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Robust Aircraft Trajectory Planning under Wind

Uncertainty using Optimal Control
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Uncertainty in aircraft trajectory planning and prediction generates major chal-

lenges for the future Air Traffic Management system. Therefore, understanding and 

managing uncertainty will be necessary to realize improvements in air traffic capacity,

safety, efficiency and environmental impact. Meteorology (and, in particular, winds) 

represents one of the most relevant sources of uncertainty. In the present work, a 

framework based on optimal control is introduced to address the problem of robust

and efficient trajectory planning under wind forecast uncertainty, which is modeled 

with probabilistic forecasts generated by Ensemble Prediction Systems. The proposed 

methodology is applied to a flight p l anning s c enario u n der a  f r ee-routing operational

paradigm and employed to compute trajectories for different sets of user preferences, 

exploring the trade-off between average flight cost and p r edictability. Results show how 

the impact of wind forecast uncertainty in trajectory predictability at a pre-tactical

planning horizon can be not only quantified, b ut a l so r educed t hrough t he application 

of the proposed approach.
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I. Introduction

The Air Traffic Management (ATM) system is nowadays too rigid and inefficient. An ATM 

paradigm shift is being fostered by different national/regional programs, such as SESAR1 in Eu-

rope, NextGen2 in the United States, or CARATS in JAPAN, aimed at delivering improvements in 

the Key Performance Areas of capacity, efficiency, safety, and environmental impact. A common fea-

ture is the replacement of the highly structured current ATM system with a more trajectory-centric 

framework where airspace users will enjoy greater flexibility i n the design o f t r ajectories. Therefore, 

the trajectory will become the key element of a new set of operating procedures collectively known 

as Trajectory-Based Operations (TBO). The cornerstone of the TBO concept is the “business tra-

jectory” (in SESAR terminology), which evolves out of a collaborative and layered planning process 

where the business trajectory is planned, shared, agreed, and modified w hen n ecessary i n  o rder to 

meet airline business interests while respecting capacity constraints.

Optimal control has been shown to be a powerful framework for the generation of optimized 

flight profiles within the mentioned pr ocess.3 Considering wind forecasts is essential in efficient flight 

planning due to the high impact wind has in trajectory performance and cost. Several approaches 

for finding optimal trajectories using wind forecast data have been introduced in the 

literature, including analytical optimal control, e.g., [1–4], dynamic programming, e.g., [5], and 

numerical optimal control with direct methods, e.g., [6, 7]. However, these works rely on 

deterministic wind forecasts and do not consider uncertainty.

Understanding and managing uncertainty is necessary in order to increase ATM predictability, 

which is a key driver of ATM performance [8, Chapter 4]. Uncertainty generates major challenges 

for TBO, and meteorological uncertainty has been identified a s  o ne o f  t he m o st i mpactful sources 

of uncertainty influencing t h e t  r ajectory. I n  o u r v  i ew, n o t e n ough a t tention h a s b  e en p a id to 

uncertainty in en-route meteorology at the planning stage.

In the context of meteorological forecasting, uncertainty is a fundamental feature, and its sources 

range from uncertainty in initial and boundary conditions to uncertainties in the modelization of

1http://www.sesarju.eu/vision
2https://www.faa.gov/nextgen/
3 We consider a pre-tactical horizon of around 3 hours before departure.
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atmospheric processes and computational limitations. These factors are amplified by n onlinear and 

sometimes chaotic dynamics, and the resulting uncertainty limits the usefulness of single determin-

istic forecasts. In response to this challenge, Ensemble Prediction System (EPS) were developed by 

the Numerical Weather Prediction (NWP) community with the aim of providing probabilistic fore-

casts and estimate the magnitude and shape of this uncertainty at a regional and global scale and a 

short and medium-range time horizon. An EPS is composed by a set of around 10 to 100 “ensemble 

members”, that is, simulations produced with different perturbations of the initial conditions or the 

parameters of the physical processes. EPS have been one of the pillars of the improvement in NWP 

accuracy for the last decades [9]. While EPS forecasts have started to be employed in ATM research 

[10], little usage has been made of them in a trajectory planning and optimization context. To the 

best of our knowledge, the only exception is the work of [11, 12], where EPS forecasts are employed 

in order to build a “Probabilistic Trajectory Prediction” system.

There is, therefore, a gap between deterministic wind-optimal trajectory planning based on op-

timal control, on one hand, and meteorological uncertainty modeling through the use of EPS on the 

other. This motivates the goal of the present work: to develop EPS-based optimization methodolo-

gies to quantify and reduce the effects of meteorological uncertainty, improving the predictability of 

aircraft trajectories while maintaining acceptable levels of efficiency.

Methods for integrating nonlinear uncertainty in optimal control can be grouped in three main 

approaches. We refer to the first as the “Uncertainty Quantification + Optimal Control” (UQ+OC) 

method. It employs a non-intrusive generalized Polynomial Chaos rule[13] to determine a set of values 

of the uncertain parameters and their associated weights. A standard deterministic OCP is solved for 

each of these values; then, the solution is statistically characterized using the Polynomial Chaos rule. 

Once the uncertainty in the parameters has been resolved, the (now deterministic) optimal solution 

can then be interpolated from these precomputed solutions in a computationally inexpensive form 

(see a sketch of this methodology in Figure 1.a). It is, therefore, an effective approach if the actual 

control rule is needed after the uncertainty has been realized; otherwise, it does not generate a clearly 

defined control rule. There are some successful examples of the application of this 

methodology in aerospace research: in [14], an aerospace vehicle is optimally

3



Execution interval

OCP
Calculation

Decision
implementation

Uncertainty duration

(a) Uncertainty Quantification OCP

Execution interval

Uncertainty duration

OCP
Calculation

Decision
implementation

(b) Robust OCP

Execution interval

Uncertainty duration

OCP
Calculation

Decision
implementation

(c) Stochastic OCP

Fig. 1 Robust and stochastic optimal control methodologies.

routed in an environment with uncertain threats; in [15], it is employed for conflict-free 4D trajectory 

optimization.

In a “robust” or “tychastic” methodology, a discrete set of values for the uncertain variables 

is again determined by a Polynomial Chaos rule (though other possibilities exist, such as the cu-

bature approach of [16]). An augmented dynamical system is built by stacking one copy of the 

state variables for each computed value of the uncertain parameters. Then, an optimal control 

problem is formulated in order to search for the control sequence that minimizes a probabilistic 

functional that aggregates the cost among all of the trajectories (see Figure 1.b). Some examples of
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aerospace applications employing this technique are robust trajectory optimization for an aircraft 

based on dynamic soaring [17, Chapters 2, 3], trajectory optimization for a supersonic aircraft with 

uncertainties in the aerodynamic data [18] and optimization of a spacecraft reorientation maneuver 

[16].

A final f r amework, w h ich w e  r e fer t o  a s  “ s tochastic o p timal c o ntrol”, m o dels t h e s y stem a s  a 

Stochastic Differential Equation (SDE), where the uncertainty is now a dynamic variable and the 

state vector evolves according to the SDE [19, Chapter 11]. A stochastic optimal control problem can 

be defined f or a  c ontrolled S DE; h owever, t he s o lution t o  t his p roblem i s  n o  l onger a  deterministic 

control sequence u(t) as in the previous approach, but a closed feedback law u = u(t, Xt) depending 

on the state. While the simplified l i near-quadratic v e rsion o f  t h is p r oblem a s  b e en extensively 

explored in the literature (as its deterministic version), practical numerical methods for the solution 

to a general stochastic optimal control problem are at an early development stage (see [20] and 

references therein). In the aviation field, only discretized versions (Markov Decision Processes) of 

this problems have been considered (see [21]), but not in a planning context. See Figure 1.c) for a 

diagram of the method.

