 · 𝐿

∆𝑡2
] − 𝑄(𝑖 − 1)

· [

(
𝐿

𝑅𝑝
− 𝐶 · 𝑅𝑎)

∆𝑡
+

2 · 𝐶 · 𝐿

∆𝑡2
] + 𝑄(𝑖 − 2) ·

𝐶 · 𝐿

∆𝑡2
}

Four-element Windkessel Parallel

Due to the increased complexity of this model, it is analyzed directly in the Laplace domain and

87

later transformed into temporal domain to obtain the final solution.

𝑄(𝑡) =
𝑃(𝑡)

𝑍𝑡

𝑍𝑡 =
𝑠 · 𝐿 · 𝑅𝑎

𝑠 · 𝐿 + 𝑅𝑎

+

1
𝑠 · 𝐶

· 𝑅𝑝

1
𝑠 · 𝐶

+ 𝑅𝑝

=
𝑠 · 𝐿

1 + 𝑠 ·
𝐿

𝑅𝑎

+

1
𝑠 · 𝐶 · 𝑅𝑝

1 +
1

𝑠 · 𝐶 · 𝑅𝑝

=

=

𝑠 · 𝐿 · (1 +
1

𝑠 · 𝐶 · 𝑅𝑝
) +

1
𝑠 · 𝐶

· (1 + 𝑠 ·
𝐿

𝑅𝑎
)

(1 + 𝑠 ·
𝐿

𝑅𝑎
) · (1 +

1
𝑠 · 𝐶 · 𝑅𝑝

)
=

=

𝑠 · 𝐿 · (1 +
1

𝑠 · 𝐶 · 𝑅𝑝
) +

1
𝑠 · 𝐶

· (1 + 𝑠 ·
𝐿

𝑅𝑎
)

1 +
1

𝑠 · 𝐶 · 𝑅𝑝
+ 𝑠 ·

𝐿
𝑅𝑎

+
𝐿

𝐶 · 𝑅𝑝 · 𝑅𝑎

𝑄(𝑠) ·

𝑠 · 𝐿 · (1 +
1

𝑠 · 𝐶 · 𝑅𝑝
) +

1
𝑠 · 𝐶

· (1 + 𝑠 ·
𝐿

𝑅𝑎
)

1 +
1

𝑠 · 𝐶 · 𝑅𝑝
+ 𝑠 ·

𝐿
𝑅𝑎

+
𝐿

𝐶 · 𝑅𝑝 · 𝑅𝑎

= 𝑃(𝑠)

𝑄(𝑠) · [𝑠 · 𝐿 · (1 +
1

𝑠 · 𝐶 · 𝑅𝑝

) +
1

𝑠 · 𝐶
· (1 + 𝑠 ·

𝐿

𝑅𝑎

)] = (1 +
1

𝑠 · 𝐶 · 𝑅𝑝

+ 𝑠 ·
𝐿

𝑅𝑎

+
𝐿

𝐶 · 𝑅𝑝 · 𝑅𝑎

) · 𝑃(𝑠)

𝑄(𝑠) · [𝑠 · 𝐿 · (1 +
1

𝑠 · 𝐶 · 𝑅𝑝

) +
1

𝑠 · 𝐶
· (1 + 𝑠 ·

𝐿

𝑅𝑎

)]

= [
(𝑠 · 𝐶 · 𝑅𝑝 + 1) · 𝑅𝑎 + 𝐿 · 𝑠 · (𝑠 · 𝐶 · 𝑅𝑝 + 1)

𝑠 · 𝐶 · 𝑅𝑝 · 𝑅𝑎

] · 𝑃(𝑠)

𝑄(𝑠) · [𝑠 · 𝐿 · (𝑠 +
1

𝐶 · 𝑅𝑝

) +
1

𝐶
· (1 + 𝑠 ·

𝐿

𝑅𝑎

)] · 𝐶 · 𝑅𝑝 · 𝑅𝑎

= ((𝑠 · 𝐶 · 𝑅𝑝 + 1) · 𝑅𝑎 + 𝐿 · 𝑠 · (𝑠 · 𝐶 · 𝑅𝑝 + 1)) · 𝑃(𝑠)

𝑄(𝑠) · [𝑠2 · 𝐿 + 𝑠 · (
𝐿

𝐶 · 𝑅𝑎

+
𝐿

𝐶 · 𝑅𝑝

) +
1

𝐶
] · 𝐶 · 𝑅𝑝 · 𝑅𝑎

= (𝑠 · 𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝑅𝑎 + 𝐿 · 𝑠2 · 𝐶 · 𝑅𝑝 + 𝑠 · 𝐿) · 𝑃(𝑠)

Applying the transformation: 𝑠𝑛 =
𝑑𝑛

𝑑𝑡𝑛

𝑑2𝑄(𝑡)

𝑑𝑡2
· 𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎 +

𝑑𝑄(𝑡)

𝑑𝑡
· (𝐿 · (𝑅𝑝 + 𝑅𝑎)) + 𝑄(𝑡) · 𝑅𝑝 · 𝑅𝑎

=
𝑑2𝑃(𝑡)

𝑑𝑡2
· 𝐿 · 𝐶 · 𝑅𝑝 +

𝑑𝑃(𝑡)

𝑑𝑡
· (𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝐿) + 𝑃(𝑡) · 𝑅𝑎

After transforming every term from a continuous to a discrete function:

88

𝑄(𝑖)−2·𝑄(𝑖−1)+𝑄(𝑖−2)

∆𝑡2 · 𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎 +
𝑄(𝑖)−𝑄(𝑖−1)

∆𝑡
· (𝐿 · (𝑅𝑝 + 𝑅𝑎)) + 𝑄(𝑖) · 𝑅𝑝 · 𝑅𝑎 =

𝑃(𝑖)−2·𝑃(𝑖−1)+𝑃(𝑖−2)

∆𝑡2 ·

𝐿 · 𝐶 · 𝑅𝑝 +
𝑉(𝑖)−𝑉(𝑖−1)

∆𝑡
· (𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝐿) + 𝑃(𝑖) · 𝑅𝑎

𝑄(𝑖) · [
𝐿·𝐶·𝑅𝑝·𝑅𝑎

∆𝑡2 +
𝐿·(𝑅𝑝+𝑅𝑎)

∆𝑡
+ 𝑅𝑝 · 𝑅𝑎] − 𝑄(𝑖 − 1) · [

2·𝐿·𝐶·𝑅𝑝·𝑅𝑎

∆𝑡2 +
𝐿·(𝑅𝑝+𝑅𝑎)

∆𝑡
] + 𝑄(𝑖 − 2) ·

𝐿·𝐶·𝑅𝑝·𝑅𝑎

∆𝑡2 =

𝑃(𝑖) · [
𝐿·𝐶·𝑅𝑝

∆𝑡2 +
𝐶·𝑅𝑝·𝑅𝑎+𝐿

∆𝑡
+ 𝑅𝑎] − 𝑃(𝑖 − 1) · [

2·𝐿·𝐶·𝑅𝑝

∆𝑡2 +
𝐶·𝑅𝑝·𝑅𝑎+𝐿

∆𝑡
] + 𝑃(𝑖 − 2) ·

𝐿·𝐶·𝑅𝑝

∆𝑡2

Finally:

𝑃(𝑖) =
1

𝐿 · 𝐶 · 𝑅𝑝

∆𝑡2 +
𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝐿

∆𝑡
+ 𝑅𝑎

· {𝑃(𝑖 − 1) · [
2 · 𝐿 · 𝐶 · 𝑅𝑝

∆𝑡2
+

𝐶 · 𝑅𝑝 · 𝑅𝑎 + 𝐿

∆𝑡
] − 𝑃(𝑖 − 2) ·

𝐿 · 𝐶 · 𝑅𝑝

∆𝑡2
+ 𝑄(𝑖)

· [
𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎

∆𝑡2
+

𝐿 · (𝑅𝑝 + 𝑅𝑎)

∆𝑡
+ 𝑅𝑝 · 𝑅𝑎] − 𝑄(𝑖 − 1)

· [
2 · 𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎

∆𝑡2
+

𝐿 · (𝑅𝑝 + 𝑅𝑎)

∆𝑡
] + 𝑄(𝑖 − 2) ·

𝐿 · 𝐶 · 𝑅𝑝 · 𝑅𝑎

∆𝑡2
}

89

V. Codes

READING INTERFACE

Main Window

function WK_Main_Interface_Reading
% WK_MAIN_INTERFACE_READING
%
% This function opens the main window of the reading interface and

allows
% the user to decide which variable to read and timing mode to use
%
% Define some common variables
 x_max=200; % Number of samples to read, limit of the x-axis
 y_min=0; % Lower y-axis limit
 y_max=200; % Upper y-axis limit

 HR=60; % Heart rate [beats/min]
 T=60/HR; % Heart period [s]
 Duty=2/5; % Fraction of period occupied by systole
 Delay=Duty*T; % Time occupied by systole [s]

% Define Global Variables, handles will be an input to all the other
% functions used
 handles.data=[x_max y_min y_max HR T Duty Delay];
%In this way handles will be called for executig functions WK_2,WK_3

and WK_4

%CREATE MAIN FIGURE
 f =

figure('Visible','off','Toolbar','none','Menubar','none','Color',[0.85

0.99 0.85]);

%CREATE WELCOME TEXT
 txtWelcome = uicontrol('Style','text','Units','normalized',...
 'Position',[0.25 0.8 0.5 0.1],'FontSize',14,...
 'String','WELCOME',

'FontName','Century','BackgroundColor',[0.85 0.99 0.85]);

%CREATE POP UP MENU: it will be available for all the windows

displayed
 popup = uicontrol('Style',

'popup','Units','normalized','ForegroundColor',[0 0 1],...
 'String', {'Main Menu','Manual Control: Pressure','Manual

Control: Flow','Software Control: Pressure','Software Control:

Flow'},...
 'FontName','Calibri','FontSize',10,'Position', [0.02 0.85 0.3

0.1],...
 'Callback', @Menu);

%CREATE MAIN PANEL: only available for welcome page
 hp_manual = uipanel('Title','Manual Pulse Control:

','FontSize',14,...
 'BackgroundColor','white','FontName','Calibri',...
 'Position',[0.1 0.1 0.35 0.6]);

90

 hp_software = uipanel('Title','Software Pulse Control:

','FontSize',14,...
 'BackgroundColor','white','FontName','Calibri',...
 'Position',[0.55 0.1 0.35 0.6]);

%CREATE ALL MAIN PANEL BUTTONS
 %CREATE MANUAL CONTROL PRESSURE READING BUTTON
 btn_manual_pressure = uicontrol('Parent',hp_manual,'Style',

