
UNIVERSIDAD CARLOS III DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

BACHELOR THESIS

SIGNAL PROCESSING FOR MALWARE
ANALYSIS

Computer Engineering Department

AUTHOR: Raquel Tabuyo Benito

TUTOR: Pedro Peris Lopez

June, 2016

 Bachelor Thesis. Signal Processing for Malware Analysis

“Perseverance is not a long race.

It is many short races one after the other”
-Walter	Elliot	

-	Page	� 	of	� 	-2 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Acknowledgements
To my whole family, specially my sister, for whom I have an unconditionally love. I am
really grateful for their dedication, patience, support and encouragement to follow my

dreams.

To Pedro, my Bachelor Thesis tutor, whose kindness and guidance have helped me during
this wonderful trip.

To my friends, thank you very much for showing me the meaning of true friendship.

Without all of you, this would have never been possible.

-	Page	� 	of	� 	-3 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Abstract
This Project is an experimental analysis of Android malware through images. The analysis
is based on classifying the malware into families or differentiating between goodware and
malware. This analysis has been done considering two approaches. These two
approaches have a common starting point, which is the transformation of Android
applications into PNG images. After this conversion, the first approach was subtracting
each image from the testing set with the images of the training set, in order to establish
which unknown malware belongs to a specific family or to distinguish between goodware
and malware. Although the accuracy was higher than the one defined in the
requirements, this approach was a time consuming task, so we consider another
approach to reduce the time and get the same or better accuracy. The second approach
was extracting features from all the images and then using a machine learning classifier
to get a precise differentiation. After this second approach, the resulting time for 100,000
samples was less than 4 hours and the accuracy 83.04%, which fulfill the requirements
specified.

To perform the analysis, we have used two heterogeneous datasets. The Malgenome
dataset which contains 49 kinds of malware Android applications (49 malware families). It
was used to perform the measurements and the different tests. The M0droid dataset,
which contains goodware and malware Android applications. It was used to corroborate
the previous analysis.

-	Page	� 	of	� 	-4 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Resumen
Este proyecto es un análisis experimental de aplicaciones de Android mediante
imágenes. Este análisis se basa en clasificar las imágenes en familias o en diferenciarlas
entre goodware o malware. Para ello, se han considerado dos enfoques. Estas dos
aproximaciones tienen como punto en común la transformación de las aplicaciones de
Android en imágenes de tipo PNG. Después de este proceso de transformación a
imágenes, la primera aproximación se basó en restar cada imagen perteneciente al
grupo de pruebas con las imágenes del grupo de entrenamiento, de esta forma se pudo
saber la familia a la que pertenecía cada malware desconocido o distinguir entre
aplicaciones goodware y malware. Sin embargo, a pesar de que la precisión de acierto
era más alta que la definida en los requisitos, este enfoque era una tarea que consumía
mucho tiempo, así que consideramos otra aproximación para reducir el tiempo y
conseguir una precisión parecida o mejor que la anterior. Este segundo enfoque fue
extraer las características de las imágenes para después usar un clasificador y así
obtener una diferenciación precisa. Con esta segunda aproximación, conseguimos un
tiempo total menor a las 4 horas para 100000 muestras con una precisión del 83.04%,
cumpliendo y superando de esta forma los requisitos que habían sido especificados.

Este análisis se ha llevado a cabo usando dos sets de datos heterogéneos. Uno de ellos
fue el perteneciente a un proyecto llamado Malgenome, éste contiene 49 tipos de
familias de malware en Android. El set de datos de Malgenome se usó para realizar los
diferentes ensayos o pruebas y sobre el que se realizaron las medidas de tiempo y
precisión. El set de datos de M0droid se usó para corroborar el análisis previo y así
establecer una clasificación final.

-	Page	� 	of	� 	-5 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Table of Contents
1. Introduction 17

1.1. Purpose 17
1.2. Motivation 17
1.3. Scope 19
1.4. Structure of the report 20

2. State of art 21
2.1. Malware Evolution and Classification 21

2.1.1. Malware Evolution 21
2.1.2. Malware Classification and Android examples 21

2.2. Security Mechanisms 23
2.2.1. Security Mechanisms Overview 23

 2.2.2. Security Mechanisms in Android 24
2.3. Malware Detection and Analysis 25
 2.3.1. Detection Strategies 25
 2.3.2. Contemporary Detection Systems 27
 2.3.3. Detection System Android Examples 28

2.4. Malware Analysis with Images 30
 2.4.1. Image Visualization 30
 2.4.2. Classification Process 31
 2.4.3. Results Obtained 31

3. Analysis 32
3.1. Datasets Analysis 32

3.1.1. M0droid Dataset 32
3.1.2. Malgenome Dataset 34

3.2. Image Descriptors 41
3.2.1. GIST 41
3.2.2. Histogram 41
3.2.3. Image to Graph 42
3.2.4. Daisy 42

-	Page	� 	of	� 	-6 134

 Bachelor Thesis. Signal Processing for Malware Analysis

3.3. Features Selection 44
3.3.1. PCA 44

3.4. Machine Learning Classifiers 46
3.4.1. KNN 46
3.4.2. Naive Bayes 48
3.4.3. Decision Trees 49
3.4.4. Random Forest 50

3.5. Image Subtraction 51
3.6. Requirements 53

4. Design 55
4.1. Dataset Preparation 55

4.1.1. Dataset Adjustment 55
4.1.2. Dataset Designing Decisions 58

4.2. Malware Transformation to Image 59
4.3. Classification Lines 59

4.3.1. Classification with Image Subtraction 59
4.3.2. Features Extraction and Classification 61

4.4. Programming Language Determination 62
4.4.1. Why Python? 62
4.4.2. Comparison with Another Languages 63

5. Implementation 65
5.1. Project Environment 65
5.2. Libraries Used 65
5.3. Project Implementation Steps 66

5.3.1. Unpacking APK Files 66
5.3.2. Image Conversion 67
5.3.3. Subtraction Classification 71
5.3.4. Features Extraction and Classification 74

5.4. Problems Found 77
6. Performance Evaluation 78

6.1. Tests Description 78

-	Page	� 	of	� 	-7 134

 Bachelor Thesis. Signal Processing for Malware Analysis

6.2. Accuracy 81
6.2.1. Subtract Classification 81
6.2.2. Extract Features and Classification 81

6.3. Time 83
6.3.1. Subtract Classification 83
6.3.2. Extract Features and Classification 83

6.4. Analysis of Results and Classifier Decision 87
6.4.1. Evaluation of Results 87
6.4.2. Final Decision 91

6.5. Final Results 92
6.5.1. Classification with M0droid Dataset 92
6.5.2. Packed Applications Classification 93

7. Project Design and Budget 94
7.1. Gantt Chart 94
7.2. Estimated Costs 95

7.2.1. Hardware Equipment 95
7.2.2. Software Licenses 95
7.2.3. Human Resources 96
7.2.4. Direct Costs 96
7.2.5. Indirect Costs 96
7.2.6. Benefits 97
7.2.7. Risks 97
7.2.8. Grand Total 97

8. Conclusions and Future Work 98
9. References 99
Annex I - Code 111

I.I. Unpacking the Application 111
I.II. Transform classes.dex into PNG Image 112
I.III. Subtraction Classification 113
I.IV. Extracting Features and Machine Learning Classification 114

Annex II - Confusion Matrices Images 117

-	Page	� 	of	� 	-8 134

 Bachelor Thesis. Signal Processing for Malware Analysis

II. I. Subtraction Classification 117
II. II. Extracting Features + Classification 118

Annex III - Time Measurement Table 134

-	Page	� 	of	� 	-9 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Figures
Figure 1. Worldwide Smartphones Shipments 17
Figure 2. Worldwide Smartphone OS Shipments 18
Figure 3. Android Mobile Malware Families 18
Figure 4. Android Mobile Malware Variants 18
Figure 5. Image Conversion Process 30
Figure 6. Sections of the Resulting Image 30
Figure 7. Gist Image Descriptor 41
Figure 8. Histogram of an Image 41
Figure 9. Image to Graph Descriptor 42
Figure 10. Image with Daisy Descriptor 42
Figure 11. Daisy Descriptor 43
Figure 12. PCA Features Selector 45
Figure 13. KNN Classification 46
Figure 14. KNN Face Recognition 47
Figure 15. KNN Age Estimation 47
Figure 16. Naive Bayes Image Processing 48
Figure 17. Decision Trees in Sonography Analysis 49
Figure 18. Random Forest Face Recognition 50
Figure 19. Digital Image 51
Figure 20. Image Subtraction Process 51
Figure 21. Image Subtraction 52
Figure 22. Classification with Image Subtraction 60
Figure 23. Features Extraction and Classification 62
Figure 24. Goodware and Malware Image Examples (M0droid) 68
Figure 25. Different Families Image Examples (Malgenome) 69
Figure 26. ADR Examples (Malgenome) 70
Figure 27. Packed Applications Images 70
Figure 28. Confusion Matrix Subtraction Classification 73
Figure 29. Confusion Matrix Features Extraction + Classification 76

-	Page	� 	of	� 	-10 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Figure 30. Accuracy Graph Features Extraction + Classification 82
Figure 31. Time Graph Features Extraction + KNN 83
Figure 32. Time Graph Features Extraction + Naive Bayes 84
Figure 33. Time Graph Features Extraction + Decision Tree 85
Figure 34. Time Graph Features Extraction + Random Forest 86
Figure 35. Best Classification (Daisy + KNN) Confusion Matrix 88
Figure 36. Worst Classification (Subtract with 1) Confusion Matrix 88
Figure 37. Confusion Matrix M0droid Dataset 92
Figure 38. Packed Applications Confusion Matrices 93
Figure 39. Gantt Chart 94
Figure 40. extract_F.py 111
Figure 41. extract_GM.py 111
Figure 42. convert2image.py 112
Figure 43. Malgenome APK to PNG 112
Figure 44. M0droid APK to PNG 112
Figure 45. sub_classif.py 113
Figure 46. classif.py (part 1) 114
Figure 47. classif.py (part 2) 115
Figure 48. classif.py (part 3) 116
Figure 49. Subtraction Classification Confusion Matrices 117
Figure 50. Gist + KNN 118
Figure 51. Gist + Gaussian Naive Bayes 119
Figure 52. Gist + Decision Tree 120
Figure 53. Gist + Random Forest 121
Figure 54. Histogram + KNN 122
Figure 55. Histogram + Gaussian Naive Bayes 123
Figure 56. Histogram + Decision Tree 124
Figure 57. Histogram + Random Forest 125
Figure 58. Image To Graph + KNN 126
Figure 59. Image To Graph + Gaussian Naive Bayes 127
Figure 60. Image To Graph + Decision Tree 128

-	Page	� 	of	� 	-11 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Figure 61. Image To Graph + Random Forest 129
Figure 62. Daisy + KNN 130
Figure 63. Daisy + Gaussian Naive Bayes 131
Figure 64. Daisy + Decision Tree 132
Figure 65. Daisy + Random Forest 133

-	Page	� 	of	� 	-12 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Tables
Table 1. Android Malware Detection Systems 29
Table 2. Correspondence between File Size and Image Width 30
Table 3. Requirement 01 - Number of Samples 53
Table 4. Requirement 02 - Computing Time 53
Table 5. Requirement 03 - Accuracy 54
Table 6. Original M0droid Dataset 55
Table 7. Original Malgenome Dataset 56
Table 8. Adjusted M0droid Dataset 57
Table 9. Adjusted Malgenome Dataset 58
Table 10. Subtraction Classification Tests 78
Table 11. Feature Extraction + Classification Tests 78
Table 12. Accuracy Features Extraction + Classification 82
Table 13. Time for 100,000 samples (hours) 91
Table 14. Budget - Hardware Equipment 95
Table 15. Budget - Software Licenses 95
Table 16. Budget - Human Resources 96
Table 17. Budget - Direct Costs 96
Table 18. Budget - Indirect Costs 96
Table 19. Budget - Risks 97
Table 20. Budget - Grand Total 97
Table 21. Time Measurement (seconds) 134

-	Page	� 	of	� 	-13 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Glossary
• Malware: contraction of malicious software.

• PC: stands for Personal Computer.

• Exploit: attack on a computer system taking advantage of a vulnerability [132].

• Open-source: usually it refers to computer programs whose code is freely available
[133].

• BSD License: stands for Berkeley Software Distribution and refers to free software
licenses imposing minimal restrictions in the software distribution [134].

• MMS: stands for Multimedia Messaging Service referring to a standard way of sending
multimedia content between mobile phones [135].

• P2P: stands for peer-to-peer and refers to the internet connection between peers
(computers) forming a network where the peers can be a server or client, depending
on the role they must have when sharing files [136].

• Jailbreak: action of gaining super-user access to an Apple Operating System (iOS)
device [137].

• C&C: stands for Command and Control infrastructure where servers are able to control
remote malware [138].

• URL: stands for Uniform Resource Locator which is an Internet addresses protocol
[139].

• USB: stands for Universal Serial Bus which is a standard interface for connecting
external peripherals to computers [140].

• Man-in-the-middle: attack where there is an individual which relays and modifies the
communication between other two who are not aware of his presence [141].

• RBACA: stands for Role Based Access Control in Android [142].

• ASLR: stands for Address Space Layout Randomization and refers to a computer
protection to buffer overflow attacks [143].

• ICC: stands for Inter-Component Communication [144].

• IMEI: stands for International Mobile Equipment Identity and refers to a code that
identifies uniquely mobile phones [145].

-	Page	� 	of	� 	-14 134

 Bachelor Thesis. Signal Processing for Malware Analysis

• Rootkit: collection of programs which enables accessing with administrator privileges
to a computer [146].

• IRM: stands for Inline Reference Monitoring which is a type of monitoring technique
[147].

• UI: stands for User Interface.

• Pixel: smallest element of an image [148].

• IMSI: stands for International Mobile Subscriber Identity and refers to a code that
identifies uniquely each user of a cellular network and it is integrated in the SIM
(Subscriber Identity Module) [149].

• mTAN: stands for mobile Transaction Authentication Number that corresponds to the
security number that banks send to clients via SMS to perform some operations [150].

• APK: stands for Android Application Package and refers to the package file format that
is used in Android Operating System for mobile apps installation [151].

• DEX: stands for Dalvik Executable and refers to the executable file related with Dalvik
Virtual Machine in Android [152].

• APN: stands for Access Point Name and refers to the gateway name of cellular and
computer networks [153].

• ART: stands for Android RunTime and refers to the substitution applied in the new
Android platforms between Dalvik and this new application runtime environment [154].

• Wi-Fi: technology used by computers to connect to a WLAN (wireless LAN) network
[155].

• Bot: computer program that imitates human behaviors such as performing repeated
operations [156].

• SDK: stands for Software Development Kit used for creating applications of a certain
software package [157].

• Botnet: Internet connected computers that work autonomously and communicate
between them via C&C [158].

• bpp: stands for bits per pixel [159].

• OOB: stands for Out Of the Bag technique applied in Random Forest classification
[160].

-	Page	� 	of	� 	-15 134

 Bachelor Thesis. Signal Processing for Malware Analysis

• KNN: stands for K-Nearest Neighbors and refers to a type of machine learning
classification [161].

• PNG: stands for Portable Network Graphics and refers to an image compression file
format [162].

• OS: stands for Operative System.

• uint8: refers to unsigned 8 bit integer data type [163].

• Epoch: instant of time used as a reference for starting measuring time [164].

• PCA: stands for Principal Component Analysis used for selecting the most relevant
features [165].

• HISTO: personal shortening of Histogram image descriptor used in this project.

• imgToGraph: personal shortening of Image to Graph image descriptor used in this
project.

• F1 measure: also known as F1-score or F-score or F-measure, it is a measurement of
the accuracy of a test, considering the precision and recall. The precision is the
division between correct positive results and all the positive results. The recall is the
division between correct positive results and the positive results that should have been
retrieved [166].

-	Page	� 	of	� 	-16 134

 Bachelor Thesis. Signal Processing for Malware Analysis

1. Introduction

1.1. Purpose

The purpose of this project is an experimental analysis and development of a software
alternative of Android malicious software (malware) classification, to be able to distinguish
an application that contains malicious code with another that has not or to differentiate
between families of Android malware.

1.2. Motivation

The smart devices usage has increased over the last years. Nowadays, smart devices
refer not only to smartphones but also to smartTVs, smartwatches or tablets. They are
extremely powerful and are designed with network and computing capabilities. However,
most of them allow the user to obtain third-party applications, which will be run in the
device, from a range of markets. This possibility means an insecure vulnerability that
results in the intrusion of malicious software into the device, with the consequence of
getting the personal data stored inside the device and accessing all the services
provided by it.

Although there have been great progresses in PC malware detection, these advances has
not been incorporate into smart devices. The majority of users that have a personal
computer are aware of having a malware detection system, however this is not the case
for smart devices; also this kind of users grant permissions to applications without
enough privacy consideration or use unofficial markets to freely download applications
that have a cost in official markets [1]. All of these aspects make really attractive for
attackers to focus their efforts into smart devices.

According to a report
m a d e b y B u s i n e s s
Insider, the growth of
smartphones shipments
goes from around 400
millions in 2011 to 1,400
mi l l ions in 2015. [2]
Furthermore, another
study made by the same
company shows that in
2014 the total number of
Android devices bought
were 1,042.7 millions
from a total of 1,283.5
millions of smartphone
shipments, which is
8 1 . 2 4 % o f a l l t h e
smartphones sold. [3]
 FIGURE 1. WORLDWIDE SMARTPHONES SHIPMENTS

-	Page	� 	of	� 	-17 134

[2]

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 2. WORLDWIDE SMARTPHONE
OS SHIPMENTS

Due to this information, most of the malicious software is addressed to Android devices.
Besides, Apple is known for its rigorous screening processes, which makes a laborious
activity to try to endanger a non-jailbroken device. This is another reason why the number
of malicious Android apps is so much bigger than iOS apps. One of the annual reports
made by Symantec, an American technology company focused on computer security,
shows that a total of 6% of new malware families appear in 2015 comparing with the

growth of 2014 (20%). On the other hand,
there was an increased of 40% of Android
malware variants opposed the 29% of
2014. Moreover, the number of malware
attacks against Android in the first quarter
of 2015 was 550 attacks per day,
increasing the volume of Android Malware
by 230% compared with 2014. [4]

FIGURE 3. ANDROID MOBILE MALWARE FAMILIES

FIGURE 4. ANDROID MOBILE MALWARE VARIANTS

Taking into account this data, the similarity between malware and the arrival of a new non-
fully malicious software called grayware [5], which implies security risks the user is not
conscious about, detecting efficiently fast different types of malware becomes a rough
activity. Identifying malware rapidly with a high rate of accuracy is one of the objectives of
cybersecurity currently. This fast detection can avoid unrepairable moral and economic
damages. Thus the present thesis tries to classify accurately different types of malware
within a reasonable time.

-	Page	� 	of	� 	-18 134

[3]

[4]

[4]

 Bachelor Thesis. Signal Processing for Malware Analysis

1.3. Scope

The scope of this project engages the following steps:

- Studying the evolution and characterization of Android malware, the security models
used and its detections systems. Besides we will focus on the precedents about
images evaluation with malware.

- Analyzing the two datasets used in the thesis development. Identifying and clarifying
the malware families contained in the Malgenome dataset and the difference between
malware and goodware of the M0droid one.

- Determining different machine learning features selectors and supervised classifiers
that will be used in the grouping process of malware images. Additionally, a study
about the subtraction of images will be carried out.

- Designing and implementing the image conversion and classification processes using
the information of previous steps.

- Analysis of the results obtained from the final classification proposals.

Considering the study of the malware evolution, the detection systems and the security
models, we will define them and expose how in Android is applied with some examples,
as the project will be only focused in Android applications. The precedents of images
evaluation will be explained considering malware addressed to personal computers and
Android devices.

Since there are lots of families of malware, only the ones that appear in the two mentioned
datasets provided are considered. As the project is based on analysis of malware through
images, a deep study on each type of malware is not needed because at the end the
importance falls on the image characterization independently of the role of this specific
malware. Due to this, a brief definition of each malware family will be enough to know the
main differences between them.

Regarding the machine learning classifiers, some of them will be picked up following a
differential criterion in which the process of classification will be the one that determines
the selection of it. The subtraction of images will be considered as one of the
classification systems.

To test the different features extractors and classifiers, we will measure the time of
extracting features, the training and testing times and the total time needed to run the
whole program, as well as the accuracy.

Finally, all the results will be compared between them considering some accuracy and
time boundaries in order to choose the best approach (features extraction and classifier).

Additionally, we have to comment that as it is an experimental analysis project, although
we have developed some code to analyze the behavior, it is not a software development
project so, in this way, we are not going to focus on the user interaction part that this kind
of projects have to consider.

-	Page	� 	of	� 	-19 134

 Bachelor Thesis. Signal Processing for Malware Analysis

1.4. Structure of the report

This document describes each part of the project development as five sections:

- The first section, the Introduction. It comprehends the project organization as well as
the motivation and purpose that bring the project to life.

- The second section, the State of Art. It refers to the first stage of the scope. It contains
an investigation regarding the evolution and characterization of malware in smart
devices, the security models, the malware detection and the malware analysis using
images.

- The third section, the Analysis. It is related with the second and third stage of the
scope. It contains an examination of the malware used and gathers a set of image
descriptors, selector of characteristics, different supervised classifiers and the way of
subtracting images. Additionally, some requirements are described.

- The fourth section, the Design process. It concerns the fourth stage of the scope. It
uses the information obtained from the Analysis phase and exposes the study lines that
will be develop in the next section, as well as the programming language in which the
project is going to be implemented and tested.

- The fifth section, the Implementation phase. It refers to the fourth stage of the scope, as
well. It shows the whole process of malware classification and the way it has been
done, from the conversion into images to obtaining all of them classified. Besides, the
problems encountered during this process are explained.

- The sixth section, Performance evaluation. It is related with the fifth stage of the scope.
After performing some tests, the results will be shown graphically and the selection of
the best one will be performed.

- The seventh section, Project design and budget. It shows the scheduling carried out in
this project and estimates the possible costs that it will produce.

- The eight section, Conclusions and future lines. General and personal conclusions
extracted from the development of the project and future work on this topic.

- The ninth section, References. It cites all the bibliography references used in the
development of the project.

Additionally, three appendices are added:

- Appendix I - Code. It contains all the programming codes used during the
development of the whole project.

- Appendix II - Confusion matrices images. In this section we include all the images of
the confusion matrices obtained after performing the tests.

- Appendix III - Time Measurement Table. It contains the table which includes the time
measurements of the different classifiers used in the project.

-	Page	� 	of	� 	-20 134

 Bachelor Thesis. Signal Processing for Malware Analysis

2. State of art
2.1. Malware Evolution and Classification

In this section, we propose the evolution of malware in smart devices (specifically to
smartphones) from the initial disturbing apps to the ones designed to get some benefits
like user information, economic gains or spying.
In addition, we show how malware is characterized and some Android examples, to use
this knowledge in the classification process.

2.1.1. Malware Evolution

The early attacks made through smart devices were very similar to the malicious software
oriented to PCs. In the 2000s Palm devices were infected with Trojans or classical virus
like Liberty or Phage. The main goal of this malware was corrupting system files or
damaging user information.

As the evolution in the mobile phone included new types of connections and
communications like: SMS/MMS, Bluetooth, Wi-Fi, 3G, 4G and NFC [6] [7]; new malware
strategies appeared. One early example was the worm called Cabir that affected
Symbian OS devices using Bluetooth connections. When the Internet connection using
these devices was possible, malware like Yxes, the first mobile botnet, were spread using
SMS, affecting Symbian devices too.