In the scope of this work, the most suitable methodology is the “robust” or “tychastic” approach. 

There are three main reasons for this choice: first, one cannot assume that meteorological uncertainty 

has been fully realized at the pre-tactical stage, so we have not considered the UQ+OCP approach; 

in second place, the uncertain model of the wind provided by an EPS fits t h e r obust formulation 

better than an SDE-based modelization; and, finally, the fixed operation law that is  produced as  the 

solution to a robust OCP fits c urrent a nd i ncoming o p erational p r ocedures i n  ATM b e tter t han a 

feedback policy produced by solving a stochastic OCP, which would demand continuous flight plan 

modifications.

Thus, the contributions of the paper are threefold: in first p l ace, w e  g e neralize t h e “robust 

optimal control” methodology to a wider class of problems, such as the ones generated in aircraft 

trajectory planning (direct application is not possible for the reasons discussed in Section II B). In 

second place, we develop a formulation of the problem of generating flight p lans t hat a re optimized 

for efficiency and predictability that integrates this methodology with EPS forecasts. Finally, we
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show that this method can be used to increase predictability at the planning stage in free-routing 

scenarios as well as potential future concepts. Early results from this research were presented in 

[22].

The paper is structured as follows: we describe the employed methodology in Section II and 

the application to the trajectory optimization problem with EPS-derived uncertainty and current 

operational concepts in Section III. We extend the methodology under a potential future concept 

in Section IV. We present results for a case study in Section V and conclude with a brief discussion 

of the work and its implications in Section VI.

II. Methodology
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In this section, we describe the robust optimal control framework that we will employ. We introduce 

the dynamical system formulation with uncertainties in Sections II A and II B, and define the robust
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optimal control problem in Section II C. Then, in order to discretize the uncertainty, we introduce the 

“stochastic quadrature rules” in Section II D and the corresponding “trajectory ensemble” in Section 

II E. We finally use the trajectory ensemble to discretize the robust optimal control problem into a 

larger deterministic optimal control problem in Section II F, which can then be solved with standard 

techniques for deterministic optimal control. Figure 2 illustrates the relationships between the 

different components of the methodology, as well as the relevant sections for each part.

A. Dynamical system formulation

We consider a class of dynamical systems defined by a  randomly parametrized ODE (Ordinary 

Differential Equation) with the addition of algebraic variables and constraints. This class of systems 

are called tychastic dynamical systems in [16] and related work. Uncertainty is described with the aid 

of a standard Kolmogorov probability space (, F , P ); it is composed by a sample space of possible 

outcomes , a σ-algebra of events F containing sets of outcomes, and the probability function P 

that assigns a probability to each of these events. The uncertain parameters of the system will be 

modeled as a continuous random variable ξ : → Rnξ that we assume to be constant in time. For 

each possible outcome ω ∈ , the random variables take a different value ξ(ω).

We denote the state vector by x ∈ Rnx , the control vector by u ∈ Rnu , the algebraic variables by 

z ∈ Rnz and t ∈ R is the independent variable (usually time). For each outcome ω0 ∈ , there exist 

a unique trajectory path t → (x(ω0, t), z(ω0, t), u(ω0, t)) that corresponds to the realization of the 

random variables ξ(ω0). The dynamics of the system are given by the functions f : Rnx ×Rnz ×Rnu × 

Rnξ × R → Rnx , h : Rnx × Rnz × Rnu × Rnξ × R → Rnh , and g : Rnx × Rnz × Rnu × Rnξ × R → Rng , 

such that valid trajectories fulfill the conditions almost surely ( i.e. with probability 1) 4:

d

dt
x(ω, t) = f(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t), (1)

h(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t) = 0, (2)

gL ≤ g(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t) ≤ gU , (3)

4 The ≤  sign applies in an element-wise fashion in Equation (3) and analogous equations.
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where gU − gL > 0 elementwise and nz ≤  nh. Thus, for each possible realization of the random 

variable ξ(ω), the trajectory will follow the deterministic differential-algebraic equations (1) and (2) 

inside the regions of state space allowed by the constraints (3) 5. We have employed the notation x(ω, 

t) to emphasize the dependence of the trajectories on the random variables; henceforth, we may use 

the abbreviated notation x for improved clarity.

In order to fully determine the trajectory, we need both the realization of the uncertain param-

eters ξ and a control or guidance law that completely determines the controls at each t, for each 

possible outcome ω. We address this topic in Section II B.

B. The state-tracking formulation

In previous literature employing this approach (see [16], [18] or [23]), the control law is considered 

as only dependant on time u = uF (t), thus leading to an “open-loop” control scheme where the 

controls are equal in each scenario (i.e. u(ω1, t) = u(ω2, t) ∀ω1, ω2 ∈ ).

This “open-loop” formulation is, however, not a practical scheme for all general optimal control 

problems. In some problems, the dynamic system could be unstable and the trajectories would 

diverge towards undesirable regions of the state space; in others (such as the one we face in com-

mercial aircraft trajectory optimization), it is necessary to apply final c o nditions a n d/or h a ve a 

unique trajectory for some of the states. In an aircraft trajectory planning context, one needs to 

find a  u n ique p a th i n  l a titude a n d l o ngitude t h at e n ds a t  a  s p ecified po in t in  sp ac e, as  we ll  as  a 

fixed a irspeed schedule.

Instead of looking for an optimal control, then, we will look for an optimal guidance: we designate 

some of the states as “tracked” states and we replace the unique controls uF (t) that are applied 

identically in all scenarios by scenario-specific c ontrols u(ω, t )  t hat e n sure t hat t h e t r acked states 

follow a unique trajectory for all scenario values of the random variables, as long as it is feasible 

within the dynamics and constraints of the problem and the random variables are bounded. This 

is only appropriate for practical problems where the actual system has low-level controllers that

5 Note that this system is a special case of a stochastic differential equation in the sense of [19, Chapter 2] where

the random parameters are not random processes, i.e., are constant. This motivated [16] to employ the term 

“tychastic”, proposed in earlier work, to facilitate the distinction.
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can track the desired trajectory in real time at a shorter timescale than that of the optimal control

problem. In our practical context (long-range trajectory planning), the autopilot can compute the

controls that are needed for the aircraft to follow a route at the calculated airspeeds and altitudes,

and the omission of the short-term control dynamics (by assuming that the states are tracked

exactly) does not introduce a significant error in performance.

We define the number of “control degrees of freedom” of the dynamical system as d = nz +nu−

nh. Let qx ≤ min{nx, d} be the number of tracked states; without loss of generality, we can assume

that the tracked states are the first qx states (rearrange the state vector otherwise), i.e.

x =
[
x1 . . . xqx xqx+1 . . . xnx

]T

=

xq

xr

 ,

where xq is the tracked part of the state vector and xr is the untracked part. Let In be the

identity matrix of shape n × n and 0n1,n2 be the zero matrix (i.e. a matrix with zeroes in all its

entries) of shape n1 × n2. We define the matrix Ex ∈ Rqx×nx as

Ex =
[
Iqx 0qx,nx−qx

]
.

This matrix transforms the state vector into the “tracked states” vector xq = Exx that contains

only the states whose evolution is equal in all scenarios. In general, other combinations of states

(represented by a general full-rank tracking matrix Ex that is not built as we have described, or

even an analogous nonlinear transformation Ex(·)) could also be tracked.