'pushbutton','Units','normalized',...
 'String', 'Read Pressure','Position',[0.25 0.55 0.5

0.3],'FontSize',11,...
 'FontName','Calibri','BackgroundColor',[0.99 0.8

0.8],'Callback', @manual_pressure);

 %CREATE MANUAL CONTROL FLOW READING BUTTON
 btn_manual_flow= uicontrol('Parent',hp_manual,'Style',

'pushbutton','Units','normalized',...
 'String', 'Read Flow','Position', [0.25 0.15 0.5

0.3],'FontSize',11,...
 'FontName','Calibri','BackgroundColor',[0.8 0.8

0.99],'Callback', @manual_flow);

 %CREATE SOFTWARE CONTROL PRESSSURE READING BUTTON
 btn_software_pressure= uicontrol('Parent',hp_software,'Style',

'pushbutton','Units','normalized',...
 'String', 'Read Pressure','Position',[0.25 0.55 0.5 0.3]

,'FontSize',11,...
 'FontName','Calibri','BackgroundColor',[0.99 0.8

0.8],'Callback', @software_pressure);

 %CREATE SOFTWARE CONTROL FLOW READING BUTTON
 btn_software_flow= uicontrol('Parent',hp_software,'Style',

'pushbutton','Units','normalized',...
 'String', 'Read Flow','Position',[0.25 0.15 0.5 0.3]

,'FontSize',11,...
 'FontName','Calibri','BackgroundColor',[0.8 0.8

0.99],'Callback', @software_flow);

%MAKE EVERYTHING VISIBLE
 f.Visible = 'on';

%CREATE THE PANELS FOR READING FUNCTIONS: only visible in their

respective
%windows
 manual_pressure_PANEL = uipanel('FontSize',12,...
 'BackgroundColor','white','FontName','Calibri',...
 'Visible','off','Position',[0.15 0.3 0.2 0.35]);
 manual_flow_PANEL = uipanel('FontSize',12,...
 'BackgroundColor','white','FontName','Calibri',...
 'Visible','off','Position',[0.15 0.3 0.2 0.35]);
 software_pressure_PANEL = uipanel('FontSize',12,...
 'BackgroundColor','white','FontName','Calibri',...
 'Visible','off','Position',[0.05 0.05 0.45 0.8]);
 software_flow_PANEL = uipanel('FontSize',12,...
 'BackgroundColor','white','FontName','Calibri',...
 'Visible','off','Position',[0.05 0.05 0.45 0.8]);

%CREATE THE AXES FOR DISPLAYING THE DATA

91

 ax = axes('Visible','off','Units','normalized','Position',[0.55

0.15 0.4 0.6],'XLim',[0 x_max],'YLim',[y_min y_max]);

%%

%DEFINE ALL CALLBACK FUNCTIONS
%Each of them needs as input the properties of the respective object

%For the pop-up menu
 function Menu(source,callbackdata)
 NumberMenu = source.Value;
 Names= source.String;
 NameMenu = Names{NumberMenu};
 %If user selects Main Menu in the pop-up menu, everything

should
 %dissappear and the main panel, its buttons and the welcome

text
 %should appear
 if (strcmp(NameMenu,'Main Menu')==1)
 %Everything involve in the main panel should appear
 txtWelcome.Visible = 'on';
 hp_manual.Visible = 'on';
 hp_software.Visible = 'on';
 %Everything refering to other windows must disapear
 manual_pressure_PANEL.Visible='off';
 manual_flow_PANEL.Visible='off';
 software_pressure_PANEL.Visible='off';
 software_flow_PANEL.Visible='off';
 cla(ax) %Clean the plot in the axes
 ax.Visible='off'; %Make them invisible
 %If user selects to manually control pressure in the pop-up

menu,
 %the main panel and other windows should disappear, moreover
 %fucntion created for creating the window that reads pressure
 %manually has to be executed
 elseif (strcmp(NameMenu,'Manual Control: Pressure')==1)
 %Everything not involved must disappear
 txtWelcome.Visible = 'off';
 hp_manual.Visible = 'off';
 hp_software.Visible = 'off';
 cla(ax)
 ax.Visible='off';
 manual_flow_PANEL.Visible='off';
 software_pressure_PANEL.Visible='off';
 software_flow_PANEL.Visible='off';
 %Function creating window must appear: it needs its panel

and
 %axes as input in order to locate all the specific

buttons.
 %Global structure handles its also an input
 Read_manual_pressure (manual_pressure_PANEL,handles,ax)
 manual_pressure_PANEL.Title='Read Pressure: ';
 manual_pressure_PANEL.Visible='on';
 ax.Visible='on';
 %A similar process is developed when other windows want to be
 %opened
 elseif (strcmp(NameMenu,'Manual Control: Flow')==1)
 %Everything not involved must disappear
 txtWelcome.Visible = 'off';
 hp_manual.Visible = 'off';
 hp_software.Visible = 'off';

92

 cla(ax)
 ax.Visible='off';
 manual_pressure_PANEL.Visible='off';
 software_pressure_PANEL.Visible='off';
 software_flow_PANEL.Visible='off';
 %Calling the function for the specific window
 Read_manual_flow (manual_flow_PANEL,handles,ax)
 manual_flow_PANEL.Title='Read Flow: ';
 manual_flow_PANEL.Visible='on';
 ax.Visible='on';
 elseif (strcmp(NameMenu,'Software Control: Pressure')==1)
 %Everything not involved must disappear
 txtWelcome.Visible = 'off';
 hp_manual.Visible = 'off';
 hp_software.Visible = 'off';
 cla(ax)
 ax.Visible='off';
 manual_pressure_PANEL.Visible='off';
 manual_flow_PANEL.Visible='off';
 software_flow_PANEL.Visible='off';
 %Calling the function for the specific window
 Read_software_pressure

(software_pressure_PANEL,handles,ax)
 software_pressure_PANEL.Title='Read Pressure: ';
 software_pressure_PANEL.Visible='on';
 ax.Visible='on';
 elseif (strcmp(NameMenu,'Software Control: Flow')==1)
 %Everything not involved must disappear
 txtWelcome.Visible = 'off';
 hp_manual.Visible = 'off';
 hp_software.Visible = 'off';
 cla(ax)
 ax.Visible='off';
 manual_pressure_PANEL.Visible='off';
 manual_flow_PANEL.Visible='off';
 software_pressure_PANEL.Visible='off';
 %Calling the function for the specific window
 Read_software_flow (software_flow_PANEL,handles,ax)
 software_flow_PANEL.Title='Read Flow: ';
 software_flow_PANEL.Visible='on';
 ax.Visible='on';
 end
 end
%A similar process is developed if the user pushes one of the butttons
%available at the main panel. The difference is that this buttons are

only
%available at the main window, while the pop-up menu is visible and
%accessible at any window.

% For the manual pressure reading button

 function manual_pressure(source,callbackdata)
 %Everything not involved must disappear.
 txtWelcome.Visible = 'off';
 hp_manual.Visible = 'off';
 hp_software.Visible = 'off';
 %Set the pop up menu to show that the user is in the manual

pressure window.
 popup.Value=2;
 %Function creating window must appear: it needs its panel and
 %axes as input in order to locate all the specific buttons.

93

 %Global structure handles its also an input
 Read_manual_pressure (manual_pressure_PANEL,handles,ax)
 manual_pressure_PANEL.Title='Read Pressure: ';
 manual_pressure_PANEL.Visible='on';
 ax.Visible='on';

 end

% The same process is developed for the other buttons
% For the manual flow reading button

 function manual_flow(source,callbackdata)
 %Everything not involved must disappear.
 txtWelcome.Visible = 'off';
 hp_manual.Visible = 'off';
 hp_software.Visible = 'off';
 popup.Value=3;
 %Calling the function for the specific window
 Read_manual_flow (manual_flow_PANEL,handles,ax)
 manual_flow_PANEL.Title='Read Flow: ';
 manual_flow_PANEL.Visible='on';
 ax.Visible='on';

 end

% For the software pressure reading button

 function software_pressure (source,callbackdata)
 %Everything not involved must disappear.
 txtWelcome.Visible = 'off';
 hp_manual.Visible = 'off';
 hp_software.Visible = 'off';
 popup.Value=4;
 %Calling the function for the specific window
 Read_software_pressure (software_pressure_PANEL,handles,ax)
 software_pressure_PANEL.Title='Read Pressure: ';
 software_pressure_PANEL.Visible='on';
 ax.Visible='on';

 end

% For the software flow reading button

 function software_flow (source,callbackdata)
 %Everything not involved must disappear.
 txtWelcome.Visible = 'off';
 hp_manual.Visible = 'off';
 hp_software.Visible = 'off';
 popup.Value=5;
 %Calling the function for the specific window
 Read_software_flow (software_flow_PANEL,handles,ax)
 software_pressure_PANEL.Title='Read Flow: ';
 software_flow_PANEL.Visible='on';
 ax.Visible='on';

 end

94

end

Manual Pressure Window

function Read_manual_pressure (manual_pressure_PANEL,handles,ax)
%
% READ_MANUAL_PRESSURE
% This function executes the window for specifically reading pressure
% INPUTS:
% Manual_pressure_panel: panel created during

WK_Main_Interface_Reading,
% all buttons will be located in this panel
% Handles: global structure with some common data
% handles.data=[x_max y_min y_max HR T Duty Delay];
% ax: axes for ploting the data
%
%%

%DEFINING ALL THE ELEMENTS FOR THE PANEL

%CREATE READING START PUSHBUTTON
START= uicontrol('Parent',manual_pressure_PANEL,'Style', 'pushbutton',

'String', 'START','FontWeight','Bold',...
 'BackgroundColor',[1 1 1],'Units','normalized','Position',

[0.35 0.1 0.3 0.2],...
 'FontSize',10,'ForegroundColor',[0 0

1],'Callback',@START_btn_Callback);

%CREATE TEXT INSTRUCTIONS
SelectSamples =

uicontrol('Parent',manual_pressure_PANEL,'Style','text','ForegroundCol

or',[0 0 1],...
 'Units','normalized','Position',[0.05 0.7 0.9 0.2],...
 'FontWeight','Bold','String','Please select the desired number

of samples: ','BackgroundColor',[1 1 1]);

%CREATE EDIT BUTTON
x_max_edit =

uicontrol('Parent',manual_pressure_PANEL,'Style','Edit','Units','norma

lized',...
 'BackgroundColor',[0.9 0.9 0.99],'Position',[0.35 0.45 0.3

0.2],'String',handles.data(1),'Callback', @x_max_edit_Callback);

%%

%DEFINING CALLBACK FUNCTIONS

%STARTING TO READ SAMPLES FROM THE DEVICE
function START_btn_Callback(source,callbackdata)
 cla(ax)
 %As this window is the manual-control-pressure-reading window, the
 %corresponding function must be used:
 Read_Trial_Pressure(handles)
end

%READING THE NUMBER OF SAMPLES THE USER WANTS TO READ

function x_max_edit_Callback(source,callbackdata)
 %Obtain value from edit button

95

 handles.data(1)=str2double(get(source,'String'));
 cla(ax) %Cleaning axes to re-define them with the new x-axis limit
 ax.XLim=[0 handles.data(1)];
end

end

Manual Pressure Reading

function Read_Trial_Pressure(handles)

% Read_Trial_Pressure
% inputs:
 % Handles: global structure with general data in the form
 % handles.data=[x_max y_min y_max HR T Duty Delay];

%%

% OPENING THE PRESSURE SERIAL PORT FOR READING
u = serial('COM3','BaudRate',9600,'DataBits',8,'StopBits',1);
set(u,'InputBufferSize',5);
fopen(u);

% DEFINING THE LINE THAT WILL BE USED FOR THE PLOT
l1 = line(nan,nan,'Color','r','LineWidth',1);
title('Real Time Pressure')
xlabel('Samples')
ylabel('Pressure [mmHg]')
grid on
hold on
%%

% DEFINING THE TIMERS:

%TIMER FOR READING PRESSURE DATA
read_timer = timer('TimerFcn',@mycallback_read_timer

,'BusyMode','drop',...