The introduction of new mobile operating systems, paying services and mobile
networking into smart devices caused an increase of malware addressed to them. Some
examples, oriented to Android, are NickiSpy1 (spies the device) or Fakemini2 (sends
premium SMS being the user unaware) or FindAndCall (used to steal sensitive information
stored in an iPhone to leak it to a remote server connected to the network).

Finally, new smart devices appeared so new malware focused on them are generated.
For example some Samsung smartTVs [8] have buffer-overflow vulnerabilities that could
allow an attacker to monitor the device.

2.1.2. Malware Classification and Android examples

The classification of malware in old devices was based on the malicious objectives like
corrupting files or spying (rootkits, spyware, trojan horses, adware, etc) or the
propagations strategies like self-replication among others (worms vs. virus).

Current classifications are based on other terms [1]:

a) Attack Goals and Behavior: Some malware functions can be monitoring, data
exfiltration, sabotage (removing critical files, draining the battery, etc), spamming
(email, calls, SMS) and fraud.

1,2 NickySpy and Fakemini are malware examples used in this project analysis (belongs to the
Malgenome dataset)

-	Page	� 	of	� 	-21 134

 Bachelor Thesis. Signal Processing for Malware Analysis

In Android we can distinguish two different groups: botnets and grayware.
The first one is used for command and controlling (C&C) like Andbot [9](uses URL
Flux) or AnserverBot3 [10](uses obfuscation to hide URLs, server names and files,
also the information published in blogs to keep in touch the members of the botnet
and to update the code). Grayware collects and uses information store in a device
without the user being conscious. For example, Twitter has been criticized for
sending user phone contact list without been notified.

b) Distribution and Infection: There are six distribution strategies that can be used
to infect smart devices:
- Market to Device: this technique is set up on market-borne attacks. For example,

DroidKungFu34 [11] uses ingenious exploitation to be uploaded into the market
without security detection and therefore, being installed in user devices.

- Application to Device: this technique is set up on application-borne attacks; they
use another application, usually goodware, to replicate itself. For example,
Opfake-C [12] uses Facebook to include malware inside the link posted.

- Web-browser to Device: this technique is set up on web-borne attacks; they are
similar to the previous strategy but they use the Web instead of an application.

- SMS to Device: this technique uses SMS/MMS to be replicated.
- Network to Device: this technique is set up on device vulnerabilities. There are

two types of distributions which follow this strategy: Cloud to Device (a powerful
computer like a server or workstation is used in the distribution process) and
Device to Device (another device is used in the distribution driven by P2P).

- USB to Device: this technique is based on the usage of USB port to spread
malware in the device.

Apart from the examples mentioned before, there are two remarkably cases:
repackaging, which consists on popular applications, usually with a cost in official
markets, that are repacked with malware included and uses Market to Device
distribution in alternative stores. One example is FakeToken (a man-in-the-middle
attack). A repackaging variant is the other example, instead of including all the
malware inside the repackaged app, it includes few lines of malicious code that
allow the application to automatically download new malware once it is installed in
a device (Network to Device distribution), usually with update looking.[13] For
example, DroidKungFuUpdate5 (update attack).

c) Privilege acquisition: most of the applications need some permissions to be
executed so, there are two strategies used to grant these permissions:
- Technical exploitation: it takes advantage of misconfigurations or technical

vulnerabilities. Some attacks performed using this technique include: API and
System vulnerabilities, buffer overflows, rooted device vulnerabilities, etc. [14]

- User manipulation: it manipulates the user to obtain the permissions needed.
Some techniques are: social engineering, repacked applications in unofficial
markets and the inexperience in technical concerns of the user.

One example based on privilege acquisition is the rootkits that hide the malicious
code from the operative system, Android DroidKungFu6 variants hide rooting tools
by modifying the name of the files exploited. [15]

3,4,5,6AnserverBot, DroidKungFu3, DroidKungFuUpdate and another variants like DroidKungFu1,
DroidKungFu2, DroidKungFu4 and DroidKungFuSapp are used in the project analysis (Malgenome
dataset)

-	Page	� 	of	� 	-22 134

 Bachelor Thesis. Signal Processing for Malware Analysis

2.2. Security Mechanisms

Android and iOS are operating systems originated to be used in smart devices. Although
they inherit some security characteristics from the operating systems where they are built,
there are another security features that are designed specifically for them. In this section
we are going to focus on Android security mechanisms and then we will show a general
overview of detection systems in smart devices.

2.2.1. Security Mechanisms Overview

We can distinguish between 3 main protection strategies:

a) Market Protection: it is the first protection wall malware has to deal with, it tries to
avoid that malware reaches the official apps distribution markets. To afford this,
there are two security mechanisms:
- Application review: some markets examine the apps uploaded before changing

their state to get ready to be downloaded and being available for the users.
Android market is considered as an open-market against Apple market which is
considered as a walled-market because it applies more exhaustive revisions
techniques.

- Application signing: applications authors are compelled to sign their developed
apps. In this way, they assure the authorship and the integrity of the app, the
device can verify the corresponding signature with the associated certificate
authority.

However, most of the researches [1] show that these mechanisms are not enough
to avoid malicious applications. Reviewing each application manually, taking into
account that there is a high number of applications uploaded every day, becomes
a time consuming and laborious task.
Considering hypothetically that the market protection techniques were perfect,
there are a lot of users, as we commented before, that download applications from
alternative markets in which there is not any security revision process and usually
there is a fake signing, especially when the applications are supposedly a free
copy of an application with a price in the official market.

b) Platform Protection: most of the smart devices platforms have a protection line to
delimit the possible consequences of the malware installed in the device. There
are four mechanisms that this platforms usually include:
- Sandboxing: technique that is based on a trusted environment that uses an

access control policy to isolate the applications that are running. This provides
protection until some point because it does not avoid exploiting kernel
vulnerabilities[16] and the case of user ignorance of app permissions.

- Permissions: as we commented previously, most of applications require some
permissions, with this the system restricts the apps behavior because its activity
is bounded to a certain number of operations. However, as we see, the user
generally does not take care of the permissions granted so an application,
actually, can require more permissions that the ones really needed. A research
made by Felt et al. [17][18] question the efficiency of this platform protection.

- Interaction between apps: interaction between apps is normally based on
components reusing but they can result on activity hijacking, system broadcast,
broadcast theft and other malicious activities [19].

-	Page	� 	of	� 	-23 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- Remote management: some platform manufacturers, network operators and
markets are allowed to control apps remotely with the aim of updating them,
applying patches, removing some technical errors or repairing damages in the
device. However, this possibility can be used by attackers or in lot of cases, it is
considered as a privacy intrusion by the users.

c) New security mechanisms: considering the limitations explained in the two
previous approaches, it has appeared new ways of device protection. The most
interesting ones are:
- Access-control: lots of researches found as a possible protection mechanism

different access-control techniques to allow the device to be shared between
more than one user. Some examples are RBACA (Role Based Access Control for
Android)[20] and DifUser[21].

- Information-flow: high-level protection mechanisms believed in information flow
in the system. Some examples are based on isolation with different profiles [22]
and others on labeling systems [23].

- Platform hardening: tries to simplify platform layers like the kernel or bootloader
to avoid vulnerability risks. [24]

- Rule driven policy: it proposes rules to improve policy languages. [25]

 2.2.2. Security Mechanisms in Android

Android considers that users can choose freely which market they want to use to
download the applications so, instead of market protection, it uses platform protection.
The applications have the permissions in the manifest and if the user grants these
permissions, the operating system will carry out with the execution of them at running
time.

Regarding the platform protection system, Android uses sandboxing mechanism and
another technique called ASLR (Address Space Layout Randomization). Android
separates each app from the rest of running processes but these applications can
establish a communication between them via ICC (Inter-Component Communication) that
has vulnerabilities, as well.

In addition, Android forces that all the applications have to be signed using a certificate
to guarantee developer’s identification. However, this certificate can be no-verified by a
certificate authority in the case of self-signing the app, so the developer is not properly
identified and can be a fake certificate.

-	Page	� 	of	� 	-24 134

 Bachelor Thesis. Signal Processing for Malware Analysis

2.3. Malware Detection and Analysis

In this section we are going to explain the main strategies used in malware detection and
the current detection systems oriented to Android. Finally, we propose a table in which we
include some examples of Android techniques adopted to detect malicious applications
that use the previous strategies explained.

 2.3.1. Detection Strategies

We identify six different techniques used to detect malicious code in smart devices:

a) Type of Detection: depending on how the analysis of the code is performed to
detect the malware, there are two types of analysis systems:
- Static analysis: this strategy unpacks and disassembles (decompiles) the

application to detect suspicious blocks of code or malicious strings. It is a fast
mechanism that is widely used in preliminary analysis to identify malicious code.
Static analysis is considered as an efficient technique in market protection but
its main disadvantage is that it does not detect malicious code if it is obfuscated
or distributed separately from the app.

- Dynamic analysis: this strategy is based on deploying and executing the
application on a controlled device or an emulator to identify suspicious
behaviors of the app evaluated. In lot of cases, it needs automated or human
interaction to detect these malicious behaviors, due to some harmful activities
only appear after that another events occur firstly. The main advantage of
dynamic analysis is that it identifies malicious applications even though the code
is obfuscated, as the application has to be run. However, this is also a drawback
because it is based on the user interaction so, it uses random events to analyze
what happens next; thus it may be the case that the action when the malware
appears is not executed, causing that it is not going to be detected.

Generally, static analysis is used for market protection and dynamic analysis for
device-oriented protection.

b) Type of Monitoring: the malware detection can be performed by analyzing some
monitoring features like user or network activities, permissions, system calls, event
logs, instructions and program traces. This type of detection is based on the idea
that any kind of application (with good or malicious code) relies on the device
sensors and system to perform its activity, so the device components involved in
this activity have to be challenged by the app to work.

• Regarding the device components involved in the analysis we can distinguish the
following ones:
- Hardware: there are features like the battery, information of the device and the

input/output hardware identifiers from which it can be extracted some data that
shows the presence of malware in the device. Examples of this case are the
battery level or the phone IMEI.

- Sensors: there are some components that show the user context, for example:
the accelerometer, gyroscope, touch-id sensors, microphone, GPS, camera,
speakers, among others. The usage of these elements can be monitored to
detect suspicious behavior that can come from malware.

-	Page	� 	of	� 	-25 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- System: the monitoring of system resources like memory, storage, processes,
package management and scheduler is an indicator of malicious actions.

- Communications: features like network usage or phone and internet calls and
messages can be monitored in order to analyze if the device is affected by
malware, as they are a popular infection targets.

- User: features that required user interaction like permissions, built-in and third-
party apps are also indicators of malicious behaviors that can be monitored.

• The monitoring process can be accomplished at three levels:
- Application-only: the monitoring is mainly focused on a specific application so

there is an independent analysis for each application of the device. It is effective
if the malicious software is a stand-alone app.

- Group of applications: the analysis is done using the data gathered from a group
of applications. Its effectiveness has been proven in the cases that malware is
centered on apps collaboration in a distributed way.

- Whole device: the analysis is performed considering a device monitoring
instead of analyzing apps particularly. In rootkits cases, this monitoring method
results very effective.

The main drawback of monitoring strategies is that it is a heavy resource
consumption task, so it is important to select the proper monitoring strategy as
well as the type of features to be analyzed, in order to reduce this consumption as
much as possible.

c) Type of Analysis: The information obtained after monitoring is analyzed to obtain
an evidence of the presence of malware in the device. Some strategies are
clustering, data and control flow graphs, support vector machines, machine
learning algorithms, self-organizing maps, etc.

d) Type of Identification: Once the data has been analyzed, there are techniques
that identify the malware:
- Anomaly-based: this strategy is based on the comparison of a predefined state,

considered as “normal”, with the information obtained in previous steps. If there
is any difference in the comparison, it is considered as suspicious or malicious.
With this technique, malware that has not been seen before can be detected; on
the contrary, it causes a lot of false positives because, as we explained, any rare
behavior is malicious, when in real life it could not be the case.

- Misuse-based: the identification of malware is carried out considering
predefined patterns of signatures, usually for each known malware there is more
than one signature. It is very accurate in identifying well-known malware.
However, maintaining an up-to-date signatures database is a difficult task and
the devices which few resources find really hard processing a huge amount of
signatures.

- Specification-based: this technique is based on predefined authorized
specifications (behaviors), any difference between these specifications and the
real behavior of the device is considered as malicious.

e) Place of Monitoring and Identification: monitoring and identification processes
are resource consumption tasks, so the devices that are battery-constrained
cannot afford them. In that way, there are three different places where these
processes can be performed:
- In the device: the processes are placed locally, so they must be lightweight and

with a limited scope. There are two types of device-placed approaches: local
-	Page	� 	of	� 	-26 134

 Bachelor Thesis. Signal Processing for Malware Analysis
out-line, the device is monitored by the installation of itself in one of the device
lower layers, this action requires root privileges; and local in-line or IRM (Inline
Reference Monitoring), it is embedded in the app and does not need root
privileges because it rewrites non-trusted apps.

- Distributed among other devices: these processes are placed in a cooperative
way between different devices.

- In the Cloud: these processes are performed in virtual environments on a single
server machine, the battery life is not reduced. There are two approaches:
sandbox (uses dynamic analysis with controlled resources over the apps) and
replica in the cloud (uses replicas of the device in remote secure servers).

f) Place of Analysis: depending on where the analysis phase takes place, we can
distinguish two types of approaches: local and in the cloud. The local approaches
obtain a response quickly; on the other hand, the cloud approaches have to wait
for the results transmitted from the local preprocessing of the monitoring phase,
this can take lot of time when the connection is slow or the transmitted packages
are huge.

 2.3.2. Contemporary Detection Systems

Currently, there are three categories for smart devices detection systems:

a) Device monitoring systems: most of these techniques use dynamic analysis,
although some of them combine the two types of analysis (static and dynamic) to
improve the malware detection. Device monitoring systems use as identification
strategies: anomaly, misuse and replicas in the Cloud techniques.
- Anomaly Detectors: They are considered as dynamic analysis detectors and

monitor features like the CPU usage and RAM memory. The analysis phase is
done using machine learning algorithms like Tree Kernels, Self-Organizing
Maps, Artificial Immune Systems and Support Vector Machines. This analysis is
performed in the cloud. Some examples are: Andromaly [28], TStructDroid [29],
MADAM [30] and CrowDroid [31].

- Misuse Detectors: the applications are usually repacked and the monitoring
process follows IRM strategy, so it is embedded inside the applications.
Applications can track themselves and define security permissions at runtime
considering some security policies. The most common example is AppGuard
[32].

- Replicas in Cloud: the monitoring, analysis and identification phases are
performed in a secure environment with no battery problems. In addition, as
several replicas can be executed simultaneously, the detection can be
performed using different techniques at the same time. Some characteristic
examples are SeCloud [33] and Paranoid Android [34].

b) Automatic app-review systems: These are used mainly in market protection
considering virtual environments. The monitoring process in these environments
has advantages like enabling virtual machine introspection to detect operating
system semantics [35], an intensive analysis of security resources, and hosting in
the cloud replicas of the device. There are four types of automatic app-review
detection systems:
- Sandboxing: there are lots of approaches like AASandbox [36] or DroidScope

[37] that use as detection technique the sandboxing strategy. However,

-	Page	� 	of	� 	-27 134

 Bachelor Thesis. Signal Processing for Malware Analysis
sandboxing limits the possibility to detect malware in a non-automated way
because the user cannot interact with the application and some malware only
appears after that.

- Smart Interaction: to solve the sandboxing problem mentioned before, it
appeared a new technique that considers the activity made through the User
Interface (UI). Two examples are based on this: AppPlayGround [38] and
SmartDroid [39].

- Risk Analysis: these systems try to solve the threat communication problems
between the usage of permissions and the user by a proof-of-concept instead of
sophistication. The best example of this strategy is RiskRanker [40].

- Similarity Detection: to detect repackaging sources some strategies are focused
on detecting correspondences between a set of applications. The first systems
developed in this sense used syntactic analysis (string-based similarities) but
the new ones are based on semantic analysis or other approaches like adapting
the Vector Space Models. One example of this is Dendroid [41]. They are more
expensive tasks than syntactic analysis.

c) Attack-specific malware identification systems: The two previous categories
focus on general features to be detected, however due to the exponential growth
of malware, another approach based on detecting specific malware
characteristics has arrived. We can divide this approach into three:
- Privilege escalation: they are based on system vulnerabilities and leaking of

inter-process capabilities. An example of the first case is the one explained by
Checkoway et al. [42] and for inter-process capabilities some references are
CHEX [43] and WoodPecker [44].

- Battery-depletion: they are based on energy-depletion attacks, usually the
attacks affect the battery of the device. One example is eDoctor [45].

- Grayware: as we commented in previous sections, nowadays grayware is also a
significant security problem. For this reason, it has appeared some approaches
that try to detect privacy leakages due to grayware. Some examples are:
AppProfiler [46] and TaintDroid [47].

 2.3.3. Detection System Android Examples

Some examples mentioned in the previous section are analyzed deeply, considering all
the issues explained before, and presented in the following table:

-	Page	� 	of	� 	-28 134

Detection Monitoring Analysis Identification Place
Monitoring &
Identification

Place
Analysis

Consumption Features
monitored

Observations

Andromaly Dynamic ALL Machine
Learning

Anomaly Local-outline Local-outline - RAM: 8.8%
- CPU: 5.52%
- Battery: 10%

- CPU consumption
- Network

packages
- Running

processes

- Labelled data
classification (training).
- Anomaly attacks
- Accuracy: 40%-100%

TStructDroid Dynamic Process
Control Block

- Machine
Learning
- Statistical

Anomaly Local-outline Local-outline Performance
degradation:
3,73%

- Page frames
- Page faults
- Context switches
- Virtual memory

- Any kind of attacks
- Accuracy: 98%

MADAM Dynamic - User Level
- Kernel

Level

Machine
Learning

Anomaly Local-outline Local-outline - Memory: 3%
- CPU: 7%
- Battery: 5%

- Kernel features:
System calls,
memory, CPU

- User features: key
strokes, user
state, phone calls,
SMS, NET

- Anomaly attacks
- Accuracy: 93% (KNN -

K=1)

 Bachelor Thesis. Signal Processing for Malware Analysis

Table 1. Android Malware Detection Systems

-	Page	� 	of	� 	-29 134

CrowDroid Dynamic System calls Clustering Anomaly Local-outline Cloud Not available Apps system calls - Anomaly attacks
- Accuracy: 85%-100%

(K-Means)

AppGuard Dynamic Program
traces

Not
available

Misuse IRM Cloud Performance
degradation:
5%

- Generated events
- Program traces

- Privacy leaks attacks
- Analysis is done off-line

SeCloud - Dynamic
- Static

ALL ALL - Anomaly
- Misuse
- Specification

Replica in the
Cloud

Cloud Not available Any kind of features Any kind of attacks

Paranoid
Android

Dynamic ALL ALL - Anomaly
- Misuse
- Specification

Replica in the
Cloud

Cloud Performance:
64B/s - 2KB/s

Not available Any kind of attacks

AASandbox Dynamic ALL Clustering Misuse SandBox Cloud Not applicable Not available Any kind of attacks

DroidScope Dynamic ALL Not
available

Not available SandBox Cloud Not applicable Any kind of features Any kind of attacks

AppPlayGround Dynamic - System
calls

- Program
traces

Not
available

Not available Cloud Cloud Not applicable Any kind of features Heuristic-based UI
interaction

SmartDroid - Dynamic
- Static

ALL ALL - Anomaly
- Misuse
- Specification

SandBox SandBox Not available Any kind of features - Hybrid dynamic and
static detection

- UI attacks

RiskRanker Static - Instructions
- Permissions
- API calls

Dependency
Graphs

Misuse Cloud Cloud Not applicable - Permissions
- API calls
- Vulnerability

signatures

- Any kin of attacks
- Ranks the severity of

suspicious operations

DenDroid Static Instructions - Dependency
Graphs
- Clustering
- Statistical

Not available Cloud Cloud Performance
degradation
with big
datasets

Code chunks - Detects unkown
malware

- Text mining and
information retrieval
classification

CHEX Static Instructions Dependency
Graphs

Not available Cloud Cloud Not applicable User data User private information
attacks

WoodPecker - Static
- Dynamic

- Instructions
- Permissions

Dependency
Graphs

Not available Cloud Cloud 1 hour
detection

Explicit and implicit
leakages

- Permissions analysis
for implicit leakages

- CFG for explicit leaks

eDoctor Dynamic Hardware Clustering Not available Local-outline Local-outline Battery: 1.5% - Resource usage
- Energy

consumption
- Events

- Accuracy: 94% (k-
means)

AppProfiler - Static
- Dynamic

- API calls
- Program

Traces

Expert Machine
Learning

Local-outline - Local-
outline

- Cloud

Not available - API calls
- Permissions

- Privacy leaks attacks

TaintDroid Dynamic Program
Traces

Expert Machine
Learning

Local-outline Local-outline - Memory:
4.4%

- CPU: 14%

- Variables
- Methods
- Messages
- Files

- Explicit information
attacks

 Bachelor Thesis. Signal Processing for Malware Analysis

2.4. Malware Analysis with Images

As this project is based on analyzing malware with images, the precedent regarding this
topic is a research study made, in 2011, by Nataraj et al. [49] with malware targeted to
Windows computers. In December 2015, they extend this study to Linux, Mac OS X and
Android platforms [128].

These researches classify malware using image processing techniques. They obtained
gray-scale images from the malware binaries. The study made in 2015 is a comparison
between platforms, applying the same strategy used previously in 2011.

 2.4.1. Image Visualization

To visualize the gray-scale images from the malware binaries, a process of reading these
files as a vector of 8 bit unsigned integers and rearranging them into a 2 dimensional
array is performed. The pixels’ values of the images will vary between 0 and 255, being 0
a black pixel and 255 a white pixel, its width is fixed depending on the binary file size and
the height will differ depending the width and file size.

Depending on the size of the file, the corresponding widths are summarized in the
following table:

Table 2. Correspondence between File Size and Image Width

Graphically, the image conversion process is something like this:

FIGURE 5. IMAGE CONVERSION PROCESS

After the conversion of the binary files into images, the
resulting gray-scale images are shown in the following way:
The executable code is contained in the upper-side of the
image (.text). Here we can see two different parts: the part
with code (fine grained) and the part with zero-padding at the
end (black).
In the middle of the image it contains the data initialized,
which corresponds with the textured part and the non-
initialized data represented as black.
Finally, the resources of the file, like icons the program may
use, are at the end of the image (.rsrc).
FIGURE 6. SECTIONS OF THE RESULTING IMAGE

File size
Range

<10KB 10KB - 30KB 30KB - 60KB 60KB - 100KB 100KB - 2000KB 200KB - 500KB 500KB - 1000KB >1000KB

Image Width 32 64 128 256 384 512 768 1024

-	Page	� 	of	� 	-30 134

[49]

[49]

 Bachelor Thesis. Signal Processing for Malware Analysis

 2.4.2. Classification Process

The classification process is divided in two parts:

a) Extracting images features: There are three main areas based on analyzing
images textures: texture classification (identifies uniform textures in an image),
texture analysis (identifies boundaries of texture regions in an image) and texture
synthesis (synthesizes the image textures).
Considering the textures of the images obtained, in this study they use GIST [50],
which is based on wavelet image decomposition, with 320 features values. The
average time to compute the GIST features values of an image is 54 ms.

b) Cross-validation classification: After obtaining the image features, they use k-
nearest neighbors with Euclidean distance to do the supervised classification. The
tests were performed with 10 fold cross validation. In each iteration, 90% of the
images belonged to the training set (chosen randomly) and 10% to testing set.
Therefore, a given test image is going to be classified to a class considering the
modulus of its k-nearest neighbors.