As emphasized earlier, controls are no longer unique for all scenarios. However, in order to

completely determine the value of the controls at each moment, we need to close the remaining

d− qx degrees of freedom. We can do that by selecting qu controls and qz algebraic variables to be

equal in all scenarios (as in the “open-loop” problem), as long as qx + qu + qz = d. In analogous

fashion as Ex, we can define the tracking matrices Ez and Eu in order to select the tracked algebraic

variables and controls. The tracking scheme is then completely defined by the tuple {qx, qz, qu} and

a rearranging of the dynamic system in the manner described above (i.e. tracked variables before

untracked variables).
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With the aid of the tracking matrices, we can now define the tracking conditions (which, again,

apply almost surely):

Ex(x(ω1, t)− x(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω,

Ez(z(ω1, t)− z(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω,

Eu(u(ω1, t)− u(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω.

(4)

The tracking conditions enforce equality in the tracked variables between realizations: note that 

Ex(x(ω1, t) − x(ω2, t)) is the vector of differences between the tracked states in outcome ω1 and the 

tracked states in outcome ω2. The other two conditions are analogous tracking conditions for the 

dependent variables and the controls.

For an arbitrary dynamic system with uncertain parameters, not every tracking scheme of this 

form is necessarily feasible; indeed, it is trivial to build examples where there are no values of 

the untracked controls and algebraic variables that fulfill t he d ynamic e quations a long a  tracked 

trajectory for certain values of the uncertain parameters, or examples where there are several or 

infinite values that do (therefore leaving the controls undetermined during operation of the system). 

We discuss this condition for linear systems in the Appendix.

Note that the “open-loop” robust control formulation employed in [16, 18, 23][17, Chapter 2] 

constitutes a special case of this formulation, with qx = qz = 0.

C. Definition of the Robust Optimal Control Problem with Tracking

Let E[·] be the expectation operator associated to the probability space (Ω,F , P ). We define

the terminal cost or ‘Mayer term” Φ : R×R×Rnx×Rnx → R, the running cost or “Lagrange term”

L : Rnx × Rnz × Rnu × Rnξ × R→ R. We define the cost functional to minimize as:

J = E
[
Φ(t0, tf ,x(t0),x(tf )) +

∫ tf

t0

L(x, z,u, ξ, t)dt
]
. (5)

We define the non-anticipative initial conditions function Ψ0 : Rnξ×R→ Rnx−qx . This equation

specifies the value of the untracked states as a function of the uncertain parameters, therefore
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allowing for uncertainty in the initial conditions:

xr(t0) = Ψ0(ξ, t0) (6)

If the initial conditions are known with certainty (as we will assume in Section III), thenΩ0(ξ, t0) =

xr,0.

We also define the function Ψ : R×R×Rnx ×Rnx → R that contains the remaining boundary

conditions:

E [Ψ(t0, tf ,x(t0),x(tf ))] = 0. (7)

While these conditions are imposed in average, the ones that depend only on tracked states

collapse to boundary conditions that are imposed exactly (as the value of the tracked states at the

endpoints is unique); otherwise, they remain probabilistic constraints.

The objective J and the boundary conditions Ψ are written in terms of mean value, but they

can be easily generalized to other statistics under the expected value formulation. For example,

the variance of a function G(ξ) can be written as E[(G − E[G])2] = E[G2] − E[G]2 using expected

values.

We also group the differential-algebraic equations and constraints (1) (2) (3):

d

dt
x = f(x, z,u, ξ, t),

h(x, z,u, ξ, t) = 0,

gL ≤ g(x, z,u, ξ, t) ≤ gU .

(8)

The robust optimal control problem with tracking (ROCT) can now be defined as:

minimize J(5)

subject to differential-algebraic equations (8)

boundary conditions (7) 

tracking conditions (4)


(ROCT)
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D. Stochastic quadrature rules

In order to solve Problem (ROCT), we will approximate the uncertain parameters with a dis-

crete probability distribution. We define a  “stochastic quadrature rule” (SQR) as a  procedure that 

generates a finite set of quadrature points {ξk}, k  ∈  {1, . . . , N } and weights {wk}, k  ∈  {1, . . . , N}, 

such that we can build an approximation6 to a stochastic integral I = E[G(ξ)] = 
∫ 
G(ξ)dP with

the sum:

QG =
N∑

k=1
wkG(ξk). (9)

where G(ξ) is a well-behaved function. Basic statistical quantities, such as averages and vari-

ances, can be obtained with this integral by the corresponding function choices 7. There are a num-

ber of approaches with different approximation techniques that can provide a stochastic quadrature 

rule; depending on the problem and the desired approximation precision, different SQRs might be 

best. The ideal SQR can reach the desired approximation accuracy with a low N , because the size 

of the discretized robust optimal control problem grows linearly on N (as it can be observed in 

Section II F). We list here some examples of SQR classes:

1) In Monte Carlo methods, the points ξk are randomly sampled from the probability distribution

and weighted equally (wk = N−1). Under mild assumptions on G, the approximation error of

the integral converges asymptotically at an O(1/
√
N) rate. This implies that precise solutions

can easily become computationally expensive; common practice in Monte Carlo simulations

is to use a N of 104 to 105. Its main advantages are its simplicity and the fact that the

asymptotic rate of convergence is independent of the dimension of ξ.

2) Quasi-Monte Carlo methods are similar to Monte Carlo methods, but the random samples

are replaced by a deterministic low-discrepancy sequences that sample the outcome space in

6 Naturally, we expect the discrete approximation to converge to the true value as N →∞
7 e.g. the variance of γ = G(ξ) can be computed as

E[γ2]− (E[γ])2 =
N∑

k=1

wkG(ξk)2 −
N∑

k=1

wkG(ξk)

)2

.
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a more even manner [24]. For certain problems, a rate of convergence of O (1/N) (faster than 

Monte Carlo) is observed; several explanations have been advanced in the literature [25][26].

3) Generalized Polynomial Chaos (gPC) methods rely on the expansion of the random inputs and

outputs on an orthogonal polynomial basis, thus allowing for recovery of some statistical

quantities directly from the expansion coefficients [13] [27]. The nonintrusive stochastic collo-

cation is the gPC variant that is useful for robust optimal control: it characterizes the output as

an interpolant at the set of nodes {ξk}. It is efficient for problems with low-dimensional random

variables [28], but the number of required nodes grows quickly with the dimension of the

uncertain parameters even when using higher-efficiency sparse grids [29]. It can also be

combined with kriging techniques [15].

4) Cubature techniques are high-dimensional analogues of regular one-dimensional quadrature

rules that look for exact approximation of certain classes of functions. A compilation of cuba-

ture rules can be found in [30] and [31]. Their scaling and accuracy characteristics are similar

to stochastic collocation gPC. The “Hyper-Pseudospectral” cubature scheme introduced in

[16] was specifically developed for robust optimal control problems: it looks to find the most

efficient (in a certain sense) N points and weights for a given probability distribution.

5) Empirical distributions and opportunity discretizations: in certain practical settings, it might

be the case that the uncertain parameters are already characterized as a discrete distribution:

for example, if they are empirically estimated by a discrete set of measurements or simulated

from a relatively small number of scenarios. EPS forecasts can be classified in this latter

category, and we therefore use them “as given” with no other preprocessing (with equal weights

for each member).

E. The trajectory ensemble

Let xq(t) : R→ Rqx define a trajectory for the tracked states, and zq(t) and uq(t) analogously.

