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Dissolution of a CO2 spherical cap bubble
adhered to a flat surface in air-saturated water

Pablo Peñas-López1,†, Miguel A. Parrales1 and Javier Rodríguez-Rodríguez1

1Fluid Mechanics Group, Universidad Carlos III de Madrid, Avda. de la Universidad 30,

28911 Leganés (Madrid), Spain 

Bubbles adhered to partially hydrophobic flat s  u  r faces o  f  t en a  t  t ain a  s  p  h erical cap 
shape with a contact angle much greater than zero. We address the fundamental 
problem of the diffusion-driven dissolution of a sessile spherical cap bubble (SCB) 
adhered to a flat s mooth s urface. I n p articular, w e p erform e xperiments on the

dissolution of CO2 bubbles (with initial radii ∼1 mm) immersed in air-saturated
water adhered to two substrates with different levels of hydrophobicity. It is found 
that the contact angle dynamics plays an important role in the bubble dissolution 
rate. A dissolution model for a multicomponent SCB in an isothermal and uniform 
pressure environment is then devised. The model is based on the quasi-stationary 
approximation. It includes the effect of the contact angle dynamics, whose behaviour 
is predicted by means of a simplified modelb ased on the results obtained from 
adhesion hysteresis. The presence of an impermeable substrate hinders the overall rate 
of mass transfer. Two approaches are considered in its determination: (a) the inclusion 
of a diffusion boundary layer–plate interaction model and (b) a finite-difference 
solution. The model solutions are compared with the experimental results, yielding 
fairly good agreement.

Key words: bubble dynamics, contact lines

1. Introduction
The dissolution of stationary or entrapped gas bubbles in liquids is of great interest

in many technological applications in biology, chemistry and the petrochemical 
industry. Gas bubbles may be generated as a consequence of biological or geological 
activities, gasification p rocesses o r c hemical r eactions. S tudy o f t he bubble dissolution 
dynamics is vital in determining the gas transfer rate between the bubbles and the 
surrounding liquid.

There are several studies in the literature that have addressed the fundamental 
process concerning the dissolution of an isolated spherical bubble. The mathematical 
problem essentially involves simultaneously solving for the equations of diffusion of 
species, interface motion and mass conservation. We highlight three main approaches.

(a) Quasi-stationary approximation methods (Holocher et al. 2003; Shim et al. 2014), 
pioneered by Epstein & Plesset (1950) for a single-component bubble. Advection 
effects are neglected, and the time dependence of the bubble may be ignored

† Email address for correspondence: papenasl@ing.uc3m.es
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in solving for the spherically symmetric concentration field. I n s uch a  c ase, the
concentration gradient at the bubble surface has an analytical solution.

(b) Numerical methods, usually finite differences (Duda & Vrentas 1971; Yung et al.
1989), in which the concentration field with spherical symmetry is solved for 
numerically. Advection and bubble gas compressibility effects may be freely 
included since the velocity field a nd b ubble p ressure m ay b e straightforwardly 
obtained from the continuity and momentum equations respectively.

(c) Analytical solutions for single-component bubbles based on perturbation methods
(Duda & Vrentas 1969) or asymptotic expansions (Subramanian & Weinberg 
1981). These authors reported better agreement of their solutions with the (exact) 
finite-difference solutions than other quasi-stationary methods except a t the longer 
times towards the end of the dissolution process. The impractical complexity 
and analytical limitations in the derivation of the solutions mean that their 
applicability outside this scope is, unfortunately, very limited.

The dissolution of multicomponent spherical bubbles has also been widely 
investigated. For example, Weinberg & Subramanian (1980) compared the performance 
of the quasi-stationary and finite-difference methods in illustrative examples regarding 
the dissolution of CO2 and O2 bubbles. Yung et al. (1989) provide an extensive 
analysis of parameters affecting gas bubble dissolution, including the effect of having 
a non-soluble gas component in a multigas bubble.

However, in many real-life applications and natural environments, it is likely that 
bubbles will adhere or directly nucleate on solid surfaces. The no-flux boundary 
condition across an impermeable surface breaks the spherical symmetry of the 
concentration field i n t he s urrounding l iquid. T his h as a  s ignificant hi ndering effect 
on the rate of mass transport and consequently on the bubble dissolution rate.

The study of the dissolution of a single-component spherical bubble beneath a 
flat p late h as b een a ddressed b y s ome a uthors. E arly a ttempts i nvolved r escaling the 
time variable in the Epstein–Plesset solution by a correction factor of ln(2), taken 
from electrostatics (Liebermann 1957) or potential theory (Wise & Houghton 1968). 
Kentish et al. (2006) confirmed that the value of this correction factor increases with 
the solubility of the gas, i.e. it is heavily dependent on the concentration boundary 
layer thickness. These authors also presented a finite-difference n umerical model 
in fixed n on-orthogonal c oordinates ( independent o f t he b ubble r adius s ize) that 
accounted for the boundary condition on the flat plate. Previously, Takemura, Liu 
& Yabe (1996) developed a more complex finite-difference numerical model, even 
including the effect of advection by simultaneously solving the vorticity transport 
equation. A particular tangent–sphere coordinate system was employed. However, 
the computational grid had to be reconstructed at each time step to account for the 
change in bubble radius, which can be tedious and computationally costly.

It naturally happens that most surfaces will be hydrophobic to some extent. Provided 
that the Bond number is small and the liquid–gas tension overcomes the buoyancy 
force, it is not strange to find t hat a dhered b ubbles d isplay a  s pherical c ap shape, 
with a distinct contact surface defined b y a  c ontact a ngle m uch g reater t han zero. 
For any given bubble volume, the instantaneous spherical cap surface area of the 
bubble depends on the instantaneous contact angle. It is then evident that the contact 
line or angle dynamics of a spherical cap bubble (SCB) dictates the bubble surface 
area dynamics and therefore will have significant i mpact o n t he S CB d issolution rate. 
Consequently, they must be taken into account.

As far as we are aware, no previous studies have dealt with the dissolution (or 
growth) of a sessile SCB adhered to an impermeable flat s urface. T hus, t he main
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purpose of this paper is to present a simple yet effective model able to predict
the dissolution (or growth) rate of an isothermal multicomponent SCB attached to
a smooth flat surface in a constant-pressure environment. For the first time, the
equations for the diffusion of species are coupled with a simple law for the contact
angle dynamics. In addition, the wall effect is explicitly treated by (a) considering the
dynamic interaction of the diffusion boundary layer with the plate and alternatively
(b) a novel numerical approach.

In this work, the scenario treated by the model shall be restricted to the 
experimental frame, in which we explore the dissolution of CO2 SCB bubbles 
in air-saturated water. These bubbles are deposited on two substrates of different 
hydrophobicities: PMMA and collagen-coated coverslip glass.

This paper is structured as follows. In § 2, the problem is formulated in a 
generalized fashion. The experimental procedure and results are presented in § 3. In 
§ 4, a dissolution model based on the quasi-stationary approximation is proposed. It 
is immediately validated against the experimental data. An approximate analytical 
solution for our specific experimental scenario is then discussed in § 5, from 
which useful insight on the dissolution mechanism is gained. In § 6, we present 
a finite-difference numerical method as an alternative approach to determining mass 
transfer across the SCB surface, and the solutions are compared. Finally, § 7 is 
devoted to conclusions.