 2.4.3. Results Obtained

In the study made in 2011, the experiments were performed using a dataset of 9,458
Windows malware binaries, divided in 25 families, and varying the number of neighbors in
a range of 1 to 10. The best accuracy was 97.18% with 3 neighbors.

As this project is focused on Android platform we are only going to present the results
obtained in Android experiments of the research made in December 2015.

They used the same strategy than in 2011 with the Malgenome dataset applied in this
project too. However they only considered 13 families with at least 20 samples each. The
obtained accuracy was 84.55%.

In this project we are going to use as much families as possible because we want to
analyze malware in a very realistic way. The results obtained in this project will be more
adjusted to real cases as the number of families is not fixed and it can be families with
little number of samples that must be considered. Besides, we are going to use more
Android datasets.

 

-	Page	� 	of	� 	-31 134

 Bachelor Thesis. Signal Processing for Malware Analysis

3. Analysis
To develop this project, we have used two datasets. The first one contains malicious and
normal applications (M0droid dataset) [92] and the second one contains different
malware families (Malgenome Project dataset) [93].

In this section we are going to study the characterization of each dataset, we will analyze
the process of extracting image features with some image descriptors and how to use the
values obtained after this extraction, considering some machine learning classifiers and
features selectors. Moreover, we will analyze the process of subtracting one image from
other to check the differences between them, as this process is often used in
photoshopped analysis or in motion detection and could be useful for this project.

3.1. Datasets Analysis

In order to understand the behavior of the classification process, and consequently to
develop properly the present thesis, we have performed an analysis of the malware that
appear in each dataset. This analysis is based on defining and explaining the main
differences between goodware and malware and the characteristics of each malware
family.

3.1.1. M0droid Dataset

This dataset is part of the M0droid Project, which dates from 2015 [92], so it is a new and
contemporary dataset. Inside it we found some samples gathered in two groups:
goodware and malware. Considering the definition provided by Symantec, malware can
be defined as “an abbreviated term meaning 'malicious software’. This is software that is
specifically designed to gain access or damage a computer without the knowledge of the
owner.”[87]. In this case, they are oriented to Android devices. Therefore, the main
difference between the two groups inside this dataset is that in the group with goodware
applications, there is no malicious software and in the other one (malware), the
applications contain malicious code.

Despite in this dataset the malware is not divided into different types, there are six
collections of malicious applications where we can classify malware, depending on the
behavior and objectives of them. We will give a brief explanation of each of them because
we think that maybe inside the dataset there are different types of malware, so it is an
important fact to consider in terms of their identification. Although current classifications
techniques do not depend on the malware behavior, as we comment in the previous
section (2.1.2. Malware Classification and Android examples), we believe that it is
important to know the purposes why malware is created and also it is a way to
understand the division into families:

- Adware: A malicious application can display advertisement inside it or by launching
the Web browser of the device. An attacker can repackage an application including an
advertisement library registered to himself. The repackaged application works as the
original, so the user is not aware about using an illegitimate version. Besides, usually
these applications use the location, the contact list, the IMEI and IMSI of the device to

-	Page	� 	of	� 	-32 134

 Bachelor Thesis. Signal Processing for Malware Analysis
identify the user and create personalized ads. Each time the ads are displayed, the
attacker will obtain a revenue. [88]

- InfoStealers: applications that obtain confidential information from the device being
the user unaware. This information is used for several purposes like spamming or
accessing to social media. The information is usually sent to C&C remote servers [89].

- Spyware: applications that track the user device. They can monitor incoming/outgoing
calls, user location, text messages, email and tracking user web browsing [88] [89].

- SMS Trojans: the attacker can obtain a revenue by creating a malware that sends SMS
messages to premium numbers, making the user to pay an extra charge [89].

- mTAN Stealers: some banks require additional credentials, sent to the user via SMS,
when login into an online bank account or making a transaction. These credentials are
usually a random set of numbers, called mTAN (mobile Transaction Authentication
Number) that can be intercepted with malicious applications [88] [89].

- Ransomware: malware that blocks the user to access to the device by locking the
access to the system or encrypting the user files. It forces the user to pay a quantity of
money to access again to the device or recover the data [90] [91].

Furthermore, even though most of Android applications are trojans [89], we can
distinguish other types of Android malware as well:

- Trojan horse: computer program that is installed by the user because it does not seem
dangerous (or is attached to another program) but its behavior is completely
unexpected from the user, like encrypting the files or downloading and installing other
malicious programs. It cannot replicate itself.

- Virus: malicious software that is hidden inside another apparently inoffensive
application and has the ability of self-replicating (creating copies of itself). Mostly, it
performs actions like changing or deleting data.

- Worm: malicious software that makes copies of itself, as viruses. The difference with
viruses is that it is not attached to any other application.

- Rootkit: malicious application that has the ability to hide itself from the user and
perform changes in the device or steal information. It commonly uses root privileges.

- Backdoor: malicious application that creates a bypassing procedure to authenticate or
perform any action instead of using the normal methods, with user’s awareness.

Finally, as we are dealing with Android applications (APK files) we are going to explain the
contents of an Android application. An APK file is an application container that has been
packed through a zip algorithm and includes all the application resources and files. An
unpacked application contains the following files and folders [97]:

-	Page	� 	of	� 	-33 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- AndroidManifest.xml: it is a file that represents the configuration file of the application.
It contains the application unique identifier, the permissions needed by the application
to work or the components (<<activities>>, <<content providers>>, <<receivers>>, etc.) of
the application [96]. Once the application is installed in a device, the PackageManager
reads this file and sets up and deploys the application on the Android platform [97].

- classes.dex: file that contains the compiled code of the application in DEX (Dalvik
Executable) format, in order to be interpreted by the Dalvik virtual machine or ART
(Android Runtime). All the applications are executed in the virtual machine with security
purposes [96].

- resources.arsc: it is a file that stores the compiled resources [96].

- res: it is a directory that contains all the resources used in the application such as
icons, images, strings in several languages, tones, etc. [97]. Some applications may
not contain this folder if they do not use any resource of this type.

- assets: it is a directory that contains resources that are not compiled (assets). They
can be retrieved by the AssetManager [97]. This is also a not mandatory folder.

- META-INF: it is a directory that contains information regarding the digital signature of
the application. This information is presented in three files [96]:

- MANIFEST.MF: list of all the files, with their corresponding SHA-1 hash, inside the
APK.

- CERT.SF: SHA-1 hash of every 3 lines that are found in the MANIFEST.MF file.
- CERT.RSA: it contains the signature of CERT.SF, so it stores the APK signature.

3.1.2. Malgenome Dataset

This dataset is part of the Malgenome Project, which starts on May 2012 [93]. This
dataset contains 49 Android malware families. Now we are going to analyze each of
them:

- ADR [51]: Trojan that comes from a legitimated application which has been modified
and uploaded to the market. The main goal of this malicious application is stealing
information from the device like the IMEI, IMSI, APN, Wi-Fi, network connectivity,
hardware information, etc. These actions are performed when some of these events
happen: a phone call is received by the device, it has passed twelve hours since OS
started and the re-establishment of the network connectivity has been performed after
being lost.

- AnserverBot [52]: it is a bot program, specifically it is considered a Trojan, distributed
in alternative markets in China. This malicious app works following these steps:
1) When it is launched, it will display a fake upgrade dialog that will download and

install another bot program. This bot program will run in the background without
the user being noticed. This bot program can run even when the AnserverBot has
been removed from the device.

-	Page	� 	of	� 	-34 134

 Bachelor Thesis. Signal Processing for Malware Analysis

2) There is another bot program inside AnserverBot that is not installed in the device
but it is launched dynamically and executed at runtime by AnserverBot directly or
by the bot installed previously.

3) AnserverBot periodically (one time per two hours) communicates remotely with
C&C servers to recover some commands or other information.

4) Some considerations of this malware are that it is protected from reverse-
engineering using obfuscation and from being repackaged. It is considered more
sophisticated bot program than Pjapps and BaseBridge and includes dynamic
code loading like Plankton.

- Asroot [53]: malicious application that gains root access to avoid security sandboxing
with user awareness.

- BaseBridge [54]: it is a Trojan malicious application that tries to send SMS to premium
numbers.

- BeanBot [55]: Trojan included in repackaged third-party applications of alternative
markets, that are supposedly free versions of paid apps. It communicates via C&C with
remote servers and sends premium SMS.

- Bgserv [56]: Trojan malware that creates a back-door to send user information from the
device to a remote location.

- CoinPirate [57]: Trojan app repackaged of a game named “Coin Pirates” that is
available as a free application in Chinese markets. Its functionality is based on filtering
text messages received, considering some keywords defined by the malware author. If
a text message contains one of these keywords, it will be removed or uploaded to a
remote server with information like the IMEI, IMSI, SDK version and device model.

- CruseWin [58]: Trojan that displays, in the application list of the device, a standard
Flash icon that downloads a XML configuration file to obtain a set of URLs for sending
and retrieving data. Besides this malicious application can delete SMS, send premium
SMS to the numbers included in the XML downloaded previously, update itself or even
delete itself.

- DogWars [59]: Trojan that sends SMS to all the members of the contact list stored in
the device. It is a repackaged version of the application called “Dog Wars”, available in
third-party markets.

- DroidCoupon [60]: Trojan app that communicates via C&C with remote servers for
sending the IMEI and subscriber ID and receiving instructions to remove or download
and install other packages.

- DroidDeluxe [61]: root-exploit malware that takes device information like the
manufacturer, brand and device model.

- DroidDream [62]: root-exploit malware that communicates via C&C to send information
such as product identifier, partner, IMEI, IMSI, SDK version, language, country and the
user identifier.

-	Page	� 	of	� 	-35 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- DroidDreamLight [63]: malware that affects around 30,000 to 120,000 Android
devices, it was contained in applications available in the official Android market. The
author of this malware is believed to be the same that DroidDream or other Droid
versions. Some of the applications that contain this malware were the ones develop by
Magic Photo Studio, Mango Studio, BeeGoo, E.T. Teen, GluMobi and DroidPlus. Once
these applications were installed, the malware stole information stored in the device
like the list of the apps installed, IMEI, IMSI and SDK version. This information was
uploaded to several URLs where the device connects to. Besides, with the user
intervention, this malware can download and install new packages.

- DroidKungFu1 [64]: this malware is included in repackaged apps in Chinese
alternative markets. The malware includes inside these apps a receiver and a service.
The service will be launched, being the user unaware, after the receiver is notified
when the booting process has finished. The service is based on rooting the device by
encrypting two known root exploits (udev and RageAgainstTheCage). The malware
decrypts these two exploits and then executes them to send information (Android OS
version, IMEI and phone model) to an URL. Once the root privilege is granted, it can
install or access to any file, even remove them.

- DroidKungFu2 [63]: improved version of DroidKungFu that, apart from root-exploiting
the device, it communicates with three C&C URLs servers, stored in a native file, and
reads device information, writes them to a local file and uploads it to one of these
servers.

- DroidKungFu3 [65]: new variation of DroidKungFu more advanced than the previous
ones. The goal of this malware is avoiding being detected by mobile anti-virus
software. It contains obfuscation mechanisms to hide the C&C URLs servers (previous
versions contain them as plaintext), encrypts malware binaries and masquerades app
as a Google Update.

- DroidKungFu4 [66]: it is a version of DroidKungFu3 but instead of encrypting C&C
addresses in a Java class file, as it is done in DroidKungFu3, they are stored as
ciphertext in a native file, like DroidKungFu2.

- DroidKungFuUpdate [67]: malware that uses the Update Attack. In this case, a
prompt appears to the user with an update request after the installation. If the user
accepts, it will download malware that belongs to DroidKungFu3 family.

- EndOfDay [68]: Trojan that was embedded in a fake version of the “Holy ***king Bible”
application. When the device reboots, a service called “theword” starts and
periodically it tries to send the phone number and operator code to a host service. It
attempts to receive information from a remote location in a period of 33 minutes, as
well. Additionally, there were two activities programmed to the 21th and 22nd of May
2011. At that time, on 21th, it created a database called “mydb.db” in which it wrote
some texts with the word “endoftheworld”. Then, it selected randomly some of them
and sent them to the entire contact list, it changed the wallpaper of the phone too. On
22nd of May 2011, it changed again the wallpaper and sent again an SMS to each
member of the contact list with a new message.

-	Page	� 	of	� 	-36 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- FakeNetFlix [69]: phishing application that is available in alternative markets. The app
asks for Netflix username and password and sends them to a remote server. When the
user introduces them, an incompatibility error screen appears and the credentials are
sent.

- FakePlayer [63]: this is one of the earliest Trojan malware discovered in Android
(2010). It attempts to send premium SMS to Russian numbers, having an appearance
of a movie player the user has to install in the device.

- GamblerSMS [63]: it is a spyware application that monitors every incoming and
outgoing SMS and records every outgoing phone call. It runs in the background and
the information is sent to the attacker.

- Geinimi [63]: Trojan that is embedded in a legitimate repackaged application. After
being installed, a backdoor is opened and information from the device such as
geographic and contact details are sent to a remote location. Besides, it can send SMS
or make a phone call to specific numbers, delete SMSs, download files, send and
receive information to C&C servers (the network addresses are encrypted), change the
wallpaper, install or delete packages, etc.

- GGTracker [63]: Trojan that sends and receives SMSs to premium numbers. It affects
American users. It was distributed as a battery-saving application in third-party
markets.

- GingerMaster [63]: first Android malware with root-exploit purposes. It was available in
alternative Chinese markets. Once it is installed, a receiver is registered and notified
when the reboots ends. After that, a service (that collects device information and sends
it to a server) is launched and runs in the background. When the application has root
privileges, it connects to C&C to receive instructions to install new APK files.

- GoldDream [70][71]: Trojan that spies received SMS and incoming and outgoing
phone calls to send them later to a remote location, being the user unaware. It was
spread in alternative Chinese markets embedded in games like “Draw Slasher” or
“Drag Racing”. In addition, it has bot capabilities (receive C&C instructions from a
server to be executed).

- Gone60 [72]: Trojan that was available in official Android market as: “Gone in 60
Seconds”,”Gone in 60s”, “gi60s - reveal secrets”, “gi60s - reveal secrets UN” and “Get
secret data in 60 seconds” whose publishers are CLOUDDOG and CREATIVEDOGS. It
asks the user for the following permissions: reading contact data, sending SMS
messages, opening network connections and reading Web browser bookmarks. It
attempts to steal user information such as the user contact list, SMS messages, visited
URLs and recent calls. It may encode and upload this data with Base64 encryption to
this location: http://gi60s.com/upload.php.

- GPSSMSSPy [73][74]: malware that records and sends to a remote server the current
location of the user and the SMS messages.

-	Page	� 	of	� 	-37 134

http://gi60s.com/upload.php

 Bachelor Thesis. Signal Processing for Malware Analysis

- HippoSMS [63]: Trojan that appears in Chinese third-party markets that sends SMS
messages to premium numbers. It blocks numbers which can inform the users about
the additional charges made to their accounts and removes numbers starting with 10
(in China legal mobile phone service’s providers begin with 10).

- JiFake [63]: Trojan that sends premium SMS oriented to Russian users. It was included
inside Jimm, a popular Russian ICQ app. It uses the QR system to be installed, so
when the user scans the code, it will be redirected to a site that will install the Trojan.

- jSMSHider [75]: Trojan that has appeared in alternative Chinese markets and affects
ROM or rooted devices. It receives commands from a remote server by installing a
communication payload considering the exploitation of a ROM vulnerability. It can read
and send SMS messages and install applications.

- KMin [76]: This Trojan sends to premium numbers data such as IMEI, IMSI and other
files.

- LoveTrap [63]: Trojan repacked in legal applications like e-book readers and location
tracker apps. It sends premium SMS messages and blocks messages that inform the
user about this additional charge. Additionally, it sends system information to a remote
server.

- NickyBot [77]: Spyware that is controlled by commands via SMS messages, so it is
also a bot program. The main commands are:
- record: Recording the sounds in the phone, this sound can be phone calls, the

surrounding sounds, and any kind of sound.
- contact: Sending to a predefined email address the contacts data in the phone.
- boot: Enable/disable the functionality about booting notification, which will send a

SMS reply after booting.
- log: Enable/disable the monitoring of phone calls.
- sendlog: Sending to a predefined email address the phone call logs.
- sms: Enable/disable the monitoring of SMS messages.
- sendsms: Sending to a predefined email address the SMS messages.
- gps: Enable/disable the monitoring of GPS location.
- state: Checking and reporting the monitoring status of all the possible functionalities

(enabled/disabled).
- all: Enable/disable all the functionalities that can be monitored.

- NickySpy [78]: Trojan program that spies the device and steals the information
collected.

- Pjapps [63]: Trojan with backdoor capabilities, considered as a repackaged
version of legal applications like “Steamy Window” (steamy window effect on the
device screen). This malware attempts to build a botnet with C&C servers to
send and receive messages to install new applications, visit Web sites, send
and block messages and add bookmarks to the Web browser.

-	Page	� 	of	� 	-38 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- Plankton [63]: Trojan that is repackaged in legal applications. It is also known
as Tonclank and when it is executed, it will obtain and send the device identifier
and permissions to a remote server. From this server, a .jar file is downloaded
that will open a backdoor and, depending on the command received, it will
create a registry of all the activities of the phone, copy the bookmarks, modify
the homepage of the Web browser and return the status of the previous
command.

- RogueLemon [79]: in China there are subscriptions services that work via SMS
communication between the user and the service provider. There is a
communication policy that controls the communication. However, RogueLemon
violates this policy. It registers a SMS receiver in the manifest file of the
application with the highest priority (99999) so in that way this receiver will be
the first one that handles the incoming SMS. If the SMS is from a service
provider, it will connect to a remote server and interchange some encrypted
messages that contain user information. Then, it will answer with a positive
confirmation to this service, the user will be charged and signed up to the
service without knowing it.

- RogueSPPush [80]: it uses the same functionality that RogueLemon but in this
case the messages are not encrypted.

- SMSReplicator [63]: Trojan available in 2010 at Android market with a price of
$4.99. It was a spyware that sent the incoming SMS to a defined phone number
or a Website like androidversion.net or criptosms.com. It was forbidden from the
Android market a few hours later.

- SndApps [81]: this malicious software was included in the Android market and
is a payload that once it starts, it will gather information like the phone number or
email addresses stored in the device, and send them to a server remotely
placed.

- Spitmo [82]: malware that once is installed, the bank incoming SMS are
monitored and it steals mTAN (mobile Transaction Authentication Number)
messages.

- TapSnake [83] [84]: Trojan embedded in a game similar to the “Snake” game. It
steals the user location and sends it to a remote Web service.

- WalkinWat [63]: Trojan inside a repackaged application of a legitimate Walk app
available in alternative markets. It steals all the user data and sends it to a
remote server (whose domain was incorporateapps.com). Besides, it sends a
SMS message to all the members of the contact list telling that the user has
installed a fake version of the app. Moreover, it accesses network information,

-	Page	� 	of	� 	-39 134

 Bachelor Thesis. Signal Processing for Malware Analysis

vibration features, phone location, turning on and off the device. Finally, a
prompt appears warning the user about not downloading fake apps and with
two options: visiting official Android market or exiting the application.

- YZHC [85]: Trojan that sends premium SMS to numbers obtained from the
Internet and removes this activity once it is performed. It was available in the
official Android market during 4 months and is available in Chinese alternative
markets.

- zHash [63]: root-exploiting malware that appeared in Chinese third-party
markets. This was the same exploit than some versions of DreamDroid. If the
rooting process was successful, other applications can also obtain root
privileges with user awareness.

- Zitmo [63]: malware that intercepts bank information from SMS messages that is
sent to remote server. In that way the attacker can use the user bank credentials
to login the account and perform modifications.

- Zsone [86]: Trojan included inside 10 apps (iMatch, 3D Cube horror terrible,
ShakeBanger, Shake Break, Sea Ball, iMine, iCalendar, LoveBaby, iCartoon and iBook),
developed by Zsone. Once the user starts the application, it will silently send
SMS messages to costly subscription services in China with user awareness. It
was available in the official Android market and alternative markets.

-	Page	� 	of	� 	-40 134

 Bachelor Thesis. Signal Processing for Malware Analysis

3.2. Image Descriptors

In this section we are going to study different image descriptors to extract a features
vector from the images obtained. We will start from the one used in previous malware
image researches, GIST image descriptor, and then we will extend this study to others
features extractors such as histogram, image to graph and daisy descriptors.

3.2.1. GIST

This descriptor was proposed in [94]. Firstly, it divides the image into segments forming a
4x4 grid. Secondly, it extracts the orientation histograms. The values obtained in the
second phase constitute a vector of 960 values. Usually, before applying the GIST
descriptor, the image has to be resized into a smaller squared image between 32 and
128 pixels. This is due to the fact that this descriptor does not represent the image details
so it is considered as a low dimensional descriptor [95].

FIGURE 7. GIST IMAGE DESCRIPTOR

3.2.2. Histogram

A histogram is a graph that shows the frequency of an object or instance. In case of
images, it presents the frequency of the intensity levels of the image pixels. Particularly,
the x and y axis of the graph represent the image gray-scale intensities and the frequency
of them, respectively. [98]

As we can see from the figure, the x
axis corresponds to the pixels values,
it goes from 0 to 255 because the
image processed is a 8 bbp (8-bits
per pixel) image, so it means that there
are 256 possible levels of grays (28 =
256 colors). On the other hand, the y
axis contains the intensity quantities.

FIGURE 8. HISTOGRAM OF AN IMAGE

-	Page	� 	of	� 	-41 134

4

4

960 values

[168]

[169]

 Bachelor Thesis. Signal Processing for Malware Analysis

From the image of Figure 8, we can conclude that it is a light image, which it can be
proven just looking at the image, however the reasoning extracted from the histogram
about why it is a lighter image is that most of the high frequencies lie in the middle of the
graph or in the in the right half part, where corresponds to the high levels of gray colors.
In this image there is not a dark side because there are not values represent in the graph.

As the operations needed to perform a histogram are very basic, we think that this
descriptor could be a fast descriptor that can be useful in this project.

3.2.3. Image to Graph

A descriptor developed by scikit-learn is img_to_graph [99]. This descriptor studies the
connections between neighboring pixels of an image. It analyzes pixel-to-pixel gradient
connections and draws a graph from the connectivity matrix built from the image. This
matrix establishes the connections between the pixels, so that the edges of the image are
weighted with the gradient values. We will obtain the different values retrieved from this
descriptor considering the graph obtained.

FIGURE 9. IMAGE TO GRAPH DESCRIPTOR

As we can see from Figure 9, this descriptor detects perfectly the different color variations
and therefore, the edges of an image, so it could be useful in our experiment because we
want a descriptor that distinguish clearly each part of the image (.text, .data, etc.) and
assign a value to each part.

3.2.4. Daisy

Lot of researches [101] [102] [103] considers SIFT (Scale-invariant Feature Transform)
and its variants a good image descriptor. The same thing happens with BOF (Bag of
Features) descriptor [104] [105] [106]. A similar approach that considers the benefits
provided from the SIFT and BOF is DAISY descriptor.

It is a more computational efficient descriptor that is
based on the gradient orientation histograms in a similar
way than SIFT descriptor does [100] [107]. The way it is
formulated allows a fast dense extraction, like BOF
strategies.