Suppose a SQR has been chosen, with a number of points N . For each one of these points ξk, the

tracking trajectory (xq, zq,uq)(t) defines a unique trajectory given a full set of initial conditions; we

will now collect each one of these N trajectories in a trajectory ensemble. We define the trajectory
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ensemble associated to a tracking trajectory (xq, zq,uq)(t) as the set of trajectories {(xk, zk,uk)(t)}

with k ∈ {1, . . . , N} such that the trajectory k is generated by the initial conditions xk(t0) = x0

and the tracking trajectory with ξ = ξk, i.e.

d

dt
xk = f(xk, zk,uk, ξk, t),

h(xk, zk,uk, ξk, t) = 0,

gL ≤ g(xk, zk,uk, ξk, t) ≤ gU ,

Exxk(t) = xq(t),

Ezzk(t) = zq(t),

Euuk(t) = uq(t).

(10)

Note that the last three equations equate the tracked variables to their value in the tracked

trajectory and thus we will not need to incorporate the tracking conditions yet.

We can now build an augmented dynamical system that comprises all of the trajectories in

the trajectory ensemble, whose state (xE ∈ RnxN ), control (uE ∈ RnuN ) and algebraic variables

(zE ∈ RnzN ) contain the state, control and algebraic vectors of all the trajectories in the trajectory

ensemble:

xE =


x1

...

xN

 ; zE =


z1

...

zN

 ; uE =


u1

...

uN

 . (11)

We define the differential equation, algebraic equations and inequality constraints of this aug-

mented dynamical system as:

fE(xE , zE ,uE , t) =


f(x1, z1,u1, ξ1, t)

...

f(xN , zN ,uN , ξN , t)

 , (12)
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hE(xE , zE ,uE , t) =


h(x1, z1,u1, ξ1, t)

...

h(xN , zN ,uN , ξN , t)

 , (13)

gE(xE , zE ,uE , t) =


g(x1, z1,u1, ξ1, t)

...

 . (14)

g(xN , zN , uN , ξN , t)

Note that, while this augmented dynamical system represents (approximately) a system with 

uncertainty, it is a deterministic system. This means that we can use it to formulate a deterministic 

optimal control problem that approximates Problem (ROCT).

F. ROCT discretization with the trajectory ensemble

We now proceed to build such a deterministic approximant to Problem (ROCT), which we will 

call DROCT (Discretized ROCT). Using the trajectory ensemble and the SQR, we define the Mayer 

and Lagrange terms of the Problem (DROCT) as follows:

JE = ΦE(xE(t0),xE(tf )) +
∫ tf

t0

LE(xE , zE ,uE , t)dt, (15)

ΦE(xE(t0),xE(tf )) =
N∑

k=1
wkφ(xk(t0),xk(tf )), (16)

LE(xE , zE ,uE , t) =
N∑

k=1
wkL(xk, zk,uk, t); (17)

and discretize the boundary conditions as

ΨE(t0, tf ,xE(ω, t0),xE(ω, tf )) =
N∑

k=1
wkψ(xk(tf )). (18)
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EN
x

For concise writing of the discretization of the tracking conditions (4), we will define the matrix ∈ 

Rqx(N−1)×nxN . as:

EN
x =


Ex

. . .

Ex





Inx −Inx

Inx −Inx

. . . . . .

Inx −Inx


. (19)

EN
z ∈ Rqz(N−1)×nzN and EN

u ∈ Rqu(N−1)×nuN can be defined in analogous fashion. These

matrices map the ensemble state vector to the differences in the tracked states between trajectories.

Making use of Equations (10) - (14) as well as Equations (15) - (19), we can complete now the 

formulation of the deterministic approximant:

minimize JE

subject to ẋE = fE(xE , zE ,uE , t)

hE(xE , zE ,uE , t) = 0

IGgL ≤ gE(xE , zE ,uE , t) ≤ IGgU

EN
x xE = 0

EN
z zE = 0

EN
u uE = 0

E(t0, tf ,xE(ω, t0),xE(ω, tf )) = 0



(DROCT)

where IG = [Ing . . . Ing ]T ∈ RngN×ng .

x xE Ez zE Eu uE

This optimal control problem can now be solved with standard deterministic direct methods 

(see, for example, of [32, Chapter 4] or [33, 34]). From the point of view of implementation, 

defining and modeling the tracked variables in every scenario is not necessary as they are equal; as a 

consequence, implementation of the tracking constraints EN = 0, N = 0 and N = 0 can

also be omitted. The resulting formulation constitutes the “compact form” of Problem (DROCT). 

Note that the size of this problem is proportional to both N and the dimension of the tychastic
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dynamical system minus the number of tracked variables (if N � 1), with the number of variables 

being O(N(nx + nh)) (in the compact form) and the number of function evaluations (of f , g, h 

and L) per node being O(N(nx + nh + ng + 1)). That is, a DROCT is approximately N times 

larger than a similar deterministic problem, but it preserves the linear scaling of the problem size 

on the dimension of the state space that represents a core advantage of numerical optimal control. 

Therefore, it avoids the “curse of dimensionality”, i.e., the exponential scaling of the problem size 

and cost on the dimension of the state space that appears in dynamic programming.

While we will not do so, it is possible to partially parallelize this problem in order to speed 

it up. The computational cost of an optimal control problem solved through direct collocation 

can be divided in function evaluations (which includes the computation of derivative matrices) and 

NLP algorithm time. The former can be naturally parallelized in a scenario-wise fashion, but it is 

harder to replace NLP solvers by parallel versions; depending on which of the two parts of the cost 

dominates, parallelization would be more or less effective.

III. Robust Optimal Flight Planning

In this section, we apply the methodology described in Section II to the problem of flight 

planning under wind forecast uncertainty. We give an introduction to Ensemble Prediction Systems 

in Section III A. We describe the dynamical model in Section III B, perform a necessary reformulation 

in Section III C, apply the trajectory ensemble formulation in Section III D and define the associated 

Problem (DROCT) in Section III E.

A. Ensemble Prediction Systems

Uncertainty in Numerical Weather Prediction arises mainly from incomplete or imprecise knowl-

edge of the state of the atmosphere at the time of the forecast and model uncertainties[35]. Because 

these uncertainties are propagated through nonlinear and chaotic atmospheric dynamics, simple sta-

tistical characterization is inadequate for the representation of the forecast uncertainty [9]. Instead, 

the main approach in NWP for the characterization of uncertainty is based on ensemble forecasting: 

a methodology for generating probabilistic forecasts by running a certain number (generally between 

10 and 100) of different simulations or “members”, as well as the techniques employed to set up
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each member.

Initial conditions Final state

a) Deterministic forecast b) Ensemble forecast with
initial conditions perturbations

c) Ensemble forecast with
parameter perturbations

d) Ensemble forecast with
multiple perturbation methods

Fig. 3 Deterministic forecasts and EPS forecasts

Several methods are used for producing the different members of an EPS (Figure 3). The most 

important include ensemble data assimilation, where the initial conditions are perturbed according 

to their uncertainty; singular and breeding vectors, where the perturbation is chosen to excite the 

fastest-growing dynamical instabilities; stochastic parametrizations, where the parameters of models 

of the atmospheric processes at subgrid spatiotemporal scales are perturbed; and multiphysics or 

multimodel schemes, where the members are drawn from the output from different models. Each 

NWP center maintains an Ensemble Prediction System that implements a different combination 

of these techniques. It should be noted that these methods aim to be “economic” by producing 

a good representation of the uncertainty from a limited number of simulations, since each one is 

computationally expensive.
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There are three main classes of EPS. In decreasing scope and maturity and increasing resolution, 

they are global scale EPS, regional scale (Limited Area Model or LAM) EPS and convective scale 

EPS. For the purposes of considering wind uncertainty in medium-haul flights, b o th g l obal and 

LAM EPS can be used. However, since LAMs are usually produced in order to forecast surface 

weather of a specific r e gion ( such a s  E u rope o r  N o rth A merica), t heir o c eanic c overage i s  limited. 