'StartDelay',1,'Period',0.005,'ExecutionMode','fixedSpacing');

%START THE TIMER
start(read_timer)

%INITIALIZE VARIABLES
rawpressure=[];
rawpressure(1)=1;
real_pressure=[];

%MAIN LOOOP:it will constantly execute until stop condition
while(1)
%DECODING SECTION OF THE CODE
 positions=find(rawpressure==192 | rawpressure==196);
 positions=positions+1;
 real_pressure=rawpressure(positions(1:(length(positions)-1)));
 x100=find(real_pressure>=100);
 x28=find(real_pressure<100);
 real_pressure(x28)=real_pressure(x28)+28;

96

 real_pressure(x100)=real_pressure(x100)-100;

% PLOTTING SECTION OF THE CODE
 real_pressure=real_pressure+70; %Calibrate
 x=linspace(0,length(real_pressure),length(real_pressure));
 set(l1,'YData',real_pressure(1:length(real_pressure)),'XData',x);
 drawnow

%STOP CONDITION: if enough samples have been read, stop
if (length(real_pressure)>=handles.data(1))
%Stop and delete timers, close serial ports
 stop(read_timer)
 delete(read_timer)
 fclose(u)
 delete(u)
%Save data in a file
 fileID = fopen('PressureData.txt','w');
 fprintf(fileID,'%6s\n','Real Time Pressure');
 fprintf(fileID,'%6.2f\n',real_pressure);
 fclose(fileID);
 break
end
end
%%
%DEFINE CALLBACK FUNCTIONS

%Function reading data
function mycallback_read_timer (obj, event)
if (u.BytesAvailable~=0)
 rawpressure=[rawpressure fread(u,u.BytesAvailable)'];
end
end

end

Manual Flow Window

function Read_manual_flow (manual_flow_PANEL,handles,ax)
%
% READ_FLOW_PRESSURE
% This function executes the window for specifically reading pressure
% INPUTS:
% Manual_flow_panel: panel created during WK_Main_Interface_Reading,
% all buttons will be located in this panel
% Handles: global structure with some common data
% handles.data=[x_max y_min y_max HR T Duty Delay];
% ax: axes for ploting the data
%
%%

%%

%DEFINING ALL THE ELEMENTS FOR THE PANEL

%CREATE READING START PUSHBUTTON
START= uicontrol('Parent',manual_flow_PANEL,'Style', 'pushbutton',

'String', 'START','FontWeight','Bold',...
 'BackgroundColor',[1 1 1],'Units','normalized','Position',

[0.35 0.1 0.3 0.2],...

97

 'FontSize',10,'ForegroundColor',[0 0

1],'Callback',@START_btn_Callback);

%CREATE TEXT INSTRUCTIONS
SelectSamples =

uicontrol('Parent',manual_flow_PANEL,'Style','text','ForegroundColor',

[0 0 1],...
 'Units','normalized','Position',[0.05 0.7 0.9 0.2],...
 'FontWeight','Bold','String','Please select the desired number

of samples: ','BackgroundColor',[1 1 1]);

%CREATE EDIT BUTTON
x_max_edit =

uicontrol('Parent',manual_flow_PANEL,'Style','Edit','Units','normalize

d',...
 'BackgroundColor',[0.9 0.9 0.99],'Position',[0.35 0.45 0.3

0.2],'String',handles.data(1),'Callback', @x_max_edit_Callback);

%%

%DEFINING CALLBACK FUNCTIONS

%STARTING TO READ SAMPLES FROM THE DEVICE
function START_btn_Callback(source,callbackdata)
 cla(ax)
 %As this window is the manual-control-flow-reading window, the
 %corresponding function must be used:
 Read_Trial_Flow(handles)
end

%READING THE NUMBER OF SAMPLES THE USER WANTS TO READ
function x_max_edit_Callback(source,callbackdata)
 %Obtain value from edit button
 handles.data(1)=str2double(get(source,'String'));
 cla(ax) %Cleaning axes to re-define them with the new x-axis limit
 ax.XLim=[0 handles.data(1)];
end
end

Manual Flow Reading

function Read_Trial_Flow(handles)
%
% Read_Trial_Flow
% inputs:
 % Handles: global structure with general data in the form
 % handles.data=[x_max y_min y_max HR T Duty Delay];

%%

% OPENING THE FLOW SERIAL PORT FOR READING
s = serial('COM9','BaudRate',38400,'DataBits',8,'StopBits',1);
set(s,'InputBufferSize',55); %Con 55 me lee una linea=2 dato util
fopen(s);

% DEFINING THE LINE THAT WILL BE USED FOR THE PLOT
l1 = line(nan,nan,'Color','r','LineWidth',1);
title('Real Time Flow')
xlabel('Samples')

98

ylabel('Flow [ml/s]')
grid on
hold on
%%

% DEFINING THE TIMERS:

%TIMER FOR READING FLOW DATA
read_timer = timer('TimerFcn',@mycallback_read_timer

,'BusyMode','drop',...

'StartDelay',1,'Period',0.01,'ExecutionMode','fixedSpacing');
%TIMER FOR DECODING FLOW DATA
paint_timer= timer('TimerFcn',@mycallback_paint_timer

,'BusyMode','drop',...

'StartDelay',1,'Period',0.1,'ExecutionMode','fixedRate');

%START THE TIMER
start(read_timer)
start(paint_timer)

%INITIALIZE VARIABLES
rawflow=struct('outstr',{});
rawflow(1).outstr='00 00 +0000 +0000 +000 +0 +0000 +0000 +000';
rawflow_vector=[];
cont_read=1;
ind=1;
%MAIN LOOOP:it will constantly execute until stop condition
while(1)
% PLOTTING SECTION OF THE CODE
 x=linspace(0,length(rawflow_vector),length(rawflow_vector));

set(l1,'YData',rawflow_vector(1:length(rawflow_vector)),'XData',x);
 drawnow
 refreshdata

%STOP CONDITION: if enough samples have been read, stop
if (length(rawflow_vector)>=x_max)
%Stop and delete timers, close serial ports
 stop(read_timer)
 delete(read_timer)
 stop(paint_timer)
 delete(paint_timer)
 fclose(s)
 delete(s)
%Save data in a file
 fileID = fopen('FlowData.txt','w');
 fprintf(fileID,'%6s\n','Real Time Flow');
 fprintf(fileID,'%6.2f\n',rawflow_vector);
 fclose(fileID);
 break
end
end
%%
%DEFINE CALLBACK FUNCTIONS

%Function reading data
function mycallback_read_timer (obj, event)
 if (s.BytesAvailable~=0)

99

 cont_read=cont_read+1;
 rawflow(cont_read).outstr=fgets(s);
 end

end

%DECODING SECTION OF THE CODE
function mycallback_paint_timer (obj, event)
%Obtain meaningful value from a string and store it in a vector
 for i=ind:numel(rawflow)
 if (numel(rawflow(i).outstr)==55)
 if

(((strcmp(rawflow(i).outstr(13),'+'))==0)&&((strcmp(rawflow(i).outstr(

13),'-'))==0)&&((strcmp(rawflow(i).outstr(13),' '))==0))
 rawflow_vector(i)=str2num(rawflow(i).outstr(13:16))/60;
 elseif

(((strcmp(rawflow(i).outstr(14),'+'))==0)&&((strcmp(rawflow(i).outstr(

14),'-'))==0)&&((strcmp(rawflow(i).outstr(14),' '))==0))
 rawflow_vector(i)=str2num(rawflow(i).outstr(14:16))/60;
 elseif

(((strcmp(rawflow(i).outstr(15),'+'))==0)&&((strcmp(rawflow(i).outstr(

15),'-'))==0)&&((strcmp(rawflow(i).outstr(15),' '))==0))
 rawflow_vector(i)=str2num(rawflow(i).outstr(15:16))/60;
 elseif

(((strcmp(rawflow(i).outstr(16),'+'))==0)&&((strcmp(rawflow(i).outstr(

16),'-'))==0)&&((strcmp(rawflow(i).outstr(16),' '))==0))
 rawflow_vector(i)=str2num(rawflow(i).outstr(16))/60;
 end
 else
 rawflow_vector(i)=0;
 end
 end
 ind=length(rawflow_vector);
end

end

Software Pressure Window

function Read_software_pressure (software_pressure_PANEL,handles,ax)
%
% READ_SOFTWARE PRESSURE
% This function executes the window for specifically reading pressure
% INPUTS:
% Software_pressure_panel: panel created during

WK_Main_Interface_Reading,
% all buttons will be located in this panel
% Handles: global structure with some common data
% handles.data=[x_max y_min y_max HR T Duty Delay];
% ax: axes for ploting the data
%
%%

%DEFINING ALL THE ELEMENTS FOR THE PANEL

%CREATE READING START PUSHBUTTON
START= uicontrol('Parent',software_pressure_PANEL,'Style',

'pushbutton', 'String', 'START','FontWeight','Bold',...