FIGURE 10. IMAGE WITH DAISY DESCRIPTOR

-	Page	� 	of	� 	-42 134

[99]

[100]

 Bachelor Thesis. Signal Processing for Malware Analysis

From Figure 10 we can observe that there are 9 DAISY descriptors. Each descriptor has a
daisy flower shape, which is why it is named like this.

Each circle that formed the flower represents a
region where the “+” sign depicts the pixel location
where the computation of the convolved orientations
maps center takes place, besides the radius of this
region is proportional to the Gaussian kernels
standard deviations.
Smooth transitions and rotational robustness degree
can be caused by circles overlapping.
Considering the robustness in opposition to rotation,
the radius of the outer regions is increased to be
sampled equally than the rotational axis. [108]

FIGURE 11. DAISY DESCRIPTOR

As it performs more computations than for example, a histogram, we think that this
descriptor will take more time to obtain the desired values from the image but it could be
more accurate.

-	Page	� 	of	� 	-43 134

[108]

 Bachelor Thesis. Signal Processing for Malware Analysis

3.3. Features Selection

Once we have analyzed the descriptors, that we consider that are going to be useful for
the project development, we will continue with the study of a feature selector called PCA
(Principal Component Analysis). We are uniquely going to analyze this selector because it
is the most used in image processing and the most efficient.

3.3.1. PCA

The basic idea of PCA as an image feature selector is projecting the original data into a
smaller dimensional space (smaller matrix of features). It selects from the original feature
matrix, the most significant vectors (from highest to lowest importance) following a
Singular Value Decomposition [171].

In image processing is interesting to preserves most of the variance of the image but
reducing the dimensional space. The reduction is done dropping the lower singular
values of the features vector.

In section 2.4 of this report, we have seen that there was a research made to analyze
malware with images. In that case, the images analyzed were resized to 64x64 pixels
gray-level pictures. The dimensionality of the data obtained is 4,096 values. However, the
images of the same family look alike so the intrinsic dimensionality is much lower than
4,096 (for example, 250 values). The PCA features’ selector can be applied to obtain a
reduced set of values from the original vector but preserving the variance and the
distinction between samples of images at the same time. In that way, the redundant
information can be removed in the cases that the data is highly correlated.

The process of obtaining the reduced set of values has the following steps [114]:

1) Obtaining the features matrix: ƒ(x,y) is the function applied to the image that shows the
different levels of gray color or the features for each pixel (x,y	coordinates).

ƒ(x,y)	=	 	 	 	 	 	 	 	 	 		(1)

2) Adjust the matrix: it is done by subtracting the features matrix with its mean to obtain
columns with unitary variances and zero means.

 adjusted_matrix		=		ƒ(x,y)		-		ƒ(x,y) (2)

3) Covariance matrix: the covariance of the adjusted matrix is calculated.
4) Calculate eigenvalues and eigenvectors: since the covariance matrix is squared, the

eigenvalues and the corresponding eigenvectors are calculated.
5) Obtain vector of eigenvectors (ve): from the covariance matrix, create a matrix of

columns that will be the list of eigenvectors.

-	Page	� 	of	� 	-44 134

ƒ(0,0)	 	 ƒ(0,1)	 		…	 ƒ(0,m-2)	 ƒ(0,m-1)							
ƒ(1,0)	 	 ƒ(1,1)	 		…	 ƒ(1,m-2)	 ƒ(1,m-1)										
…	 	 …	 		…	 	 	 	 …	 	 	 	 	 	 	 …												
ƒ(n-1,0)							ƒ(n-1,1)			…				ƒ(n-1,m-2)				ƒ(n-1,m-1)								

 Bachelor Thesis. Signal Processing for Malware Analysis

6) Final data: it is calculated by multiplying the transpose of the vector of eigenvectors
with the transpose of the adjusted matrix of step 2.

4inal_data		=		veT		x		adjusted_matrixT		 	 	 	 	 (3)

7) Recover matrix of features: The original image can be obtained without compression
with the following equation:

ƒ(x,y)= veT		x		4inal_data	+	ƒ(x,y)T	 	 	 	 	 	 (4)

Any components that represent a small variation in the data are going to be discarded, so
the vector of eigenvectors is going to be reduced as the quantity of eigenvectors is less;
consequently the 4inal_data will have a smaller dimension. In this case, the image
recovered using the equation (4) will be a compressed image with less detail than the
original. This is the final purpose of this method.

This technique is often used in image face recognition, as it is explained in [109].

FIGURE 12. PCA FEATURES SELECTOR

-	Page	� 	of	� 	-45 134

Original images Images after PCA

[167]

 Bachelor Thesis. Signal Processing for Malware Analysis

3.4. Machine Learning Classifiers

In image processing, an images classification process is performed in order to check the
accuracy of the features extraction step and to extend its usage to face detection or
medical systems. We will analyze the most used classifiers considering a supervised
classification, as we know the class of each sample that will be classified. These
classifiers are: KNN, NaiveBayes, DecisionTree and RandomForest.

3.4.1. KNN

KNN algorithm, also known as k-nearest neighbor algorithm, is the simplest machine
learning classifier. The algorithm is based on classifying the testing objects taking into
account the closest training samples in the space [113].

It consists in two steps: training and testing. In the training process it stores the features
vectors and each label of the training objects, in this case the image family name or
goodware/malware. In the classification process (testing), a majority voting process is
taken to label the unknown sample equivalently than its k-nearest neighbors. Typically, the
number of neighbors is 1, so the testing object is classified regarding the object nearest
to it, meaning that it is considered that it belongs to the same class and it is classified in
that way.

In the case that there are only two classes (goodware or malware), k must be an odd
integer. Nevertheless, in multi-class classification can be a draw, even though the k
number is odd. To solve this tie problem, it is commonly used the Euclidean distance, the
most typical distance function:

d(p,q)	=	d(q,p)	=		√(q1	-	p1)2		+		(q2	-	p2)2		+		…		+		(qn	-	pn)2		=		√∑(qi	-	pi)2	 (1)

Being p and q two points in the Euclidean n-space and d the distance between these two
points.

The following picture shows the whole KNN classification process:

FIGURE 13. KNN CLASSIFICATION

-	Page	� 	of	� 	-46 134

i	=	1

n

[113]

 Bachelor Thesis. Signal Processing for Malware Analysis

As we can see from Figure 13, the green circle (question mark) can be a square (a), a
rhombus (b) or a triangle (c), depending on the value of K. If k=1, it will be a square; on
the contrary if k=5, it will be a rhombus and in the case of k=10, it will be a triangle.

The main advantage of this algorithm is that it is really accurate if the classification is
done with samples with different characteristics due to the fact the classification decision
is taken in a neighborhood with similar objects (the objects with similar characteristics are
close between them). On the other hand, the main drawback is that it considers the
features equally, so that all the features have the same importance in the classification,
causing errors when there is a small set of features.

In image processing, KNN is applied in face recognition like in [111] or in [112] to age
estimation of a person.

FIGURE 14. KNN FACE RECOGNITION

FIGURE 15. KNN AGE ESTIMATION

-	Page	� 	of	� 	-47 134

[111]

[112]

 Bachelor Thesis. Signal Processing for Malware Analysis

3.4.2. Naive Bayes

Naive Bayes is a simple algorithm that in some types of supervised learning
classifications becomes a very efficient tool. Naive Bayes assumes that the value of an
object feature is independent from the value of another feature of the same object, given
the class label. For example, if a fruit is considered an orange when it is rounded and
orange color, Naive Bayes does not consider the possible correlations between these
features, it postulates that these two features independently participate to the probability
that this fruit is an orange [173].

Accordingly, this algorithm is considered as a probability model [115] where a set of
features x	=	(x1,	…	,	xn)	are assigned a probability of contributing to k possible classes:

 p(Ck	|x1,	…	,	xn) (1)

However the above equation becomes unfeasible when the number of features is huge,
so this formula is transformed using the Bayes theorem into the following:

p(Ck	|x)	=	 (2)

The main advantage of this algorithm is that it demands a small quantity of training
samples to do the estimation of the required parameters for the classification. Therefore,
the time for training and testing is lower than other algorithms like KNN.

In image processing [116], the values are considered to be continuous because each
value for x	is a real-valued pixel. In this case, there is an assumption that states that these
values follow a Gaussian (normal) distribution, so the likelihood of each feature value of
the image is presupposed to be Gaussian:

 p(x	=	v	|	c)	=	 e (3)

Being µc	the mean and σc2 the variance of the features value (x) of class c.

Some examples of the usage of Gaussian
Naive Bayes is in medical images analysis
[119] like in Figure 16.

FIGURE 16. NAIVE BAYES IMAGE PROCESSING

-	Page	� 	of	� 	-48 134

p(Ck)		x		p(x|Ck)
p(x)

1
√2πσc2	

(v	-µc)2
2σc2	

—	

[119]

 Bachelor Thesis. Signal Processing for Malware Analysis

3.4.3. Decision Trees

Decision Tree is a non-parametric supervised machine learning classifier. The
classification process is based on learning decision rules formulated from the training
features and predicting the value of an object using these rules. Usually, the inferred rules
are if-else rules. Consequently, the deeper the tree is, the more complex the decision
rules are going to be [117].

In the example of fruits of the previous section, the rules generated to define a fruit as an
orange will be something like this:

IF color == orange AND shape == round:
fruit = orange

ELSE:
fruit = other fruit

The advantages of Decision Trees are [117]:

- Trees can be visualized (white box model) so they are easy to understand and
interpret.

- They require little data preparing.
- They can handle multi-output problems.
- The computing cost is logarithmic.
- They work efficiently even though some assumptions are violated.

The drawbacks of Decision Trees are [117]:

- In some cases the problem of overfitting occurs. In these cases the created decision
trees are so complex that the data generalization cannot be produced. Some
solutions to overfitting are: pruning, setting a maximum depth for the tree or a
minimum fixed number of leaves.

- There are rules that are difficult to be formulated in problems of multiplexer, parity or
XOR.

- Decision Trees can be biased when one class predominates from the rest.
- Decision Trees can be wrong generated when there are small variations in the data.

Decision Trees are applied in image processing like in [120] and [121]. They outcome
really effective in sonography medical analysis [118]:

FIGURE 17. DECISION TREES IN
SONOGRAPHY ANALYSIS

-	Page	� 	of	� 	-49 134

[118]

 Bachelor Thesis. Signal Processing for Malware Analysis

3.4.4. Random Forest

A Random forest is a meta estimator that follows a classification process based on
dividing and averaging a number of decision trees into dataset’s sub-samples [172].

This algorithm has the following steps [122]:

1) Select a number of bootstrap samples from the original dataset (ntree).
2) For each bootstrap sample, build a unpruned tree with the following

considerations (bagging process):
2.1.) For each node, make a random sample (mtry) of the predictors instead
of the choosing the best split.
2.2.) Select the best separation from mtry.

3) Make a prediction with the new data by majority voting or by averaging of the
predictions of the ntree trees.

4) An estimation error rate from the training data can be obtained:
4.1.) For each bootstrap iteration, predict the data using OOB (Out-of-
Bag).
4.2.) Add the OOB predictions (on average, each element of the data will
be 36% times out-of-bag).
4.3.) Calculate the error rate (OOB error).

The advantages of Random Forest classifier is [123]:

- This classifier works well with large datasets.
- It estimates the most important variables for the classification.
- It is not biased to any class of the dataset.
- It provides a balanced tree even the dataset is unbalanced.

In image processing, it is used in face recognition like in [124] or [125]:

FIGURE 18. RANDOM FOREST FACE RECOGNITION

-	Page	� 	of	� 	-50 134

[125]

 Bachelor Thesis. Signal Processing for Malware Analysis

3.5. Image Subtraction

When analyzing images, there is a technique that is based on subtracting one image from
another [127] to detect the similarities between them or to separate the background from
the image.

This process is done by subtracting pixel by pixel from the two images that are being
analyzed. The pixel of image1 will be subtracted with the corresponding pixel of image2
(same position in the image matrix), so these two images must have the same size. The
order of subtraction is not important because the result is taken in absolute value. This
subtraction strategy is explained with the following example:

1) We have an initial digital image represented with a matrix. Each cell of the matrix
represents a pixel and the value of each cell is the color of this pixel, between 0 (black)
and 255 (white).

FIGURE 19. DIGITAL IMAGE

2) If we subtract the image with itself (in real life the image is different). We will have a
zero values matrix. All the cells will be zero because if we start with the pixel(0,0) which
has a value 101 and subtract it with itself, the result will be 0. The same thing happens to
the rest of pixels, getting an image completely black.

FIGURE 20. IMAGE SUBTRACTION PROCESS

-	Page	� 	of	� 	-51 134

- =

 Bachelor Thesis. Signal Processing for Malware Analysis

This strategy is useful in cases of superimposed images (photoshopped images) or
motion detection. Referring to the later, the technique used is known as background
subtraction (immobile objects will cancel each other whereas moving objects will be
highlighted in the resulting image, after the subtraction of two images taken at slightly
different times) [126].

FIGURE 21. IMAGE SUBTRACTION

In Figure 21 we can see different cases: (a) and (b) are pictures of the same scene but
taken at different periods in time; (c) is the result of subtracting one image, either a or b,
with itself (as the example explained before), it is a completely black image; (d) is the
resulting image of subtracting a and b (the result is the same subtracting a minus b than
b minus a because it is taken in absolute value), we can see than it detects that the scene
has changed.

-	Page	� 	of	� 	-52 134

[170]

 Bachelor Thesis. Signal Processing for Malware Analysis

3.6. Requirements

This section contains the requirements that are going to be considered in the project
designing. They are a negotiated agreement between the student and the tutor of the
project and follow the standard IEEE 803. The requirements attributes are the following:

• Title: name of the requirement.
• ID: each requirement must have an identifier in order to ease its tracing in other

sections.
- Value: RXX (Requirement plus number). XX is a number which identifies uniquely

each requirement.
• Description: it aggregates more information about the requirement in order to be

better understood and explaining its function.
• Priority: The level of importance of each requirement.

- Value: High / Medium / Low
• Source: the author of the requirement.

- Value: Student / Tutor

The list of defined requirements is:

Table 3. Requirement 01 - Number of Samples

Table 4. Requirement 02 - Computing Time

Title Number of Samples

ID R01

Description The dataset must have at least two samples per class, in order to have at least one sample for training
and the other for testing.

Priority High

Source Student

Title Computing Time

ID R02

Description The total computing time of the whole process (image transformation and classification) for 100,000
samples must be less than 10 hours.

Priority High

Source Tutor

-	Page	� 	of	� 	-53 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Table 5. Requirement 03 - Accuracy

Title Accuracy

ID R03

Description The accuracy of the classification process must be higher than 50% (50% is considered as a random
selection).

Priority High

Source Tutor and Student

-	Page	� 	of	� 	-54 134

 Bachelor Thesis. Signal Processing for Malware Analysis

4. Design
Once we have performed a deep analysis about what to use in the experimental part of
the project. We will define how to carry out the experimentation, adapting this design to
the information obtained in the Analysis part.

In this section, we are going to adjust our datasets to fulfill the requirements specified;
also we will propose the files that are going to be transformed into images. These images
will be used in two experimentation lines to do the classification: the first one will be
based on image subtraction and the second about extracting features of the image and
then use one of the machine learning classifiers of the previous section. Besides, we will
reason about the best way to implement these study lines.

4.1. Dataset Preparation

4.1.1. Dataset Adjustment

In the analysis phase we have studied each dataset deeply, however some of the classes
contained in them could not fulfill the requirement R01. In that way, we are going to build
two tables, one for each dataset, with its classes and the number of samples of each of
them. In that way, the ones that do not satisfy the requirement will be discarded.

Initially, the two datasets are composed by:

Table 6. Original M0droid Dataset

-	Page	� 	of	� 	-55 134

Original M0droid Dataset
Class name No. samples
Goodwares 200

Malwares 200

Original Malgenome Dataset
Class name No. samples
ADR 22

AnserverBot 187

Asroot 8

BaseBridge 123

BeanBot 8

Bgserv 9

CoinPirate 1

CruseWin 2

DogWars 1

DroidCoupon 1

DroidDeluxe 1

DroidDream 16

DroidDreamLight 46

 Bachelor Thesis. Signal Processing for Malware Analysis

Table 7. Original Malgenome Dataset

-	Page	� 	of	� 	-56 134

DroidKungFu1 34

DroidKungFu2 30

DroidKungFu3 309

DroidKungFu4 96

DroidKungFuSapp 3

DroidKungFuUpdate 1

EndOfDay 1

FakeNetflix 1

FlakePlayer 6

GamblerSMS 1

Geinimi 69

GGTracker 1

GingerMaster 4

GoldDream 47

Gone60 9

GPSSMSSpy 6

HippoSMS 4

JiFake 1

jSMSHider 16

KMin 52

LoveTrap 1

NickyBot 1

NickySpy 2

Pjapss 58

Plankton 11

RogueLemon 2

RogueSPPush 9

SMSReplicator 1

SndApps 10

Spitmo 1

TapSnake 2

WalkinWat 1

YZHC 22

zHash 11

Zitmo 1

Zsone 12

 Bachelor Thesis. Signal Processing for Malware Analysis

As we can see, the M0droid Dataset satisfies perfectly the requirement R01. However,
Malgenome Dataset has some families that do not fulfill this requirement, these families
are: CoinPirate, DogWars, DroidCoupon, DroidDeluxe, DroidKungFuUpdate, EndOfDay,
FakeNetflix, GamblerSMS, GGTracker, JiFake, LoveTrap, NickyBot, SMSReplicator,
Spitmo, WalkinWat and Zitmo. All of them have only one sample so they cannot be used,
in that sense, they are discarded in the experimentation and are not going to be taken
into consideration.

Finally, the datasets with the corresponding families remain like this:

Table 8. Adjusted M0droid Dataset

-	Page	� 	of	� 	-57 134

Adjusted M0droid Dataset
Class name No. samples
Goodwares 200

Malwares 200

Adjusted Malgenome Dataset
Class name No. samples
ADR 22

AnserverBot 187

Asroot 8

BaseBridge 123

BeanBot 8

Bgserv 9

CruseWin 2

DroidDream 16

DroidDreamLight 46

DroidKungFu1 34

DroidKungFu2 30

DroidKungFu3 309

DroidKungFu4 96

DroidKungFuSapp 3

FlakePlayer 6

Geinimi 69

GingerMaster 4

GoldDream 47

Gone60 9

GPSSMSSpy 6

HippoSMS 4

 Bachelor Thesis. Signal Processing for Malware Analysis

Table 9. Adjusted Malgenome Dataset

4.1.2. Dataset Designing Decisions

Regarding the designing decisions, we have settled to use the Malgenome Dataset with
testing purposes, that is, this dataset is going to be tested with several image descriptors,
classifiers and the image subtraction technique. The reason of this decision is that inside
this dataset there are more families which are similar between them (in the analysis part
we have realized that some families have the same behavior so it derives unavoidably to
similarities), so the classification process has to be more accurate, in order to being able
to distinguish between one family and another. In that way, we will obtain the best
classification strategy. Therefore, the M0droid Dataset is going to be used for
corroborating the final classification resolution and testing if it is able to distinguish
between goodware and malware, which is the final purpose of every antivirus and
malware detector.

Besides, the Malgenome Dataset is unbalanced because there are families with a lot of
samples and other ones with few samples, so the classification process becomes a
difficult task meaning that it is preferable to use this as the testing dataset, confirming the
previous reasoning.

-	Page	� 	of	� 	-58 134

jSMSHider 16

KMin 52

NickySpy 2

Pjapss 58

Plankton 11

RogueLemon 2

RogueSPPush 9

SndApps 10

TapSnake 2

YZHC 22

zHash 11

Zsone 12

 Bachelor Thesis. Signal Processing for Malware Analysis

4.2. Malware Transformation to Image

Once we have decided how to use the provided datasets and which families are going to
be involved in this project, we are going to decide which files are going to be involved in
the transformation phase to PNG images.

As already discussed in the Analysis section, inside every APK file there are the following
files and folders: AndroidManifest.xml, classes.dex, resources.arsc, res, assets and
META-INF.

We have decided firstly to follow an approach similar to static analysis, thus we are going
to unpacked the APK file to obtain the previous mentioned directories and files. After
unpacking all the application samples, we are going to select classes.dex to be
converted into the desired PNG image. This decision is based on the idea that in
classes.dex remains the most part of the code, so the main differences between
applications are exhibited here. This way, these images are going to be used in the
classification process and tested in order to choose the best classifier.

After deciding which is the best classification technique, we will try with the application
itself with the chosen classifier. So that, each APK is not going to be unpacked, it will be
transformed to an image directly. Then, the obtained images will be classified.

4.3. Classification Lines

After obtaining the images, we will process them considering two main strategies: image
subtraction and features extraction with machine learning classification. These strategies
will be tested measuring the time and the accuracy in order to know if they satisfy the
specified requirements.

4.3.1. Classification with Image Subtraction

We propose an innovative technique for image classification. This technique is based on
the idea that if we subtract one image with itself, we will obtain a completely black image
(all the pixels will have value 0).

Considering this idea, we will develop a classifier that will decide to which family an
unclassified malware belongs. To achieve this goal, the steps needed are:

1) Subtract each testing malware with all of the images of all the families of the
training set.

2) Measure the color value of the resulting images.
3) The resulting image that has the lower color value, the one that is the nearest to

black color (zero value), will be considered as the reference image.
4) Obtain the family name of the reference image by checking which family has been

used in the subtraction process with this particular malware unclassified.
5) Once we know the family name, assign this name to the testing malware.
6) The malware has been classified to a specific class.

-	Page	� 	of	� 	-59 134

 Bachelor Thesis. Signal Processing for Malware Analysis

In this process they are going to be involved the training and testing set. They contain the
samples of the adjusted datasets. We will perform some tests considering 60% of the
samples of each family for training and the remaining 40% for testing; 80% for training
and 40% for testing and finally with 1 image of each family in the training set and the rest
in the testing set.

The accuracy of this classifier will be measured by simply checking the assigned family
of the unknown malware and comparing it with the family that the unknown malware was
taken from, before being put in the testing set. If they are equal, it means that the
classification was right; otherwise it will not be accounted in the accuracy.

Finally, we will create a normalized confusion matrix to show graphically the results of the
classification.

We think that this process will not be a time consuming activity because the subtraction
operation is a really fast task. However, as it is an innovative approach we do not know if it
will work as we expected.

Graphically, the classification process with image subtraction technique will be something
like this:

FIGURE 22. CLASSIFICATION WITH IMAGE SUBTRACTION

-	Page	� 	of	� 	-60 134

 Bachelor Thesis. Signal Processing for Malware Analysis

4.3.2. Features Extraction and Classification

The other approach is the one used in some malware detectors that are used nowadays.
The idea is extracting some characteristics that identifies the specific malware and then
perform a classification. In this case, we will extract features of the image that
corresponds to a specific malware and use these features in the classification process.

In this approach we are going to use the image descriptors and the machine learning
classifiers commented in the Analysis section:

- Image Descriptors: GIST, Histogram, Image to Graph and Daisy.
- Machine learning classifiers: KNN, Naive Bayes, Decision Tree and Random Forest.

The classification process has the following steps:

1) Extract the features of all the images of the adjusted dataset with one of the image
descriptors.

2) Save the class of each image and associate it to the corresponding features
extracted.

3) Perform a cross-validation process with one of the machine learning classifiers
using the data obtained in the previous steps.

Once we have the classification results, we will create, as well, a normalized confusion
matrix to show the results and we will measure the accuracy and the time, to check if they
fulfill the requirements.