Therefore, in this work we will rely on global EPS, which can be used for intercontinental flights. 

Historical global EPS forecasts from major NWP centres around the world can be found at the 

TIGGE dataset8, hosted at the ECMWF (European Centre for Medium-Range Weather Forecasts) 

website. Output from European LAM models is similarly compiled in the TIGGE LAM dataset.

Several probabilistic metrics can be obtained from EPS output[36]: some examples are the 

ensemble mean (the averaged value of a variable across the members), the ensemble spread (the 

standard deviation) or the probability of an event (the proportion of the members that forecast a 

certain event ocurring). Each ensemble member is often taken as equally likely when computing 

these metrics; therefore, an EPS-based SQR has its N members as the quadrature points and 

wk = 1/N as its associated weights.

B. Dynamical Model

We consider a 3-DoF point-mass model of aircraft used widely in ATM studies, BADA 3 [37].

We will restrict ourselves to the analysis of the cruise phase for the sake of simplicity (note that the 

impact of wind forecast uncertainty is cumulative, and thus more important for longer flights, and 

the cruise phase comprises most of a medium-haul or long-haul flight). In addition, we consider a 

constant flight l evel but we note that our methodology can b e extended to full 4D p roblems.9 We 

consider an ellipsoidal Earth as in the WGS84 model, with radii of curvature of ellipsoid meridian 

and prime vertical denoted by RM and RN respectively. We take wind from an EPS forecast and 

set remaining atmospheric parameters according to the International Standard Atmosphere (ISA) 

model.

8 http://apps.ecmwf.int/datasets/data/tigge/
9 As we mentioned in the introduction, direct methods are flexible e nough t hat t hey c an h andle m ore complex

problems; we only choose our assumptions, which are comparable to most of the published routing algorithms, for

simplicity.
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We make a further simplification b y t aking t he h eading a s a  c ontrol v ariable i nstead o f the 

bank angle, thus allowing it to change instaneously (as it is done in most routing algorithms). In 

previous work [38], we found that omitting heading and bank angle dynamics for a free-routing cruise 

trajectory without sharp turns has minimal impact on solution accuracy (well below other sources of 

modelling error). The dynamics of the system are, therefore, described by the following system of 

differential equations (f in Equation (8)):

ẋ = d

dt



φ

λ

v

m


=



(RN + h)−1(v cos(χ) + wx(φ, λ, t))

(RM + h)−1 cos−1(φ)(v sin(χ) + wy(φ, λ, t))

(T −D(m, v))/m

−η(v)T


, (20)

where φ is the latitude, λ is the longitude, v is the true airspeed, m is the mass, h is the geodetic 

altitude, χ is the heading, wx and wy are the zonal and meridional components of the wind10, T is the 

thrust force, D is the drag force and η  is the thrust-specific fuel consumption; both η  and D are 

modelled according to the BADA 3 specification, assuming that L = mg. The control vector is 

composed by the thrust T and the heading χ.

In addition, the following constraints (as g(·) in Equation (8)) apply:

vCAS,stall ≤ vCAS(v) ≤ vCAS,max,

M(v) ≤Mmax, (21)

Tidle(v) ≤ T ≤ Tmax,

where M is the Mach number, vCAS is calibrated airspeed (CAS), vCAS,stall and vCAS,max 

are the lower and upper bounds on calibrated airspeed, Mmax is the maximum operating Mach 

number, and Tidle and Tmax are the thrust limits. It is advantageous for computational purposes and 

for clarity of exposition, as we will explain in Section III C, to reformulate this dynamical system as a 

differential-algebraic system (DAE) with the addition of the ground speed vG as an algebraic

10 Contrary to the usual definition, we take w y to be in a  South to North direction
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variable and the course ψ as a control variable, linked to the remaining variables by two new 

equality constraints (see Figure 4 for a graphical explanation of Equation 23). The reformulated 

system is given by the dynamical function:

d

dt



φ

λ

v

m


=



(RN + h)−1vG cos

(RM + h)−1 cos−1(φ)vG sin

(T −D(m, v))/m

−η(v)T


, (22)

and the equality constraints (h in Equation (8)):

vG cosψ = v cos(χ) + wx(φ, λ, t),

vG sinψ = v sin(χ) + wy(φ, λ, t).
(23)

True 
Airspeed
(TAS)

W

Heading

Wind 
speed

Ground
speed

E

S

N

Course

Fig. 4 Relationship between airspeed, groundspeed, wind, heading and course

The inequality constraints (21) apply in the same fashion, with the addition of

vG ≥ 0 (24)

∗
G

∗
G

to ensure uniqueness of vG andψ(otherwise, (−v ,ψ∗ + π/2) would produce the same left-hand side of 

Equation (23) as (v ,ψ∗)).
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C. Coordinate transformation

In the robust optimal control framework that we have presented, the independent variable (time) 

is unique in all scenarios (it varies in the same range). Therefore, the direct application of the state-

tracking formulation would demand the position of the aircraft to be in a fixed schedule with respect 

to time in all scenarios, therefore absorbing all of the uncertainty with constant airspeed changes 

and associated fuel burn variation. This is inconvenient for several reasons: by not allowing some 

of the uncertainty to manifest in delay, the computed solutions could be very inefficient in some 

scenarios, or the feasible range of average speeds could be reduced so that the most unfavourable 

scenarios have sufficient margin of variation to track the trajectory with a schedule that is fixed in 

time. Nevertheless, we will note that this type of solutions can also be obtained with our approach 

and the extension presented in Section IV; the formulation that we present generalizes and includes 

this kind of fixed-schedule solutions.

Instead, we will adopt a formulation that is more consistent with current flight procedures and 

Flight Management System (FMS) technology, as they are not expected to change in the short-to-

medium term even after the introduction of free-routing. We will employ distance flown a long the 

route (denoted as s) as the independent variable, because its initial and final value are the same in 

all scenarios that follow a unique route. As a consequence, the time t becomes a state variable and 

the new dynamical function can be obtained by dividing the time derivatives by ds/dt = vG:

d

ds



φ

λ

v

m

t


=



(RN + h)−1 cos

(RM + h)−1 cos−1(φ) sin

(mvG)−1(T −D(m, v))

−v−1
G η(v)T

v−1
G


. (25)

All equality and inequality constraints remain the same as in the untransformed system of

differential-algebraic equations. Note that, by employing vG as an algebraic variable (instead of a

function of wind, airspeed and heading), it will be computed only once at each node in the NLP

iterations and produce sparser derivative matrices.
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D. Trajectory Ensemble

We can now discretize the uncertainty and create the trajectory ensemble. An ensemble forecast 

contains a set of ensemble members, each one defining a  d ifferent w ind f orecast ( and, therefore, 

different functions wx and wy). If the ensemble contains N members, we define N  s cenarios, each 

one having weight wk = 1/N and the wind function that corresponds to the respective member; 

our stochastic quadrature rule is, therefore, a simple empirical average. We will write the compact 

form of the trajectory ensemble directly.

