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Abstract

This project presents the study of the aerodynamic forces acting on a plunging and pitching

airfoil by performing two-dimensional Direct Numerical Simulation to solve the Navier-Stokes

equations for incompressible flow around an airfoil with an Immersed Boundary Method. This

analysis is performed on NACA-0012 symmetric airfoils at reduced frequency of k = 0.2π and

plunging amplitude of h/c = 1. Different flapping configurations are considered by combining

different mean pitch angles of θm = 0◦ and 10◦, pitching amplitude of θ0 = 0◦, 10◦, 20◦ and

30◦ and Reynolds number of Re = 3000, 1000 and 500 at fixed phase shift φ = 90◦. The

different simulated cases display diverse flow wake structures. The role of leading edge vortex

and trailing edge vortex were found to be one key in the observed performance variation.

For the analysed cases, it was noticed that the resulting wake structures are influenced by

Re for flapping configuration with non-zero pitching amplitude, but they are independent

of Re for zero pitching amplitude motions. Also, it was observed that increasing θ0 results

in lower effective angle of attack producing disappearance of vortex structures. Finally,

this work evaluates the performance of a simplified model, developed in a parallel project

[Moriche et al., 2016], to predict the aerodynamic forces acting on a flapping airfoil. It was

noted that this model has an enormous potential to predict lift and thrust generation, even

though it has a great simplicity.
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Chapter 1

Introduction

1.1 Background and motivation

From the dawn of time, the bird and insect flight has fascinated the human being. These

flights have been observed by humans for many centuries trying to find the way to emulate

them. As far back as the early of 16th century Leonardo Da Vinci made the first approxima-

tion of a conceptual sketch of a flying machine. The manned flights began in the 19th century

thanks to brilliant minds such as Otto Lilienthal, the most dedicated and successful creator

of flying machines at that time, designer of many hang gliders. Over the past century, signifi-

cant advances in powered flights have been made, pushing away the technological boundaries

of flight with the development of supersonic and rotary-wing aircraft. The recent efforts in

aeronautical field are focusing on the increase of efficiency and performance of aircraft. Up

to now, although the aeronautical technology has advanced rapidly over the past 100 years,

the flapping wing flights are not yet properly understood.

Flapping wings are commonly found in nature. There are nearly a million species of small

birds and flying insects using them to take the skies. The aerodynamics of flapping wings

are used by these small animals to produce lift and propulsion and to control their position.

The conventional fixed wings are relatively simple compared to flapping wings. In fixed

wings, the forward motion relative to the air causes the wings to generate lift, with the

thrust being produced by the engine (via either propellers or exhaust gas). However, in

biological flights the wings not only move forward relative to the air but they also flap up

and down, plunge and sweep, so that, both lift and thrust can be generated and balanced in

accordance with the instantaneous flight conditions. In addition, birds and insects combine

these movements with wing deformation, body contour and tail adjustment, to significantly

enhance the manoeuvrability in the flight, allowing natural flyers to track targets precisely

at amazing speeds.
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The performance of nature’s flyers is impressive. They are capable of flying at velocities of

more than 120 body lengths per seconds, while human moves at top speeds of 4 body length

per seconds, a cheetah accomplishes 18 and a supersonic aircraft as SR-71 ”Blackbird” near

Mach 3 covers about 32 body lengths per seconds. Also they can achieve roll rates of 5000◦/s

(highly acrobatic aircraft can reach to 720◦/s) and they can experiment routinely G-forces

in excess of 12 G (military aircraft withstand 8-10 G).

Recently, with the advent of micro-aerial vehicles (MAVs) due to their commercial, research

and military applications, the aerodynamics of flapping wings have attracted a relevant

attention in the engineering and science community. MAVs are equipped with different

sensors to perform surveillance and reconnaissance, targeting and biochemical sensing at

remote otherwise hazardous locations. These vehicles have a maximum dimension of 15 cm

and their cruising speed is in the order of 10-20 m/s. In contrast to civilian transport and

many military flights vehicles, the MAVs operate at low Reynolds number (Re). The flight

conditions of MAV flights are similar to that of small birds and insects. That is why the

MAV design has been biologically inspired on them, because the flapping wings could provide

higher manoeuvrability than fixed or rotary wings at those flying characteristics.

At low Reynolds numbers, flow separation and laminar-turbulent transition can result in

substantial change in effective airfoil shape affecting the aerodynamic performance. Also,

since they are lightweight and operate at low speeds, they are sensitive to wind gusts. Fur-

thermore, their wing structures are flexible and tend to deform during flight. Consequently,

the aero/fluid and structural dynamics of these flyers are closely linked to each other, mak-

ing the entire flight vehicle difficult to analyse. There exist many challenges in the unsteady

aerodynamics of flapping wings. Thus, it is crucial to improve the understanding of the un-

steady aerodynamics and control mechanism that these flight animals employ. A key factor

to achieve this target and to enhance the performance of bio-inspired MAVs, is to be able to

predict the aerodynamic forces and moments as a function of the wing motion parameters

with simplified models.