2. Problem statement
2.1. Spherical cap bubble characterization and contact line dynamics

The Bond number associated with bubbles is usually defined a s Bo = ρ gR2/γlg, where 
ρ, R, g and γlg denote the density of the liquid, the bubble radius, the gravitational
acceleration and the liquid–gas interfacial tension respectively. Spherical cap bubbles 
are characterized by a Bo value significantly s maller t han u nity. I n s uch a  c ase, the 
liquid–gas interfacial tension is strong enough to overcome buoyancy forces. Surface 
tension will enforce a spherical cap shape in order to minimize the surface area
and hence the surface energy. For CO2 bubbles in water, Bo ∼ 0.25 was found to 
be the threshold value. Additionally, the resulting force on the triple-contact line
must overcome the buoyancy force so as to prevent bubble detachment. Spherical 
cap geometries with extremely high contact angles are also adopted by nanobubbles 
during the nucleation process in solid–liquid interfaces, to later exhibit a remarkable 
stability against dissolution (Weijs & Lohse 2013; Lohse & Zhang 2015).

The behaviour of the SCB contact angle θ (see figure 1 below) in the presence of a 
moving contact line along a smooth homogeneous surface may be explained by a suitable 
contact angle hysteresis (CAH) model. It must be borne in mind that the CAH has a 
static component and a dynamic component (Eral, t Mannetje & Oh 2013). In our 
particular scenario of interest, i.e. the diffusion-driven dissolution of a CO2 SCB in air-
saturated water, the driving force is moderate. This results in slow dissolution rates 
and small contact line velocities, hence the quasi-static contact angle approximation
may be used. The characteristic value of the capillary number (Ca = µṘ c/γlg, where 
µ is the dynamic viscosity of the liquid and Ṙc is the contact line velocity) was
found to be small (Ca ∼ 0.005). Therefore, the dynamic (velocity-dependent) angle 
will differ from the static angle for a very small-scale hydrodynamic regime where
the contact line dynamics is dominated by the viscous dissipation of the liquid. It is 
thus reasonable to assume that the apparent (macroscopic) angle is given by the static
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FIGURE 1. Geometry of an SCB attached to a flat i mpermeable w all i n a  liquid–gas 
solution. The main system parameters concerning its diffusion-controlled dissolution or 
growth are also indicated.

equilibrium angle, and that it completely describes the contact line dynamics (Snoeijer 
& Andreotti 2013).

Hong et al. (2011) recently proposed a thermodynamic model based on adhesion 
hysteresis able to predict the static CAH for SCBs enduring sequential changes 
in volume. The physical explanation for the observed CAH is that the separation 
energy required to make the liquid phase recede (bubble inflation characterized 
by an increasing SCB contact radius) is greater than the adhesion energy given 
by an advancing liquid phase (bubble deflation c haracterized b y a  d ecreasing SCB 
contact radius). Thus, these processes are not thermodynamically reversible, which 
translates into two solid–liquid interfacial tensions. Young’s equation with γsl gives 
the liquid-advancing contact angle, θa, which refers to the maximum angle associated 
with removing gas volume from a sessile SCB. On the other hand, that with γsl

′ < γsl 
due to surface rearrangement yields a different liquid-receding contact angle, θr, 
which in turn corresponds to the smallest possible angle upon adding gas volume.
Therefore, the contact angle is confined w ithin t he r ange θ r 6 θ 6 θa.

When an SCB (with an intermediate θ ) initially at equilibrium undergoes a change 
in volume, it is forced to adopt a new equilibrium contact angle and radius (subject 
to a spherical cap geometry constraint) such that the change in its free surface energy 
is at a minimum. This is the underlying principle of adhesion hysteresis. The contact 
line behaviour obtained by this approach adequately agrees with the experimentally 
observed fact that contact line pinning occurs when the liquid phase is advancing 
(bubble deflation) r ather t han w hen t he l iquid p hase i s receding.

In this work, we shall employ smooth homogeneous surfaces of mild hydrophobicity 
as substrates. Under these conditions, dissolving SCBs always display acute advancing
angles. Consequently, only SCBs with θ 6 90◦ shall be considered.

2.2. Formulation of the problem
Consider a sessile SCB immersed in a quiescent liquid–gas solution. The SCB is
adhered to an infinite fl at im permeable pl ate de scribed by  th e x– y pl ane at  z = 0,  as 
sketched in figure 1 . W e r estrict t he b ubble c omposition t o t hat o f N  s oluble ideal 
gases. The flow o f g as s pecies i  i n t he s urrounding l iquid, n eglecting a ny f orm of 
advection, is governed by the diffusion equation,

∂Ci

∂t
−Di∇2Ci = 0, (2.1)
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where Ci(x, y, z, t) denotes the molar concentration field of gas species i, while Di

refers to its diffusivity, assumed constant. Here, x, y, z are dimensional Cartesian
coordinates and t is the time. The initial molar concentration field in the liquid
is considered to be uniform and equal to C∞,i. Letting Cs,i(t) denote the molar
concentration at the interface, the boundary conditions on the concentration field are

Ci =Cs,i on the bubble surface,
∂Ci

∂z
= 0 on z= 0 (impermeable wall),

Ci =C∞,i at infinity.

 (2.2)

The bubble is assumed to retain its spherical cap shape throughout the whole
dissolution process. Thus, the bubble dynamics may be fully described by the bubble
radius R(t) and contact angle of the liquid phase θ(t), where θ ∈ [0,π/2]. Accordingly,
the instantaneous contact radius Rc(t), surface area S(t), volume V(t) and volume rate
of change V̇(t) may be written as functions of R, θ and their time derivatives. From
geometric considerations, one has that

Rc = R sin θ, S=πβ1R2, V = π

3
β2R3, V̇ =πR2(β2Ṙ− Rβ3θ̇ ), (2.3a−d)

where the dot notation (˙) is employed to denote the time derivative d/dt. The angle-
dependent functions β1(θ), β2(θ) and β3(θ) are given by

β1 = 2(1+ cos θ), β2 = (2− cos θ)(1+ cos θ)2, β3 = sin3 θ. (2.4a−c)

The system is at constant uniform pressure p∞ and temperature T∞. Surface tension
(γlg) effects are reasonably neglected since the SCBs studied in this work had typical
radii of at least a few hundred microns. It should be noted that the Laplace pressure
becomes important for small radii such that R∼ 2γlg/p∞, corresponding to R∼ 1 µm
in standard conditions.

The bubble contents obey the equation of state for an ideal gas mixture:

p∞V =
N∑

i=1

niR̄T∞ = nR̄T∞, (2.5)

where ni(t) and n(t) are the number of moles of gas i and the total moles inside the
bubble respectively; R̄ denotes the universal gas constant. Differentiating (2.5) with 
respect to time yields a differential equation for the bubble radius,

Ṙ= 1
πR2β2

R̄T∞
p∞

N∑
i=1

ṅi + β3

β2
Rθ̇ . (2.6)

The last term in this equation manifests the evident dependence of the spherical cap
radius R on the contact angle dynamics.