We choose to track the course ψ and the true airspeed v, i.e., the functions ψ(s) and v(s) 

are the same in every scenario (so we do not need to implement scenario-specific versions). As a 

consequence of (25), this implies that the evolution of the latitude φ is unique (as it only depends 

on the evolution of the unique variable ψ) and λ is also unique (as it only depends on φ and ψ). 

Therefore, the position variables act like tracked variables too, which is both relevant from the 

implementation point of view (because we do not need to create copies of them for each scenario) 

and a desired goal (since we want to obtain a unique route). We also define a := dv/ds for practical 

purposes, in order to combine the derivative of v and its tracking condition in a single set of 

constraints. Its physical interpretation is the slope of the airspeed profile.

Taking advantage of these manipulations, we can define the dynamical system associated to the 

trajectory ensemble with the dynamical function:

dxE

ds
= d

ds



φ

λ

v

t1

...

tN

m1

...

mN



=



cos(ψ)/(RN + h)

sin(ψ)/(RN + h)/ cosφ

a

1/vG,1

...

1/vG,N

η(v)T1/vG,1

...

η(v)TN/vG,N



, (26)
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with the control vector:

uE =
[
a T1 . . . TN χ1 . . . χN

]T

,

the equality constraints:



vG,1 cos(ψ)
...

vG,N cos(ψ)

vG,1 sin(ψ)
...

vG,N sin(ψ)

a · vG,1

...

a · vG,N



=



v cos(χi) + wy,1(φ, λ, t)
...

v cos(χi) + wy,N (φ, λ, t)

v sin(χi) + wx,1(φ, λ, t)
...

v sin(χi) + wx,N (φ, λ, t)

(T1 −D(v,m1))/m1

...

(TN −D(v,mN ))/mN



, (27)

and the inequality constraints:

vCAS,stall ≤ vCAS(v) ≤ vCAS,max,

M(v) ≤Mmax,

Tidle(v) ≤ Tk ≤ Tmax

0 ≤ vG,k

∀k ∈ {1, . . . N}
. (28)

E. DROCT of the Robust Flight Planning problem

We will now finish the f ormulation o f the Robust Flight Planning problem by adding an opti-

mization criterion and boundary constraints. We define two additional scalar optimization variables: 

the earliest arrival time t(sf )min and the latest arrival time as t(sf )max, which together define a 

“window of arrival”. We also define two user-specified parameters: the Cost Index CI11, which

11 Whenever not explicitly noted, the cost index CI is given in ($/hr)/(cents/lb).
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represents the user’s preferences for reduced flight time versus reduced fuel burn, and the “disper-

sion penalty” DP, which represents the user’s preferences for increased predictability versus average

efficiency. We define the cost functional as:

JRF P = 1
N

N∑
i=1

ti(sf ) + CI · 1
N

N∑
i=1

mi(sf ) + DP · (t(sf )max − t(sf )min) (29)

and the boundary conditions:

(φ, λ, v)(0) = (φ0, λ0, v0),

(φ, λ, v)(sf ) = (φf , λf , vf ),

tk(0) = 0

mk(0) = m0


∀k ∈ {1, . . . N}.

(30)

tf,min ≤ tk(sf ) ≤ tf,max

The Problem (DROCT) associated to the Robust Flight Planning problem can now be 

definedas:

minimize JRF P (29)

subject to dynamical equation (26)

equality constraints (27) 

inequality constraints (28) 

boundary conditions (30)



(DRFP)

We solve Problem (DRFP) in an example scenario in Section V. Note that, with minimal changes 

to the cost functional and boundary conditions, similar problems can be solved (such as finding the 

fuel-optimal trajectory that arrives in a specified t ime window).

IV. Dynamic Airspeed Adjustment

In Section III, we have described a formulation whose solution generates a flight plan that is 

consistent with current flight procedures and existing FMS and Trajectory Prediction (TP) technol-

ogy: a lateral path (that can be discretized to a sequence of segments delimited by waypoints) and
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an airspeed profile ( that can a lso b e d iscretized to a  s equence o f a irspeeds associated to each leg). 

In this section, we consider a potential future concept where the airspeed is dynamically adjusted 

in response to time leads or lags in order to increase adherence to the predicted flyby times at each 

point in the trajectory, and the adjustment is done according to a feedback law that is incorporated 

to the flight plan; we will name this concept “dynamic airspeed adjustment” or DASA.

The proposed scheme is consistent with the concept of making small tactical speed changes12 

in order to increase predictability. This idea has been explored as a potential future ATM system 

concept; for example, in [39] and related work. Under the “subliminal control” paradigm examined 

there, pilots or automated systems would implement tactical speed changes in the interval [-6%, 

3%] (under future technology) in order to reduce the risk of conflicts; t his modification would be 

small enough that it would fall within the uncertainty observed by the air traffic controller (thus 

the “subliminal” label). In the present work, a speed change of a similar magnitude would be 

individually triggered by delays or leads following a pre-computed rule instead of a periodic and 

centralized sector-wide calculation. Therefore, the impact on conflicts would b e i ndirect through 

increased adherence to the scheduled flyby t imes (which would allow for earlier deconfliction).

A. The DASA law

We consider a simple control law13:

v(s)− v̄(s) = K · (t(s)− t̄(s)), (31)

where v̄(s) is a fixed airspeed schedule, t̄(s) is the expected flyby time at position s, and K

is a constant. This scheme constitutes a control law analogous to a proportional regulator, where

the airspeed increments or decrements are proportional to the accumulated time lead or lag with

regards to the expected trajectory. Under this law, the pilot or the FMS would change the planned

airspeed according to the delay or lead compared to the scheduled times. We will optimize this law

12 Note that, in this work, the rule implemening these speed changes is still computed at the pre-tactical planning

stage.
13 Note that v is not a control variable, but the dynamics of airspeed tracking would again happen at a timescale of

much smaller characteristic time than that of the optimal control problem.
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jointly with the flight plan at the planning stage (i.e., the gain K will be a result of the optimization

process).

B. DASA formulation

In Section II B, we briefly mentioned the possibility of substituting the tracking conditions by 

more general linear or nonlinear transformations of dimension d; these transformations may have 

free parameters whose value will be implicitly optimized by the NLP solver. We will employ this 

extension of the tracking formulation in order to implement the planning part of the DASA concept: 

by replacing the tracking condition on the true airspeed with the DASA control law.

We start from the framework described in Section III. Since the airspeed will now be specific 

to each ensemble member, we don’t collapse it into a single variable; instead, we let v1, . . . , vN be 

the member-specific airspeeds with the associated dynamic function:

dvk

ds
= (Tk −D(v,mk))/(mk · vG,k), k ∈ {1, . . . N},

and we define a new state variable v̄ with dynamics:

dv̄

ds
= a.

We also define the algebraic variable t̄, the average flyby time, related to the state variables by the

algebraic constraint:

t̄ = 1
N

N∑
k=1

tk.

We define the scalar variable K, which will become a free optimization variable of the optimal

control problem (therefore, its value will be computed by the NLP solver). We replace the tracking

condition on the airspeed by the algebraic condition implementing the control law:

vk − v̄ = K · (tk − t̄), k ∈ {1, . . . N}. (32)
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The dynamical equation is now:

dxE

ds
= d

ds



φ

λ

v̄

v1

...

vN

t1

...

tN

m1

...

mN



=



cos(ψ)/(RN + h)

sin(ψ)/(RM + h)/ cosφ

a

(T1 −D(v,m1))/(m1 · vG,1)
...

(TN −D(v,mN ))/(mN · vG,N )

1/vG,1

...

1/vG,N

η(v)T1/vG,1

...