100

 'BackgroundColor',[1 1 1],'Units','normalized','Position',

[0.4 0.3 0.2 0.1],...
 'FontSize',10,'ForegroundColor',[0 0

1],'Callback',@START_btn_Callback);

%CREATE TEXT INSTRUCTIONS
SelectSamples =

uicontrol('Parent',software_pressure_PANEL,'Style','text','ForegroundC

olor',[0 0 1],...
 'Units','normalized','Position',[0.05 0.5 0.9 0.1],...
 'FontWeight','Bold','String','Please select the desired number

of samples: ','BackgroundColor',[1 1 1]);

%CREATE EDIT BUTTON
x_max_edit =

uicontrol('Parent',software_pressure_PANEL,'Style','Edit','Units','nor

malized',...
 'BackgroundColor',[0.9 0.9 0.99],'Position',[0.4 0.45 0.2

0.1],'String',handles.data(1),'Callback', @x_max_edit_Callback);

%CREATE TEXT INSTRUCTIONS
SelectHR =

uicontrol('Parent',software_pressure_PANEL,'Style','text','ForegroundC

olor',[0 0 1],...
 'Units','normalized','Position',[0.05 0.85 0.9 0.1],...
 'FontWeight','Bold','String','Please select a heart rate and

duty cycle: ','BackgroundColor',[1 1 1]);

%CREATE PANNEL FOR BUTTONS SELECTING HEART CYCLE PARAMETERS
bg =

uibuttongroup('Parent',software_pressure_PANEL,'Visible','on','Units',

'normalized','Position',[0.05 0.65 0.9 0.25],...
 'BackgroundColor',[0.9 0.9

0.99],'SelectionChangedFcn',@b_selection);

%CREATE BUTTONS SELECTING HEART CYCLE PARAMETERS
r1 =

uicontrol(bg,'Style','radiobutton','String','HR=60beats/min','FontSize

',9,'FontWeight','Bold',...
 'Position',[50 50 120 50],'BackgroundColor',[0.9 0.9

0.99],'HandleVisibility','off');

r2 =

uicontrol(bg,'Style','radiobutton','String','HR=120beats/min','FontSiz

e',9,'FontWeight','Bold',...
 'Position',[220 50 120 50],'BackgroundColor',[0.9

0.9 0.99],'HandleVisibility','off');

r3 =

uicontrol(bg,'Style','radiobutton','String','Duty=0.8/0.2','FontSize',

9,'FontWeight','Bold',...
 'Position',[390 50 120 50],'BackgroundColor',[0.9

0.9 0.99],'HandleVisibility','off');

%%

%DEFINING CALLBACK FUNCTIONS

%DEFINING CODE EXECUTED BY HEART PARAMETER BUTTONS

101

function b_selection(source,callbackdata)
 callbackdata.NewValue.String
 %If first button is selected
 if (strcmp(callbackdata.NewValue.String,'HR=120beats/min')==1)
 panel.Visible='on';
 %They modify global variables that will be used for sending

pulses
 handles.data(4)=120; %Heart rate
 handles.data(5)=60/handles.data(4); %Heart period
 handles.data(6)=2/5; % Fraction of period occupied by systole
 handles.data(7)=handles.data(6)*handles.data(5); %Time

occupied by
 %systole
 %If second button is selected
 elseif (strcmp(callbackdata.NewValue.String,'HR=60beats/min')==1)
 panel.Visible='on';
 handles.data(4)=60;
 handles.data(5)=60/handles.data(4);
 handles.data(6)=2/5;
 handles.data(7)=handles.data(6)*handles.data(5);
 %If third button is selected
 elseif (strcmp(callbackdata.NewValue.String,'Duty=0.8/0.2')==1)
 panel.Visible='on';
 handles.data(4)=60;
 handles.data(5)=60/handles.data(4);
 handles.data(6)=8/10;
 handles.data(7)=handles.data(6)*handles.data(5);
 end

end

%READING THE NUMBER OF SAMPLES THE USER WANTS TO READ

function x_max_edit_Callback(source,callbackdata)
 %Obtain value from edit button
 handles.data(1)=str2double(get(source,'String'));
 cla(ax) %Cleaning axes to re-define them with the new x-axis limit
 ax.XLim=[0 handles.data(1)];
end

%STARTING TO READ SAMPLES FROM THE DEVICE

function START_btn_Callback(source,callbackdata)
 cla(ax)
 %As this window is the software-control-pressure-reading window,

the
 %corresponding function must be used:
 Read_Trial_Pressure_AND_Pulses(handles,software_pressure_PANEL)
 %It needs as inputs:
 % handles: to determine the different heart cycle
 %parameters to send th pulses AND the x-axis limit to know the

number
 %of samples to read before stopping.
 % It also needs the current panel to add a new display
end

end

Software Pressure Read

102

function Read_Trial_Pressure_AND_Pulses(handles,panel)

% Read_Trial_Pressure_AND_Pulses
% inputs:
 % Handles: global structure with general data in the form
 % handles.data=[x_max y_min y_max HR T Duty Delay];
 % Panel: the panel used in the current window is needed to add a

new display

%%

% DEFINING THE DISPLAYS THAT WILL HIGHLIGHT DEPENDING IF THE SYSTEM IS
% WORKING ON SYSTOLE OR DIASTOLE
txt_s = uicontrol('Parent',panel,'Style','text',...
 'Units','normalized','Position',[0.35 0.1 0.1 0.1],...
 'FontWeight','Bold','String','Systole','BackgroundColor',[1 1

1]);
txt_d = uicontrol('Parent',panel,'Style','text',...
 'Units','normalized','Position',[0.55 0.1 0.1 0.1],...
 'FontWeight','Bold','String','Diastole','BackgroundColor',[1 1

1]);

% OPENING THE FLOW SERIAL PORT FOR SENDING PULSES
v = serial('COM9','BaudRate',38400,'DataBits',8,'StopBits',1);
set(v,'RequestToSend','off')
set(v,'DataTerminalReady','off')
fopen(v);
% OPENING THE PRESSURE SERIAL PORT FOR READING
u = serial('COM3','BaudRate',9600,'DataBits',8,'StopBits',1);
set(u,'InputBufferSize',5);
fopen(u);

% DEFINING THE LINE THAT WILL BE USED FOR THE PLOT

l1 = line(nan,nan,'Color','r','LineWidth',1);
title('Real Time Pressure')
xlabel('Samples')
ylabel('Pressure [mmHg]')
grid on
hold on

%%

% DEFINING THE TIMERS:

%TIMER FOR READING PRESSURE DATA
read_timer = timer('TimerFcn',@mycallback_read_timer

,'BusyMode','drop',...

'StartDelay',1,'Period',0.001,'ExecutionMode','fixedSpacing');

%TIMER FOR SENDING SYSTOLE PULSE
t = timer('TimerFcn', @mycallback_t,'BusyMode','drop',...

'StartDelay',0,'Period',handles.data(5),'ExecutionMode','fixedSpacing'

);

%TIMER FOR SENDING DIASTOLE PULSE

103

d = timer('TimerFcn', @mycallback_d,'BusyMode','drop',...

'StartDelay',handles.data(7),'Period',handles.data(5),'ExecutionMode',

'fixedSpacing');

%START THE TIMERS
start(t)
start(d)
start(read_timer)

%INITIALIZE VARIABLES
rawpressure=[];
rawpressure(1)=1;
real_pressure=[];

%MAIN LOOOP:it will constantly execute until stop condition

while(1)
%DECODING SECTION OF THE CODE
%Find only meaningful values indicators:
 positions=find(rawpressure==192 | rawpressure==196);
%Useful values will be the ones after the previous calculated
 positions=positions+1;
 real_pressure=rawpressure(positions(1:(length(positions)-1)));
%Remove +100mmHg offset
 x100=find(real_pressure>=100);
%Recover values over 128
 x28=find(real_pressure<100);
 real_pressure(x28)=real_pressure(x28)+28;
 real_pressure(x100)=real_pressure(x100)-100;
 real_pressure=real_pressure+70; %Calibrating

% PLOTTING SECTION OF THE CODE
 x=linspace(0,length(real_pressure),length(real_pressure));
 set(l1,'YData',real_pressure(1:length(real_pressure)),'XData',x);
 drawnow

%STOP CONDITION: if enough samples have been read, stop
if (length(real_pressure)>=handles.data(1))
%Stop and delete timers, close serial ports
 stop(read_timer)
 delete(read_timer)
 stop(t)
 stop(d)
 delete(t)
 delete(d)
 fclose(v)
 delete(v)
 fclose(u)
 delete(u)
%Save data in a file
 fileID = fopen('PressureData.txt','w');
 fprintf(fileID,'%6s\n','Real Time Pressure');
 fprintf(fileID,'%6.2f\n',real_pressure);
 fclose(fileID);
 break
end
end
%%
%DEFINE CALLBACK FUNCTIONS

104

%Function reading data
function mycallback_read_timer (obj, event)
 if (u.BytesAvailable~=0)
 rawpressure=[rawpressure fread(u,u.BytesAvailable)'];
 end
end

%Function sending systole pulse (set DTR HIGH)
function mycallback_t (obj, event, string_arg)
 set(v,'DataTerminalReady','on')%on=high=pressure
 %Modify highlighted display
 txt_s.BackgroundColor=[1 0 0];
 txt_d.BackgroundColor=[1 1 1];
end

%Function sending diastole pulse (set DTR LOW)
function mycallback_d (obj, event, string_arg)
 set(v,'DataTerminalReady','off')
 %Modify highlighted display
 txt_d.BackgroundColor=[0 1 0];
 txt_s.BackgroundColor=[1 1 1];
end

end

Software Flow Window

function Read_software_flow (software_flow_PANEL,handles,ax)
%
% READ_SOFTWARE FLOW
% This function executes the window for specifically reading pressure
% INPUTS:
% Software_flow_panel: panel created during

WK_Main_Interface_Reading,
% all buttons will be located in this panel
% Handles: global structure with some common data
% handles.data=[x_max y_min y_max HR T Duty Delay];
% ax: axes for ploting the data
%
%%

%DEFINING ALL THE ELEMENTS FOR THE PANEL
%CREATE READING START PUSHBUTTON
START= uicontrol('Parent',software_flow_PANEL,'Style', 'pushbutton',

'String', 'START','FontWeight','Bold',...
 'BackgroundColor',[1 1 1],'Units','normalized','Position',

[0.4 0.3 0.2 0.1],...
 'FontSize',10,'ForegroundColor',[0 0

1],'Callback',@START_btn_Callback);

%CREATE TEXT INSTRUCTIONS
SelectSamples =

uicontrol('Parent',software_flow_PANEL,'Style','text','ForegroundColor

',[0 0 1],...
 'Units','normalized','Position',[0.05 0.5 0.9 0.1],...
 'FontWeight','Bold','String','Please select the desired number

of samples: ','BackgroundColor',[1 1 1]);

105

%CREATE EDIT BUTTON
x_max_edit =

uicontrol('Parent',software_flow_PANEL,'Style','Edit','Units','normali

zed',...
 'BackgroundColor',[0.9 0.9 0.99],'Position',[0.4 0.45 0.2

0.1],'String',handles.data(1),'Callback', @x_max_edit_Callback);