We are going to perform different tests reducing to the half each time the number of
values extracted from the image descriptor. The number of features values analyzed will
be:

- 960 values: they are the maximum number of values that GIST descriptor can
retrieve, so we decided to start from this with the rest of descriptors in order to
perform a good comparison between classifiers.

- 400 values: the next number of features values will be near the half of 960.
- 200 values: we reduce by half the previous number.
- 100 values: halving the previous number.
- 50 values: the last reduction of the tests performed.

Additionally, after analyzing all the results with each classifier and image descriptor, we
will perform another test to reduce even more the time, which is using PCA features
selector to obtain the best features of an image and increase the accuracy of the final
classifier.

Finally, with all the experiments done we will choose the best classifier and perform a final
conclusion.

-	Page	� 	of	� 	-61 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Graphically, this approach is represented in the following way:

FIGURE 23. FEATURES EXTRACTION AND CLASSIFICATION

4.4. Programming Language Determination

Once we have the most important design decisions chosen, we are going to explain in
this section the main reasons why we have determined to implement this project with
Python.

4.4.1. Why Python?

Some of the characteristics that motivate us to choose Python as the programming
language used for this project are the followings [129]:

- Simplicity: Python is considered as a minimalistic and simple programming
language. It is easy to read and to understand, so it is similar to write in pseudo-
code, which allows the developer to concentrate mostly in solving the problem than
in the programming language itself.

- Open Source and Free: it is a FLOSS (Free Library and Open Source Software)
example that is based on sharing knowledge. It can be distributed in copies and
being affected by changes and improvements.

-	Page	� 	of	� 	-62 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- Object Oriented: it supports object-oriented and procedure-oriented programming.
The former allows writing a program based on objects that combine data and
functionality. With the later a program is built using functions that are reused pieces
of other programs.

- High-Level Language: the programmer does not have to consider low-level
programming issues such as dealing with the memory.

- Extensible: it can add other programs written in C/C++.

- Embeddable: it can be included inside C/C++ programs to offer “scripting”
capabilities to the users of a program.

- Portable: it works in many platforms due to its open-source nature. A program in
Python can be executed in different platforms with any change at all. It can be run in
Windows, Linux, Mac OS X, Solaris, FreeBSD, OS/2, AROS, AS/400, Amiga, BeOS, z/
OS, OS/390, Palm OS, PSion, QNX, VMS, Acorn RISC OS, PlayStation, VxWorks,
Windows CE, Sharp Zaurus and PocketPC.

- Interpreted: it is the main difference between other languages like C or C++. In these
languages the program is converted from this source language into binary code by
the compiler. When the user runs the program, it is copied from the hard disk and is
run thanks to the loader/linker. On the contrary, in Python there is no need for
compiling the code to binary. The program is run directly from the source code,
Python is in charge of converting this source code into an intermediary form
(bytecodes) and then into computer language. After this process, Python runs the
program. All of them increase the Python simplicity and portability due to the fact that
the program is not compiled, so if it is copied to another computer it will work.

- Extensive Libraries: it follows a “Batteries Included” philosophy, in which the
standard library is really huge allowing the development of different kind of programs
of several knowledge branches like cryptography, databases, web browsers, etc.
Additionally, it allows adding new libraries. Some external libraries like GIST library
will be used in this project.

Considering all of these features and as in this project the most important thing is
obtaining an accurate classification instead of how it has been coded, we conclude that
Python is the suitable programming language for the project implementation part.

4.4.2. Comparison with Another Languages

In order to emphasize our choice, we are going to compare Python with other common
programming languages [130]:

- Java: The running time for Python programs generally is higher than Java programs
but on the other hand, the development time is lower (between 3 and 5 times
shorter). There are not variables or types of arguments declarations, the dictionary
types and polymorphic lists are very powerful. Java and Python can make a good
combination because Java is more a low-level implementation language and Python
is considered as a “glue-language”. Due to this fact, components can be developed

-	Page	� 	of	� 	-63 134

 Bachelor Thesis. Signal Processing for Malware Analysis
in Java and then being combined to be part of Python applications. Also, some
programs can be firstly being written in Python as a prototype and then being
implemented in Java. There is a project development based on this idea that tries to
translate Python source code to Java byte code.

- JavaScript: Python object-oriented is similar to JavaScript. Although both of them use
simple functions and variables and have a similar programming style, in Python there
is the possibility of the existence of classes and inheritance for larger programs and
code reusing.

- C++: Between Python and C++, some of the differences are similar than the ones of
Java. In the case of the length of the code, for C++ it is 5-10 times larger than in
Python and also it is considered as a “glue-language” to combine C++ components.

As a conclusion, we can say that our choice is based on the idea that in order to do a
deep analysis and obtain the best classification technique we have chosen Python. It is a
prototype so we are not going to focus in coding, we do not want to invest so much time
in this phase. Although Java or C++ are faster languages in terms of performance, we
prefer to do more tests with different classifications to get the best one, instead of trying
to solve errors in coding as these programs are more difficult in terms of coding than
Python. Once the best classification process is selected, it can be implemented in
another language but we are only going to propose a prototype that can be developed
later.

-	Page	� 	of	� 	-64 134

 Bachelor Thesis. Signal Processing for Malware Analysis

5. Implementation
Once we have designed how this project is going to be implemented, we continue with
the implementation decisions taken. In that way, the following section has all the
determinations regarding implementation issues and the problems found during this
phase of the project. We are going to start with the description of the project environment,
then, we mention the libraries used, the steps needed to obtain the classification results
and the problems found during the whole phase. In the description of the classification
steps we will show how the accuracy and the time are measured.

5.1. Project Environment

This project has been developed using a VMWare Virtual Machine with Ubuntu 15.10 64-
bit as a guess Operating System in an iMac 2011. The CPU is an Intel® Core™ i5-2400S
2.50GHz.

We have decided to use a virtual machine because we are dealing with malware so it is
preferable to work in a safe and isolated environment to avoid affecting the host
Operating System (Mac OS X El Capitan 10.11.4). We have chosen Ubuntu 15.10 as
guess OS because it is the most common Linux free distribution, we have not used the
last version of Ubuntu (16.10) because the GIST library is not supported in this last
version and we have faced some errors with it.

5.2. Libraries Used

As it is explained in the design section, one of the advantages of Python is the possibility
to include external libraries to the program that is being implemented. In that way, we
have chosen several libraries to implement this project. For the installation of these
libraries we need pip (standard Python installation program) to be installed in our
system. It is usually included in the last versions of Python although we have to upgraded
it in order to get it working properly.

- Pandas confusion matrix (pandas_confusion 0.0.6). Pandas is a BSD-Licensed
open-source high performance library which provides structures and tools for data
analysis [131]. With this we will build the final confusion matrix with the results of
the classification. It is used in the both implementation lines (subtraction strategy
and features extraction and classification).
To install pandas_confusion we have to run the following command in the terminal
shell: pip install pandas_confusion

- Python Image Library (PIL): it adds powerful image capabilities to Python. It is
used in both study lines. To install PIL, the command needed is: pip install
Pillow

- Numpy: this package is included in Ubuntu so we do not need to install it. It
contains powerful scientific capabilities such as array objects, linear algebra
functions, etc. It is used in both study lines.

-	Page	� 	of	� 	-65 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- Matplotlib: it is already provided with Python. We have used this package to show
the confusion matrix previously computed.

- Leargist (pyleargist 2.0.5): it is the library for GIST image descriptor used in the
second study line. Firstly, we must have the following libraries installed: libfftw3
with development headers, gcc, PIL and numpy. We have to download the leargist
package from https://pypi.python.org/pypi/pyleargist and, after extracting the
contents, type these two commands in the terminal: python setup.py build
and sudo python setup.py install (with the later we need root privileges).

- Scikit-learn: it is an open-source library (BSD License) that contains machine
learning classifiers for Python among other tools for data mining and analysis. To
install it, we need to type this command in the terminal: pip install -U
scikit-learn. This library is used in the second study line, in the features
extraction part as well as in the machine learning classification.

These are the main external libraries used in this project, although some of them are
already included in current Python versions or in Ubuntu. Another packages used in the
project implementation, which do not need to be installed, are: pickle, sys, time, array, os,
glob, among others. The code can be seen in Annex I.

5.3. Project Implementation Steps

After the installation of the necessary libraries, we can proceed with the project
implementation. As it is explained in the design phase, there are going to be two study
lines: one for image subtraction classification and another for features extraction and
classification. These two processes have two common previous steps: obtaining the
classes.dex files from the dataset and converting them into images. All of this procedure
is explained in this section. In case we use directly the APK file (packed application), the
step of obtaining the classes.dex is not considered and the transformation of the image is
done with the application itself. Each subdivision of this section has been implemented
with a different Python script that can be found in the Annex I.

5.3.1. Unpacking APK Files

As it is explained in the previous phase, we are going to start with the analysis of the
classes.dex file. It is included inside each APK. Firstly, we have to have prepared the
datasets by removing the families that are not considered. We have done it manually as
there are not too many families that we have to discard.

Once we have the datasets adjusted, the M0droid dataset will have two folders
(goodware and malware) and Malgenome dataset 33 directories (33 families). Inside the
folders of M0droid dataset there are files with the extension .bening and .malware,
corresponding to goodware and malware samples respectively. Although the usual
Android applications have the .apk extension, they have the same files inside and are
processed in the same way that an .apk file. Inside the folders of Malgenome dataset
there are .apk files for each family.

-	Page	� 	of	� 	-66 134

https://pypi.python.org/pypi/pyleargist

 Bachelor Thesis. Signal Processing for Malware Analysis

As there are two datasets that include different file extensions, we have created two
scripts extract_F.py and extract_GM.py (Annex I), for Malgenome and M0droid datasets
respectively, to obtain the classes.dex file.

This process has the following steps:

1) Obtaining the file path from the dataset introduced as an argument by the user
with the following command: python extract_X.py <dataset name>.

2) A folder called “families“ or “good_mal”, depending on the dataset introduced, is
created, to extract the files inside, in the location where the previous command
was typed. This folder will contain the different families and inside each family it
will be a folder for each sample, which has the same name than the original
sample, with the data extracted (classes.dex among other files, as commented in
the analysis section).

3) There is a loop to create the different folders for each sample of each family and to
extract the information contained inside the samples, considering the extension
issue previously commented. This is done with a zip extract function. In case of the
M0droid files extraction, there are some files that are encrypted, so these samples
are discarded because we cannot access to them as we do not have the
password. This is the main reason why we have created two different scripts for
the extraction of the files.

4) After this extraction, we have the datasets with the samples unpackaged. In the
image conversion phase, we will choose only the classes.dex contained inside
these folders.

As a summary, this process is based on going through different folders and extracting the
information contained in them, considering the files extension and the possibility that
some of the files are encrypted. This information is stored in other directories previously
created in a specific destination. This unpacking process must not be executed in case of
transforming an APK file directly to an image.

5.3.2. Image Conversion

After obtaining all the APK files unpacked, we are going to transform the classes.dex into
images, the rest of files are not going to be considered. The conversion process to PNG
images is performed in the file convert2image.py (Annex I):

1) Obtain the main directory (families or good_mal) location to be processed. This
directory has been created before and contains all the files included inside each
APK file. It is introduced as an argument when executing the command:

 python convert2image.py <directory with all the apks unpacked>

2) Then, we go through each family inside this main directory and select the
classes.dex file. In some cases of the M0droid dataset, there were malware
samples that do not have this file, so an error message is printed in the terminal
(“classes.dex does not exist”).

-	Page	� 	of	� 	-67 134

 Bachelor Thesis. Signal Processing for Malware Analysis

3) As we see in previous sections, the width of an image depends on the file size that
is going to be transformed. We use Table 2 as a reference. Once, we get the
classes.dex file, we check its size (in bytes) and depending on it, we assign a
value for the width of the final image.

4) We create an array of unsigned integers of 1 byte (uint8) data types in which we
will copy the contents of the classes.dex. This is due to the fact that an image will
have values for each pixel between 0 and 255, so the proper data type is uint8.

5) Once we have the classes.dex contents copied, we reshape the array to have the
dimensions of the final image: (height x width). As we have said, the width is fixed
depending on the file size and its height is calculated considering the
mathematical equation of the area of a square, being the Area the file size:

	 	 	 Area	=		width	x height			⟹			height	=		 	 	 	 (1)	

6) The image is built as a numpy array of 256 unsigned integers (digital image
matrix). We use the function scipy.misc.imsave(file_name, array) to convert this
array into an PNG image with the same name than the original APK file. It is saved
inside the corresponding family folder of the main directory (families or good_mal)
where the original APK file belongs to.

As a summary, this process is based on acquiring the contents of the classes.dex file and
arranging this data with a fixed width, which is assigned depending on the file size, and
with a height calculated from this width and file size. The matrix obtained is transformed
into a PNG image.
This process will be extrapolated later to transform directly a packed application to an
image. The only difference between the conversion of an unpacked or packed application
is that instead of using the contents of the classes.dex file (the app has to be unpacked
before), we are going to transform the .apk file directly without being unpacked.

Here we can see two examples of images, from the M0droid dataset, obtained after this
conversion process. The image on the left-side corresponds to the classes.dex of a
goodware file and the right-side image is the classes.dex of a malware application. We
can appreciate some differences between the two images that will be used to obtain a
classification pattern. However, there are parts of both images that are very similar,
meaning that the differences between goodware and malware are presented in few bytes.

FIGURE 24. GOODWARE AND MALWARE IMAGE EXAMPLES (M0DROID)

-	Page	� 	of	� 	-68 134

Goodware image Malware image

Area
width

 Bachelor Thesis. Signal Processing for Malware Analysis

After the conversion process, four examples from Malgenome dataset are the ones above
(Figure 25). We can see that images from KMin and RogueLemon families are similar,
although they come from different families and have different behavior, showing the
reutilization of software to create new malware. Regarding the images of DroidKungFu3
and DroidKungFu4, we can see that they have similarities, but DroidKungFu3 is darker
than DroidKungFu4 (DroidKungFu3 has more quantity of black color) meaning that it has
less information than DroidKungFu4, this is reasonable because DroidKungFu4 is an
improvement of DroidKungFu3, so it contains more information than its previous version.

FIGURE 25. DIFFERENT FAMILIES IMAGE EXAMPLES (MALGENOME)

-	Page	� 	of	� 	-69 134

KMin image RogueLemon image

DroidKungFu3 image DroidKungFu4 image

 Bachelor Thesis. Signal Processing for Malware Analysis

In Figure 26 we can appreciate that there are two samples of the ADR family, they look
really similar as they have the same characteristics.

FIGURE 26. ADR EXAMPLES (MALGENOME)

A packed application will look like in Figure 27. The one on the right is a goodware
application, and the one on the left is a malware APK file. We can observe that the
malware images are lighter because they contain more information.

FIGURE 27. PACKED APPLICATIONS IMAGES

-	Page	� 	of	� 	-70 134

ADR example1 image ADR example2 image

Goodware APK packed Malware APK packed

 Bachelor Thesis. Signal Processing for Malware Analysis

5.3.3. Subtraction Classification

Our first approach is the implementation of a new classification technique based on
image subtraction (sub_classif.py - Annex I), as it is explained in the design section.

This classification process is performed considering the following steps:

1) Shuffle randomly the samples of each family to avoid obtaining the same images
for testing and training each time the program is run (analysis of results purposes).

2) For each family, calculate the number of images destined for training and testing
sets and gather them in the corresponding set.

3) Select one image of the testing set and obtain its width and height. This step and
the followings will be done for each image in the testing set with a for-loop.

4) In a for-loop, we open, in each iteration, one of the images of the training set
obtaining its size (width and height).

4.1.) Check the width and height of the testing and training images and
resize them in case they are not equal, considering the lowest values for
the width and height.

4.2.) Once we have both images with the same size, we subtract them
using ImageChops.difference(image2,image1) function. This function is
inside the PIL library.

4.3.) Calculate the color value (between 0 and 255) of the resulting image
by adding the color value of each pixel of the image.

4.3.1) In case that the resulting color is zero, meaning that both
images are identical, we stop this process and classify the testing
image to the family which the current training image belongs to. Go
to step (7).

4.3.2) If the resulting color is not zero, it is saved in an array that will
contained all the color values of the subtraction process for a
specific family.

4.4) From the array of all the color values of a family, choose the minimum
value and store it in an array that contains the model color value of the
subtraction process of a family with the current testing image.

5) Once we have performed the subtraction between testing image with all the
training images of all the families, we choose the minimum value of the array that
contains the model values of all the families involved in this process.

-	Page	� 	of	� 	-71 134

 Bachelor Thesis. Signal Processing for Malware Analysis

6) As this model value belongs to the color of the resulting image obtained with the
subtraction between the current testing image and a training image of a family, we
found the family name involved in this specific operation and label the testing
image with this name, in other words, we classify the testing image to the family of
the training image involved in the operation that results with an image that has the
lowest quantity of color (the most similar to black color).

7) To check if the classification process was right, we check if the index of the
predicted family is the same than the index of the real family which the testing
image belongs to.

8) Save the predicted family label in an array of predicted classes and the actual
family name in another array with the real classes.

9) Once we have performed this process for all the testing images, we compute the
confusion matrix with the two arrays that contains the predicted and actual family
names. To do this, we call the function ConfusionMatrix(y_actual, y_predicted)
from the pandas_confusion library. Besides we use the function print_stats() to
obtain statistics from the classification process such as the accuracy or f1-
measure.

10) Finally, we show graphically the resulting confusion matrix normalized with the
matplotlib library. We normalize the confusion matrix because the number of
samples for each family is not the same, so in this way we obtain a weighted value
for each family.

In addition, apart from the accuracy, we are going to measure the time needed to run this
program. To do this we will use the command:

time python sub_classif.py <directory with images to be classified>

With this command, they will be printed in the terminal three values:

- REAL: real elapsed time used by the executed process (seconds).

- USER: number of seconds used by the CPU in user mode.

- SYSTEM: number of seconds used by the CPU in kernel mode.

We are going to consider only the REAL value, as it represents the total elapsed time of
the whole process.

If we do not want to measure the time, we just remove the word “time” of the previous
command:

python sub_classif.py <directory with images to be classified)

-	Page	� 	of	� 	-72 134

 Bachelor Thesis. Signal Processing for Malware Analysis

One example of the resulting confusion matrix obtained after this classification is the one
above. For this test we consider 60% of samples for training and 40% for testing. All the
confusion matrices corresponding to the different tests performed can be found in Annex
II.

FIGURE 28. CONFUSION MATRIX SUBTRACTION CLASSIFICATION

-	Page	� 	of	� 	-73 134

 Bachelor Thesis. Signal Processing for Malware Analysis

5.3.4. Features Extraction and Classification

Our second approach is based on continuing with the design implemented in other
researches. We are going to extract characteristics of the images and then use these
features to obtain a pattern with a classifier to distinguish the samples into different
classes.

These two parts are gathered in a script called classif.py (Annex I). To run this script we
just need writing in the terminal the command:

python classif.py <directory with images to be classified>

We are going to perform different tests as well, so for time measurement we have to add
the word “time” in the previous command and we will obtain a measure for the real, user
and system time, as it is explained in the previous classification strategy :
time python classif.py <directory with images to be classified>

In this procedure they are going to be involved to important matrices: X and y. The former
contains all the features extracted for each image and the latter contains the family name
(label class) of these images in the same order they are stored in X matrix. Therefore, the
first position of the X matrix contains the features extracted of the first image and in the
first position of y, the label of this first image; the same happens for the rest of the images.
This procedure has the following steps:

1) Obtain the number of samples of each family/class and store the label of each
image (the family name which it belongs to) in the y matrix.

2) Start the process of extracting the features of all the images with a specific
descriptor.
With tests purposes, we are going to measure the time it takes to get all the
features values, so we start measuring the time using time.time(), which will
retrieve a floating number representing the seconds since the epoch. When this
extracting process ends, we will measure again the time and we calculate the time
passed by subtracting the final value with the initial value of time.
Besides, we are going to change the number of descriptors retrieved, starting
from 960 until 50, as it is commented in the design phase.
For faster computation we have decided to resize all the images to 35x35 size,
this is due to the fact that daisy descriptor cannot analyze bigger images, so in
order to compare properly all the descriptors we have established these values for
the width and the height. Moreover, we have checked that if we increase these
values, the accuracy remains the same and the time increases.
The descriptors used are the ones studied in the analysis phase, the values
retrieved are going to be copied to the X matrix, considering the number of
descriptors specified (from 960 to 50):

- GIST: we have used the leargist library to obtain the descriptors with the
function leargist.color_gist(image).

-	Page	� 	of	� 	-74 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- Histogram: the numpy library of Python has a histogram computation function
numpy.histogram(numpy.ravel(image),no_des,[0,no_des]). However, the
image introduced to this function must be a flattened continuos array, for this
purpose we use the function numpy.ravel(image).

- Daisy: for this image descriptor we have used the scikit-learn library
(daisy(image)). This descriptor retrieves two vectors of size 200 each, we
have used numpy.hstack(array1, array2) to put consecutively these 200
values to form a row of 400 values that defines the total number of features
values retrieved, which are going to be stored in X matrix for each image. As
we commented before, we are going to start with 960 values retrieved but in
this case we make an exception and we start from 400, as it is the maximum
possible values retrieved.

- img_to_graph: for this image descriptor we have also used the scikit-learn
library (img_to_graph(image)). We will obtain the features values from the
graph retrieved.

Additionally, we have performed tests using two descriptors at the same time:
histogram with daisy and GIST with daisy, to check if the accuracy improves. In
this case we also use numpy.hstack(array1, array2) to gather both descriptors into
X matrix.

3) Once we have the features extracted and the labels of all of the images, we
continue with the supervised classification process, all the functions used in this
step are part of the scikit-learn library.

3.1.) Divide the data into k-folds for grouping it into testing and training
sets. In this process we do a random shuffle as well. We use
StratifiedKFold(y,kfold) as a cross-validation iterator because it provides
train and testing indices returning folds that preserves the percentage of
samples per class. We choose k=2 (2 folds) because there are classes
with only 2 samples.

3.2.) Select the supervised classifiers with 2-fold cross-validation. The
classification has been made with one of the classifiers studied in the
analysis phase:

- KNN: with KNeighborsClassifier(no_neighbors,[weights]) we have
establish 1 neighbor because it is the usual value it gets. Although this
function uses by default uniform weights (the final value of a query
point is computed by nearest neighbor voting), in this circumstance its
better than the nearest neighbors contribute more to the fit than the
others, so they must have a bigger weight than the others. To do this,
we have decided to use the option weights=‘distance’ (instead of the
default one weights=‘uniform’) because in that way the distance
weights from query point to its neighbors are assigned inversely
proportional (more distance means less weight).

-	Page	� 	of	� 	-75 134

 Bachelor Thesis. Signal Processing for Malware Analysis

- Naive Bayes: as it is commented in the analysis phase, it is preferable
to use Gaussian Naive Bayes for image processing so we have used
GaussianNB() function to perform the classification.

- Decision Tree: we have used the classificat ion funct ion
DecisionTreeClassifier(random_state) with a zero value for the seed
used by the random number generator, as it is the usual value.

- Random Forest: the random forest classification is performed with the
function RandomForestClassifier(n_estimators) with 10 estimators as it
is the value by default.

3.3.) Select the most relevant features with PCA to reduce the training and
testing time. We have decided to use 25 components after performing
several tests (PCA(n_components)).

3.4.) Perform the training with fit(X_train_pca, y_train_pca) and testing with
predict(X_test_pca). In these two processes we have measured the time
too, for a future comparison between classifiers. The predicted values are
stored in an array of predicted classes and the actual family name in
another array with the real classes.