Moreover, the gases are assumed to be soluble. Thus, the molar concentration at the
interface, Cs,i, is related to the partial pressure of the ith species through Henry’s law.
We may then write

Cs,i = ni

n
Hip∞, (2.7)
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FIGURE 2. (Colour online) Experimental set-up.

where Hi denotes Henry’s constant. Mass conservation is enforced through Fick’s first
law of diffusion, which sets the molar flow rate of the ith gas species across the
bubble surface S to be

ṅi =Di

∫
S
∇Ci · n̂ dS, (2.8)

where dS is an infinitesimal a rea e lement o f t he b ubble s urface a nd n̂ i s t he outward-
pointing unit normal from the bubble surface.

As previously discussed in § 2.1, the (quasi-static) contact angle dynamics along a 
smooth homogeneous surface may be suitably characterized by the adhesion hysteresis 
model proposed by Hong et al. (2011). Upon bubble inflation, the model predicts the
contact angle to remain constant at the initial receding angle θr. In contrast, upon
bubble deflation, t he c ontact l ine r emains p inned ( i.e. Rc(t) = c onst.) a nd t he contact 
angle increases until the advancing angle θa is attained. Further deflation w ill make
the contact radius decrease with the contact angle fixed a t θ a. T hese r esults m ay be 
conveniently expressed in a simplified form:

θ̇ =
{
−Ṙ tan θ/R (i.e. Ṙc = 0), if Ṙ< 0 and θ < θa,

0, otherwise.
(2.9)

3. Experiments: CO2 bubbles in air-saturated water
3.1. Experimental procedure

The experimental set-up is sketched in figure 2. A single CO2 bubble was injected on 
top of a flat s mooth s ubstrate s ubmerged i n a  s mall u npressurized o bservation tank
(10 cm × 5 cm × 5 cm) previously filled w ith d istilled w ater a t 20.5 ◦ C. T he distilled 
water was left openly exposed to ambient air for many hours beforehand to ensure air 
saturation. Two different substrate materials were employed: (a) PMMA (poly(methyl 
methacrylate)) and (b) collagen-coated coverslip glass.

Before each experiment, the tank was emptied, and then rinsed and cleaned 
alongside the substrate with compressed air. The bubble injection was carried out 
manually by means of a needle connected to a pressurized CO2 tank. The bubble was 
then left to dissolve for approximately six minutes. The whole dissolution process 
was optically recorded with a digital camera (TSI PowerView Plus 2MP Camera) 
acquiring at 2 f.p.s. The optical resolution was approximately 5 µm pixel−1. The 
spherical cap radius R and contact angle θ were then obtained through an image processing 
program developed in MATLAB (see figure 4 below). The circular arc contour of the SCB 
was detected and a circle was fitted, from which the SCB radius R could be immediately 
computed. The contact angle was then simply measured as
θ = arccos(h/R), where h is the circle centre height above the contact surface.
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FIGURE 3. Experimental results for the evolution in time of the spherical cap radius R and
contact angle θ for four different SCBs. The two bubbles tested on the PMMA substrate
(shaded markers) are termed p1 and p2; the remaining two, tested on the glass substrate
(white markers), are referred to as g1 and g2.

(a) (b) (c) (d)

FIGURE 4. (Colour online) Snapshots portraying the dissolution process of an SCB
(corresponding to SCB g2) adhered to the coverslip glass substrate, taken at (a) t= 50 s,
(b) t = 70 s, (c) t = 100 s and (d) t = 150 s. The SCB has been marked with the
image-processed spherical cap contour (dotted curve) and the true height of the contact
line (solid line).

3.2. Experimental results
The experimental results for a selection of four SCBs are shown in figure 3, where
their measured bubble radii and contact angles are plotted against time. The two
bubbles adhered to the PMMA substrate shall henceforth be referred to as p1 and p2.
Likewise, those adhered to the glass coverslip shall be identified as g1 and g2.

The first particularity of interest is that the SCBs eventually attain a stable
equilibrium size that signals the end of the dissolution process. This is a clear
indicator of saturation of the liquid phase. It stands to reason since, as previously
mentioned, the water was prepared to be air-saturated. This implies the diffusion-
driven exchange of multiple gases across the SCB boundary. Initially, the SCB is
composed purely of CO2, while the CO2 concentration in the air-saturated water
solution is effectively zero. The dissolution process is thus characterized by the
simultaneous dominant outflow and modest inflow of CO2 gas and air respectively.

7

https://doi.org/10.1017/jfm.2015.291
https://www.cambridge.org/core/terms


The equilibrium size is attained as soon as the bubble has been depleted of CO2, 
inferring that the bubble must be entirely composed of air thereafter.

It must be acknowledged, however, that in reality the air bubble is not strictly in 
equilibrium. The pressure inside the bubble will always be slightly higher than that 
of the surrounding liquid due to the Laplace pressure. This means that the bubble 
will, in fact, continue dissolving, but at a very slow rate. The dissolution time, td, 
for an isolated single gas species spherical bubble immersed in a saturated gas–liquid 
solution may be quantified by appealing to a particular result from Epstein & Plesset 
(1950). In this case, the sole driving force is the liquid–gas surface tension. The 
bubble lifetime may approximated to be

td ≈ R3
0p∞

6DiHR̄Tγlg
, (3.1)

where R0 denotes the initial bubble radius. As an example, air bubbles of initial radii
R0 = 0.2 and 0.5 mm have expected lifetimes of td ∼ 12 h and 8 days respectively. 
This confirms t hat t his fi nal st age of  co mplete di ssolution ta kes pl ace on  a much
longer time scale than our time scale of interest, i.e. that encompassing the CO2–air 
exchange, which is shown to be of the order of a few minutes. At this latter time scale, 
it is therefore reasonable to neglect the effect of surface tension, and the bubbles may 
be thought to reach a final e quilibrium size.

A second important feature is the advancing contact line pinning exhibited by every 
SCB. To better illustrate this phenomenon, a sequence of photographs depicting the 
dissolution of SCB g2 are included in figure 4. It may be noted from snapshots (a) and (b) 
that the contact radius remains constant while the contact angle increases until in snapshot 
(c) the advancing contact angle, θa, is reached. Thereafter, in snapshot (d) the contact line 
decreases while the contact angle is practically fixed at θa. For PMMA, the advancing 
contact angles always exhibited consistent values between 80◦ and 85◦. As one may note 
from figure 3, the coverslip glass surface apparently displayed weaker hydrophobicity. 
Advancing contact angles ranged from 55◦ to as much as 80◦.