When insects and small birds flap their wings, they systematically twist them to produce

the desired aerodynamic effects, in the same fashion as a conventional wing’s aileron. They

move their wings in a so-called stroke plane by combining wing rotation with respect to

their wing-body junction and wing pitching with respect to a spanwise axis. In addition, the

stroke plane is not fixed and might be tilted by the animal when performing manoeuvrings.

In this project, the aerodynamic forces of a flapping airfoil are analysed. The 3D motion

of a flapping wing is too much complex, but assuming that the aspect ratio of the wing is

large (in the limit of infinite aspect ratio) and the Reynolds number is low, it is possible to

simplify the problem to a 2D airfoil configuration. Therefore, the complex 3D motion of the

wing is reduced to a vertical oscillation, so-called heaving or plunging, and a rotation of the
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airfoil with respect to a pivoting point, so-called pitching. Albeit, that still leaves us with a

too large number of parameters to specify:

• Reynolds number of the flow.

• Airfoil geometry.

• Position of pivoting point.

• Frequency of oscillation.

• Temporal laws of evolution of plunging and pitching motions.

Thus, although the problem is considerably simpler in 2D, the task of generalize the acquired

knowledge and obtain general laws to predict the aerodynamic forces and moments is still

intimidating.

1.2 Literature Review

Because of their small size and high beat frequencies, it is often quite difficult to quantify the

wing motions of free flying insects and small birds. Just the mere quantification of motion

for such small and fast-moving wings continues to pose significant challenges to current tech-

nology. Over the years, the flapping wings have been the focus of many studies. Researchers

have overcome the limitations of the knowledge of flapping wings with two strategies. The

first method involves constructing dynamically scaled models on which it is easier to directly

measure aerodynamic forces and visualize flows. And, a second approach is to construct

Computational Fluid Dynamic (CFD) simulations of flapping wings. Since the beginning of

20th century, there are many numerical and experimental studies about oscillating airfoils,

trying to understand the mechanisms responsible for the thrust and lift production. Also, the

relation of the generated wake structures with the flapping configuration to generate them

is a relevant matter of study. Although flapping refers to the combination of plunging and

pitching motions, there are also many studies where the problem has been further simplify

by considering only plunging or only pitching motions in order to extract information from

a simpler problem.

1.2.1 Pure plunging airfoils

The studies of pure plunging airfoils have the objective of studying the thrust generation,

usually by means of the qualitative analysis of the generated wake structures and their rela-

tion with the production of aerodynamic forces. The vertical motion of the airfoil produces
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an effective angle of attack, so that, the resulting normal force vector has a component in

the forward direction. This results in thrust generation.

[Anderson et al., 1998] analysed the principal characteristics of the flow around and in the

wake of the airfoil, observing that high efficiency accompanied by significant thrust develop-

ment is associated with the generation of moderately strong vortical structures. The main

vortical structures are Leading Edge Vortices (LEV) and Trailing Edge Vortices (TEV).

[Young and Lai, 2004] shown that the wake structures and the thrust and lift forces are

strongly dependent on both the reduced frequency and related Strouhal number of the plung-

ing airfoil. [Lewin and Haj-Hariri, 2003] and [Wang, 2000] (numerical studies) observed that

the separation of LEV at low frequencies leads to diminished thrust and efficiency. At high

frequencies, the efficiency decreases similarly as in inviscid theory. The optimum heaving

frequency in terms of efficiency should correspond to the period with which vortices are shed

from impulsively started airfoils. For that, the timing of the LEV separation is crucial. Thus,

a significant gain in efficiency occurs when the LEV remains attached for the duration of each

stroke. [Lewin and Haj-Hariri, 2003] also found in the simulations that the wake patterns

depends primarily on the fate of the LEV, whether or not it is shed, and how it interacts

with the TEV. The high thrust coefficients and propulsive efficiencies correspond to positive

reinforcement of the TEV by the LEV. Furthermore, they noted that large efficiency occurs

at the transition from a shed LEV to one that is dissipated. [Mart́ın-Alcántara et al., 2015]

provided a quantitative description of some of these interactions using a vortex force decom-

position.

There exist also many experimental studies about the wake structure formation of plunging

airfoils as in [Lai and Platzer, 1999] and [Lua et al., 2007]. Also, the effects of specific flap-

ping parameters, as the spanwise flexibility in [Heathcote et al., 2008], are experimentally

studied.

1.2.2 Pure pitching airfoils

Some studies are focused only in pure pitching motion. Those studies have the objective

to analyse the influence of pitching rate, pitching amplitude and Reynolds number on the

pressure and vorticity fields generated in the vicinity of the airfoil.