%CREATE TEXT INSTRUCTIONS
SelectHR =

uicontrol('Parent',software_flow_PANEL,'Style','text','ForegroundColor

',[0 0 1],...
 'Units','normalized','Position',[0.05 0.85 0.9 0.1],...
 'FontWeight','Bold','String','Please select a heart rate and

duty cycle: ','BackgroundColor',[1 1 1]);

%CREATE PANNEL FOR BUTTONS SELECTING HEART CYCLE PARAMETERS
bg =

uibuttongroup('Parent',software_flow_PANEL,'Visible','on','Units','nor

malized','Position',[0.05 0.65 0.9 0.25],...
 'BackgroundColor',[0.9 0.9

0.99],'SelectionChangedFcn',@b_selection);

%CREATE BUTTONS SELECTING HEART CYCLE PARAMETERS
r1 =

uicontrol(bg,'Style','radiobutton','String','HR=60beats/min','FontSize

',9,'FontWeight','Bold',...
 'Position',[50 50 120 50],'BackgroundColor',[0.9 0.9

0.99],'HandleVisibility','off');

r2 =

uicontrol(bg,'Style','radiobutton','String','HR=120beats/min','FontSiz

e',9,'FontWeight','Bold',...
 'Position',[220 50 120 50],'BackgroundColor',[0.9

0.9 0.99],'HandleVisibility','off');

r3 =

uicontrol(bg,'Style','radiobutton','String','Duty=0.8/0.2','FontSize',

9,'FontWeight','Bold',...
 'Position',[390 50 120 50],'BackgroundColor',[0.9

0.9 0.99],'HandleVisibility','off');

%%
%DEFINING CALLBACK FUNCTIONS

%DEFINING CODE EXECUTED BY HEART PARAMETER BUTTONS
function b_selection(source,callbackdata)
 callbackdata.NewValue.String
 %If first button is selected
 if (strcmp(callbackdata.NewValue.String,'HR=120beats/min')==1)
 panel.Visible='on';
 %They modify global variables that will be used for sending

pulses
 handles.data(4)=120; %Heart rate
 handles.data(5)=60/handles.data(4); %Heart period
 handles.data(6)=2/5; % Fraction of period occupied by systole
 handles.data(7)=handles.data(6)*handles.data(5); %Time

occupied by
 %systole
 %If second button is selected
 elseif (strcmp(callbackdata.NewValue.String,'HR=60beats/min')==1)

106

 panel.Visible='on';
 handles.data(4)=60;
 handles.data(5)=60/handles.data(4);
 handles.data(6)=2/5;
 handles.data(7)=handles.data(6)*handles.data(5);
 elseif (strcmp(callbackdata.NewValue.String,'Duty=0.8/0.2')==1)
 panel.Visible='on';
 handles.data(4)=60;
 handles.data(5)=60/handles.data(4);
 handles.data(6)=8/10;
 handles.data(7)=handles.data(6)*handles.data(5);
 end

end

%READING THE NUMBER OF SAMPLES THE USER WANTS TO READ

function x_max_edit_Callback(source,callbackdata)
 %Obtain value from edit button
 handles.data(1)=str2double(get(source,'String'));
 cla(ax) %Cleaning axes to re-define them with the new x-axis limit
 ax.XLim=[0 handles.data(1)];
end

%STARTING TO READ SAMPLES FROM THE DEVICE
function START_btn_Callback(source,callbackdata)
 cla(ax)
 %As this window is the software-control-flow-reading window, the
 %corresponding function must be used:
 Read_Trial_Flow_AND_Pulses(handles,software_flow_PANEL)
 %It needs as inputs:
 %handles: to determine the different heart cycle
 %parameters to send th pulses AND the x-axis limit to know the

number
 %of samples to read before stopping.
 % It also needs the current panel to add a new display
end
end

Software Flow Read

function Read_Trial_Flow_AND_Pulses(handles,panel)
%
%Read_Trial_Flow_AND_Pulses
% inputs:
 % Handles: global structure with general data in the form
 % handles.data=[x_max y_min y_max HR T Duty Delay];
 % Panel: the panel used in the current window is needed to add a

new display

%%

% DEFINING THE DISPLAYS THAT WILL HIGHLIGHT DEPENDING IF THE SYSTEM IS
% WORKING ON SYSTOLE OR DIASTOLE
txt_s = uicontrol('Parent',panel,'Style','text',...
 'Units','normalized','Position',[0.7 0.1 0.05 0.05],...
 'String','Systole','BackgroundColor',[1 1 1]);
txt_d = uicontrol('Parent',panel,'Style','text',...
 'Units','normalized','Position',[0.8 0.1 0.05 0.05],...

107

 'String','Diastole','BackgroundColor',[1 1 1]);

% OPENING THE FLOW SERIAL PROT FOR READING
s = serial('COM9','BaudRate',38400,'DataBits',8,'StopBits',1);
set(s,'InputBufferSize',55); %With 55 bytes it reads an entire line
fopen(s);

% OPENING THE PRESSURE SERIAL PROT FOR SENDING PULSES
v = serial('COM3','BaudRate',9600,'DataBits',8,'StopBits',1);
set(v,'DataTerminalReady','off')
fopen(v)

% DEFINING THE LINE THAT WILL BE USED FOR THE PLOT
l1 = line(nan,nan,'Color','r','LineWidth',1);
title('Real Time Flow')
xlabel('Samples')
ylabel('Flow [ml/s]')
grid on
hold on
%%

% DEFINING THE TIMERS:

%TIMER FOR READING FLOW DATA
read_timer = timer('TimerFcn',@mycallback_read_timer

,'BusyMode','drop',...

'StartDelay',2,'Period',0.001,'ExecutionMode','fixedSpacing');
%TIMER FOR DECODING DATA
paint_timer= timer('TimerFcn',@mycallback_paint_timer

,'BusyMode','drop',...

'StartDelay',2,'Period',0.1,'ExecutionMode','fixedRate');

%TIMER FOR SENDING SYSTOLE PULSE
t = timer('TimerFcn', @mycallback_t,'BusyMode','drop',...

'StartDelay',0,'Period',handles.data(5),'ExecutionMode','fixedSpacing'

);

%TIMER FOR SENDING DIASTOLE PULSE
d = timer('TimerFcn', @mycallback_d,'BusyMode','drop',...

'StartDelay',handles.data(7),'Period',handles.data(5),'ExecutionMode',

'fixedSpacing');

%START THE TIMERS
start(t)
start(d)
start(read_timer)
start(paint_timer)

%INITIALIZE VARIABLES
rawflow=struct('outstr',{});
rawflow(1).outstr='00 00 +0000 +0000 +000 +0 +0000 +0000 +000';
rawflow_vector=[];
cont_read=1;
ind=1;

108

%MAIN LOOOP:it will constantly execute until stop condition

while(1)

% PLOTTING SECTION OF THE CODE
 x=linspace(0,length(rawflow_vector),length(rawflow_vector));

set(l1,'YData',rawflow_vector(1:length(rawflow_vector)),'XData',x);
 drawnow
 refreshdata

%STOP CONDITION: if enough samples have been read, stop
if (length(rawflow_vector)>=handles.data(1))
%Stop and delete timers, close serial ports
 set(v,'DataTerminalReady','on')
 stop(read_timer)
 delete(read_timer)
 stop(paint_timer)
 delete(paint_timer)
 stop(t)
 stop(d)
 delete(t)
 delete(d)
 set(v,'DataTerminalReady','on')
 pause(1)
 fclose(v)
 delete(v)
 fclose(s)
 delete(s)
%Save data in a file
 fileID = fopen('FlowData.txt','w');
 fprintf(fileID,'%6s\n','Real Time Flow');
 fprintf(fileID,'%6.2f\n',rawflow_vector);
 fclose(fileID);
 break
end
end

%%
%DEFINE CALLBACK FUNCTIONS

%Function reading data
function mycallback_read_timer (obj, event)
 if (s.BytesAvailable~=0)
 cont_read=cont_read+1;
 rawflow(cont_read).outstr=fgets(s);
 end
end

%DECODING SECTION OF THE CODE
function mycallback_paint_timer (obj, event)
%Obtain meaningful value from a string and store it in a vector
 for i=ind:numel(rawflow)
 if (numel(rawflow(i).outstr)==55)
 if

(((strcmp(rawflow(i).outstr(13),'+'))==0)&&((strcmp(rawflow(i).outstr(

13),'-'))==0)&&((strcmp(rawflow(i).outstr(13),' '))==0))
 rawflow_vector(i)=str2num(rawflow(i).outstr(13:16))/60;

109

 elseif

(((strcmp(rawflow(i).outstr(14),'+'))==0)&&((strcmp(rawflow(i).outstr(

14),'-'))==0)&&((strcmp(rawflow(i).outstr(14),' '))==0))
 rawflow_vector(i)=str2num(rawflow(i).outstr(14:16))/60;
 elseif

(((strcmp(rawflow(i).outstr(15),'+'))==0)&&((strcmp(rawflow(i).outstr(

15),'-'))==0)&&((strcmp(rawflow(i).outstr(15),' '))==0))
 rawflow_vector(i)=str2num(rawflow(i).outstr(15:16))/60;
 elseif

(((strcmp(rawflow(i).outstr(16),'+'))==0)&&((strcmp(rawflow(i).outstr(

16),'-'))==0)&&((strcmp(rawflow(i).outstr(16),' '))==0))
 rawflow_vector(i)=str2num(rawflow(i).outstr(16))/60;
 end
 else
 rawflow_vector(i)=0;
 end
 end
 ind=length(rawflow_vector);
end

%Function sending systole pulse (set DTR HIGH)
function mycallback_t (obj, event, string_arg)
 set(v,'DataTerminalReady','on')
 %Modify highlighted display
 txt_s.BackgroundColor=[1 0 0];
 txt_d.BackgroundColor=[1 1 1];
end
function mycallback_d (obj, event, string_arg)
 %disp('diastole')
 set(v,'DataTerminalReady','off')%off=low=vacuum
 %Modify highlighted display
 txt_d.BackgroundColor=[0 1 0];
 txt_s.BackgroundColor=[1 1 1];
end

end

SIMULATION INTERFACE

Due to the excesive length of all the functions only the main window, and the window and

calculations for the 2-element model are displayed as routine examples.