The contact line behaviour that we observe in our experiments is analogous to 
the most common manner in which (macroscopic) sessile droplets evaporate. Stauber 
et al. (2014) name this behaviour as the ‘stick–slide’ mode, in which the droplet 
first evaporates in a constant contact radius phase, followed by a sliding phase at a 
constant contact angle. The advancing contact angle is referred to as the transition 
contact angle instead. For microscopic SCBs, the contact line dynamics is likely 
to show great dependence on surface inhomogeneities and local defect pinning. A 
consequence of this is the intermittent contact line pinning (‘stick–jump’ mode) 
exhibited by evaporating surface nanodroplets (Dietrich et al. 2015). In contrast, the 
macroscopic size of our bubbles averages the existing local defect pinning, thus 
rendering it unobservable.

4. Quasi-stationary dissolution model
4.1. Model equations

In this section we shall develop a mathematical model of the dissolution or growth 
of a multicomponent SCB adhered to a flat surface. This model is based on the 
quasi-stationary approximation, in which the concentration field may be uncoupled 
from the bubble boundary dynamics. The effect of advection is thence not considered.
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Boundary layer

Bubble

R

FIGURE 5. Sketch illustrating the effect of the plate on the effective bubble surface area. 
The excluded cap area (shaded region) is computed by determining the cone formed by 
the centre of the SCB and the intersection of the diffusion boundary layer (outer sphere) 
with the plate.

Furthermore, the concentration field o f t he s urrounding l iquid s hall b e approximated
as radially symmetric, identical to that in the case of a fully spherical isolated bubble.

Consequently, the centre of the bubble may be taken as the origin of the radial
coordinate r, and we may proceed to solve the diffusion equation with spherical
symmetry subject to a stationary boundary condition at r = R. The concentration 
gradient at the bubble boundary has a well-known analytical solution that was first
derived by Epstein & Plesset (1950). The equivalent expression applied to the ith gas
species in a multiple gas system (Weinberg & Subramanian 1980) reads

∂Ci

∂r

∣∣∣∣
r=R

= (C∞,i −Cs,i)

[
1
R
+ 1√

Diπt

]
. (4.1)

However, as briefly discussed in § 1, the flat plate has a slowing effect on the 
bubble dissolution and growth rates. The radial symmetry of the concentration field is 
broken in the region near the contact line, where the presence of weaker gradients 
implies a notable reduction in mass transport.

It is convenient to treat this effect as a mere reduction in the area available for
mass transfer and assume that the concentration field r emains s pherically symmetric. 
The interaction of the boundary layer with the plate may be modelled following the 
approach proposed by Enríquez et al. (2014). The effective spherical cap area, Seff ,i(t), 
across which mass transfer of the ith gas species is allowed, is dependent on the boundary 
layer thickness λi(t), and it is estimated as shown in figure 5. The effective
area may be defined in an analogous manner to the true area by Seff ,i=πβeff ,iR2. From
a simple geometrical calculation, one has that

βeff ,i = 2(1+ cos θeff ,i)= 2
(

1+ R
R+ λi

cos θ
)
. (4.2)

It should be noted that as θ → π/2, βeff ,i → β1, where β1 has been defined in (2.4). This is 
consistent with the fact that a semispherical bubble preserves the spherical symmetry of 
the concentration field. The boundary layer thickness λi may be approximated to be the 
diffusion length scale defined by Lee, McKechnie &
Devereux (2011): ∂rCi|r=R = (C∞,i − Cs,i)/λi. From (4.1) it follows that

λi =
[

1
R
+ 1√

Diπt

]−1

. (4.3)
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The molar flow rate, previously defined in (2.8), now becomes

ṅi =πβeff ,iR2Di
∂Ci

∂r

∣∣∣∣
r=R

=πR2βeff ,iDi

(
C∞,i − ni

n
p∞Hi

) [ 1
R
+ 1√

Diπt

]
, (4.4)

and hereby the quasi-stationary model (QSM) is finally closed.
It is convenient to non-dimensionalize the system of the model equations. This may

be done by introducing a dimensionless time τ , radius a(τ ), ith species mole number
µi(τ ), total mole number µ(τ) and finally the mole fraction of the ith species xi(τ ),
as follows:

τ = Dm

R0
2 t, a= R

R0
, µi = R̄T∞

πR3
0p∞

ni, µ=
N∑

i=1

µi, xi = ni

n
= µi

µ
. (4.5a−e)

Here, R0 is the characteristic bubble radius, which in this work is set to be the
initial radius, i.e. R0 = R(0); Dm stands for the mean value of the diffusivities. With 
strict regard to the formulation of the model final e quations, i t w as d eemed more
propitious to dispose of the mole fraction, xi, in favour of µi and µ. Nonetheless, its 
usefulness will become evident later when specifying the initial bubble composition, 
and especially in § 5 where an approximate analytical solution shall be discussed. Let
us now define t he f ollowing d imensionless quantities:

Υi = R̄T∞
p∞

C∞,i, Λi = R̄T∞Hi, Γi = Di

Dm
, (4.6a−c)

where Υi refers to the initial concentration conditions in the liquid, Λi serves as the
solubility parameter and Γi is a diffusivity ratio.

Hereupon, making use of the prime (′) to denote d/dτ , the QSM equations in
dimensionless form are presented:

a′ = 1
β2a2

N∑
i=1

µ′i +
β3

β2
aθ ′, (4.7a)

µ′i = βeff ,ia2Γi

(
Υi − µi

µ
Λi

) [
1
a
+ 1√

Γiπτ

]
, i= 1, . . . ,N, (4.7b)

θ ′ =
{
−a′ tan θ/a, if a′ < 0 and θ < θa,

0, otherwise,
(4.7c)

where βeff ,i = 2
(

1+ a+√πΓiτ

a+ 2
√

πΓiτ
cos θ

)
, i= 1, . . . ,N. (4.7d)

The differential equations of this system may be solved numerically, subject to the
initial conditions a(0)= 1, θ(0)= θ0 and µi(0)= xi(0)β2(θ0)/3. In addition, θa must
be known. It should be noted that the model is devoid of free parameters.

4.2. Experimental validation of model
The QSM was tested against the experimental results for CO2 SCBs dissolving in
air-saturated water. The experimental scenario is treated as a binary system (N = 2).
Species i = 1 refers to CO2 gas, while air is conveniently approximated as a single
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Parameter Value Units

HCO2 3.40× 10−4 mol m−3 Pa−1

Hair 8.50× 10−6 mol m−3 Pa−1

DCO2 1.92× 10−9 m2 s−1

Dair 2.00× 10−9 m2 s−1

TABLE 1. Values of the gas properties (at p∞ = 105 Pa and T∞ = 293.5 K) used in this work. 
Values for Hi and Di are taken from Cussler (1997) and Sander (2014) respectively.

SCB R0 (mm) θ0 (deg.) θa (deg.)

p1 0.919 52 84
p2 1.157 58 82
g1 0.668 35 56
g2 0.884 30 71

TABLE 2. Experimentally determined values of the initial radius, initial contact angle
and advancing contact angle corresponding to the four SCB dissolution experiments.

species and may be correspondingly denoted by i = 2. The values of their diffusivities 
and Henry’s coefficients are given in table 1.