[Walker et al., 1985] studied the surface pressure with an experimental investigation of ener-

getic dynamic stall vortices. They found that increasing the pitch rate and Reynolds number

results in inverse effects on the flow field in the immediate vicinity of the airfoil. However,

the maintenance of a constant non-dimensional pitch rate produces very similar flow fields

and pressure coefficients.
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Furthermore, [Freymuth, 1988] and [Koochesfahani, 1989] demonstrated experimentally that

an airfoil undergoing in pure pitching motion is capable of producing thrust. They also

observed the existence of a axial flow in the cores of the wake vortices with a linear dependence

on the frequency and amplitude of pitching oscillation.

1.2.3 Plunging and pitching airfoils

There exist also many studies of plunging and pitching airfoils. These studies focus on many

different objectives. Some studies try to determine the optimum parametric combination for

thrust production and others for both lift and thrust generation. But the required parametric

combinations, and therefore the developed studies, are completely different. Nevertheless,

as in the pure heaving motion, the relation between vortical structures and the resulting

aerodynamic forces is of major interest.

For lift production, the important role played by LEV has long been recognized. The lift

enhancement by spiral LEV bears several similarities to high-lift devices employed in cer-

tain man-made wings, where the potential of attached vortices in augment lift has been

recognized in aerodynamics, but the spanwise flow component is essential for the stability of

vortex. [Ellington et al., 1996] explained that this flow is generated either by the dynamic

pressure gradient associated with the velocity gradient along the flapping wing by centrifugal

acceleration in the boundary layer, or by the induced field of the spiral vortex lines. However,

the exact conditions to establish an axial flow enabling a stable and persistent LEV in order

to have a positive influence on the lift are not yet understood. This is a subject of current

debate as in [Ford and Babinsky, 2013] or [Widmann and Tropea, 2015].

Other analyses have been focused in the discussion of the influence of some involved param-

eters on the flapping performance. [Miao and Ho, 2006] investigated the effect of chord-wise

flexure amplitude on unsteady aerodynamic characteristics for a flapping airfoil with vari-

ous combinations of Reynolds number and reduced frequency. [Ashraf et al., 2011] analysed

numerically the Reynolds number, thickness and camber effects on flapping airfoil propul-

sion. [Isogai et al., 1999] studied the effects of dynamic stall phenomena on the behaviour of

propulsive efficiency and thrust by examining each obtained flow pattern. Experimentally,

[Fenercioglu and Cetiner, 2012] categorized the flow structures around a flapping airfoil de-

pending on separated vorticity patterns and analysed the parameter spaces in which each

flow structure category occurs.
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1.3 Objectives of this project

The initial objective of this project was the comparison and validation of the results obtained

in a numerical simulation of flow over a flapping airfoil with a experimental analysis in a

companion project.

Due to the delay in the achievement of results of the experimental analysis, the objectives of

this project were redefined. The final objectives of this project are briefly depicted below.

• Study the influence of some flapping parameters like the Reynolds number and the

pitching configuration on the aerodynamic forces acting on a flapping airfoil.

• Evaluate the performance of a simplified model to predict the aerodynamic forces,

developed in a parallel study [Moriche et al., 2016], for the simulations analysed in this

work.

• Optimize the value of the free coefficients, of which the simplified model is dependent, in

order to find the influence of flapping parameters as the Reynolds number and pitching

configuration to improve the performance of the model.

1.4 Structure of this document

The core of the present document is constituted by eight chapters. This section exposes a

brief outline of the contents of each chapter.

• Chapter 1 is composed of four sections. The background and motivation section serves

as a general introduction to flapping airfoil and presents the studied problem. The

literature review compiles the work performed by other authors. The objectives section

describes the goals of this project. Finally, the present section summarizes the contents

of this document.

• Chapter 2 describes the numerical method used to solve the unsteady aerodynamic

problem. It defines the governing equation of fluid motion, the flow solver and the

computational set-up.

• Chapter 3 defines the studied problem. This chapter is divided in four section. The

first explains the kinematic of flapping airfoils. The second defines all the simulations

performed in this project. And the third and forth sections explain the reason for the

selection of their involved parameters and their resolutions, respectively.

• Chapter 4 shows the results for the analysed simulations. This chapter is composed

of two different sections. The first shows and analyses the aerodynamic forces acting
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on the airfoil. The second one defines, evaluates and optimizes a simplified model of

forces developed in a parallel project [Moriche et al., 2016].

• Chapter 5 provides the project planning and work time distribution.

• Chapter 6 describes the socioeconomic impact and regulatory framework and includes

an estimated budget to developed this project.

• Chapter 7 draws some conclusion and introduces a brief summary of the main ideas

discussed in this project. Also states further considerations for future researches related

to the work performed on this project.

• Additionally, an Appendix is added to Chapter 8 in order to collect complementary

results to the ones analysed in Chapter 4.
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Chapter 2

Numerical Method

This chapter explains the numerical method used to carry out the performed simulations.