4) After the classification process, we compute the confusion matrix with the two
arrays that contains the predicted and actual family names. To do this, we call the
function ConfusionMatrix(y_actual, y_predicted) from the pandas_confusion library.
Besides we use the function print_stats() to obtain statistics from the classification
process such as the accuracy or f1-measure.

5) Finally, we show graphically the resulting confusion matrix normalized with the
matplotlib library. We normalize the confusion matrix because the number of
samples for each family is not the same, so in this way we obtain a weighted value
for each family.

One example of the resulting confusion matrix obtained after this classification is the one
above. All the confusion matrices corresponding to the different tests performed can be
found in Annex II.

FIGURE 29. CONFUSION MATRIX FEATURES
EXTRACTION + CLASSIFICATION

-	Page	� 	of	� 	-76 134

 Bachelor Thesis. Signal Processing for Malware Analysis

5.4. Problems Found

Regarding the problems found in the implementation phase, we have to mention the
following obstacles:

- The impossibility to unpack and transform into images some samples of M0droid
dataset because we were not able to decrypt these samples as we did not know the
password or they do not contain the classes.dex file. Therefore, these samples were
discarded, remaining 200 goodware samples and 197 malware samples for the
classification. The problem is solved by transforming the application directly to an
image, in that way, we do not have to access to each file inside the application.

- Daisy descriptor can retrieve at maximum 400 values, so we cannot test this descriptor
with 960 values as we have planned initially.

- The pandas_confusion is a work in progress, so some statistics are not calculated.
However, as we are only considering the accuracy, we are not affected by this problem.

- The leargist library does not work in Ubuntu 16.10, so we have to use a previous
version 15.10.

-	Page	� 	of	� 	-77 134

 Bachelor Thesis. Signal Processing for Malware Analysis

6. Performance Evaluation
6.1. Tests Description

As we have explained in the design section, we have planned to use the Malgenome
dataset to perform the different tests. In these tests we have measured the accuracy, the
time and we have analyzed the confusion matrices obtained. Due to the fact that there are
two common steps in the project development, unpacking the app and transforming it to
an image, we have divided these phase in two parts, considering the two classification
strategies:

- Subtraction classification: We have performed tests changing the size of the training
and testing sets. We have forced that the training set has a specific percentage of
images of each family and the testing set has the remaining images. In the following
table, we summarize the different samples assigned for each set of the different tests:

Table 10. Subtraction Classification Tests

- Features extraction and classification: These tests are based on changing the image
descriptors, the number of descriptors retrieved and the machine learning classifiers.
The following table summarizes all the tests performed:

Table 11. Feature Extraction + Classification Tests

No. training images of each
family

No. testing images of each
family

TEST A 80 % of the images 20 % of the images

TEST B 60 % of the images 40 % of the images

TEST C 1 image All the images of the family - 1

Image descriptor[no.descriptors] Machine learning classifier

TEST 1 GIST[960] KNN

TEST 2 GIST[400] KNN

TEST 3 GIST[200] KNN

TEST 4 GIST[100] KNN

TEST 5 GIST[50] KNN

TEST 6 GIST[960] Gaussian Naive Bayes

TEST 7 GIST[400] Gaussian Naive Bayes

TEST 8 GIST[200] Gaussian Naive Bayes

TEST 9 GIST[100] Gaussian Naive Bayes

TEST 10 GIST[50] Gaussian Naive Bayes

TEST 11 GIST[960] Decision Tree

TEST 12 GIST[400] Decision Tree

-	Page	� 	of	� 	-78 134

 Bachelor Thesis. Signal Processing for Malware Analysis

-	Page	� 	of	� 	-79 134

TEST 13 GIST[200] Decision Tree

TEST 14 GIST[100] Decision Tree

TEST 15 GIST[50] Decision Tree

TEST 16 GIST[960] Random Forest

TEST 17 GIST[400] Random Forest

TEST 18 GIST[200] Random Forest

TEST 19 GIST[100] Random Forest

TEST 20 GIST[50] Random Forest

TEST 21 Histogram[960] KNN

TEST 22 Histogram[400] KNN

TEST 23 Histogram[200] KNN

TEST 24 Histogram[100] KNN

TEST 25 Histogram[50] KNN

TEST 26 Histogram[960] Gaussian Naive Bayes

TEST 27 Histogram[400] Gaussian Naive Bayes

TEST 28 Histogram[200] Gaussian Naive Bayes

TEST 29 Histogram[100] Gaussian Naive Bayes

TEST 30 Histogram[50] Gaussian Naive Bayes

TEST 31 Histogram[960] Decision Tree

TEST 32 Histogram[400] Decision Tree

TEST 33 Histogram[200] Decision Tree

TEST 34 Histogram[100] Decision Tree

TEST 35 Histogram[50] Decision Tree

TEST 36 Histogram[960] Random Forest

TEST 37 Histogram[400] Random Forest

TEST 38 Histogram[200] Random Forest

TEST 39 Histogram[100] Random Forest

TEST 40 Histogram[50] Random Forest

TEST 41 Image To Graph[960] KNN

TEST 42 Image to Graph[400] KNN

TEST 43 Image To Graph[200] KNN

TEST 44 Image To Graph[100] KNN

TEST 45 Image To Graph[50] KNN

 Bachelor Thesis. Signal Processing for Malware Analysis

-	Page	� 	of	� 	-80 134

TEST 46 Image To Graph[960] Gaussian Naive Bayes

TEST 47 Image To Graph[400] Gaussian Naive Bayes

TEST 48 Image To Graph[200] Gaussian Naive Bayes

TEST 49 Image To Graph[100] Gaussian Naive Bayes

TEST 50 Image To Graph[50] Gaussian Naive Bayes

TEST 51 Image To Graph[960] Decision Tree

TEST 52 Image To Graph[400] Decision Tree

TEST 53 Image To Graph[200] Decision Tree

TEST 54 Image To Graph[100] Decision Tree

TEST 55 Image To Graph[50] Decision Tree

TEST 56 Image To Graph[960] Random Forest

TEST 57 Image To Graph[400] Random Forest

TEST 58 Image To Graph[200] Random Forest

TEST 59 Image To Graph[100] Random Forest

TEST 60 Image To Graph[50] Random Forest

TEST 61 Daisy[400] KNN

TEST 62 Daisy[200] KNN

TEST 63 Daisy[100] KNN

TEST 64 Daisy[50] KNN

TEST 65 Daisy[400] Gaussian Naive Bayes

TEST 66 Daisy[200] Gaussian Naive Bayes

TEST 67 Daisy[100] Gaussian Naive Bayes

TEST 68 Daisy[50] Gaussian Naive Bayes

TEST 69 Daisy[400] Decision Tree

TEST 70 Daisy[200] Decision Tree

TEST 71 Daisy[100] Decision Tree

TEST 72 Daisy[50] Decision Tree

TEST 73 Daisy[400] Random Forest

TEST 74 Daisy[200] Random Forest

TEST 75 Daisy[100] Random Forest

TEST 76 Daisy[50] Random Forest

TEST 77 GIST[400] + PCA KNN

TEST 78 DAISY[400] + PCA KNN

 Bachelor Thesis. Signal Processing for Malware Analysis

After performing all of these tests, we are going to choose the best classification
technique based on the relation between accuracy and time. This choice will be tested
with the M0droid dataset to guarantee this correct behavior and we will also use this
classifier with the packed applications to check if it is better to perform an unpacking
process before or not. Besides, we have performed tests using two classifiers (GIST with
daisy, Histogram with daisy) at the same time but we did not improve the accuracy and
the time was high, so they are not considered and therefore, they are not represented in
the following subsections.
Totally, we have performed 90 tests. We have repeated each test 5 times in order to
guarantee a correct result by calculating the average of these 5 times.

6.2. Accuracy

6.2.1. Subtract Classification

After performing all the tests with the Malgenome dataset, the accuracy (%) achieved for
the first approach was:

- TEST A: 80.75%
- TEST B: 73.78%
- TEST C: 27.91%

6.2.2. Extract Features and Classification

Regarding the Features Extraction+Classification approach, the accuracy (percentage 1)
obtained is represented with the following table and it is shown graphically:

-	Page	� 	of	� 	-81 134

Image descriptors KNN Bayes DecisionTree RandomTree

GIST [960] 0.819131832797 0.659163987138 0.682475884244 0.739549839228

GIST [400] 0.800643086817 0.648713826367 0.688102893891 0.729099678457

GIST [200] 0.802250803859 0.590836012862 0.653536977492 0.735530546624

GIST [100] 0.759646302251 0.565112540193 0.643890675241 0.711414790997

GIST [50] 0.739549839228 0.466237942122 0.627813504823 0.699356913183

PCA-GIST[400] 0.818327974277

HISTO[960] 0.738745980707 0.315112540193 0.627009646302 0.682475884244

HISTO[400] 0.759646302251 0.360128617363 0.628617363344 0.709807073955

HISTO[200] 0.771704180064 0.328778135048 0.629421221865 0.688102893891

HISTO[100] 0.741961414791 0.406752411576 0.59807073955 0.682475884244

HISTO[50] 0.66961414791 0.298231511254 0.610128617363 0.652733118971

imgToGr[960] 0.632636655949 0.632636655949 0.536173633441 0.630225080386

imgToGr[400] 0.647909967846 0.600482315113 0.547427652733 0.62459807074

imgToGr[200] 0.622186495177 0.545819935691 0.569935691318 0.631832797428

imgToGr[100] 0.603697749196 0.483118971061 0.553054662379 0.613344051447

 Bachelor Thesis. Signal Processing for Malware Analysis

Table 12. Accuracy Features Extraction + Classification

FIGURE 30. ACCURACY GRAPH FEATURES EXTRACTION + CLASSIFICATION

-	Page	� 	of	� 	-82 134

imgToGr[50] 0.56270096463 0.426848874598 0.550643086817 0.608520900322

Daisy[400] 0.801446945338 0.595659163987 0.704180064309 0.764469453376

Daisy[200] 0.786977491961 0.601286173633 0.698553054662 0.748392282958

Daisy[100] 0.765273311897 0.475884244373 0.656752411576 0.724276527331

Daisy[50] 0.734726688103 0.467845659164 0.628617363344 0.720257234727

Daisy[400] + PCA 0.83038585209

 Bachelor Thesis. Signal Processing for Malware Analysis

6.3. Time

6.3.1. Subtract Classification
After performing all the tests above, we have measured the total time for the first
approach execution, getting the following results:

- TEST A: 151minutes with 58.434s
- TEST B: 232minutes with 2.659s
- TEST C: 26minutes with 56.107s

6.3.2. Extract Features and Classification

Regarding the Features Extraction+Classification approach, we have measured the time
for features extraction, the training and testing time and the whole time needed for the
program execution.
We have represented the results (in seconds) graphically for each classifier. The table
with all of these measurements, can be found in the Annex III.

• KNN

FIGURE 31.
TIME GRAPH
FEATURES
EXTRACTION
+ KNN

-	Page	� 	of	� 	-83 134

 Bachelor Thesis. Signal Processing for Malware Analysis

• Gaussian Naive Bayes

FIGURE 32. TIME GRAPH FEATURES EXTRACTION + NAIVE BAYES

-	Page	� 	of	� 	-84 134

 Bachelor Thesis. Signal Processing for Malware Analysis

• Decision Tree

FIGURE 33. TIME GRAPH FEATURES EXTRACTION + DECISION TREE

-	Page	� 	of	� 	-85 134

 Bachelor Thesis. Signal Processing for Malware Analysis

• Random Forest

FIGURE 34. TIME GRAPH FEATURES EXTRACTION + RANDOM FOREST

Apart from these time measurements, the time used for the two-first phases, unpacking
the application and converting classes.dex to an image, are: 1 minute with 1.137 seconds
and 1 minute with 20.815 seconds, respectively.

-	Page	� 	of	� 	-86 134

 Bachelor Thesis. Signal Processing for Malware Analysis

6.4. Analysis of Results and Classifier Decision

6.4.1. Evaluation of Results

Considering the measurements obtained after performing the tests, we can deduce the
conclusions explained above.

Regarding the accuracy:

- In the first classification strategy, the highest accuracy (80.75%) is reached using 80%
of samples for training. This accuracy is reduced if we decrease the number of
samples in the training set, with 60% the accuracy was 73.78% and with 1 sample for
each family the accuracy was 27.91%, which does not fulfill the requirement R03 so it
must be discarded. We can observe that this strategy works well if the number of
samples in the training set is high, this is due to the fact that if there are a lot of training
samples there will be more comparisons between images so the computer will be able
to differentiate better between families, it can extract a differential pattern with more
detail.

- In the case of extracting image features and then using a machine learning classifier,
the highest accuracy is reached with the KNN classifier, independently of the image
descriptor used. The worst classifier is Naive Bayes, in most of the cases the accuracy
is lower than 50%, it does not fulfill requirement R03 so it is discarded. The rest of
classifiers satisfy this requirement so they are considered. The best image descriptors
are, in decreasing order, GIST, Daisy, Histogram and Image to Graph. However, if we
apply PCA to Daisy with 400 values, we obtain the highest accuracy (83.04%)
conversely to GIST (without PCA, 81.91%, and with PCA, 81.83%), meaning that the
characteristics of GIST are sufficiently good to perform an accurate classification but
they are similar so we cannot select the best ones. The reason obtained after this
process is that the characteristics extracted with Daisy are so distinguishing that if we
select the best ones with PCA and we apply KNN, the computer is able to divide the
families and assign a class to an unknown sample based on the neighbors’ features,
which are analogous between them.

As a consequence of these two conclusions, we can establish that the most accurate
strategy is extracting features with Daisy descriptor with 400 values retrieved, then
applying PCA features selector to obtain the most differential characteristics and finally
using KNN machine learning classifier to being able to distinguish between samples.

The confusion matrix obtained after applying the previous strategy (Daisy and KNN) is
shown in Figure 35. In this figure we can see that most of the samples are well classified
due to the diagonal of the matrix, the elements on the diagonal shows that the predicted
values were correct (equal to the true label) and the elements outside this diagonal are
the ones misclassified. Most of the elements stay on the diagonal. We can observe too
that the values of the diagonal are really high, 1 or near 1 in lot of cases (100% success
rate). The higher the diagonal values, the better, showing many correct guesses and the
right behavior of the classification strategy.
If we compare Figure 35 with Figure 36, which represents the worst classification
(subtraction classification with 1 training sample) we can observe the differences and
how the classification was done, showing that our measurements were right.

-	Page	� 	of	� 	-87 134

 Bachelor Thesis. Signal Processing for Malware Analysis
The rest of confusion matrices from all the tests performed can be found in Annex II.

FIGURE 35. BEST CLASSIFICATION (DAISY + KNN) CONFUSION MATRIX

FIGURE 36. WORST CLASSIFICATION (SUBTRACT WITH 1) CONFUSION MATRIX
-	Page	� 	of	� 	-88 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Regarding the time:

- The time used in the first strategy is really higher than the second strategy. To know if
they fulfill the requirement R02 we will compute the total time considering the time used
for unpacking the app, converting classes.dex to an image and finally performing the
classification. In the following table it is shown the time in hours for each classification
technique but only with the strategies that fulfill the requirement related with the
accuracy (R03), commented previously (TEST C and most of tests with Naive Bayes
Classifier are not considered).

Time (hours) for 100,000 samples

TEST A 206.778

TEST B 314.054

TEST 1 3.588

TEST 2 3.573

TEST 3 3,.567

TEST 4 3.560

TEST 5 3.559

TEST 6 3.628

TEST 7 3.608

TEST 8 3.591

TEST 9 3.589

TEST 11 3.595

TEST 12 3.585

TEST 13 3.599

TEST 14 3.561

TEST 15 3.560

TEST 16 3.588

TEST 17 3.584

TEST 18 3.570

TEST 19 3.571

TEST 20 3.564

TEST 21 3.450

TEST 22 3.435

TEST 23 3.431

-	Page	� 	of	� 	-89 134

 Bachelor Thesis. Signal Processing for Malware Analysis

TEST 24 3.429

TEST 25 3.428

TEST 31 3.498

TEST 32 3.443

TEST 33 3.435

TEST 34 3.428

TEST 35 3.427

TEST 36 4.214

TEST 37 3.434

TEST 38 3.430

TEST 39 3.434

TEST 40 4.190

TEST 41 3.482

TEST 42 3.468

TEST 43 3.461

TEST 44 3.461

TEST 45 3.458

TEST 46 3.491

TEST 47 3.474

TEST 48 3.464

TEST 51 3.489

TEST 52 3.473

TEST 53 3.471

TEST 54 3.460

TEST 55 3.461

TEST 56 3.473

TEST 57 3.466

TEST 58 3.464

TEST 59 3.462

TEST 60 3.461

TEST 61 3.595

TEST 62 3.590

-	Page	� 	of	� 	-90 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Table 13. Time for 100,000 samples (hours)

As we can see from Table 13, the tests performed with the first strategy consume a lot of
time, they do not fulfill the requirement. That’s why we predicted to do another strategy
because the first tests performed showed that this were not the ideal behavior. All of the
tests are related with the second approach and fulfill the requirement. As we can observe,
most of the time is taken by the extracting features step, the classification process is
really fast. The fastest descriptor is Histogram, followed by Image to Graph, Daisy and
GIST. One remarkable detail of the classifiers is that, even though the classification is
really fast, we can appreciate differences between them, for example, in the case of
Decision Tree classifier, it has the fastest testing time but on the contrary, the training time
is the highest. This is because it consumes lot of time building the tree (training time) but
once it is built, the process of traversing the tree is really fast (testing time).

6.4.2. Final Decision

Considering the previous analysis, the first strategy does not fulfill the requirements so the
best way for classifying malware converted to images is by extracting the characteristics
of these images and then classifying them with a machine learning classifier.

The classification using subtraction of images technique has the disadvantage that it
needs lots of samples to perform an accurate classification so it has to subtract the same
images lots of times (for each unknown sample it subtract all the images of the training
set with this sample) so it wastes so much time.

Regarding the second approach, it depends on the user needs to establish a final
determination. If the user wants the fastest algorithm, we propose to use the Histogram
with 50 values retrieved as an extracting features algorithm and the Decision Tree
classifier; however the accuracy is only 61% so many samples will be misclassified.

TEST 63 3.589

TEST 64 3.590

TEST 65 3.592

TEST 66 3.593

TEST 69 3.604

TEST 70 3.596

TEST 71 3.592

TEST 72 3.588

TEST 73 3.592

TEST 74 3.594

TEST 75 3.593

TEST 76 3.597

TEST 77 3.570

TEST 78 3.580

-	Page	� 	of	� 	-91 134

 Bachelor Thesis. Signal Processing for Malware Analysis

If the user wants the most accurate algorithm, independently of the time, we propose to
use Daisy descriptor with 400 values, PCA features selector and KNN classifier.

We have decided to select as the best classification technique the most accurate one
(83.04%): Daisy with 400 values retrieved, PCA features selector and KNN classifier.
There is a slightly difference in time between Daisy and GIST (0.01 hours difference) but
we prefer to get the highest number of right guesses and invest a little bit more of time to
achieve this. This technique is going to be used for classifying the samples of M0droid
dataset in order to confirm this choice.

6.5. Final Results

6.5.1. Classification with M0droid Dataset

We have performed more tests with our final classifier. We have applied to M0droid
dataset the process of unpacking an application, converting the classes.dex file to an
image, extracting its characteristics with Daisy image descriptor with 400 values
retrieved, selecting the best 25 values with PCA and classifying these images with KNN.

The time used for each process was the following:

- Unpacking the applications: 27.965 seconds
- Converting classes.dex to images: 1 minute with 1.027 seconds
- Daisy extraction features and KNN classification: 9.03 seconds

The accuracy obtained was 88%.

The obtained confusion matrix was the one above. We can see that our choice was right
because it classifies well each family. It was able to distinguish between goodware and
malware.

FIGURE 37. CONFUSION
MATRIX M0DROID DATASET

-	Page	� 	of	� 	-92 134

 Bachelor Thesis. Signal Processing for Malware Analysis

6.5.2. Packed Applications Classification

Additionally, we have also used this dataset to perform a classification with packed
applications. As we have mentioned during the whole project, our analysis was based on
obtaining an accurate classification using images of malware. To obtain these images we
have to unpack the application and get the classes.dex file. However, it consumes time
so maybe its preferable to convert directly a packed application and do the classification.

The time spent for transforming directly a packed application to an image with the
M0droid dataset was 1 minute with 41.317 seconds, which is more than extracting the
files and then converting classes.dex (1 minute with 28.992 seconds). This is due to the
size of an .apk file, as it contains more information, the time spent for converting it to an
image is higher. Besides, the accuracy is reduced from 88% to 82.5% with a total
classification time of 14.611 seconds, instead of 9.03 seconds achieved previously. The
confusion matrix obtained with the packed applications is:

FIGURE 38. PACKED APPLICATIONS CONFUSION MATRICES

In Figure 38, we observe that some samples of goodware are classified as malware and
vice versa, which is not desirable. There is a considerable number of samples classified
out of the diagonal. The same thing happens with the Malgenome dataset, the accuracy
is decreased and the time is increased as well (69.29% of accuracy, 4 minutes with
17.534 for transforming to images and 39.79 seconds for the classification).

We can conclude that it is preferable to unpack the application than using the APK file
directly. However, if the malware is encrypted, with this approach we can solve this
problem.

-	Page	� 	of	� 	-93 134

 Bachelor Thesis. Signal Processing for Malware Analysis

7. Project Design and Budget
7.1. Gantt Chart

In this section we present the following Gantt Chart diagram which contains the different project tasks, interconnections and
dependencies.

FIGURE 39. GANTT CHART

- Page	�94	of	�134	-

 Bachelor Thesis. Signal Processing for Malware Analysis

7.2. Estimated Costs

This section covers all the costs and needs that are contemplated during the project
development. They are calculated taking into account the whole period of the project.

7.2.1. Hardware Equipment

Only the hardware elements directly related with the project consecution are included in
the following table. The expenses are calculated considering 21% of the price of the item.

Table 14. Budget - Hardware Equipment

7.2.2. Software Licenses

The software components used in this project are the following ones. The expenses are
calculated considering 21% of the price of the item.

Table 15. Budget - Software Licenses

Item Price (€) Acquisition Date Total Cost (with
expenses) (€)

iMac (21.5 inch, mid 2011) 513.50 June-2011 650.00

SanDisk USB 3.0 32GB 7.347 September-2015 9.30

TOTAL 659.30

Item Price (€) Acquisition Date Total Cost (with
expenses) (€)

Pages for Mac 15.78 September - 2015 19.99

VMWare Fusion 8 67.73 October-2015 81.95

Python 0.00 October-2015 0.00

Python External Libraries 0.00 November-2015 0.00

Ubuntu OS 15.10 0.00 October-2015 0.00

Malgenome Dataset 0.00 November-2015 0.00

M0droid Dataset 0.00 November-2015 0.00

TOTAL 101.94

-	Page	� 	of	� 	-95 134

 Bachelor Thesis. Signal Processing for Malware Analysis

7.2.3. Human Resources

Salaries are detailed according to each role needed for this thesis. There are three roles:
project manager, analyst and programmer. The former is performed by the thesis tutor,
Pedro Peris-López and the later (analyst and programmer) are performed by the thesis
author, Raquel Tabuyo Benito.