Previous works dealing with similar scenarios have treated air as an ideal binary
mixture of N2 and O2 (Shim et al. 2014). It must be mentioned that in this work, 
the dissolved air in water is in fact implicitly treated as a mixture composed of 64 %
N2 and 36 % O2 by volume. This results simply from considering the solubilities in 
water of ambient air (taken as 79 % N2 and 21 % O2). Since N2 and O2 have similar 
diffusivities (Cussler 1997), the evolutions of both concentration fields will be likewise 
similar. Their solubilities are also of the same order (Sander 2014). Moreover, in this 
particular scenario, diffusion naturally establishes the equilibrium air composition of 
the bubble at the end of the dissolution process to be the same as the initial air 
composition dissolved in the (infinite) l iquid m edium, r egardless o f t he d ifference in 
solubilities and diffusivities within the air mixture. For these reasons, it is acceptable 
to compute the mean solubility and diffusivity of the air mixture and treat air as a 
single gas species.

Finally, it is assumed that the SCB is initially composed purely of CO2, hence
x1(0) = 1, x2(0) = 0. The air–water solution is initially saturated, i.e. Υ2 = Λ2, and 
CO2-deprived, Υ1 = 0. The remaining input parameters, namely the initial geometry of the 
SCB and its advancing contact angle, are listed in table 2.

The comparison of the model with the experiments is shown in figure 6. The 
model solutions are in good agreement with the experimental data. It is verified that 
the contact angle dynamics is suitably described by the adhesion hysteresis model.
One can notice that for bubbles p1 and p2, the model solution for a(τ ) succeeds in
capturing the sudden change in slope at τ ≈ 0.1. This is a consequence of the sharp 
transition from contact line pinning to contact line slip at the advancing angle.

The case of SCB p1 is of special interest. Upon the assumption that the SCB is 
initially 100 % CO2, the predicted equilibrium radius is underestimated by a significant 
16 %. Allowing for a small initial mole fraction of air (1.5 %) to be present inside 
the bubble completely eliminates this difference. This in turn demonstrates the great
sensitivity of the solution to the initial mole fraction. It is likely that SCB p1 was
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FIGURE 6. Dimensionless radius a and contact angle θ versus dimensionless time τ
as computed from the quasi-stationary dissolution model (lines), compared with the
experimental results (markers) for SCBs adhered to (a) the PMMA and (b) the coverslip
glass substrate. For bubble p1 the thick dashed curve corresponds to initial CO2 and air
mole fractions of 0.985 and 0.015 respectively. The rest of the model curves (including
the thin dashed line for SCB p1) are calculated with the assumption that the initial bubble
composition is 100 % CO2 gas.

not initially strictly 100 % CO2 due to air entrapment within the valves and hoses
connecting the CO2 tank to the injection needle. Care was taken in purging the air out
of the system before attempting the bubble injection process, yet for that experimental
run we obviously failed to do so completely.

5. Approximate analytical solution
In this section we shall derive an approximate analytical solution of the radius

dynamics meant to specifically model our dissolution scenario of interest, i.e. that of
CO2 (i= 1) bubbles dissolving in an air- (i= 2) saturated water solution. The solution
itself has a twofold purpose: (a) to serve as a fast yet accurate means of calculating
R(t) and (b) to help in understanding the physical mechanisms that constitute this
dissolution process. The baseline assumptions are identical to those stated for the
generalized quasi-stationary dissolution model. Therefore, we shall adopt (4.7) to
serve as our starting point.

Let us recall from § 4.2 that Υ1= 0 and Υ2=Λ2. Furthermore, we shall simplify the
geometry of the bubble to that of a constant contact angle SCB (θ = θa) and ignore the
effect of the plate on the diffusion boundary layer: βeff ,i = β1(θa). It should be noted
that setting θa= 0 will depict the case of an isolated fully spherical bubble. From here
on, in an attempt to simplify the notation, we shall refer to the constants β1(θa) and
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FIGURE 7. Dimensionless mole numbers µi, µ versus dimensionless time τ for SCB g1
as computed from the QSM. Inset: equivalent mole fractions versus dimensionless time.

β2(θa) simply as β1 and β2 respectively. Finally, it must be said that the following
analysis is only valid when the solubility of gas 1 is much greater than that of gas 2,
i.e. Λ1/Λ2� 1 (in our case, Λ1/Λ2 = 40).

Upon inspection of (4.7b), we find that the molar flow rate µ′i is proportional to the
solubility parameter Λi and the mole fraction xi = µi/µ. A first s tage o f dissolution
may be devised, during which the bubble radius is subject to a rapid decay. This
regime is characterized by relatively large quantities of gas 1 diffusing out of the
bubble since Λ1 � Λ2 and µ1 � µ2. The diffusive inflow o f g as 2  i s h ence quite
insignificant in comparison, and therefore may be assumed to have negligible impact
on the bubble dynamics. This is observed in figure 7 – initially the curve for µ(τ ) is 
essentially identical to that for µ1(τ ). An analytical ‘short-time’ solution applicable to this 
regime shall be presented.

As time advances, however, the gas inflow m ust b ecome i ncreasingly important 
since it undoubtedly accounts for the eventual stabilization of the bubble radius. A 
long-time solution has also been developed for this second stage.

Rapid dissolution regime: short-time solution
The
consequence,

short-time
µ′

solution
µ′ . F

is
ollo

based
wing 

on
the w

the
orkings

approximation
detailed in

that x1
appendix
≈ 1 �

A
x
,
2
(
,
4.7
and,

a) 
in
becomes

direct 
= 1

a′ =−Ω
2

(
1√

1−Ωτ −
1√

πΓ1τ

)
, where Ω = 2

β1

β2
Γ1Λ1. (5.1)

We may integrate (5.1) subject to the initial condition a(0) = 1, thereby obtaining
the short-time solution:

a=√1−Ωkτ − Ω√
πΓ1

√
kτ , for τ ∈ [0, τs]. (5.2)

We have introduced a free parameter k (where k ∼ 0.5–1) that multiplies the time
variable τ . It purposefully serves as a correction factor that may be determined
through fitting, s hould i t b e d eemed n ecessary t o a ccount f or t he e ffect o f t he plate
on the concentration field; o therwise k  = 1 . T he t ime τ s, w hose v alue i s y et t o be 
determined, marks an ‘idealized’ time limit after which the short-time solution ceases
to be valid. For our particular dissolution scenario, by means of graphical estimation
from figure 7, we may claim that τs ∼ 0.2.
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Radius stabilization regime: long-time solution
The long-time solution is likewise only valid for τ > τl, where τl marks the beginning
of the dissolution regime during which ideally the condition

√
πΓiτ � a (or at least√

πΓiτ > a) is satisfied. The term 1/
√

πΓiτ in (4.7b) may in such a case be neglected.
The procedure for obtaining an integrable differential equation for the radius dynamics
is given in appendix A. The result is

a′ = β1

β2
Γ2Λ2

(
1
a4
− 1

a3
eqa

)
, (5.3)

where the final equilibrium radius, aeq, is also shown to be

aeq =
(
Γ2Λ2

Γ1Λ1

)1/3

=
(

D2H2

D1H1

)1/3

. (5.4)

To a good approximation, (5.4) reveals that the equilibrium radius just depends on 
the ratio of solubilities and diffusivities of both gases. It must be emphasized that 
this relation only applies to high-solubility gas (CO2) bubbles dissolving in a liquid 
saturated with a low-solubility gas (air).