It is divided in three sections. The first section describes the governing equations for the

fluid motion. The second defines the flow solver. It includes the explanation of the used

numerical approach, the spatial discretization, the time marching and the method used to

include the body on the mesh. The last section depicts the domain discretization and the

imposed boundary conditions.

2.1 Governing equations

The fluid motion around a flapping airfoil is adequately described by the continuity and

momentum Navier-Stokes equations for an incompressible flow, defined as:

∂ui
∂xi

= 0 (2.1)

∂ui
∂t

+ ui
∂ui
∂xi

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

i

(2.2)

where ui is the velocity component, xi the cartesian coordinates, p the pressure, and ρ the

fluid density.
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2.2 Flow solver

2.2.1 Direct Numerical Simulations (DNS)

The flow method used to solve the Navier-Stokes equations for an incompressible flow is

a two-dimensional Direct Numerical Simulations (DNS), carried out with an in-house code

named TUCAN. The use of a DNS instead of a modelling involves a more precise analysis but

also a higher computational cost, because the flow solutions are obtained solving the Navier-

Stokes equations in all points of the mesh-grid instead of computing the solution by means

of a theoretical model. TUCAN has been extensively validated with a collection of cases

that include cannonical 2D laminar flows (Poiseuille flow, Taylor-Green vortices, stationary

and moving cylinders), as well as fully-developed turbulent channel flow inside a channel and

flow around a sphere [Moriche, 2016].

In order to fulfil the temporal-independent continuity (eq. 2.1) and temporal-dependent mo-

mentum (eq. 2.2) equations, a fractional step method is used to solve them as explained

in [Brown et al., 2001]. This method consists of obtaining the velocity from the momen-

tum equation and then introducing a correction to fulfil both continuity and momentum

incompressible Navier-Stoke equations.

The spatial discretization is done with second-order, centred finite differences in a uni-

form staggered grid. Time marching is performed with a three-stage low-storage Runge-

Kutta scheme, in which diffusion terms are treated implicitly and advective term explicitly.

The coefficients of the Runge-Kutta as well as the detailed used method can be found in

[Roma et al., 1999]. All simulations are run at constant ∆t, which is chosen to ensure that

during all the simulation the CFL = u∆t/dx < 0.2, for stability reasons.

2.2.2 Immersed Boundary Method (IBM)

The presence of the body is modelled using the Immersed Boundary Method (IBM). For this

kind of analysis, a IBM is computationally more efficient than a body fitted grid method.

In IBM the difficulty of the grid definition for complex geometries is highly reduced and,

for moving bodies, it presents real computational resources savings, where remeshing and

interpolation at the end of every time step is eliminated. On contrast, when Reynolds number

increases, the boundary layer must be thinner (higher resolution) and the IBM needs to be

fitted in the two directions.

The IBM implemented is the one described in [Uhlmann, 2005], a diffuse discrete forcing

approach method using regularised delta functions with a 3 points stencil to interpolate from

the Eulerian (fluid) mesh to the Lagrangian (body) mesh.

Numerical Simulation of Flow over a Flapping Airfoil 9



CHAPTER 2. NUMERICAL METHOD

The body is considered as rigid and the interaction between fluid and solid is uni-directional,

the kinematics of the body movement are known and imposed directly. In this method, the

presence of a solid in the fluid is substituted by adding a forcing term (correction) in the

momentum equation.

The followed steps to solve the Navier-Stokes equations are listed below.

1. Make an explicit estimation of the velocity in Eulerian mesh.

2. Interpolate that value to Lagrangian velocity using the regularized delta functions.

3. Calculate the volume force from estimated Lagrangian velocity and the desired one.

4. Transform this volume force from Lagrangian to Eulerian frame.

5. Introduce this forcing term in momentum equation.

6. Solve Navier-Stokes equations by means of the fractional step method.

With this method, due to the displacement of the airfoil, nodes belonging to solid mesh

become fluid mesh nodes without historical data. This effect produces fluctuations in the

results obtained from the DNS. These fluctuations are corrected by means of a low pass filter

by replacing each data point with the average of the neighbouring data points defined within

the span.

Figure 2.1 shows the highest signal fluctuations for all the performed simulations, and how

they are corrected by the low pass filter.

0.2 0.22 0.24 0.26 0.28 0.3
−0.9

−0.85

−0.8

−0.75
(a)

t/T

F
X

0.2 0.22 0.24 0.26 0.28 0.3
−0.9

−0.85

−0.8

−0.75
(b)

t/T

F
X

Figure 2.1: Example of the correction on the spanwise force response of one simulation by
means of a low pass filter. a) Results without filter, b) Results using the low pass filter

All the results presented in chapter 3 and 4 and in the Appendix of Chapter 8 have been

corrected by means of this smoothing filter before their presentations.
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2.3 Computational set-up

2.3.1 Domain

For all the simulations presented in section 3, the computational domain is a rectangular box

of 12c × 8c in the streamwise and vertical direction, respectively. The reference length c is

a chord, which will be described in section 3.1. To discretize that domain, a staggered grid

with a uniform mesh width is used. The nodes position for the velocity components and for

the pressure, as well as the dimensions of the rectangular box domain, can be seen in the

Figure 2.2.