Table 16. Budget - Human Resources

7.2.4. Direct Costs

The cost of all the elements of the project is shown in the following table:

Table 17. Budget - Direct Costs

7.2.5. Indirect Costs

The indirect costs derived from this project are calculated considering 2% margin of the
direct costs:

Table 18. Budget - Indirect Costs

Project Phase Role Salary (€/
hour)

Hours/day Total Days Total Cost (€)

Investigation (State
of art)

Analyst 25 5 20 2,500

Analysis Analyst 25 5 22 2,750

Design Analyst 25 5 48 6,000

Implementation Programmer 20 5 48 4,800

Performance
Evaluation

Programmer 20 5 17 1,700

Thesis Writing Analyst 25 5 31 3,875

Project Management Project Manager 35 2 90 6,300

TOTAL 27,925

Description Total Cost

Hardware Equipment 659.3

Software Components 101.94

Human Resources 27,925

TOTAL 28,686.24

Direct Costs Indirect Margin Total Cost

28,686.24 2 % 573.73

-	Page	� 	of	� 	-96 134

 Bachelor Thesis. Signal Processing for Malware Analysis

7.2.6. Benefits

As this thesis is an experimental project with educational purposes, it is a nonprofit
project. Therefore, the total benefit is 0.00€.

7.2.7. Risks

We are considering a risk margin of 15% of the direct costs:

Table 19. Budget - Risks

7.2.8. Grand Total

The total cost of this project is calculated in the following table:

Table 20. Budget - Grand Total

Direct Costs Indirect Margin Total Cost

28,686.24 15 % 4,302.94

Description Total Cost

Direct costs 28,686.24

Indirect costs 573.73

Benefits 0.00

Risks 4,302.94

TOTAL 33,562.91

-	Page	� 	of	� 	-97 134

 Bachelor Thesis. Signal Processing for Malware Analysis

8. Conclusions and Future Work
We have proposed two ways of Android malware classification based on converting an
application to a PNG image and performing the classification.

The first approach was an innovative strategy based on subtracting images from the
testing set with images of the training set, however it does not fulfill the requirements of
time because this strategy requires lot of samples in the training set to perform an
accurate classification. So at the end, we have to do the same process (subtracting
images) for each image of the testing set, producing a wasting of time.

As the first approach requires a lot of time, we decided to develop another strategy
based on using an image descriptor and a machine learning classifier. With this
technique we have fulfilled the requirements. The limit was 50% of accuracy and 10 hours
for 100,000 samples (converting to images and classifying) and we have achieved an
accuracy more than 80% in less than 4 hours. Specifically, the two datasets used are
classified with an accuracy of 83.04% in 18.396 seconds (Malgenome dataset) and with
an accuracy of 88% in 9.03 seconds (M0droid dataset). The classification was made
using Daisy image descriptor with 400 values retrieved, the selection of the best 25
values with PCA features selector and finally, the classification with KNN machine learning
classifier. To this process we have to add the time of unpacking the application and the
conversion to image process (1 minute with 1.137 seconds and 1 minute with 20.815
seconds, respectively, for Malgenome; 27.965 seconds and 1 minute with 1.027 seconds
for M0droid). The accuracy for packed applications drops and the time is increased,
however if the malware is encrypted and it is not possible to unpack the application, we
can analyze the packed application with this process.

As a conclusion we can deduce that due to the classification relies on the information
obtained from the textures of the PNG images, it is not required to execute the code nor
any disassembly process, making this detection strategy 40 times faster than the
traditional ones because we only need 400 values instead of the 65,000 elements
required in distribution based analysis. Besides, this detection technique avoids
obfuscation and malware encryption.

However, the main drawback for this strategy is that if the attacker knows that it is used as
a detection technique, he can add not relevant data (zero-values) or relocate sections of
the Android file in order to generate a different image in this process.

The future lines can be a software development project that uses this idea as the basis or
the improvement of the first approach in order to obtain a classifier that does not need a
huge number of samples for the training set to reduce the classification time.

-	Page	� 	of	� 	-98 134

 Bachelor Thesis. Signal Processing for Malware Analysis

9. References
[1] Suarez-Tangil, Guillermo, Juan E. Tapiador, Pedro Peris-Lopez, and Arturo Ribagorda.
"Evolution, Detection and Analysis of Malware for Smart Devices." IEEE Communications Surveys
& Tutorials IEEE Commun. Surv. Tutorials 16, no. 2 (2014): 961-87. doi:10.1109/surv.
2013.101613.00077.

[2] Cocotas, Alex. "Smartphone Sales Will Reach Nearly 1.6 Billion Units By 2016." Business
Insider. 2012. Accessed October 6, 2015. http://www.businessinsider.com/smartphone-sales-will-
reach-almost-16-billion-units-by-2016-2012-2

[3] "Android Just Achieved Something It Will Take Apple Years to Do." Accessed October 6, 2015.
http://uk.businessinsider.com/android-1-billion-shipments-2014-strategy-analytics-2015-2

[4] "Symantec - 2016 Internet Security Report." Symantec - 2016 Internet Security Report.
Accessed October 7, 2015. https://resource.elq.symantec.com/istr-vol21-en

[5] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware in the
wild,” in Proc. 1st ACM workshop on Security and privacy in smartphones and mobile devices, ser.
SPSM ’11. New York, NY, USA: ACM, 2011, pp. 3–14.

[6] C. Fleizach, M. Liljenstam, P. Johansson, G. Voelker, and A. Mehes, “Can you infect me now?:
malware propagation in mobile phone networks,” in Proc. 2007 ACM workshop on Recurring
malcode. ACM, 2007, pp. 61–68.

[7] R. Verdult and F. Kooman, “Practical attacks on nfc enabled cell phones,” in 3rd Int. Workshop
on Near Field Commun. (NFC), February 2011, pp. 77–82.
 
[8] Samsung. Accessed October 10, 2016. http://www.samsung.com/es/tv/

[9] C. Xiang, F. Binxing, Y. Lihua, L. Xiaoyi, and Z. Tianning, “Andbot: towards advanced mobile
botnets,” in Proc. 4th USENIX conf. on Large-scale exploits and emergent threats, ser. LEET’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 11–11.

[10] Yajin Zhou and Xuxian Jiang, “An Analysis of the AnserverBot Trojan”. September 25, 2011.
Accessed February 3, 2016. https://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf

[11] Kramer, S, “Rage against the cage,” 2010. 

[12] Masaki Suenaga, “Android.Opfake In-Depth”. 2012. Accessed October 13, 2015. https://
www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/
android_opfake_in_depth.pdf

[13] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,” in Proc.
33rd IEEE Symp. Security and Privacy (Oakland 2012), May 2012.

[14] E. Chin, A. Felt, K. Greenwood, and D. Wagner, “Analyzing inter application communication in
android,” in Proc. 9th int. conf. on Mobile systems, applications, and services. ACM, 2011, pp. 239–
252.

[15] Grayson Milbourne and Armando Orozco. “An In-depth Look at the Evolution of Android
Malware”. August 2012. Accessed October 26, 2015. http://www.brightcloud.com/pdf/Android-
Malware-Exposed.pdf

-	Page	� 	of	� 	-99 134

http://www.samsung.com/es/tv/
https://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/android_opfake_in_depth.pdf
http://www.brightcloud.com/pdf/Android-Malware-Exposed.pdf

 Bachelor Thesis. Signal Processing for Malware Analysis

[16] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege escalation attacks on
android,” in Information Security, ser. Lecture Notes in Computer Science, M. Burmester, G.
Tsudik, S. Magliveras, and I. Ilic, Eds. Springer Berlin / Heidelberg, 2011, vol. 6531, pp. 346–360.

[17] Felt, Adrienne Porter and Chin, Erika and Hanna, Steve and Song, Dawn and Wagner, David,
“Android permissions demystified,” in Proc. 18th ACM conf. on Computer and commun. security.
ACM, 2011, pp. 627–638.

[18] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of application permissions,” in
Proc. 2nd USENIX conf. on Web application development, ser. WebApps’11. USENIX Association,
2011, pp. 7–7.

[19] E. Chin, A. Felt, K. Greenwood, and D. Wagner, “Analyzing inter application communication in
android,” in Proc. 9th int. conf. on Mobile systems, applications, and services. ACM, 2011, pp. 239–
252.

[20] F. Rohrer, Y. Zhang, L. Chitkushev, and T. Zlateva, “Poster: Role based access control for
android (rbaca),” Boston University, MA USA, Tech. Rep., 2012.  

[21] X. Ni, Z. Yang, X. Bai, A. C. Champion, and D. Xuan, “Diffuser: Differentiated user access
control on smartphones,” in IEEE 6th Int. Conf. Mobile Adhoc and Sensor Systems, 2009.
MASS’09.. IEEE, 2009, pp. 1012–1017.  

[22] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “Moses: supporting operation modes on
smartphones,” in Proc. 17th ACM symp. on Access Control Models and Technologies, ser.
SACMAT ’12. New York, NY, USA: ACM, 2012, pp. 3–12.

[23] C. Mulliner, G. Vigna, D. Dagon, and W. Lee, “Using labeling to prevent crossservice attacks
against smart phones,” in Detection of Intrusions and Malware and Vulnerability Assessment, ser.
Lecture Notes in Computer Science, R. Bschkes and P. Laskov, Eds. Springer Berlin Heidelberg,
2006, vol. 4064, pp. 91–108.  

[24] N. Husted, H. Sa ı̈di, and A. Gehani, “Smartphone security limitations: conflicting traditions,” in
Proc. 2011 Workshop on Governance of Technology, Information, and Policies, ser. GTIP ’11. New
York, NY, USA: ACM, 2011, pp. 5–12.  

[25] M. Conti, V. Nguyen, and B. Crispo, “Crepe: Context-related policy enforcement for android,”
Information Security, pp. 331–345, 2011.

[26] M. Knappmeyer, S. L. Kiani, E. S. Reetz, N. Baker, and R. Tonjes, “Survey of context
provisioning middleware,” IEEE Commun. Surveys & Tutorials, vol. 15, no. 3, pp. 1492–1519,
2013.

[27] A.-D. Schmidt, “Detection of smartphone malware,” Ph.D. dissertation, Universitats-bibliothek,
2011.  

[28] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “ “andromaly”: a behavioral
malware detection framework for android devices,” J. of Intelligent Information Systems, vol. 38,
pp. 161–190, 2012.  

[29] F. Shahzad, M. Akbar, S. Khan, and M. Farooq, “Tstructdroid: Real time malware detection
using in-execution dynamic analysis of kernel process control blocks on android,” National
University of Computer & Emerging Sciences, Islamabad, Pakistan, Tech. Rep., 2013.

-	Page	� 	of	� 	-100 134

 Bachelor Thesis. Signal Processing for Malware Analysis

[30] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “Madam: a multi-level anomaly detector
for android malware,” in Proc. 6th int. conf. on Mathematical Methods, Models and Architectures for
Computer Network Security: computer network security, ser. MMMACNS’12. Springer-Verlag,
2012, pp. 240–253.

[31] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior based malware
detection system for android,” in 1st ACM workshop on Security and privacy in smartphones and
mobile devices. ACM, 2011, pp. 15–26.

[32] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. StypRekowsky, “Appguard —-real–time
policy enforcement for third party applications,” Universitats- und Landesbibliothek, Postfach
151141, 66041 Saarbracken, Tech. Rep., 2012. Accessed October 21, 2015. http://scidok.sulb.uni-
saarland.de/volltexte/2012/4902

[33] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders, “Secloud: A cloud-based
comprehensive and lightweight security solution for smartphones,” Computers & Security, 2013.

[34] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid android: versatile
protection for smartphones,” in Proc. 26th Annu. Computer Security Applications Conf., 2010, pp.
347–356.

[35] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection based architecture for
intrusion detection,” in Proc. Network and Distributed Systems Security Symp., 2003. 

[36] T. Blasing, L. Batyuk, A. Schmidt, S. Camtepe, and S. Albayrak, “An android application
sandbox system for suspicious software detection,” in 5th Int. Conf. on Malicious and Unwanted
Software (MALWARE 2010). IEEE, 2010, pp. 55–62.

[37] L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik semantic views
for dynamic android malware analysis,” in Proc. 21st USENIX conf. on Security symp.. USENIX
Association, 2012, pp. 29–29.

[38] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security analysis of
smartphone applications,” in Proc. 3rd ACM conference on Data and application security and
privacy. ACM, 2013, pp. 209– 220.

[39] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smartdroid: an automatic
system for revealing ui-based trigger conditions in android applications,” in Proc. 2nd ACM
workshop on Security and privacy in smartphones and mobile devices. ACM, 2012, pp. 93– 104.

[40] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable and accurate zero-
day android malware detection,” in Proc. 10th int. conf. on Mobile systems, applications, and
services. ACM, 2012, pp. 281–294.

[41] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. B. Alis, “Dendroid: A text mining
approach to analyzing and classifying code structures in android malware families,” Expert
Systems with Applications, 2013, in Press.

[42] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy, “Return-
oriented programming without returns,” in Proc. of CCS 2010, A. Keromytis and V. Shmatikov, Eds.
ACM Press, Oct. 2010, pp. 559–72.

-	Page	� 	of	� 	-101 134

http://saarland.de/volltexte/2012/4902

 Bachelor Thesis. Signal Processing for Malware Analysis

[43] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting android apps for component
hijacking vulnerabilities,” in Proc. 2012 ACM conf. on Computer and communications security.
ACM, 2012, pp. 229–240.

[44] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of capability leaks in stock
android smartphones,” in Proc. 19th Annu. Symp. on Network and Distributed System Security,
2012.

[45] Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, Soyeon Park, Dongcai Shen, Yuanyuan Zhou,
Lawrence K. Saul and Geoffrey M. Voelker, “eDoctor: Automatically Diagnosing Abnormal Battery
Drain Issues on Smartphones”. Accessed February 19, 2016. https://cseweb.ucsd.edu/~voelker/
pubs/edoctor-nsdi13.pdf 

[47] S. Rosen, Z. Qian, and Z. M. Mao, “Appprofiler: a flexible method of exposing privacy-related
behavior in android applications to end users,” in Proc. 3rd ACM conference on Data and
application security and privacy. ACM, 2013, pp. 221–232.

[48] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth, “Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones,” in Proc. 9th
USENIX conf. on Operating systems design and implementation. USENIX Association, 2010, pp.
1–6.  

[49] L. Nataraj, S. Karthikeyan, G. Jacob, B. S. Manjunath, "Malware Images: Visualization and
Automatic Classification." Malware Images. Accessed October 25, 2015. http://dl.acm.org/
citation.cfm?id=2016908

[50] Douze, Matthijs, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and Cordelia
Schmid. "Evaluation of GIST Descriptors for Web-scale Image Search." Proceeding of the ACM
International Conference on Image and Video Retrieval - CIVR '09, 2009. Accessed October 24,
2015. doi:10.1145/1646396.1646421.

[51] "Android.Adrd." Symantec. Accessed November 3, 2015. https://www.symantec.com/
security_response/writeup.jsp?docid=2011-021514-4954-99

[52] Yajin Zhou and Xuxian Jiang, “An Analysis of the AnserverBot Trojan”. September 25, 2011.
A c c e s s e d N o v e m b e r 3 , 2 0 1 5 . h t t p s : / / w w w. c s c . n c s u . e d u / f a c u l t y / j i a n g / p u b s /
AnserverBot_Analysis.pdf
 
[53] Zhou, Yajin, and Xuxian Jiang. "Dissecting Android Malware: Characterization and Evolution."
2012 IEEE Symposium on Security and Privacy, 2012. doi:10.1109/sp.2012.16.

[54] "Android.Basebridge." Symantec. Accessed November 3, 2015. https://www.symantec.com/
security_response/writeup.jsp?docid=2011-060915-4938-99

[55] Xuxian Jiang, ”BeanBot." NC State University. Accessed February 29, 2016. https://
www.csc.ncsu.edu/faculty/jiang/BeanBot/

[56] "Android.Bgserv." Symantec. Accessed November 3, 2015, 2016. https://www.symantec.com/
security_response/writeup.jsp?docid=2011-031005-2918-99

[57] "SMS Spying Android Trojan Triggered by Keywords - Help Net Security." Help Net Security.
2011. Accessed November 3, 2015. https://www.helpnetsecurity.com/2011/08/08/sms-spying-
android-trojan-triggered-by-keywords/

-	Page	� 	of	� 	-102 134

https://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf

 Bachelor Thesis. Signal Processing for Malware Analysis

[58] "Android.Crusewind." Symantec. Accessed November 3, 2015. https://www.symantec.com/
security_response/writeup.jsp?docid=2011-070301-5702-99

[59] "Android.Dogowar." Symantec. Accessed November 4, 2015. https://www.symantec.com/
security_response/writeup.jsp?docid=2011-081510-4323-99

[60] Xuxian Jiang, “Security Alert: New Android Malware -- DroidCoupon -- Found in Alternative
Android Markets” NC State University. Accessed November 4, 2015 https://www.csc.ncsu.edu/
faculty/jiang/DroidCoupon/

[61] Xuxian Jiang, “Security Alert: New Root-Capable DroidDeluxe Malware Found in Alternative
Android Markets” NC State University. Accessed November 4, 2015. https://www.csc.ncsu.edu/
faculty/jiang/DroidDeluxe/

[62] "Technical Analysis | Lookout Blog." Lookout Blog RSS. Accessed November 4, 2015. https://
blog.lookout.com/droiddream/

[63] Dunham, Ken, Shane Hartman, Jose Andre. Morales, Manu Quintans, and Tim Strazzere.
Android Malware and Analysis.

[64] Xuxian Jiang, “Security Alert: New Sophisticated Android Malware DroidKungFu Found in
Alternative Chinese App Markets” NC State University. Accessed November 4, 2015.. https://
www.csc.ncsu.edu/faculty/jiang/DroidKungFu/

[65] Xuxian Jiang, “Security Alert: New DroidKungFu Variant -- AGAIN! -- Found in Alternative
Android Markets” NC State University. Accessed November 4, 2015..https://www.csc.ncsu.edu/
faculty/jiang/DroidKungFu3/

[66] Zhou, Yajin, and Xuxian Jiang. "Dissecting Android Malware: Characterization and Evolution."
2012 IEEE Symposium on Security and Privacy, 2012. doi:10.1109/sp.2012.16.

[67] David Korczynski, “ClusTheDroid: Clustering Android Malware”. 4 March 2015. Information
Security Group Royal Holloway University of London. Accessed November 5, 2015.. https://
www.ma.rhul.ac.uk/static/techrep/2015/RHUL-MA-2015-1.pdf

[68] "Android Threat Set to Trigger On the End of Days, or the Day's End." Symantec Security
Response. Accessed November 5, 2015. http://www.symantec.com/connect/blogs/android-threat-
set-trigger-end-days-or-day-s-end

[69] "Security Alert: Fake Netflix App Aids Phishing | Lookout Blog." Lookout Blog RSS. Accessed
November 5, 2015. https://blog.lookout.com/blog/2011/10/13/security-alert-fake-netflix-app-aids-
phishing/

[70] Xuxian Jiang, “Security Alert: New Android Malware -- GoldDream -- Found in Alternative App
Markets” NC State University. Accessed November 5, 2015. https://www.csc.ncsu.edu/faculty/jiang/
GoldDream/

[71] "Android.Golddream." Symantec. Accessed November 5, 2015. https://www.symantec.com/
security_response/writeup.jsp?docid=2011-070608-4139-99

[72] "Android.Gonesixty." Symantec. Accessed November 6, 2015. https://www.symantec.com/
security_response/writeup.jsp?docid=2011-093001-2649-99

[73] Jiang Xuxian, and Yajin Zhou. Android Malware. Dordrecht: Springer, 2013.

-	Page	� 	of	� 	-103 134

https://www.csc.ncsu.edu/faculty/jiang/DroidCoupon/
https://www.csc.ncsu.edu/faculty/jiang/DroidDeluxe/
https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu/
https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/
https://www.ma.rhul.ac.uk/static/techrep/2015/RHUL-MA-2015-1.pdf
https://www.csc.ncsu.edu/faculty/jiang/GoldDream/

 Bachelor Thesis. Signal Processing for Malware Analysis

[74] "Beta Version of Spytool App for Android Steals SMS Messages - TrendLabs Security
Intelligence Blog." TrendLabs Security Intelligence Blog. 2012. Accessed November 6, 2015. http://
blog.trendmicro.com/trendlabs-security-intelligence/beta-version-of-spytool-app-for-android-steals-
sms-messages/

[75] "Security Alert: Malware Found Targeting Custom ROMs (jSMSHider) | Lookout Blog." Lookout
Blog RSS. Accessed November 6, 2015. https://blog.lookout.com/blog/2011/06/15/security-alert-
malware-found-targeting-custom-roms-jsmshider/

[76] "The Growing Threat of Mobile Malware: Top Android Malware Families of 2012 - Quick Heal
Technologies Security Blog | Latest Computer Security News, Tips, and Advice." Quick Heal
Technologies Security Blog Latest Computer Security News Tips and Advice. 2013. Accessed
November 6, 2015. http://blogs.quickheal.com/the-growing-threat-of-mobile-malware-top-android-
malware-families-of-2012/

[77] Xuxian Jiang, “Security Alert: New NickiBot Spyware Found in Alternative Android Markets” NC
State University. Accessed November 7, 2015.https://www.csc.ncsu.edu/faculty/jiang/NickiBot/

[78] "Android.Nickispy." Symantec. Accessed March 06, 2016. https://www.symantec.com/
security_response/writeup.jsp?docid=2011-072714-3613-99

[79] Xuxian Jiang, “Security Alert: New Rogue App RogueLemon Found in Alternative Chinese
Android Markets” NC State University. Symantec. Accessed November 7, 2015. https://
www.csc.ncsu.edu/faculty/jiang/RogueLemon/

[80] Xuxian Jiang, “New Rogue Android App -- RogueSPPush -- Found in Alternative Android
Markets” NC State University. Accessed November 7, 2015. https://www.csc.ncsu.edu/faculty/jiang/
RogueSPPush/

[81] Xuxian Jiang, “Questionable Android Apps -- SndApps -- Found and Removed from Official
Android Market” NC State University. Accessed November 7, 2015. https://www.csc.ncsu.edu/
faculty/jiang/SndApps/

[82] "News from the Lab Archive : January 2004 to September 2015." News from the Lab Archive :
January 2004 to September 2015. Accessed November 8, 2015. https://www.f-secure.com/weblog/
archives/00002236.html

[83] "Android.Tapsnake." Symantec. Accessed November 8, 2015. https://www.symantec.com/
security_response/writeup.jsp?docid=2010-081214-2657-99

[84] "AndroidOS.Tapsnake: Watching Your Every Move." Symantec Security Response. Accessed
November 8, 2015. http://www.symantec.com/connect/blogs/androidostapsnake-watching-your-
every-move

[85] Xuxian Jiang, “Security Alert: New Android SMS Trojan -- YZHCSMS -- Found in Official
Android Market and Alternative Markets” NC State University. Accessed November 8, 2015. https://
www.csc.ncsu.edu/faculty/jiang/YZHCSMS/

[86] "Security Alert: Zsone Trojan Found in Android Market | Lookout Blog." Lookout Blog RSS.
Accessed November 8, 2015. https://blog.lookout.com/blog/2011/05/11/security-alert-zsone-trojan-
found-in-android-market/

[87] "Security News." Security News. Accessed November 8, 2015. http://www.pctools.com/
security-news/what-is-malware/

-	Page	� 	of	� 	-104 134

https://www.csc.ncsu.edu/faculty/jiang/NickiBot/
https://www.csc.ncsu.edu/faculty/jiang/RogueLemon/
https://www.csc.ncsu.edu/faculty/jiang/RogueSPPush/
https://www.csc.ncsu.edu/faculty/jiang/SndApps/
https://www.csc.ncsu.edu/faculty/jiang/YZHCSMS/

 Bachelor Thesis. Signal Processing for Malware Analysis

[88] E. Chien, “Motivations of Recent Android Malware”. 2011. Accessed November 9, 2015. http://
www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/
motivations_of_recent_android_malware.pdf

[89] “Mobile malware: A network view” Black Hat Mobile Security Summit – London 2015.
Accessed November 9, 2015. https://www.blackhat.com/docs/ldn-15/materials/london-15-
McNamee-Mobile-Malware-A-Network-View-wp.pdf

[90] "The Rise of Android Ransomware - We Live Security." Accessed November 9, 2015. http://
www.welivesecurity.com/wp-content/uploads/2016/02/Rise_of_Android_Ransomware.pdf

[91] "Ransomware." - Definition. Accessed November 9, 2015. http://www.trendmicro.com/vinfo/us/
security/definition/ransomware

[92] Damshenas, Mohsen, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Ramlan Mahmud.
M0Droid: An Android Behavioral-Based Malware Detection Model. Journal of Information Privacy
and Security 11, no. 3 (2015): 141-57. doi:10.1080/15536548.2015.1073510.