We can now integrate (5.3) subject to the yet unknown transition condition
a(τl)= al, where al is the transition radius. The long-time solution reads

kτ − τl =
a5

eq

6
β2/β1

Γ2Λ2

[
ln

(
(a2

eq + aeqa+ a2)(aeq − al)
2

(a2
eq + aeqal + a2

l )(aeq − a)2

)
− 2
√

3 arctan

(
2a+ aeq√

3aeq

)

+ 2
√

3 arctan

(
2al + aeq√

3aeq

)]
+ a3

eq

2
β2/β1

Γ2Λ2
(a2

l − a2), for a ∈ [al, aeq].

(5.5)

It should be noted that this solution asymptotically tends to the equilibrium radius,
aeq. Nonetheless, the dissolution time may be graphically estimated.

Solution matching: transition criterion
In truth, there exists an intermediate transition time period (spanned by τs . τ . τl)
where all terms in (4.7b) are important. Judging from our results, the transition
period may be regarded as relatively short. In such a case, the solution-matching
problem is greatly simplified by imposing a sudden transition at time τt delimiting the
applicability of the short-time from the long-time solution. Thus, we may approximate
τs = τl = τt and as = al = at.

The values of the transition time τt and corresponding radius at are open to
subjective determination, but should ultimately ensure the best possible agreement
with any experimental or numerical data used as reference. For our particular
dissolution scenario, experimental results showed that the long-time solution condition,√

πΓiτ � a, is in practice never attained – both terms remain at the same order of
magnitude throughout the stabilization regime. Nonetheless,

√
πΓiτt should at least

be significantly larger than at; a factor of 2 was regarded as a good compromise. The
transition criterion here adopted is thus

at =
√

πΓ1τt

2
. (5.6)
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FIGURE 8. Short-time analytical solution (STS) and long-time analytical solution (LTS) of 
the dissolution of a CO2 SCB in air-saturated water. The transition point from the short-
time to long-time solution is determined from the intersection of the transition criterion
(dash-dot line) and the short-time solution. (a) Solutions for a semispherical bubble (θa = 
90◦, k = 1) compared with the solution from the QSM. The transition is at τt = 0.21, 
at = 0.4. (b) Solution for an SCB with θa = 56◦, compared with the experimental results 
for SCB g1. A correction factor of k = 0.75 is used. The transition is at τt = 0.29, at = 0.47.

The analytical solutions to two distinct cases concerning the dissolution of a CO2 

SCB in air-saturated water are plotted in figure 8. The equilibrium radius given by
(5.4) proves to be remarkably accurate, provided that both gas diffusivities are similar,
as is the case. In figure 8(b), the solutions are compared specifically with SCB g1 

since its contact angle displayed little variation (cf. figure 3) and thereby the constant
contact angle approximation is valid. An empirically derived correction factor of
k = 0.75 was included to account for the presence of the flat plate.

Finally, it should be noted that the solutions have been extended beyond their
valid timespan (thinner lines), outside which, as expected, the deviation becomes
unacceptably large. This in turn endorses the validity of the transition criterion here
proposed.

6. Finite-difference solution

It must be borne in mind that in § 4, the molar flow rates across the SCB interface 
were determined by assuming a quasi-stationary spherically symmetric concentration 
field together with a reduction in area accounting for the effect of the impermeable 
substrate. As a result of this approximation, Fick’s first law, (2.8), reduces to a simple 
expression corresponding to (4.7b) in dimensionless form. The aim of this section 
is thus to provide a finite-difference m ethod a s a n a lternative m eans o f determining 
the mass transfer of each gas species – ultimately serving as numerical validation for 
(4.7b). More specifically, we seek to numerically solve for the concentration field from 
the diffusion equation confined to the real geometry of the system and subject to the 
authentic boundary conditions proposed in (2.2). This work shall then end with the 
subsequent comparison of the solutions obtained from both approaches.
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6.1. Governing equations
For the sake of consistency with the previous developments, the finite-difference
method equations shall be befittingly written in dimensionless form. We may begin
by non-dimensionalizing both the molar concentration field, Ci, and the interfacial
concentration, Cs,i, as follows:

ci = Ci −C∞,i
Hip∞

, cs,i = Cs,i −C∞,i
Hip∞

. (6.1a,b)

Rewriting (2.7) in dimensionless form yields a new expression for cs,i, which, when 
written in our notation, reads

cs,i = µi

µ
− Υi

Λi
. (6.2)

Solving for the concentration in the physical (x, y, z) domain is difficult since the
SCB surface is a moving boundary. Instead, the dimensional Cartesian coordinates
(x, y, z) may be conveniently transformed to a dimensionless toroidal coordinate
system (η, ξ, φ), defined by

x= R sin θ
sinh (θη)

cosh (θη)− cos (θξ)
cos φ,

y= R sin θ
sinh (θη)

cosh (θη)− cos (θξ)
sin φ,

z= R sin θ
sin (θξ)

cosh (θη)− cos (θξ)
.


(6.3)

The contours of the coordinates η and ξ on the x–z (y = 0, φ = 0) plane are shown in 
figure 9. In addition, the coordinate φ is defined as the angle of rotation about the
z-axis. This coordinate system is, of course, orthogonal. The scale factors are

hη = hξ = Rθ sin θ
cosh (θη)− cos (θξ)

,

hφ = R sin θ sinh (θη)
cosh (θη)− cos (θξ)

.

 (6.4)

In these coordinates, the bubble surface lies on the ξ = 1 isosurface regardless of
the instantaneous radius R(t) and contact angle θ(t). The flat plate and infinity lie at
ξ =0. Lastly, η→∞ denotes the triple-contact line while η=0 maps onto the positive

φz-axis (axis of symmetry). Furthermore, the rotational symmetry of the system in
implies that ∂/∂φ = 0. Therefore, one must now only solve for a two-dimensional 
concentration field, n amely c i = ci(η, ξ, τ ) . T he c omputational d omain i s t herefore a 
fixed rectangular domain in (η, ξ ) spanned by η ∈ (0, ∞) and ξ ∈ (0, 1].

The diffusion equation, namely (2.1), may be correspondingly transformed following 
the procedure detailed in appendix B. It is shown to be

∂ci

∂τ
= F

∂ci

∂η
+G

∂ci

∂ξ
+H

(
∂2ci

∂η2
+ ∂

2ci

∂ξ 2

)
, (6.5a)
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FIGURE 9. Contours of the toroidal η, ξ coordinates plotted in the y= 0 (φ= 0) Cartesian
plane, with θ = 60◦.

where F, G and H are space- and time-dependent coefficients given by

F= 1
θ

[
Γi

a2 sin2 θ sinh θη
(1− cosh θη cos θξ)(cosh θη− cos θξ)

]
− η′, (6.5b)

G= 1
θ

[
− Γi

a2 sin2 θ
sin θξ(cosh θη− cos θξ)

]
− ξ ′, (6.5c)

H = Γi

a2θ 2 sin2 θ
(cosh θη− cos θξ)2. (6.5d)

Expressions for η′ and ξ ′ are given in (B 2). The initial condition for the concentration
is simply ci(η, ξ > 1, 0) = 0, and the transformed boundary conditions are

ci|ξ=1 = cs,i, imposition of the interfacial concentration,
∂ci

∂ξ

∣∣∣∣
ξ=0

= 0, no flux across the wall,

∂ci

∂η

∣∣∣∣
η=∞
= 0, no flux across the bubble contact point,

∂ci

∂η

∣∣∣∣
η=0

= 0, symmetry condition across the z-axis.