Main Window

function WK_Main_Interface
%
% WK_MAIN_INTERFACE
%
% This function opens the main window of the simulation interface and

allows
% the user to observe the different Windkessel models

%%
%Define Common Variables
Heart_Rate=72;
Time_Systole= (2/5)*(60/Heart_Rate);
Max_Flow=5e-4; %[m^3/s]=4.98 l/min
Number_Cycles=1;

110

%2WK data variables
WK2_Rp=133.28e6; %[kg/s*m^4]
WK2_C=0.75e-8; %[s^2*m^4/kg]

%3WK data variables
WK3_Rp=133.28e6; %[kg/s*m^4]
WK3_C=0.75e-8; %[s^2*m^4/kg]
WK3_Ra=6.66e6; %[kg/s*m^4]

%4WK data variables
WK4_Rp=133.28e6; %[kg/s*m^4]
WK4_C=0.75e-8; %[s^2*m^4/kg]
WK4_Ra=6.66e6; %[kg/s*m^4]
WK4_L=6.66e5; %[kg/m4]

%Conversion Parameters
Sec=60;
SItoFlow=10^6;%[m^3/s*beat]
FlowtoSI=1/(10^6);%[ml/s*beat]
SItoHRU=760/(6*1.013*10^9);
HRUtoSI=(6*1.013*10^9)/760; %[mmHg*min/L]
SItoHCU=(1.013*10^11)/760;
HCUtoSI=760/(1.013*10^11); %[mL/mmHg]
SItoHLU=760/(1.013*10^8);
HLUtoSI=(1.013*10^8)/760; %[mmHg*s^2/L]

% Create structure handles that will store data to calculate pressure
% It will have three fields:
%
% 1. handles.dataOriginal= containing always the original data to

reset
% parameters when default buttons are pressed
%
% 2. handles.data= containing always initially the original data,
% but changing as parameters are modified
%
% 3. handles.additional= containing conversion parameters

handles.dataOriginal=[Heart_Rate Time_Systole Max_Flow Number_Cycles

WK2_Rp WK2_C WK3_Rp WK3_C WK3_Ra WK4_Rp WK4_C WK4_Ra WK4_L];
handles.data=handles.dataOriginal;
handles.additional=[Sec SItoFlow FlowtoSI SItoHRU HRUtoSI SItoHCU

HCUtoSI SItoHLU HLUtoSI];
%In this way handles will be called for executig functions WK_2,WK_3

and WK_4

%%
%Create Window Components:
%CREATE MAIN FIGURE
f =

figure('Visible','off','Toolbar','none','Menubar','none','Color',[0.85

0.99 0.85]);

%CREATE WELCOME TEXT
txtWelcome =

uicontrol('Style','text','Units','normalized','FontWeight','Bold',...
 'Position',[0.25 0.8 0.5 0.1],'FontSize',15,...
 'String','WELCOME', 'FontName','Century','BackgroundColor',[0.85

0.99 0.85]);
%CREATE POP UP MENU

111

popup = uicontrol('Style',

'popup','Units','normalized','ForegroundColor',[0 0

1],'FontWeight','Bold',...
 'String', {'Main Menu','2 elements WK','3 elements WK','4 elements

WK'},'FontName','Calibri',...
 'FontSize',10,'Position', [0.05 0.85 0.2 0.1],...
 'Callback', @Menu);
%CREATE MAIN PANEL
hp = uipanel('Title','Please, select a model: ','FontSize',15,...

'BackgroundColor','white','FontName','Calibri','FontWeight','Bold',...
 'Position',[0.25 0.1 0.5 0.6]);
%CREATE 2WK BUTTON
btn2WK = uicontrol('Parent',hp,'Style',

'pushbutton','Units','normalized','FontWeight','Bold',...
 'String', '2 Elements Windkessel','Position',[0.25 0.65 0.5

0.2],'FontSize',11,...
 'FontName','Calibri','BackgroundColor',[0.8 0.8 0.99],'Callback',

@WK_2BTN);
%CREATE 3WK BUTTON
btn3WK = uicontrol('Parent',hp,'Style',

'pushbutton','Units','normalized','FontWeight','Bold',...
 'String', '3 Elements Windkessel','Position', [0.25 0.4 0.5

0.2],'FontSize',11,...
 'FontName','Calibri','BackgroundColor',[0.8 0.9 0.99],'Callback',

@WK_3BTN);
%CREATE 4WK BUTTON
btn4WK= uicontrol('Parent',hp,'Style',

'pushbutton','Units','normalized','FontWeight','Bold',...
 'String', '4 Elements Windkessel','Position',[0.25 0.15 0.5 0.2]

,'FontSize',11,...
 'FontName','Calibri','BackgroundColor',[0.99 0.8 0.8],'Callback',

@WK_4BTN);
%Make everything visible
f.Visible = 'on';

% CREATE THE SPECIFIC PANELS FOR EACH OF THE MODELS USED:only visible

in their respective
% windows
WK2_PANEL = uipanel('FontSize',14,'FontWeight','Bold',...
 'BackgroundColor','white','FontName','Calibri',...
 'Visible','off','Position',[0.05 0.05 0.45 0.8]);
WK3_PANEL = uipanel('FontSize',14,'FontWeight','Bold',...
 'BackgroundColor','white','FontName','Calibri',...
 'Visible','off','Position',[0.05 0.05 0.45 0.8]);
WK4_PANEL = uipanel('FontSize',14,'FontWeight','Bold',...
 'BackgroundColor','white','FontName','Calibri',...
 'Visible','off','Position',[0.05 0.05 0.45 0.8]);

%DEFINE THE AXES WHERE THE SIMULATED VARIABLES WILL BE PLOTTED
ax = axes('Visible','off','Units','normalized','Position',[0.55 0.15

0.4 0.6]);

%%
%DEFINE CALLBACK FUNCTIONS
%Each of them needs as input the properties of the respective object
%For the pop-up menu
function Menu(source,callbackdata)
 NumberMenu = source.Value;
 Names= source.String;
 NameMenu = Names{NumberMenu};

112

 %If user selects Main Menu in the pop-up menu, everything should
 %dissappear and the main panel, its buttons and the welcome text
 %should appear
 if (strcmp(NameMenu,'Main Menu')==1)
 %Everything involved in the main panel should appear
 txtWelcome.Visible = 'on';
 hp.Visible = 'on';
 %Everything refering to other windows must disapear
 WK2_PANEL.Visible='off';
 WK3_PANEL.Visible='off';
 WK4_PANEL.Visible='off';
 cla(ax)
 ax.Visible='off';
 %If the user selects a different option, the corresponding window

must
 %be displayed.
 elseif (strcmp(NameMenu,'2 elements WK')==1)
 %Everything not involved in the window must disappear
 txtWelcome.Visible = 'off';
 hp.Visible = 'off';
 cla(ax)
 ax.Visible='off';
 WK2_PANEL.Visible='off';
 WK3_PANEL.Visible='off';
 WK4_PANEL.Visible='off';
 %Function creating window must appear: it needs its panel and
 %the global variables as inputs
 WK_2(WK2_PANEL,handles)
 WK2_PANEL.Title='Modify the desired 2 WK Parameters: ';
 WK2_PANEL.Visible='on';
 ax.Visible='on';
 elseif (strcmp(NameMenu,'3 elements WK')==1)
 %Everything not involved in the window must disappear
 txtWelcome.Visible = 'off';
 hp.Visible = 'off';
 %Call WK_3
 cla(ax)
 ax.Visible='off';
 WK2_PANEL.Visible='off';
 WK3_PANEL.Visible='off';
 WK4_PANEL.Visible='off';
 %Function creating window must appear: it needs its panel and
 %the global variables as inputs
 WK_3(WK3_PANEL,handles)
 WK3_PANEL.Title='Modify the desired 3 WK Parameters: ';
 WK3_PANEL.Visible='on';
 ax.Visible='on';
 elseif (strcmp(NameMenu,'4 elements WK')==1)
 %Everything not involved in the window must disappear
 txtWelcome.Visible = 'off';
 hp.Visible = 'off';
 cla(ax)
 ax.Visible='off';
 WK2_PANEL.Visible='off';
 WK3_PANEL.Visible='off';
 WK4_PANEL.Visible='off';
 %Function creating window must appear: it needs its panel and
 %the global variables as inputs
 WK_4(WK4_PANEL,handles)
 WK4_PANEL.Title='Modify the desired 4 WK Parameters: ';
 WK4_PANEL.Visible='on';

113

 ax.Visible='on';
 end
end
%A similar process is developed if the user pushes one of the butttons
%available at the main panel. The difference is that this buttons are

only
%available at the main window, while the pop-up menu is visible and
%accessible at any window.
%
%2 WINDKESSEL
function WK_2BTN(source,callbackdata)
 txtWelcome.Visible = 'off';
 hp.Visible = 'off';
 popup.Value=2; %Set to '2 elements WK';
 %Function creating window must appear: it needs its panel and
 %the global variables as inputs
 WK_2(WK2_PANEL,handles)
 WK2_PANEL.Title='Modify the desired 2 WK Parameters: ';
 WK2_PANEL.Visible='on';
 ax.Visible='on';

end
%3 WINDKESSEL
function WK_3BTN(source,callbackdata)
 txtWelcome.Visible = 'off';
 hp.Visible = 'off';
 popup.Value=3; % Set to '3 elements WK';
 %Function creating window must appear: it needs its panel and
 %the global variables as inputs
 WK_3(WK3_PANEL,handles)
 WK3_PANEL.Title='Modify the desired 3 WK Parameters: ';
 WK3_PANEL.Visible='on';
 ax.Visible='on';

end
%4 WINDKESSEL (parallel)
function WK_4BTN(source,callbackdata)
 txtWelcome.Visible = 'off';
 hp.Visible = 'off';
 popup.Value=4; %Set to '4 elements WK';
 %Function creating window must appear: it needs its panel and
 %the global variables as inputs
 WK_4(WK4_PANEL,handles)
 WK4_PANEL.Title='Modify the desired 3 WK Parameters: ';
 WK4_PANEL.Visible='on';
 ax.Visible='on';

end

end

2-element Windkessel Window

function WK_2(WK_PANEL,handles)
%
% WK_2
% This function executes the window for specifically simulating the
% 2-elements Windkessel
% INPUTS:
% WK_panel: panel created during WK_Main_Interface_Reading,

114

% all buttons will be located in this panel
% Handles: global structure with some common data:
% handles.dataOriginal=[Heart_Rate Time_Systole Max_Flow

Number_Cycles WK2_Rp WK2_C WK3_Rp WK3_C WK3_Ra WK4_Rp WK4_C WK4_Ra

WK4_L];
% handles.data=handles.dataOriginal;
% handles.additional=[Sec SItoFlow FlowtoSI SItoHRU HRUtoSI

SItoHCU HCUtoSI SItoHLU HLUtoSI];
%
%%

%DEFINING ALL THE ELEMENTS FOR THE PANEL (first make it invisible)
WK_PANEL.Visible='off';