Figure 2.2: Sketch of the domain describing cartesian staggered grid of the fluid domain.

The mesh size is defined by Nx and Nz cells in x and z directions respectively, but these

are reference values because the number of mesh points in each directions differs from one

variable to another due to the staggered feature of the mesh.

The resolution used to discretize the domain (Nx, Nz) depends on the Reynolds number.

The higher the Re, the higher the needed resolution to perform an accurate analysis. The

chosen resolution for each of the performed simulations will be depicted in chapter 3.
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2.3.2 Boundary Conditions (BC)

The boundary conditions for the 2D DNS are given by an uniform free-stream imposed at

the inlet plane (located 3 chords upstream of the leading edge of the airfoil), convective

boundary conditions at the outlet plane (8 chords downstream of the trailing edge), and

free-slip boundary conditions on the vertical boundaries at z = ±4c. These BCs can be

shown in Figure 2.3

Figure 2.3: Sketch of the imposed boundary conditions.
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Chapter 3

Problem definition

This chapter is composed of four sections. The first sections describes the kinematics of

plunging and pitching airfoils. This description includes the identification of the temporal

laws of the evolution of flapping motion and all their involved parameters. The second section

defines all the performed simulations and their involved parameters. The third explains the

reasons for the choice of the parametric range of the simulations. And the last section shows

the analysis used to choose the required resolutions for each case.

3.1 Flapping motion

Figure 3.1 shows the main kinematic features of the flapping motion.

Figure 3.1: Sketch of the kinematics parameters of the flapping motion of the airfoil.

where x and z are the streamwise and vertical directions, respectively.
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As it is described in Figure 3.1, the flow is defined by means of their stream velocity (U∞)

and Reynolds number (Re) which is defined as:

Re =
U∞c

ν
(3.1)

where c is the chord of the airfoil and ν is the kinematic viscosity of the flow.

The rest of parameters on Figure 3.1 are the mean pitch angle (θm), the pitching amplitude

(θ0), the plunging amplitude (h0) and the distance from the leading edge to the pivoting

point of the airfoil (xp), point on which the airfoil does the plunging and pitching motions,

which are given by:

h(t) = h0 cos(2πft) (3.2)

θ(t) = θm + θ0 cos(2πft+ φ) (3.3)

where h(t) is the vertical displacement of the pivoting point and θ(t) the pitching angle (angle

between the chord and the free stream), both of them with the same frequency (f), but with

a phase shift (φ) between them.

The frequency of the flapping motion can be also described by means of the reduced frequency

(k) or with the Strouhal number (St), which relates the motion frequency with the heaving

amplitude, key parameters in the developed wake structures of flapping motions. Those

parameters are defined as:

k =
2πfc

U∞
(3.4)

St =
2h0f

U∞
=
k

π

h0

c
(3.5)

Finally, the period of oscillation of the airfoil can be expressed as:

T =
1

f
=

2π

k

c

U∞
(3.6)
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Figure 3.2 displays the motion followed by the airfoil in one oscillation period.

Figure 3.2: Sketch of the plunging and pitching motion in one period.

It is also important to define the effective angle of attack (αe) during the oscillation period,

which is the angle of attack relative to the locally deflected free stream.

αe(t) = θ(t) + arctan(− 1

U∞

dh

dt
) (3.7)

Therefore, the parameters that must be selected in order to define the desired flapping

simulations are the following:

• Reynolds number of the flow, Re.

• Airfoil geometry.

• Position of pivoting point, xp.

• Reduced frequency of oscillation, k.

• Plunging and pitching motion parameters, θm, θ0, h0 and φ.
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3.2 Description of the simulations

In this project, 17 simulations have been performed in order to analyse different flapping

motions at different Reynolds numbers.

Some parameters describing the airfoil motion have been fixed for all the developed simula-

tions. These fixed parameter are:

Airfoil geometry: NACA-00012
Plunging amplitude: h0/c = 1
Phase shift: φ = 90◦

Pivoting point position: xp/c = 0.25

Table 3.1: Fixed parameters for all the developed simulations

The remaining parameters, θm, θ0 and k, as well as Re, have been varied to configure all the

cases described in the Table 3.2.