(6.6)

The no-flux condition across the bubble contact line is imposed for mathematical
convenience. The fact that the area of the contact line is infinitesimally thin means
that mass transfer across it may be neglected. In other words, the final solution will
thus essentially be impervious to the nature of that particular boundary condition.
Moreover, it should be noted that these boundary conditions imply a suitable no-flux
condition at infinity in the physical domain (corresponding to the intersection point
of η→ 0+ and ξ→ 0+ isocontours).
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Once the concentration field is known, the dimensionless molar flow rate µ′i may be 
computed through Fick’s first law, as shown in appendix B. This yields the following 
line integral:

µ′i =−2ΓiΛia sin θ
∫ ∞

0

sinh θη
cosh θη− cos θ

∂ci

∂ξ

∣∣∣∣
ξ=1

dη. (6.7)

The equations for the bubble radius and contact angle dynamics remain unchanged, as 
previously given by (4.7a) and (4.7c).

6.2. ‘Quasi-stationary’ and ‘fixed-particle’ finite-difference approximations
The coefficients F and G in (6.5b) each contain a time-dependent velocity field, namely η′
(η, ξ, τ ) and ξ ′(η, ξ, τ ) respectively. In the upcoming work we shall set
η′ = 0 and ξ ′ = 0 on the grounds that the contribution of these terms is small –
this constitutes the quasi-stationary approximation. This is equivalent to imposing
a ‘scaling advection’ term, US · ∇Ci, in the diffusion equation (2.1) and solving it 
thereafter. Physically, this translates to fluid p articles h aving t he s ame v elocity as 
that of our R(t) and θ(t) scaling coordinate system. In fact, the velocity field turns
out to be US = −hηη̇ êη − hξ ξ̇ êξ . This field i s n on-physical: p articles a t t he SCB 
interface will rightly have the interface velocity, but as we move away from the 
bubble, particles have increasing velocity as opposed to the decreasing velocity one 
would expect from continuity. This means that particles at infinity e ssentially move 
with infinite v elocity. F ortunately, m ass t ransfer i s d ictated b y t he g radients a t the 
interface, where the scaling advection velocity, US(η, 1, τ ), equals the real advection 
velocity, i.e. the interface velocity. Moreover, the finite-difference quasi-stationary 
solution allows for a faithful comparison with the previous solutions presented in § 4 
based on the same approximation.

On the other hand, keeping η′ and ξ ′ in the expression is evidently consistent with 
rigorously solving (2.1), i.e. the diffusion equation strictly without advection. The 
consequence is that all fluid p articles, e ven t hose a t t he i nterface, a re d eprived of 
any velocity in the physical domain. In other words, particles are forced to remain 
fixed i n s pace a lways, w hence t he t erm ‘ fixed-particle’ ap proximation. In  summary, 
retaining these terms while neglecting the real advection is highly incongruent and 
defies m ass c onservation –  a  m oving b oundary f orcefully i mplies t he m ovement of 
neighbouring fluid p articles –  w hich u ltimately m ay l ead t o s ignificant ph ysical errors.

These observations lead to the conclusion that the true solution, should the 
real velocity field b e k nown, w ill l ie w ithin t he q uasi-stationary a nd fixed-particle 
solutions.

6.3. Comparison of solutions and experiment
Recalling the previous results presented in § 4.2, the finite-difference solution was 
likewise tested by modelling the same experimental scenarios. Equation (6.5) was

η
solved

0.0001,
numerically

10 and
on
ξ 

a 200
0. 
×

0001,
100

1 . A
equispaced

first-order
grid

backw
in t he

ard-time
(η, ξ )

scheme
plane,

and
with

a ∈ [ ] = [ ] 
second-order centred-space scheme were used.

Figure 10 depicts the evolution of the CO2 concentration field at the early stage 
of the dissolution process. It is computed using the input parameters corresponding to 
SCB g2. The diffusive symmetry of this binary problem implies that the dimensionless
concentration field f or a ir ( i =  2 ) i s i dentical t o t he o ne s hown f or C O2 ( i =  1),
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FIGURE 10. Contours of c1, the dimensionless CO2 concentration field, o btained when
modelling SCB g2. Since C∞,1 = 0, c1 is equivalent to the CO2 saturation fraction in the 
water. Contours are plotted at dimensionless times (a) τ = 0.01, (b) τ = 0.06 and (c) τ = 
0.15. The outermost contour shown is for c1 = 0.02, while the adjacent contour is for 
c1 = 0.1. The rest of the contours represent an increase in c1 of 0.1; the SCB surface 
(thick grey line) is at c1 = cs,1(τ ).

except that the values of the contours are negative: c2 = −0.02 lies on c1 = 0.02, 
etc.; c2 = 0 denoting saturation conditions. As may be noted from the evolution of the 
field c ontours f rom p lot ( b) t o ( c), t he d iffusive b oundary l ayer i s s trongly advected 
towards the bubble, especially in the top region where the interface velocity is greatest. 
This is a consequence of the implicit scaling advection present in the quasi-stationary 
finite-difference a pproximation. A ny c ontour s ufficiently fa r aw ay fr om th e bu bble is 
therefore expected to differ noticeably from the real solution.

In figure 11, the finite-difference solution is compared with previous experimental 
results and solutions from the original model. Both methods appear to be in close 
agreement, thus numerically confirming the validity of determining mass transfer 
through (4.7b). In addition, the quasi-stationary approximation, regardless of the 
method, proves to suitably predict the dynamics of dissolving bubbles subject to 
sufficiently mild driving forces. In such a  case, t he magnitude of t he d isparity between 
the implicit scaling advection and the real advection is small, and consequently has 
little effect on the bubble dynamics.

7. Conclusions
This work has addressed the fundamental problem of the diffusion-driven dissolution

of a sessile SCB adhered to a flat homogenous surface. These bubbles are characteri-
zed by having contact angles much greater than zero. It is no surprise to find
that the contact angle dynamics plays an important role in the bubble dissolution
rate. In particular, we have performed experiments on the dissolution of CO2
bubbles immersed in air-saturated water adhered to collagen-coated glass and PMMA
substrates.

A quasi-stationary dissolution model for multicomponent SCBs has been devised,
whose solutions have been compared with experimental data. The quasi-static contact
angle behaviour is dictated by a simplified model based on the results obtained from
adhesion hysteresis. Mass transfer of gas species across the bubble interfaces (Fick’s
first law) has been computed through two methods.