[93] Zhou, Yajin, and Xuxian Jiang. “Dissecting Android Malware: Characterization and Evolution”.
2012 IEEE Symposium on Security and Privacy, 2012. doi:10.1109/sp.2012.16.

[94] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the
spatial envelope. IJCV, 42(3):145–175, 2001.

[95] Douze, Matthijs, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and Cordelia
Schmid. "Evaluation of GIST Descriptors for Web-scale Image Search." Proceeding of the ACM
International Conference on Image and Video Retrieval - CIVR '09, 2009. doi:
10.1145/1646396.1646421.

[96] A. Martínez Retenaga, “Android Malware situation”. Spanish National Cybersecurity Institute.
February 2015. Accessed November 13, 2015. https://www.incibe.es/extfrontinteco/img/File/
intecocert/EstudiosInformes/android_malware_situation.pdf

[97] Somarriba, Oscar, Urko Zurutuza, Roberto Uribeetxeberria, Laurent Delosières, and Simin
Nadjm-Tehrani. "Detection and Visualization of Android Malware Behavior." Journal of Electrical
and Computer Engineering 2016 (2016): 1-17. doi:10.1155/2016/8034967.

[98] "Histograms Introduction." www.tutorialspoint.com. Accessed November 10, 2015. http://
www.tutorialspoint.com/dip/histograms_introduction.htm

[99] "User Guide." User Guide: Contents — Scikit-learn 0.12 Documentation. Accessed November
13, 2015. http://www.math.unipd.it/~aiolli/corsi/1213/aa/user_guide-0.12-git.pdf

[100] "Dense DAISY Feature Description." Dense DAISY Feature Description — Skimage
V0.12dev Docs. Accessed November 15, 2015. http://scikit-image.org/docs/dev/auto_examples/
plot_daisy.html

[101] Lowe, David G. "Distinctive Image Features from Scale-Invariant Keypoints." International
Journal of Computer Vision 60, no. 2 (2004): 91-110. doi:10.1023/b:visi.0000029664.99615.94.

[102] Hu, Yu-Chen, “International Journal of Image Processing (IJIP)” Book: 2009 Volume 3, Issue
4. Publishing Date: 31-08-2009. ISSN (Online): 1985 - 2304. Accessed March 15, 2016 http://
www.cscjournals.org/download/issuearchive/IJIP/Volume3/IJIP_V3_I4.pdf#page=16

-	Page	� 	of	� 	-105 134

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/motivations_of_recent_android_malware.pdf
https://www.blackhat.com/docs/ldn-15/materials/london-15-McNamee-Mobile-Malware-A-Network-View-wp.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/02/Rise_of_Android_Ransomware.pdf
http://www.trendmicro.com/vinfo/us/security/definition/ransomware
https://www.incibe.es/extfrontinteco/img/File/intecocert/EstudiosInformes/android_malware_situation.pdf
http://www.cscjournals.org/download/issuearchive/IJIP/Volume3/IJIP_V3_I4.pdf#page=16

 Bachelor Thesis. Signal Processing for Malware Analysis

[103] Wu, Jian, Zhiming Cui, Victor S. Sheng, Pengpeng Zhao, Dongliang Su, and Shengrong
Gong. "A Comparative Study of SIFT and Its Variants." Measurement Science Review 13, no. 3
(2013). doi:10.2478/msr-2013-0021.

[104] S. O’Hara and B. A. Draper, “Introduction to the Bag Of Features Paradigm For Image
Classification and Retrieval”. 17 January 2011. Accessed November 20, 2015. https://arxiv.org/pdf/
1101.3354.pdf

[105] D. Aldavert, A. Ramisa, R. Lopez de Mantaras and R. Toledo. “Real-Time Object
Segmentation Using a Bag of Features Approach” Accessed November 21, 2015. http://
www.iiia.csic.es/~mantaras/CCIA2010.pdf

[106] Kobayashi, Takumi. "BFO Meets HOG: Feature Extraction Based on Histograms of Oriented
P.d.f. Gradients for Image Classification." 2013 IEEE Conference on Computer Vision and Pattern
Recognition, 2013. doi:10.1109/cvpr.2013.102.

[107] Yang, Hongsheng, Wen-Yan Lin, and Jiangbo Lu. "DAISY Filter Flow: A Generalized Discrete
Approach to Dense Correspondences." 2014 IEEE Conference on Computer Vision and Pattern
Recognition, 2014. doi:10.1109/cvpr.2014.435.

[108] Tola, E., V. Lepetit, and P. Fua. "DAISY: An Efficient Dense Descriptor Applied to Wide-
Baseline Stereo." IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE Trans.
Pattern Anal. Mach. Intell. 32, no. 5 (2010): 815-30. doi:10.1109/tpami.2009.77.

[109] B. A. Draper , K. Baek , M. Stewart Bartlett , J. Ross Beveridge, “Recognizing Faces with
PCA and ICA” Accessed November 28, 2015. http://www.face-rec.org/algorithms/comparisons/
draper_cviu.pdf

[110] Boiman, Oren, Eli Shechtman, and Michal Irani. "In Defense of Nearest-Neighbor Based
Image Classification." 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
doi:10.1109/cvpr.2008.4587598.

[111] "Face Recognition." Final Project Writeup. Accessed March 16, 2016. http://cs.brown.edu/
courses/csci1290/2011/results/final/amf1/

[112] “Facial age estimation". PCR. Accessed March 16, 2016. http://www.dia.fi.upm.es/~pcr/
attributes.html

[113] J. Kim, Byung-Soo Kim, S. Savarese, “Comparing Image Classification Methods: K-Nearest-
Neighbor and Support-Vector-Machine”. Accessed November 5, 2015. http://www.wseas.us/e-
library/conferences/2012/CambridgeUSA/MATHCC/MATHCC-18.pdf

[114] Lindsay I Smith, “A tutorial on Principal Components Analysis”. February 26, 2002. Accessed
November 7, 2015. http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

[115] T.M. Mitchell, “Chapter 3: Generative and Discriminate Classifiers: Naive Bayes and Logistic
Regression”Machine Learning, McGraw Hill.

[116] Sanches, João Miguel., Luisa Micó, and Jaime S. Cardoso. Pattern Recognition and Image
Analysis: 6th Iberian Conference, IbPRIA 2013, Funchal, Madeira, Portugal, June 5-7, 2013:
Proceedings.

[117] "1.10. Decision Trees." 1.10. Decision Trees — Scikit-learn 0.17.1 Documentation. Accessed
November 15, 2015. http://scikit-learn.org/stable/modules/tree.html#tree

-	Page	� 	of	� 	-106 134

https://arxiv.org/pdf/1101.3354.pdf
http://www.iiia.csic.es/~mantaras/CCIA2010.pdf
http://www.face-rec.org/algorithms/comparisons/draper_cviu.pdf
http://www.wseas.us/e-library/conferences/2012/CambridgeUSA/MATHCC/MATHCC-18.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

 Bachelor Thesis. Signal Processing for Malware Analysis

[118] A. Mukhtarov, S. Porshnev, V. Zuzin, A. Bobkova and V. Bobkov, “The Study of Applicability of
the Decision Tree Method for Contouring of the Left Ventricle Area in Echographic Video Data”.

[119] Tom M. Mitchell, “Gaussian Naïve Bayes, and Logistic Regression” Carnegie Mellon
University. January 25, 2010. Accessed November 23, 2015. http://www.cs.cmu.edu/~epxing/
Class/10701-10s/Lecture/lecture5.pdf

[120] “Chapter 11: Image Processing - Classification”. Accessed November 28, 2015. http://
www.jars1974.net/pdf/12_Chapter11.pdf

[121] Kun-Che Lu and Don-Lin Yang, “Image Processing and Image Mining using Decision Trees”
Feng Chia University. July 17, 2008. Accessed November 29, 2015. http://www.iis.sinica.edu.tw/
page/jise/2009/200907_02.pdf

[122] A. Liaw and M. Wiener, “Classification and Regression by randomForest” Vol. 2/3, December
2002.

[123] "Random Forests Algorithm." - Data Science Central. Accessed November 29, 2015. http://
www.datasciencecentral.com/profiles/blogs/random-forests-algorithm

[124] V. Ghosal, “Efficient Face Recognition System using Random Forests” Indian Institute of
Technology Kampur. May, 2009. Accessed November 30, 2015. http://www.security.iitk.ac.in/
contents/publications/mtech/VidyutGhosal.pdf

[125] Fanelli, Gabriele, Matthias Dantone, Juergen Gall, Andrea Fossati, and Luc Van Gool.
"Random Forests for Real Time 3D Face Analysis." International Journal of Computer Vision Int J
Comput Vis 101, no. 3 (2012): 437-58. doi:10.1007/s11263-012-0549-0.

[126] “Fundamentals of digital image processing." Vernon's Machine Vision. Accessed November
25, 2015. http://homepages.inf.ed.ac.uk/rbf/BOOKS/VERNON/Chap004.pdf

[127] Zivkovic, Zoran, and Ferdinand Van Der Heijden. "Efficient Adaptive Density Estimation per
Image Pixel for the Task of Background Subtraction." Pattern Recognition Letters 27, no. 7 (2006):
773-80. doi:10.1016/j.patrec.2005.11.005.

[128] Nataraj, Lakshmanan, "A Signal Processing Approach To Malware Analysis”.

[129] Swaroop C H, “A Byte of Python”, Accessed December 5, 2015. http://files.swaroopch.com/
python/byte_of_python.pdf

[130] "Welcome to Python.org." Python.org. Accessed December 5, 2015. https://
www.python.org/doc/essays/comparisons/

[131] “Python Data Analysis Library." Python Data Analysis Library — Pandas: Python Data
Analysis Library. Accessed February 10, 2016. http://pandas.pydata.org/

[132] "Exploit." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/Exploit

[133] "Open-source Software." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/
Open-source_software

[134] "BSD Licenses." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/
BSD_licenses

-	Page	� 	of	� 	-107 134

http://www.cs.cmu.edu/~epxing/Class/10701-10s/Lecture/lecture5.pdf
http://www.jars1974.net/pdf/12_Chapter11.pdf
http://www.iis.sinica.edu.tw/page/jise/2009/200907_02.pdf
http://www.security.iitk.ac.in/contents/publications/mtech/VidyutGhosal.pdf
http://homepages.inf.ed.ac.uk/rbf/BOOKS/VERNON/Chap004.pdf
http://files.swaroopch.com/python/byte_of_python.pdf
https://en.wikipedia.org/wiki/Exploit

 Bachelor Thesis. Signal Processing for Malware Analysis

[135] "Multimedia Messaging Service." Wikipedia. Accessed May 13, 2016. https://
en.wikipedia.org/wiki/Multimedia_Messaging_Service

[136] "Peer-to-peer." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/Peer-to-
peer

[137] "The Definition of Jailbreak." Dictionary.com. Accessed May 13, 2016. http://
www.dictionary.com/browse/jailbreak

[138] "Command and Control (malware)." Wikipedia. Accessed May 13, 2016. https://
en.wikipedia.org/wiki/Command_and_control_(malware).

[139] "The Definition of URL." Dictionary.com. Accessed May 13, 2016. http://
www.dictionary.com/browse/url

[140] "The Definition of USB." Dictionary.com. Accessed May 13, 2016. http://
www.dictionary.com/browse/usb

[141] "Man-in-the-middle Attack." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/
wiki/Man-in-the-middle_attack

[142] "POSTER: Role Based Access Control For Android (RBACA)." Accessed May 13, 2016.
https://www.acsac.org/2012/program/posters/poster09.pdf

[143] "Address Space Layout Randomization." Wikipedia. Accessed May 13, 2016. https://
en.wikipedia.org/wiki/Address_space_layout_randomization

[144] "Effective Inter-Component Communication Mapping in Android: An Essential Step Towards
Holistic Security Analysis." USENIX. Accessed May 13, 2016. https://www.usenix.org/
conference/usenixsecurity13/technical-sessions/presentation/octeau

[145] "International Mobile Station Equipment Identity." Wikipedia. Accessed May 13, 2016. https://
en.wikipedia.org/wiki/International_Mobile_Station_Equipment_Identity

[146] "Rootkit." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/Rootkit

[147] "The Inlined Reference Monitor Approach to Security Policy Enforcement." The Inlined
Reference Monitor Approach to Security Policy Enforcement. Accessed May 13, 2016. http://
dl.acm.org/citation.cfm?id=997617

[148] "Pixel." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/Pixel

[149] "International Mobile Subscriber Identity." Wikipedia. Accessed May 13, 2016. https://
en.wikipedia.org/wiki/International_mobile_subscriber_identity

[150] "Transaction Authentication Number." Wikipedia. Accessed May 13, 2016. https://
en.wikipedia.org/wiki/Transaction_authentication_number

[151] "Android Application Package." Wikipedia. Accessed May 13, 2016. https://
en.wikipedia.org/wiki/Android_application_package

-	Page	� 	of	� 	-108 134

https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
https://en.wikipedia.org/wiki/Peer-to-peer
http://www.dictionary.com/browse/jailbreak
https://en.wikipedia.org/wiki/Command_and_control_(malware)
http://www.dictionary.com/browse/url
http://www.dictionary.com/browse/usb
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://www.acsac.org/2012/program/posters/poster09.pdf
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
https://en.wikipedia.org/wiki/International_Mobile_Station_Equipment_Identity
https://en.wikipedia.org/wiki/Rootkit
http://dl.acm.org/citation.cfm?id=997617
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/International_mobile_subscriber_identity
https://en.wikipedia.org/wiki/Transaction_authentication_number
https://en.wikipedia.org/wiki/Android_application_package

 Bachelor Thesis. Signal Processing for Malware Analysis

[152] "Dalvik (software)." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/
Dalvik_(software)

[153] "Access Point Name." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/
Access_Point_Name

[154] "Android Runtime." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/
Android_Runtime

[155] "Wi-Fi." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/Wi-Fi

[156] "Internet Bot." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/
Internet_bot

[157] "Software Development Kit." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/
wiki/Software_development_kit

[158] "Botnet." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/Botnet

[159] "Concept of Bits Per Pixel." Www.tutorialspoint.com. Accessed May 13, 2016. http://
www.tutorialspoint.com/dip/concept_of_bits_per_pixel.htm

[160] "Out-of-bag Error." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/Out-
of-bag_error

[161] "A Detailed Introduction to K-Nearest Neighbor (KNN) Algorithm." God Your Book Is Great.
2010. Accessed May 13, 2016. https://saravananthirumuruganathan.wordpress.com/
2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/

[162] "What Is PNG (Portable Network Graphics)? - Definition from WhatIs.com." SearchSOA.
Accessed May 13, 2016. http://searchsoa.techtarget.com/definition/PNG

[163] "Uint8." Matlab. Accessed May 13, 2016. http://www.cs.utah.edu/~germain/PPS/Topics/
Matlab/uint8.html

[164] "Epoch (reference Date)." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/
wiki/Epoch_(reference_date)

[165] "Principal Component Analysis." Wikipedia. Accessed May 13, 2016. https://
en.wikipedia.org/wiki/Principal_component_analysis

[166] "F1 Score." Wikipedia. Accessed May 13, 2016. https://en.wikipedia.org/wiki/F1_score

[167] Ayoumali. "Face Detection in Transformers." YouTube. 2010. Accessed November 28, 2015.
https://www.youtube.com/watch?v=i16ZsCvmOsc

[168] "Gist/Context of a Scene." Home Page. Accessed November 9, 2015. http://ilab.usc.edu/
siagian/Research/Gist/Gist.html

[169] Itzamá López Yáñez, Rolando Flores Carapia, Cornelio Yáñez Márquez and Oscar Camacho
Nieto, ”Automatic detection of cranial fractures in radiological images using a pattern classifier”.
2011.

-	Page	� 	of	� 	-109 134

https://en.wikipedia.org/wiki/Dalvik_(software)
https://en.wikipedia.org/wiki/Access_Point_Name
https://en.wikipedia.org/wiki/Android_Runtime
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Internet_bot
https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Botnet
http://www.tutorialspoint.com/dip/concept_of_bits_per_pixel.htm
https://en.wikipedia.org/wiki/Out-of-bag_error
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/
http://searchsoa.techtarget.com/definition/PNG
http://www.cs.utah.edu/~germain/PPS/Topics/Matlab/uint8.html
https://en.wikipedia.org/wiki/Epoch_(reference_date)
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/F1_score
https://www.youtube.com/watch?v=i16ZsCvmOsc
http://ilab.usc.edu/siagian/Research/Gist/Gist.html

 Bachelor Thesis. Signal Processing for Malware Analysis

[170] “OpenStax CNX." OpenStax CNX. Accessed November 25, 2015. https://cnx.org/contents/
Qp5n91yu@1/Background-Subtraction

[171] "Sklearn.decomposition.PCA." Sklearn.decomposition.PCA — Scikit-learn 0.17.1
Documentation. Accessed November 28, 2015. http://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.PCA.html

[1 7 2] " 3 . 2 . 4 . 3 . 1 . S k l e a r n . e n s e m b l e . R a n d o m F o r e s t C l a s s i fi e r . " 3 . 2 . 4 . 3 . 1 .
Sklearn.ensemble.RandomForestClassifier — Scikit-learn 0.17.1 Documentation. Accessed
N o v e m b e r 2 9 , 2 0 1 5 . h t t p : / / s c i k i t - l e a r n . o r g / s t a b l e / m o d u l e s / g e n e r a t e d /
sklearn.ensemble.RandomForestClassifier.html

[173] "Naive Bayes Classifier." Wikipedia. Accessed November 15, 2015. https://en.wikipedia.org/
wiki/Naive_Bayes_classifier

-	Page	� 	of	� 	-110 134

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

 Bachelor Thesis. Signal Processing for Malware Analysis

 
Annex I - Code

I.I. Unpacking the Application

FIGURE 40. EXTRACT_F.PY

FIGURE 41. EXTRACT_GM.PY

-	Page	� 	of	� 	-111 134

 Bachelor Thesis. Signal Processing for Malware Analysis

I.II. Transform classes.dex into PNG Image

FIGURE 42. CONVERT2IMAGE.PY

• Some lines of the previous code would be affected in case of converting directly an
app to PNG images.

FIGURE 43. MALGENOME APK TO
PNG

FIGURE 44. M0DROID APK TO PNG

-	Page	� 	of	� 	-112 134

 Bachelor Thesis. Signal Processing for Malware Analysis

I.III. Subtraction Classification

FIGURE 45.
SUB_CLASSIF.PY

-	Page	� 	of	� 	-113 134

 Bachelor Thesis. Signal Processing for Malware Analysis

I.IV. Extracting Features and Machine Learning Classification

• Step 1. Compute label matrix

FIGURE 46. CLASSIF.PY (PART 1)

-	Page	� 	of	� 	-114 134

 Bachelor Thesis. Signal Processing for Malware Analysis

• Step 2. Compute features matrix

FIGURE 47. CLASSIF.PY (PART 2)

-	Page	� 	of	� 	-115 134

 Bachelor Thesis. Signal Processing for Malware Analysis

• Step 3. Supervised Classification

FIGURE 48. CLASSIF.PY (PART 3)

-	Page	� 	of	� 	-116 134

 Bachelor Thesis. Signal Processing for Malware Analysis

Annex II - Confusion Matrices Images
II. I. Subtraction Classification

FIGURE 49. SUBTRACTION CLASSIFICATION CONFUSION MATRICES

-	Page	� 	of	� 	-117 134

80% Training 60% Training

1 image Training

 Bachelor Thesis. Signal Processing for Malware Analysis

II. II. Extracting Features + Classification

FIGURE 50. GIST + KNN

-	Page	� 	of	� 	-118 134

GIST 960 GIST 400

GIST 200 GIST 100

GIST 50 GIST 400 + PCA

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 51. GIST + GAUSSIAN NAIVE BAYES

-	Page	� 	of	� 	-119 134

GIST 960 GIST 400

GIST 200 GIST 100

GIST 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 52. GIST + DECISION TREE

-	Page	� 	of	� 	-120 134

GIST 960 GIST 400

GIST 200 GIST 100

GIST 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 53. GIST + RANDOM FOREST

-	Page	� 	of	� 	-121 134

GIST 960 GIST 400

GIST 200 GIST 100

GIST 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 54. HISTOGRAM + KNN

-	Page	� 	of	� 	-122 134

Histogram 960 Histogram 400

Histogram 200 Histogram 100

Histogram 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 55. HISTOGRAM + GAUSSIAN NAIVE BAYES

-	Page	� 	of	� 	-123 134

Histogram 960 Histogram 400

Histogram 200 Histogram 100

Histogram 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 56. HISTOGRAM + DECISION TREE

-	Page	� 	of	� 	-124 134

Histogram 960 Histogram 400

Histogram 200 Histogram 100

Histogram 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 57. HISTOGRAM + RANDOM FOREST

-	Page	� 	of	� 	-125 134

Histogram 960 Histogram 400

Histogram 200 Histogram 100

Histogram 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 58. IMAGE TO GRAPH + KNN

-	Page	� 	of	� 	-126 134

Image To Graph 960 Image To Graph 400

Image To Graph 200 Image To Graph 100

Image To Graph 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 59. IMAGE TO GRAPH + GAUSSIAN NAIVE BAYES

-	Page	� 	of	� 	-127 134

Image To Graph 960 Image To Graph 400

Image To Graph 200 Image To Graph 100

Image To Graph 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 60. IMAGE TO GRAPH + DECISION TREE

-	Page	� 	of	� 	-128 134

Image To Graph 960 Image To Graph 400

Image To Graph 200 Image To Graph 100

Image To Graph 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 61. IMAGE TO GRAPH + RANDOM FOREST

-	Page	� 	of	� 	-129 134

Image To Graph 960 Image To Graph 400

Image To Graph 200 Image To Graph 100

Image To Graph 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 62. DAISY + KNN

-	Page	� 	of	� 	-130 134

Daisy 400 Daisy 200

Daisy 100 Daisy 50

Daisy 400 + PCA

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 63. DAISY + GAUSSIAN NAIVE BAYES

-	Page	� 	of	� 	-131 134

Daisy 400 Daisy 200

Daisy 100 Daisy 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 64. DAISY + DECISION TREE

-	Page	� 	of	� 	-132 134

Daisy 400 Daisy 200

Daisy 100 Daisy 50

 Bachelor Thesis. Signal Processing for Malware Analysis

FIGURE 65. DAISY + RANDOM FOREST

-	Page	� 	of	� 	-133 134

Daisy 400 Daisy 200

Daisy 100 Daisy 50

 Bachelor Thesis. Signal Processing for Malware Analysis

Annex III - Time Measurement Table

Table 21. Time Measurement (seconds) - Page	�134	of	�134	-