Case θm θ0 Re k p.c. Case θm θ0 Re k p.c.
B00a 0◦ 0◦ 1000 0.2π 128 B10b 10◦ 10◦ 1000 0.2π 128
B00b 0◦ 10◦ 1000 0.2π 128 A10c 10◦ 20◦ 500 0.2π 72
A00c 0◦ 20◦ 500 0.2π 72 B10c 10◦ 20◦ 1000 0.2π 128
B00c 0◦ 20◦ 1000 0.2π 128 C10c,1 10◦ 20◦ 3000 0.2π 192
C00c 0◦ 20◦ 3000 0.2π 192 C10c,2 10◦ 20◦ 3000 0.4π 192
B00d 0◦ 30◦ 1000 0.2π 128 C10c,3 10◦ 20◦ 3000 0.4π 160
A10a 10◦ 0◦ 500 0.2π 72 C10c,4 10◦ 20◦ 3000 0.4π 128
B10a 10◦ 0◦ 1000 0.2π 128 B10d 10◦ 30◦ 1000 0.2π 128
C10a 10◦ 0◦ 3000 0.2π 192

Table 3.2: Summary table of simulated cases specifying their key parameters: mean pitch
angle θm, pitching amplitude θ0, Reynolds number Re, reduced frequency k and points per
chord p.c.

The simulations are named according to the following rules:

• The first capital letter indicates the Reynolds number.

A: Re = 500 — B: Re = 1000 — C: Re = 3000

• The two digits number of the sub-index indicate the mean pitch angle.

00: θm = 00◦ — 10: θm = 10◦

• The lower-case letter of the sub-index indicates the pitching amplitude.

a: θ0 = 00◦ — b: θ0 = 10◦ — c: θ0 = 20◦ — d: θ0 = 30◦

• The final number in sub-index (it is present only in four cases) distinguishes the reduced

frequency and the resolution of the case C10c.
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3.3 Selection of the parameters

As explained in section 1.4, the initial objective of this project was the numerical simulation

of the flow over a flapping airfoil and the validation with the experimental data obtained in

a companion project. For that reason, both project looked a intersection on the achievable

parametric range of both analysis. Thus, in this numerical analysis the first chosen parameter

was the higher possible Reynolds number with a assumable computational cost (Re = 3000),

that was close to the minimum Re that the experiment could achieve. The rest of parameters

were chosen to imitate the ones of the experimental analysis (k = 0.4π, θm = 10◦ and

θ0 = 20◦). Therefore, the first developed simulations were the cases C10c,4, C10c,3 and C10c,2

(three cases in order to define the needed resolution as explained in next section). After

these cases were computed, the experimental project had to reduce their flapping frequency.

To adapt to this change, the case C10c,1 was simulated with a new reduced frequency of

k = 0.2π.

Finally, the objective of this project was changed to analyse the effect of certain flapping

parameters on the aerodynamic forces. To perform this analysis, the following simulations

were developed with different plunging configuration (θm, θ0) and with different Reynolds

numbers (Re) departing from the case C10c,1. Therefore, three flapping motions were analysed

at three Reynolds numbers (A10c–B10c–C10c,1, A10a–B10a–C10a and A00c–B00c–C00c) and two

mean pitch angles at Re = 1000 were analysed at four pitching amplitudes (B00a–B00b–B00c–

B00d and B10a–B10b–B10c–B10d)

3.4 Selection of the resolution

As explained in section 2.2.6, the resolution required to obtain an accurate solution is depen-

dent of the Reynolds numbers. The higher the Re, the thinner the mesh in both directions

of the grid (Nx, Nz). That is why, at Re > 3000 the computational cost is too excessive for

a project like this one.

For the simulations with Re = 3000, the resolution analysis was made with the cases C10c,4,

C10c,3, C10c,2, with 128, 160 and 192 points per chord, respectively.

In order to analyse the accuracy of those simulations, Figure 3.3 shows the results obtained

in one period for Fx/ρU
2
∞c and Fz/ρU

2
∞c, the non-dimensional streamwise and vertical com-

ponents of the force acting on the flapping airfoil. Furthermore, Table 3.3 shows the value

of the errors (εFx , εFz) between the obtained force components on a oscillation period taking

as reference the case C10c,2 and the standard deviation of these errors (σεFx
, σεFz

).
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The error (ε) can be quantified as root mean squared deviation between the forces, normalized

with the amplitude of the reference case:

ε =

√
1
n

∑n
i=1(Fref,i − Fi)2

AFref

(3.8)

where n is the number of measurements of the force for one oscillation period and the sub-

index i represents each of them. The Fref are the forces obtained in case C10c,2 which are

used as the reference and AFref
are the amplitude values of the reference forces (AF =

Fmax − Fmin).

The standard deviation (σε) measures the amount of variation in the obtained error. It is

defined as:

σε =

√√√√ 1

n

n∑
i=1

(εi − ε)2 (3.9)

where ε is the average value of the error on a motion period:

ε =
1

n

n∑
i=1

(εi) (3.10)
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Figure 3.3: Variation with different resolutions of a) Fx/ρU
2
∞c b) Fz/ρU

2
∞c c) ~F direction.

C10c,4, C10c,3, C10c,2.