(a) The concentration field is approximated as spherically symmetric. The effect of
the impermeable substrate is treated as a reduction in the SCB area available for
mass transfer based on a boundary layer–plate interaction model,

19

https://doi.org/10.1017/jfm.2015.291
https://www.cambridge.org/core/terms


a

0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0(a) (b)

0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

FIGURE 11. Dimensionless radius a versus dimensionless time τ . The solutions computed 
by the finite-difference method (FD) are compared with experimental results for (a) SCB 
p2 and (b) SCB g2. The previous solutions from figure 6 are also shown, where mass 
transfer is given by (4.7b), i.e. considering a spherically symmetric concentration field 
alongside an area reduction treatment (SAR).

(b) A finite-difference m ethod i s d eveloped i n t oroidal c oordinates, w here the
concentration field is explicitly solved for, confined to the real geometry and
subject to the real boundary conditions.

Both methods yield very close solutions – the evolution in time predicted for 
the SCB radius and contact angle compares very well with the experimental data. 
In addition, we have presented approximate analytical solutions that shed valuable 
insight on the nature of the diffusive processes that dictate the dissolution dynamics.

To conclude, a proper understanding and modelling of this fundamental problem 
may be regarded as the essential initial stage towards studying more realistic scenarios 
where bubbles are subject to higher degrees of confinement. A n e xample w ould be 
bubble trapping in the pore spaces of underwater permeable strata.
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Appendix A
A.1. Short-time solution procedure

The assumptions bluntly translate to setting µ1 = µ and µ′2 = 0. Equation (4.7a)
becomes

a′ =−β1

β2
Γ1Λ1

(
1
a
+ 1√

πΓ1τ

)
. (A 1)

The exact solution to this differential equation may only be conveniently expressed in 
parametric form (Epstein & Plesset 1950). Conversely, we shall derive an approximate
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solution of a(τ ) via a simple iterative approach. The term 1/
√

πΓ1τ is dominant at
the very initial instants of time. The term 1/a dominates after some time has elapsed,
in which case (A 1) approximates to

a′ =−β1

β2

Γ1Λ1

a
. (A 2)

Integrating this equation subject to the initial condition a(0)= 1 yields an expression
for a(τ ):

a=
(

1− 2
β1

β2
Γ1Λ1τ

)1/2

=√1−Ωτ. (A 3)

Inserting this expression into (A 1) leads to an improved differential equation as given 
in (5.1).

A.2. Long-time solution procedure
Equation (4.7b) may be rewritten in terms of the mole fraction x2 as follows:

µ′1 =−β1aΓ1Λ1(1− x2), µ′2 = β1aΓ2Λ2(1− x2). (A 4a,b)

From the definition of µi, it follows that µ=V/πR3
0= β2a3/3. Consequently we have

µ′ = β2a2a′ = β1

β2
a(Γ2Λ2 − Γ1Λ1)(1− x2). (A 5)

An ordinary differential equation for x2 is readily available since

x′2 =
(
µ′2
µ
− x2

µ′

µ

)
= 3

β1

β2
Γ2Λ2(1− x2)

[
1−

(
1− Γ1Λ1

Γ2Λ2

)
x2

]
. (A 6)

′
2Using the chain rule a′ = x da/dx2 on (A 5) yields

da
dx2
= a

3

(
1− Γ1Λ1

Γ2Λ2

) [
1−

(
1− Γ1Λ1

Γ2Λ2

)
x2

]−1

. (A 7)

Integrating (A 7) subject to the initial condition a(x2 = 0) = 1 gives

a=
[

1−
(

1− Γ1Λ1

Γ2Λ2

)
x2

]−1/3

, (A 8)

wherefrom follows an expression for the final equilibrium radius:

aeq = a(x2 = 1)=
(
Γ2Λ2

Γ1Λ1

)1/3

=
(

D2H2

D1H1

)1/3

. (A 9)

Finally, inserting (A 8) into (A 5) results in (5.3).
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Appendix B
B.1. Non-dimensionalization of the diffusion equation

Recalling that R = R0a, the contours of η and ξ satisfy the following inverse relations

(Arfken 1970):

coth (θη)= x2 + y2 + z2 + R2
0a2 sin2 θ

2R0

√
x2 + y2a sin θ

, (B 1a)

cot (θξ)= x2 + y2 + z2 − R2
0a2 sin2 θ

2zR0a sin θ
. (B 1b)

Differentiating (B 1a) and (B 1b) independently with respect to τ yields

η′ =−θ
′

θ
η+ 1

θ

(
a′

a
+ θ ′ cot θ

)
sinh θη cos θξ, (B 2a)

ξ ′ =−θ
′

θ
ξ + 1

θ

(
a′

a
+ θ ′ cot θ

)
cosh θη sin θξ . (B 2b)

The partial time derivative term in (2.1) expands as the material derivative in (η, ξ ),

∂

∂t
Ci(x, y, z, t) = Hip∞

dτ
dt

D
Dτ

ci(η, ξ, τ )

= DmHip∞
R2

0

(
∂ci

∂τ
+ η′ ∂ci

∂η
+ ξ ′ ∂ci

∂ξ

)
. (B 3)

Making use of the scale factors defined in (6.4), the remaining term containing the 
Laplacian transforms to

∇2Ci(x, y, z, t) = Hip∞∇2ci(η, ξ, τ )

= Hip∞
hηhξhφ

[
∂

∂η

(
hξhφ
hη

∂ci

∂η

)
+ ∂

∂ξ

(
hφhη
hξ

∂ci

∂ξ

)]
= Hip∞

a2R2
0 sin2 θ

[
1
θ 2
(cosh θη− cos θξ)2

(
∂2ci

∂η2
+ ∂

2ci

∂ξ 2

)
+ 1
θ sinh θη

(1− cosh θη cos θξ)(cosh θη− cos θξ)
∂ci

∂η

− 1
θ

sin θξ(cosh θη− cos θξ)
∂ci

∂ξ

]
. (B 4)

The dimensionless diffusion equation, (6.5), follows immediately.

B.2. Evaluation of the surface integral
The unit vector n̂ introduced in (2.8) points normally outwards from the SCB surface and 
is in fact equal to −êξ . Making use of the identities

n̂ dS=−êξ dSξ =−hηhφ dη dφ êξ , (B 5)

∇Ci =Hip∞

(
1
hη

∂ci

∂η
êη + 1

hξ

∂ci

∂ξ
êξ

)
(B 6)
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and recalling that the bubble surface S lies on the ξ = 1 isosurface, we can expand
(2.8) as follows:

ṅi = −DiHip∞

∫ 2π

0

∫ ∞
0

[
hηhφ
hξ

∂ci

∂ξ

]
ξ=1

dη dφ

= −2πDiHip∞R sin θ
∫ ∞ sinh θη

cosh θη− cos θ
∂ci

∂ξ

∣∣∣∣
ξ=1

dη. (B 7)
0

Non-dimensionalizing (B 7), namely through

µ′i =
R̄T∞

πR0p∞Dm
ṅi, (B 8)

finally results in (6.7).
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