η(v)TN/vG,N



. (33)

The equality constraints now include the control law:



t̄

vG,1 cos(ψ)
...

vG,N cos(ψ)

vG,1 sin(ψ)
...

vG,N sin(ψ)

v1 − v̄
...

v1 − v̄



=



N−1ΣN
k=1tk

v cos(χi) + wy,1(φ, λ, t)
...

v cos(χi) + wy,N (φ, λ, t)

v sin(χi) + wx,1(φ, λ, t)
...

v sin(χi) + wx,N (φ, λ, t)

K · (t1 − t̄)
...

K · (tN − t̄)



. (34)

The inequality constraints are now all scenario-specific:
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vCAS,stall ≤ vCAS(vk) ≤ vCAS,max

M(vk) ≤Mmax

Tidle(vk) ≤ Tk ≤ Tmax

0 ≤ vG,k


∀k ∈ {1, . . . N}, (35)

and the boundary conditions now depend on v̄ instead of v:

(φ, λ, v̄)(0) = (φ0, λ0, v0),

(φ, λ, v̄)(sf ) = (φf , λf , vf ),

tk(0) = 0

mk(0) = m0

tf,min ≤ tk(sf ) ≤ tf,max


∀k ∈ {1, . . . N}.

(36)

Therefore, the (DROCT) associated to the DASA problem can be defined as:

minimize JRF P (29)

subject to dynamical equation (33)

equality constraints (34) 

inequality constraints (35) 

boundary conditions (36)



(DASA)

We present some results under this formulation in Section V C.

V. Case Study

We consider a cruise flight f rom t he vertical o f New York t o t he vertical o f L isbon a t FL380. 

The aircraft is an A330-301 (BADA3 code A333) with an initial mass of 200 tons, and we employ 

the 6-hours-lead-time forecast from the Météo France PEARP ensemble for the 20th of January, 

2016 at the pressure level of 200 hPa. As we mention in Section III, we consider uncertainty in the 

wind field derived f rom the EPS. In order to facilitate visualization and understanding, we employ 

a static weather picture; nevertheless, the methodology allows for the usage of dynamic weather 

forecasts.

29



We employ the procedure presented in [38] for building a smooth approximation to the wind 

with good accuracy. The optimal control problem is formulated as in Section II, discretized with a 

trapezoidal scheme (see [32, Chapter 4]) into a nonlinear optimization problem, which is then solved 

by the IPOPT solver [40]. We employ Pyomo [41] as the NLP interface.

In order to analyze and understand the different forms in which the impact of aleatory uncer-

tainty can be reduced with the flight plan, we will first study the problem with a constant airspeed 

restriction (TAS = 240 m/s), which we will denominate Case A, and then study the full problem as 

described in Section III, which we will denominate Case B. We finally discuss results for the Problem 

(DASA), which we will summarize as Case C. We will solve each one of these problems multiple times, 

for different values of CI14 and DP.

For all the cases that we discuss, the NLP generated by every individual optimization problem 

(for a given CI and DP) take around 2 - 20 seconds of CPU time to solve with IPOPT on our 

workstation, which is equipped with an Intel Xeon E3-1240 v5 CPU running at 3.5 GHz. This 

number does not include the cost of the preprocessing and initialization described in [38], which 

takes around a minute and we have not optimized for speed as it needs to be run only once. Table 1 

shows the final s ize o f the r esulting nonlinear optimization problems a fter the t ranscription o f the 

DROCT.

# Constant TAS Variable TAS DASA

NLP variables 11144 14104 16912

Equality constraints 11039 14016 16782

Inequality constraints 7565 11437 16877

Number of nonzeros in ...

Eq. constr. Jacobian 57271 88189 115945

Ineq. constr. Jacobian 7849 11673 17113

Lagrangian Hessian 18616 44496 60656

Table 1 Problem size.

14 In case A, there is no CI as the time and fuel objectives collapse into one.
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A. Constant Airspeed (Case A)

Figure 5 displays the geographical routes for different values of the dispersion penalty DP. We

also plot regions of higher uncertainty, which we have defined as
√
σ2

u + σ2
v , with σu and σv being

the standard deviation of the u and v components of wind across different members. It can be seen

that routes computed with higher DP tend to avoid the high uncertainty zone in the Atlantic in

order to increase predictability, at the cost of taking a more indirect route that is longer on average.

Fig. 5 (Case A) Optimal trajectories from New York to Lisbon, for values of DP from 0 Kg/s 

to 23 Kg/s. Higher brightness in the trajectory color indicates higher values of DP.

Figure 6.a shows the evolution of the state and control variables along the Maximum Average 

Efficiency (MAE) trajectory (corresponding to DP=0, the black line in Figure 5). Each individual 

line represents the trajectory that corresponds to an ensemble member. It can be seen that the 

spread in the ensemble times, ensemble headings, and ensemble ground speeds increases markedly 

when the aircraft crosses the area of high uncertainty near the destination airport (see Figure 5). 

Figure 6.b shows the evolution of the state and control variables along the high predictability (HP) 

trajectory (corresponding to DP=23 Kg/s, the yellow line in Figure 5). It can be seen that the spread 

in times and ground speeds are comparatively lower than in the previous case and the trajectory 

ensemble is tighter.
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Fig. 6 (Case A) State-space evolution of the variables in the MAE and the HP trajectories.

Time leads and lags are defined with respect to the average trajectory.

DP

DP = 0

DP = 70

Fig. 7 (Case A) Pareto frontier of the problem.

Finally, Figure 7 shows the Pareto frontier of the problem, obtained by solving problems with

different penalties DP (from DP = 0 to DP = 70). For the MAE case (DP = 0), the time dispersion

at the final fix is above 4.5 minutes, whereas for the very high predictability (VHP) case (DP =

70), the time dispersion at the final fix is slightly above 1.5 minutes. In other words, around three

minutes reduction in time uncertainty could be achieved by flying the VHP trajectory; however,

there is a heavy cost, with the flight lasting for an additional 30 minutes and burning an additional

2500 Kg of fuel. A smaller reduction in arrival time dispersion, from 4.5 to 3.5 minutes, can be
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achieved at a cost of around 500 Kg.

B. Variable airspeed (Case B)

We now proceed to analyze the full problem, as described in Section III. Figure 8 shows the 

geographical path of the optimized flight p lans f or CI =  0 . As i n t he c onstant a irspeed c ase, the 

horizontal profiles of the trajectories that place a  higher weight on reducing uncertainty are farther 

from the high uncertainty zone.

Fig. 8 (Case B) Same as Figure 5, for case B.
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Figure 9 shows the airspeed profiles for different values of the CI and DP parameters. As 

expected, trajectories optimized for a higher CI tend to feature higher speeds. However, there is 

another relevant difference between trajectories: as the penalty in uncertainty grows, the optimal 

airspeed when the aircraft crosses uncertain regions increases. We attribute this result to the idea 

that, by flying at a higher speed, the relative importance of the wind on the groundspeed is reduced15.
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Fig. 9 (Case B) Airspeed profiles.

These airspeed changes reduce uncertainty more efficiently than direct avoidance, as it can be

observed in Figure 10. For a given CI, there are two branches in the locus of the solutions for different

DP values: in the left branch, uncertainty reduction is achieved mostly with airspeed increments

in the uncertain zone; in the right branch, uncertainty is reduced mostly through horizontal path

deviations. As discussed, reducing arrival time dispersion in the left branch is cheaper (100 to 150

Kg when reducing the arrival window size from 5 minutes to 4.5 minutes) than in the right branch

(around 500 Kg when reducing from 3.5 minutes to 3 minutes).