Case p.c. εFx σεFx
εFz σεFz

C10c,2 192 - - - -
C10c,3 160 0.0398 0.0221 0.0277 0.0608
C10c,4 128 0.0798 0.0412 0.0429 0.0894

Table 3.3: Errors in the measurement of force components (εFx , εFz) and their standard
deviations (σεFx

, σεFz
) taking as the reference value the forces obtained in case C10c,2.
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From Figure 3.3 it can be noticed that the differences between the obtained results are minor

for these three resolutions. Table 3.3 shows that between cases C10c,2 and C10c,3, the obtained

errors for the streamwise and vertical force components are 3.98% and 2.77% respectively,

relatively small errors.

Then, for a domain discretization of 192 point per chord, yielding a total of 2304×1536 grid

points in streamwise and vertical directions, respectively, the obtained results are accurate

enough taking into account the computational cost to continue increasing the resolution.

Also, as the analysis was made for a case with higher frequency than for the rest of simulated

cases, for those with lower frequency the required resolution will be lower and the grid of

2304×1536 points will be even more accurate.

A similar grid refinement study was performed in other project [Gonzalo, 2016] for cases

with Re = 1000 and Re = 500. For the first ones, it was analysed a plunging NACA-

0012 airfoil with h0/c = 1 and reduced frequency k = 1, in a uniform free-stream with

Re = 1000. Runs at different resolutions (between 32 and 256 points per chord) have been

performed in a computational domain of 12c × 8c in the streamwise and vertical direction

respectively. The results of this study shows that the acceptable resolution was 96 points

per chord or higher. At that Reynolds, the domain of the cases analysed in this work

was discretized using a resolution of 128 point per chord, yielding a total of 1536×1024

of grid points in streamwise and vertical directions, respectively, corresponding to slightly

over-resolved simulations. Also, it must be taken into account that, as for the cases with

Re = 3000, the frequency of the simulations of this project is lower than the used one in the

grid refinement study of [Gonzalo, 2016].

For the cases with Re = 500 the analysis was performed for a pure plunging motion with

h0/c = 1 and k = 1 at Re = 500, at different resolutions (from 32 to 192 points per chord).

This study concludes that the use of a resolution of 72 point per chord is accurate enough.

According to these results, the domain of the cases with Re = 500 was discretized using a

resolution of 72 point per chord, yielding a total of 864×576 of grid points in streamwise

and vertical directions, respectively. As for the cases with Re = 1000 and Re = 3000, the

frequency used in this project is lower than the used for the mesh refinement study, and for

that, the reliability of the results with this resolution will be even higher.
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Results

This chapter is focused on the analysis of the simulations of Table 4.1. This analysis covers

14 of the 17 simulated cases. The cases which are not analysed in this chapter are the cases

C10c,2, C10c,3 and C10c,4. These cases were simulated in order to find the proper resolution

for simulations with Re = 3000 as explained in section 3.2.

Case θm θ0 Re k p.c. Case θm θ0 Re k p.c.
B00a 0◦ 0◦ 1000 0.2π 128 B10a 10◦ 0◦ 1000 0.2π 128
B00b 0◦ 10◦ 1000 0.2π 128 C10a 10◦ 0◦ 3000 0.2π 192
A00c 0◦ 20◦ 500 0.2π 72 B10b 10◦ 10◦ 1000 0.2π 128
B00c 0◦ 20◦ 1000 0.2π 128 A10c 10◦ 20◦ 500 0.2π 72
C00c 0◦ 20◦ 3000 0.2π 192 B10c 10◦ 20◦ 1000 0.2π 128
B00d 0◦ 30◦ 1000 0.2π 128 C10c,1 10◦ 20◦ 3000 0.2π 192
A10a 10◦ 0◦ 500 0.2π 72 B10d 10◦ 30◦ 1000 0.2π 128

Table 4.1: Summary table of analysed cases specifying their key parameters: mean pitch
angle θm, pitching amplitude θ0, Reynolds number Re, reduced frequency k and points per
chord p.c.

This chapter is formed of two sections. The first studies the aerodynamic force coefficients.

This analysis is performed studying the influence of the Reynolds number (Re) and the

pitching motion (θm, θ0) on the their mean and amplitude values and on their evolution over

a motion period. All the analysed cases have the same reduced frequency (k = 0.2π).

The second section introduces a simplified model to predict the aerodynamic forces, developed

in a parallel project [Moriche et al., 2016]. This model is applied to the analysed simulations

in order to evaluate it performance with the flapping configurations presented in this work.

This reduced order model depends on two coefficients. Firstly, in the evaluation of the model,

the coefficients given from parallel project are used. Then, the values of those free parameter

are optimized to analyse the influence of Re, θm and θ0 in the value of these coefficients.
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4.1 Analysis of aerodynamic forces coefficients

This section is divided in three parts. The first shows and compares the mean and ampli-

tude values of the aerodynamic force coefficients obtained in DNS for the different analysed

cases. The second part provides a detailed analysis of the influence of Re in the evolution of

aerodynamic forces and in the developed wake structures. The last part of this section gives

a similar study for the influence of θ0 in one motion period.