%Defining titles:
TitleParameters =

uicontrol('Parent',WK_PANEL,'Style','text','FontName','Calibri',...
 'Units','normalized','FontWeight','Bold','Position',[0.07 0.87

0.15 0.07],...
 'FontSize',11,'BackgroundColor',[1 1 1],'String','Parameter to

modify:');
SIunits =

uicontrol('Parent',WK_PANEL,'Style','text','FontName','Calibri',...
 'Units','normalized','FontWeight','Bold','Position',[0.29 0.85

0.15 0.07],...
 'FontSize',11,'BackgroundColor',[1 1 1],'String','SI Units:

');
MEDunits =

uicontrol('Parent',WK_PANEL,'Style','text','FontName','Calibri','FontW

eight','Bold',...
 'Units','normalized','Position',[0.59 0.87 0.15

0.07],'FontSize',11,...
 'BackgroundColor',[1 1 1],'String','Medical Units: ');

%Defining Display Button:allows user to choose between displaying
%pressure,flow and PV-loop

Display = uicontrol('Parent',WK_PANEL,'Style',

'popup','Units','normalized','ForegroundColor',[0 0 1],...
 'String', {'Aortic Pressure','Aortic Flow','Aortic PV-

Loop'},'FontName','Calibri',...
 'FontSize',10,'Position', [0.7 0.15 0.2 0.1],...
 'Callback', @Display_Callback);

Display_text =

uicontrol('Parent',WK_PANEL,'Style','text','FontName','Calibri','FontW

eight','Bold',...
 'Units','normalized','Position',[0.6 0.25 0.35

0.05],'FontSize',11,...
 'BackgroundColor',[1 1 1],'String','Select a variable to

display: ');

%Defining Reset Button

RESET= uicontrol('Parent',WK_PANEL,'Style', 'pushbutton', 'String',

'RESET','FontWeight','Bold',...
 'BackgroundColor',[1 1 1],'Units','normalized','Position',

[0.7 0.05 0.2 0.1],...
 'FontSize',10,'ForegroundColor',[0 0

1],'Callback',@RESET_btn_Callback);

115

RESET_text =

uicontrol('Parent',WK_PANEL,'Style','text','FontName','Calibri','FontW

eight','Bold',...
 'Units','normalized','Position',[0.6 0.14 0.35

0.05],'FontSize',11,...
 'BackgroundColor',[1 1 1],'String','Return to default values:

');

%Defining all buttons
HR_title =

uicontrol('Parent',WK_PANEL,'Style','text','Units','normalized',...
 'Position',[0.07 0.43 0.15

0.07],'FontSize',10,'BackgroundColor',[1 1 1],'String','Heart Rate:');

HR_edit =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.3 0.45 0.12

0.05],'String',handles.data(1),'Callback', @HR_edit_Callback);
%Units
D='$$\frac{beats}{min}$$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.43 0.43 0.15

0.07],'LineStyle','none','FontSize',10);

HR_slider = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized','SliderStep',[0.1 0.1],...
 'Min',60,'Max',140,'Value',handles.additional(1),'Position',

[0.3 0.43 0.12 0.02],'Callback', @HR_slider_Callback);

T_title =

uicontrol('Parent',WK_PANEL,'Style','text','Units','normalized',...
 'Position',[0.07 0.33 0.15

0.07],'FontSize',10,'BackgroundColor',[1 1 1],'String','Heart

Period:');

T_text =

uicontrol('Parent',WK_PANEL,'Style','Text','BackgroundColor',[1 1

1],'Units','normalized',...
 'Position',[0.3 0.34 0.12

0.05],'String',handles.additional(1)/handles.data(1),'Callback',

@T_text_Callback);
%Units
D='$$ seconds $$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.43 0.33 0.15

0.07],'LineStyle','none','FontSize',10);

Ts_title =

uicontrol('Parent',WK_PANEL,'Style','text','Units','normalized',...
 'Position',[0.07 0.23 0.15

0.07],'FontSize',10,'BackgroundColor',[1 1 1],'String','Time in

systole:');

Ts_edit =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.3 0.25 0.12

0.05],'String',handles.data(2),'Callback', @Ts_edit_Callback);
%Units

116

D='$$ seconds $$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.43 0.23 0.15

0.07],'LineStyle','none','FontSize',10);

Ts_slider = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized','SliderStep',[0.1 0.1],...
 'Min',0,'Max',0.83,'Value',handles.data(2),'Position', [0.3

0.23 0.12 0.02],'Callback', @Ts_slider_Callback);

Td_title =

uicontrol('Parent',WK_PANEL,'Style','text','Units','normalized',...
 'Position',[0.07 0.13 0.15

0.07],'FontSize',10,'BackgroundColor',[1 1 1],'String','Time in

diastole:');

Td_text =

uicontrol('Parent',WK_PANEL,'Style','Text','BackgroundColor',[1 1

1],'Units','normalized',...
 'Position',[0.3 0.14 0.12

0.05],'String',handles.additional(1)/handles.data(1)-

handles.data(2),...
 'Callback', @Td_text_Callback);
%Units
D='$$ seconds $$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.43 0.13 0.15

0.07],'LineStyle','none','FontSize',10);

Q0_title =

uicontrol('Parent',WK_PANEL,'Style','text','BackgroundColor',[1 1

1],'Units','normalized',...
 'Position',[0.07 0.76 0.15

0.07],'FontSize',10,'BackgroundColor',[1 1 1],'String','Maximum

Flow:');

Q0_edit =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.3 0.78 0.12

0.05],'String',handles.data(3),'Callback', @Q0_edit_Callback);
%Units
D='$$\frac{m^{3}}{s}$$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.43 0.76 0.15

0.07],'LineStyle','none','FontSize',10);

Q0_slider = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized',...
 'Min',1.999E-4,'Max',1E-3,'SliderStep',[0.1

0.1],'Value',handles.data(3),...
 'Position', [0.3 0.76 0.12 0.02],'Callback',

@Q0_slider_Callback);

Q0_edit_med =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.6 0.78 0.12

0.05],'String',(handles.additional(2))*handles.data(3),...

117

 'Callback', @Q0_edit_med_Callback);
%Units
D='$$\frac{mL}{s}$$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.73 0.76 0.15

0.07],'LineStyle','none','FontSize',10);

Q0_slider_med = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized',...
 'Min',200,'Max',1000,'SliderStep',[0.1

0.1],'Value',(handles.additional(2))*handles.data(3),...
 'Position', [0.6 0.76 0.12 0.02],'Callback',

@Q0_slider_med_Callback);

NumberCycles_title =

uicontrol('Parent',WK_PANEL,'Style','text','Units','normalized',...
 'Position',[0.07 0.03 0.15

0.07],'FontSize',10,'BackgroundColor',[1 1 1],'String','Number of

Cycles:');

NumberCycles_edit =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.3 0.05 0.12

0.05],'String',handles.data(4),'Callback',

@NumberCycles_edit_Callback);
%Units
D='\# number';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.43 0.03 0.15

0.07],'LineStyle','none','FontSize',10);

NumberCycles_slider = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized',...
 'Min',1,'Max',20,'SliderStep',[0.1

0.1],'Value',handles.data(4),'SliderStep',[1/(19) 1/(19)],...
 'Position', [0.3 0.03 0.12 0.02],'Callback',

@NumberCycles_slider_Callback);

Rp2_title =

uicontrol('Parent',WK_PANEL,'Style','text','Units','normalized',...
 'Position',[0.07 0.65 0.15

0.07],'FontSize',10,'BackgroundColor',[1 1 1],'String','Peripheral

Resistance:');

Rp2_edit =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.3 0.67 0.12

0.05],'String',handles.data(5),'Callback', @Rp2_edit_Callback);
%Units
D='$$\frac{kg}{s m^{4}}$$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.43 0.65 0.15

0.07],'LineStyle','none','FontSize',10);

Rp2_slider = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized',...

118

 'Min',7.997E6,'Max',3.999E8,'SliderStep',[0.1

0.1],'Value',handles.data(5),...
 'Position', [0.3 0.65 0.12 0.02],'Callback',

@Rp2_slider_Callback);

Rp2_edit_med =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.6 0.67 0.12

0.05],'String',(handles.additional(4))*handles.data(5),...
 'Callback', @Rp2_edit_med_Callback);
%Units
D='$$\frac{mmHg\cdot min}{l}$$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.73 0.65 0.15

0.07],'LineStyle','none','FontSize',10);

Rp2_slider_med = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized',...
 'Min',1,'Max',50,'SliderStep',[0.1

0.1],'Value',(handles.additional(4))*handles.data(5),...
 'Position', [0.6 0.65 0.12 0.02],'Callback',

@Rp2_slider_med_Callback);

C2_title =

uicontrol('Parent',WK_PANEL,'Style','text','Units','normalized',...
 'Position',[0.07 0.54 0.15

0.07],'FontSize',10,'BackgroundColor',[1 1 1],'String','Arterial

Compliance:');

C2_edit =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.3 0.56 0.12

0.05],'String',handles.data(6),'Callback', @C2_edit_Callback);
%Units
D='$$\frac{s^{2}m^{4}}{kg}$$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.43 0.54 0.15

0.07],'LineStyle','none','FontSize',10);

C2_slider = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized',...
 'Min',7.502E-10,'Max',1.501E-8,'SliderStep',[0.1

0.1],'Value',handles.data(6),...
 'Position', [0.3 0.54 0.12 0.02],'Callback',

@C2_slider_Callback);

C2_edit_med =

uicontrol('Parent',WK_PANEL,'Style','Edit','Units','normalized',...
 'Position',[0.6 0.56 0.12

0.05],'String',(handles.additional(6))*handles.data(6),...
 'Callback', @C2_edit_med_Callback);
%Units
D='$$\frac{ml}{mmHg}$$';
h=annotation(WK_PANEL,'textbox',[0,0,1,1],'string',D,'interpreter','la

tex',...
 'FitBoxToText','on','Position',[0.73 0.54 0.15

0.07],'LineStyle','none','FontSize',10);

119

C2_slider_med = uicontrol('Parent',WK_PANEL,'Style',

'slider','Units','normalized',...
 'Min',0.1,'Max',2,'SliderStep',[0.1

0.1],'Value',(handles.additional(6))*handles.data(6),...
 'Position', [0.6 0.54 0.12 0.02],'Callback',

@C2_slider_med_Callback);

%%
%Callback functionsdefinitions
function HR_edit_Callback(source,callbackdata)
 handles.data(1)=str2double(get(source,'String'));