15 Consider the following illustrative example: the along-track wind can take one of two constant values, w1 or

w2, on a region where an aircraft flies a distance x at the airspeed v. The difference in arrival times is ∆t =

x
|w1 − w2|

v2 + (w1 + w2)v + w1w2
, which is decreasing on v.
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time dispersion on arrival.

Finally, we show the state-space trajectories of two scenarios in Figure 11. The pattern is similar 

to the constant airspeed one (see Figure 6), with the addition of the airspeed profile.
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Fig. 11 (Case B) State-space evolution of the variables in the MAE and the HP trajectories

for a CI=10 scenario. Time leads and lags are defined with respect to the average trajectory.

C. DASA Results (Case C)

We run the same scenario with the DASA formulation, values of CI ranging from 5 to 60, and 

values of DP ranging from 104 Kg/s to 0.2 Kg/s.16 We don’t sweep the DP parameter in the same 

range as in Cases A and B because we can achieve low time dispersions for much lower values of 

DP. The results of the optimization suggest that, in Case C, it is cheaper to reduce uncertainty by 

increasing the feedback strength K (and, therefore, absorbing some uncertainty in airspeed instead 

of groundspeed) than by modifying the geographical path: Figure 12 shows that geographical paths 

are almost exactly equal in this DP range.

16 For some CIs, we increase DP only until we achieve a time dispersion < 30 s
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Fig. 12 (Case C) Same as Figure 5, for Case C.

Figure 13 shows the evolution of the state variables for different values of DP. The lowest 

predictability scenario has a similar profile to the MAE trajectories in Figure 11; however, as DP 

increases, some of the wind uncertainty starts being compensated by airspeed variations instead of 

being fully passed onto the groundspeed. As a consequence of the TAS dispersion, the fuel burn 

shows more dispersion as arrival time uncertainty is decreased; we illustrate this result in Figure 14.
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Fig. 13 (Case C) Evolution of some variables for three flight plans with CI = 20.
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Figure 15 shows the scheduled TAS profiles for DP = 104 Kg/s and different values of CI. As it 

can be expected, the airspeed increases as CI increases, therefore putting more importance on 

reducing flight t ime than fuel burn.
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Fig. 15 (Case C) Airspeed profiles.

Figure 16 shows that the Pareto frontiers for different values of the arrival time dispersion are 

very close to one another (compare with Figure 10): as discussed earlier, the reduction of uncertainty 

through dynamic airspeed adjustment is cheap enough (in average terms) that the impact on average 

efficiency is minimal. The main cost is now an increase in fuel burn dispersion (see again Figure 14).
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Finally, we show the magnitude of the gains K in Figure 17. As expected, increasing DP has the 

effect of increasing the strength of the feedback in order to reduce the temporal divergence with 

respect to the reference schedule. Note that the dependence of K on DP is very similar for low 

values of the CI; however, it breaks down at the CI values where the TAS starts being constrained 

by the maximum speed constraints (compare with Figure 15). In this CI range, the proximity to 

these constraints limits the margin for speed correction. This causes the algorithm to start shifting 

some of the weight of uncertainty reduction from the feedback control to increments in scheduled 

airspeed.
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VI. Conclusions

We have introduced a generalization of robust optimal control that has proven effective for solv-

ing aircraft trajectory planning problems. Its combination with EPS-based forecasts has been shown

to be a powerful tool for the generation of optimized and predictable flight plans that fit the incom-

ing free routing paradigm, and could be employed in combination with potential future operational

concepts. The tracking formulation that we have introduced in this work and its generalization to

more general control law open up new possibilities for optimal control under uncertainty. Aircraft

trajectory optimization is the main focus of this work, but other vehicle trajectory optimization

problems can be modeled with this framework as well.

The nature of the relationship between predictability and efficiency in flight planning has been

explored for an origin-destination pair with different user preferences for flight time, average effi-

ciency and predictability. Under current flight procedures, the algorithm can compute the trajectory

with maximum average efficiency for a given cost index; it can also find predictability increments

relative to that flight plan through lateral route adjustments (more expensive in terms of time and

fuel) and airspeed profile modifications (less expensive). The presented methodology can be em-

ployed to generate flight plans under future dynamic flight procedures and technology. Under one

potential such concept, it is shown that uncertainty in arrival time can be reduced at the expense

of increased uncertainty in fuel burn with negligible average cost.

Thus, the algorithms in this paper could be of interest for flight dispatchers to design their flight

plans on a daily basis, e.g., to quantify and reduce fuel burnt uncertainty and plan for the reserve fuel

policy. Additionally, it could be useful for capacity increases. The declared operational capacity of

airspace sectors is lower than the potential capacity in order to account for the uncertainty in entry

or occupancy counts; therefore, an increase in predictability could lead to capacity improvements.

These benefits can be assessed with our methodology in order to design policies that provide the

right incentives to flight planners to produce more predictable flight plans and, therefore, increase

the efficiency of the ATM system.
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Appendix

In this appendix, we discuss the conditions under which a tracking scheme is feasible for a

linear system (if f and h are regular enough, similar arguments can be made in the nonlinear

case replacing the matrices by the jacobians of the corresponding functions). We neglect here the

inequality constraints, as they fulfill a similar role as in deterministic optimal control (with the

additional implication that they must be fulfilled for every realization of ξ). Consider the linear

system:

ẋ = Ax +Bzz +Buu + Cξ

0 = Dx + Ezz + Euu + Fξ,

and partition the state, algebraic and control vectors into tracked and non-tracked parts (with

q denoting the tracked part and r the untracked part):

x =

xq

xr

 , z =

zq

zr

 , u =

uq

ur

 ,
with xq ∈ Rqx , xr ∈ Rnx−qx , zq ∈ Rqz , zr ∈ Rnx−qz , uq ∈ Rqu , and ur ∈ Rnu−qu

Let us define

yq =

zq

uq

 , yr =

zr

ur

 , and y =

yq

yr


and rearrange the original system as

ẋ = Ax +By + Cξ,

0 = Dx + Ey + Fξ.

We partition this system in the same form, according to tracked and untracked part:
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ẋq

ẋr

 =

Aqq Aqr

Arq Arr


xq

xr

+

Bqq Bqr

Brq Brr


yq

yr

+

Cq

Cr

 ξ (37)

0 =
[
Dq Dr

]xq

xr

+
[
Eq Er

]yq

yr

+ Fξ. (38)

q

For the tracking scheme to be feasible, we need to be able to track a trajectory for different 

values of the uncertainty ξ; since this system is linear, it is enough to determine if the trajectory x (t) 

= 0, yq(t) = 0 can be tracked. By plugging this tracking trajectory in Equations (37)(38),

we can observe that this is true if, for every pair of values that (ξ, xr) attains in the complete

trajectory, there is a value of yr that solves the linear system:

Bqr

Er

yr = −

Cq

F

 ξ −
Aqr

Dr

xr.

The matrix Q :=

Bqr

Er

 ∈ Rny−qy×ny−qy is square; therefore, a sufficient (but not necessary)

condition for the feasibility of a tracking scheme is Q being full-rank. Since Bqr represents the 

dependence of the tracked states on the untracked controls and algebraic states and Er represents 

the dependence of the algebraic conditions on the untracked controls and algebraic states, an in-

tuitive interpretation of this condition is the capacity of choosing the algebraic conditions and the 

derivatives of the tracked states with the untracked controls and algebraic states, which implies that 

the impact of the uncertainty on the tracked states can be fully compensated without violating the 

algebraic condition.
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