 %As HR changes, T value displayed must also change
 set(T_text,'String',handles.additional(1)/handles.data(1));
 %Ts and Td must be recalculated too
 handles.data(2)=(2/5)*(handles.additional(1)/handles.data(1));
 set(Ts_edit,'String',handles.data(2));
 set(Td_text,'String',(handles.additional(1)/handles.data(1)-

handles.data(2)));
 set(Ts_slider, 'Max', (handles.additional(1)/handles.data(1)));
 set(Ts_slider, 'Value', (handles.data(2)));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function HR_slider_Callback(source,callbackdata)
 handles.data(1)=source.Value;

 set(HR_edit,'String',(handles.data(1)));
 set(T_text,'String',(handles.additional(1)/handles.data(1)));
 handles.data(2)=(2/5)*(handles.additional(1)/handles.data(1));
 set(Ts_edit,'String',(handles.data(2)));
 set(Td_text,'String',((handles.additional(1)/handles.data(1)-

handles.data(2))));
 set(Ts_slider, 'Max', (handles.additional(1)/handles.data(1)));
 set(Ts_slider, 'Value', (handles.data(2)));

120

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function Ts_edit_Callback(source,callbackdata)
 %Get new Ts, store it and displayed the new Td for the same period

as
 %Td=T-Ts
if

((str2double(get(source,'String')))<=(handles.additional(1)/handles.da

ta(1)))
 handles.data(2)=str2double(get(source,'String'));

 set(Ts_slider, 'Value', (handles.data(2)));
 set(Td_text,'String',(handles.additional(1)/handles.data(1)-

handles.data(2)));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')

121

 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
else
 handles.data(2)=(2/5)*(handles.additional(1)/handles.data(1));
 set(Ts_edit,'String',handles.data(2));
 set(Td_text,'String',(handles.additional(1)/handles.data(1)-

handles.data(2)));
 set(Ts_slider, 'Value', round(handles.data(2),3));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

end

function Ts_slider_Callback(source,callbackdata)
 handles.data(2)=source.Value;

 set(Ts_edit,'String',(handles.data(2)));
 set(Td_text,'String',((handles.additional(1)/handles.data(1)-

handles.data(2))));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')

122

 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function Q0_edit_Callback(source,callbackdata)
 handles.data(3)=str2double(get(source,'String'));

 set(Q0_edit_med,'String',(handles.data(3)*handles.additional(2)));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function Q0_slider_Callback(source,callbackdata)
 handles.data(3)=source.Value;

 set(Q0_edit,'String',handles.data(3));

set(Q0_edit_med,'String',(handles.data(3)*(handles.additional(2))));

set(Q0_slider_med,'Value',round(handles.data(3)*(handles.additional(2)

)));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')

123

 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function Q0_edit_med_Callback(source,callbackdata)

handles.data(3)=(handles.additional(3))*str2double(get(source,'String'

));

 set(Q0_edit,'String',handles.data(3));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function Q0_slider_med_Callback(source,callbackdata)
 handles.data(3)=handles.additional(3)*source.Value;

 set(Q0_edit_med,'String',source.Value);
 set(Q0_edit,'String',handles.data(3));
 set(Q0_slider, 'Value',handles.data(3));

 %Compute and plot
 if (Display.Value==1)

124

 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function NumberCycles_edit_Callback(source,callbackdata)
 handles.data(4)=str2double(get(source,'String'));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function NumberCycles_slider_Callback(source,callbackdata)
 handles.data(4)=source.Value;

 set(NumberCycles_edit,'String',handles.data(4));

 %Compute and plot
 if (Display.Value==1)

125

 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function Rp2_edit_Callback(source,callbackdata)
 handles.data(5)=str2double(get(source,'String'));

set(Rp2_edit_med,'String',(handles.data(5)*handles.additional(4)));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function Rp2_slider_Callback(source,callbackdata)
 handles.data(5)=source.Value;

 set(Rp2_edit,'String',handles.data(5));

126

set(Rp2_edit_med,'String',(handles.data(5)*handles.additional(4)));

set(Rp2_slider_med,'Value',round(handles.data(5)*handles.additional(4)

));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function Rp2_edit_med_Callback(source,callbackdata)

handles.data(5)=(handles.additional(5))*str2double(get(source,'String'

));

 set(Rp2_edit,'String',handles.data(5));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')

127

 title('Aortic PV-Loop, 2WK')
 end
end

function Rp2_slider_med_Callback(source,callbackdata)
 handles.data(5)=(handles.additional(5))*source.Value;

 set(Rp2_edit_med,'String',source.Value);
 set(Rp2_edit,'String',handles.data(5));
 set(Rp2_slider, 'Value',handles.data(5));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function C2_edit_Callback(source,callbackdata)
 handles.data(6)=str2double(get(source,'String'));

 set(C2_edit_med,'String',(handles.data(6)*handles.additional(6)));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)

128

 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function C2_slider_Callback(source,callbackdata)
 handles.data(6)=source.Value;

 set(C2_edit,'String',handles.data(6));
 set(C2_edit_med,'String',(handles.data(6)*handles.additional(6)));

set(C2_slider_med,'Value',round(handles.data(6)*handles.additional(6),

2));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function C2_edit_med_Callback(source,callbackdata)

handles.data(6)=(handles.additional(7))*str2double(get(source,'String'

));

 set(C2_edit,'String',handles.data(6));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)

129

 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function C2_slider_med_Callback(source,callbackdata)
 handles.data(6)=(handles.additional(7))*source.Value;

 set(C2_edit_med,'String',source.Value);
 set(C2_edit,'String',handles.data(6));
 set(C2_slider, 'Value',handles.data(6));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

function RESET_btn_Callback(source,callbackdata)
 %Reset all parameters to original values
 handles.data=handles.dataOriginal;
 %Modify visible values
 set(HR_edit,'String',handles.data(1));
 set(T_text,'String',handles.additional(1)/handles.data(1));
 set(Ts_edit,'String',handles.data(2));
 set(Td_text,'String',(handles.additional(1)/handles.data(1)-

handles.data(2)));
 set(Q0_edit,'String',handles.data(3));
 set(NumberCycles_edit,'String',handles.data(4));
 set(Rp2_edit,'String',handles.data(5));

130

 set(C2_edit,'String',handles.data(6));

set(Q0_edit_med,'String',((handles.data(3)*handles.additional(2))));

set(Rp2_edit_med,'String',((handles.data(5)*handles.additional(4))));

set(C2_edit_med,'String',((handles.data(6)*handles.additional(6))));
 %Sliders
 set(Rp2_slider,'Value',handles.data(5));

set(Rp2_slider_med,'Value',(handles.data(5)*handles.additional(4)));
 set(C2_slider,'Value',handles.data(6));

set(C2_slider_med,'Value',(handles.data(6)*handles.additional(6)));
 set(HR_slider, 'Value', (handles.data(1)));
 set(Ts_slider, 'Max', (handles.additional(1)/handles.data(1)));
 set(Ts_slider, 'Value', (handles.data(2)));
 set(NumberCycles_slider, 'Value', handles.data(4));
 set(Q0_slider, 'Value',handles.data(3));

set(Q0_slider_med,'Value',round(handles.data(3)*(handles.additional(2)

)));

 %Compute and plot
 if (Display.Value==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==2)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (Display.Value==3)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end
function Display_Callback(source,callbackdata)
 NumberMenu = source.Value;
 Names= source.String;
 NameMenu = Names{NumberMenu};
 if (strcmp(NameMenu,'Aortic Pressure')==1)
 [P,Q]=Compute_2WK (handles);
 handles.current_data=P;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Pressure (P)[mmHg]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (strcmp(NameMenu,'Aortic Flow')==1)

131

 [P,Q]=Compute_2WK (handles);
 handles.current_data=Q;
 %Plot pressures
 plot(handles.current_data);
 ylabel('Flow(Q)[ml/s]')
 xlabel('Time(t)[ms]')
 title('Pressure in the Aorta, 2WK')
 elseif (strcmp(NameMenu,'Aortic PV-Loop')==1)
 [P,Q]=Compute_2WK (handles);
 plot(Q,P)
 xlabel('Flow(Q)[ml/s]')
 ylabel('Pressure (P)[mmHg]')
 title('Aortic PV-Loop, 2WK')
 end
end

pause(0.35)
%THIS WILL ONLY EXECUTE ONCE
[P,Q]=Compute_2WK (handles);
handles.current_data=P;
%Plot pressures
plot(handles.current_data);
ylabel('Pressure[mmHg]')
xlabel('Time(t)[ms]')
title('Pressure in the Aorta, 2WK')

end

2-element Windkessel Calculations

function [P_medunits,Q_medunits]=Compute_2WK (handles)
%%
% Compute_2WK
% This function performs the calculations required for plotting the
% pressure, flow and pressure volume loops. This is performed using

the
% equations from the model developed. In this function the TWO

WINDKESSEL
% MODEL is implemented.
% INPUTS:
% Handles: global structure with some required data:
% handles.dataOriginal=[Heart_Rate Time_Systole Max_Flow

Number_Cycles
% WK2_Rp WK2_C WK3_Rp WK3_C WK3_Ra WK4_Rp WK4_C WK4_Ra WK4_L];
% handles.data=handles.dataOriginal;
% handles.additional=[Sec SItoFlow FlowtoSI SItoHRU HRUtoSI

SItoHCU
% HCUtoSI SItoHLU HLUtoSI];
%
%%
%Defining some variables from the global ones

T=60/handles.data(1);
Td=T-handles.data(2);

%%
%Define flow function
Q=zeros(handles.data(4)*(int16(round(T,3)/0.001)),1);
aux=1;
%For 1 to the desired number of periods:

132

for i=1:handles.data(4)
 for t=0.001:0.001:round(T,3)
 %0.001 is the time interval between consecutive samples
 if (t<=handles.data(2))
 %When t<systole duration
 Q(aux)=handles.data(3)*(sin((pi*t)/handles.data(2)))^2;
 %Flow is defined as a sine squared function during systole
 end
 if (t>handles.data(2))
 %When t>systole duration
 Q(aux)=0;
 %And as zero during diastole
 end
 aux=aux+1;
 end
end
%As the global variables are defined in SI units, convert the to

medical
%units for display purposes
Q_medunits=Q*10^6;

%%
%Define Pressure function for a 2 WK
P=zeros(handles.data(4)*(int16(round(T,3)/0.001)),1);
P(1)=10000;
%It will have the same number of elements as the flow
for i=2:1:length(Q)
 %The following equation is obtained from the numerical resolution

to
 %the equation modeling the two-element-configuration circuit.

P(i)=(((handles.data(5)*Q(i)*0.001)/handles.data(6))+handles.data(5)*P

(i-1))/(handles.data(5)+0.001/handles.data(6));
end
%Again, transform to medical units for display purposes.
P_medunits=P*760/101300;
end