The performance of the flapping motion will be analysed in terms of non-dimensional coeffi-

cients of lift and thrust, defined as:

CL(t) =
2Fz(t)

ρU2
∞c

(4.1)

CT (t) = −2Fx(t)

ρU2
∞c

(4.2)

where Fz and Fx are the forces in vertical and streamwise directions respectively, consequently

with Figure 3.1.

Also the propulsive efficiency will be examined. It is defined as the ratio of useful power over

the input power, or in other words, the ability of the airfoil to generate thrust related with

the needed flapping motion. This parameter can be computed as:

η =
UT

P
=

U∞
∫ T

0 Fxdt∫ T
0 (Fzḣ+My θ̇)t

(4.3)

where My is the aerodynamic moment on the pivoting point, and ḣ and θ̇ are the first time

derivatives of heaving and pitching motions described in eq. 3.2 and eq. 3.3 respectively.

These first time derivatives are defined as:

ḣ = −2πfh0 sin(2πft) (4.4)

θ̇ = −2πfθ0 sin(2πft+ φ) (4.5)
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4.1.1 Mean and standard deviation of force coefficients and propulsive

efficiency

The forces obtained in all the cases have a periodical behaviour. However, there exists a

slight difference between consequent motion periods for each case. For that, the values of

the lift and thrust coefficients for all the cases have been computed as the average of the last

four simulated motion periods.

Table 4.2 shows the variation of the mean (CL, CT ) and the standard deviation (σCL
, σCT

)

of the force coefficients, and the propulsive efficiency (only for thrust producing cases) for

three different flapping motions. Table 4.3 displays the variation of these studied parameters

with θ0, at fixed Re for two different θm.

CL and CT represent the mean value of the aerodynamic force coefficients over a motion

period. A positive CL means that, in a complete motion period, the flapping motion is

generating lift, and a positive CT that it is generating thrust. These values are computed as:

CX =
1

T

∫ T

0
CX(t) (4.6)

where CX stands for lift (CL) or thrust (CT ) coefficients.

On the other hand, σCL
and σCT

represent the amplitude of the values of the force coefficients

in one motion period, defined as:

σCX
=

√
1

T

∫ T

0
(CX(t)− CX)2 (4.7)

Case θm θ0 Re CL σCL
CT σCT

η

C10c,1 10◦ 20◦ 3000 0.8679 0.9104 -0.0307 0.2456 -
B10c 10◦ 20◦ 1000 0.6506 0.8608 -0.0649 0.2167 -
A10c 10◦ 20◦ 500 0.5008 0.7341 -0.1294 0.1650 -
C10a 10◦ 0◦ 3000 0.3855 1.9897 -0.1061 0.3555 -
B10a 10◦ 0◦ 1000 0.2534 2.0122 -0.1186 0.3516 -
A10a 10◦ 0◦ 500 0.3374 1.9410 -0.2004 0.3353 -
C00c 0◦ 20◦ 3000 0.0384 1.0462 0.1925 0.2327 0.4220
B00c 0◦ 20◦ 1000 0.0000 0.8367 0.0834 0.2033 0.2413
A00c 0◦ 20◦ 500 -0.0001 0.7252 0.0061 0.1467 0.0198

Table 4.2: Kinematic parameters of the cases analysed with different Reynolds numbers.
Mean (CL, CT ) and standard deviation (σCL

, σCT
) of force coefficients and propulsive effi-

ciency (η).
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Case θm θ0 Re CL σCL
CT σCT

η

B00a 0◦ 0◦ 1000 0.0010 1.9832 -0.0882 0.2097 -
B00b 0◦ 10◦ 1000 -0.0004 1.5507 0.0867 0.2927 0.1267
B00c 0◦ 20◦ 1000 0.0000 0.8367 0.0834 0.2033 0.2413
B00d 0◦ 30◦ 1000 -0.0001 0.2523 -0.0765 0.0766 -
B10a 10◦ 0◦ 1000 0.2534 2.0122 -0.1186 0.3516 -
B10b 10◦ 10◦ 1000 0.6999 1.3852 -0.0787 0.2562 -
B10c 10◦ 20◦ 1000 0.6506 0.8606 -0.0649 0.2167 -
B10d 10◦ 30◦ 1000 0.9641 0.4953 -0.1460 0.2125 -

Table 4.3: Kinematic parameters of the cases analysed with different pitching amplitude.
Mean (CL, CT ) and standard deviation (σCL

, σCT
) of force coefficients and propulsive effi-

ciency (η)

First of all, it is known that the flapping motion without mean pitch angle (θm = 0◦) does

not generate lift as it will be explained further on. However, these cases have a small value

different from zero. It is because the obtained results are the mean of four motion periods,

which have slight differences between them. For that, the results obtained in mean lift

coefficient for cases with zero θm are not exactly equals to zero.

From Table 4.2 and Table 4.3 it can be noticed that the case with better performance with

respect to lift generation is the case B10d, the one with the highest analysed pitching ampli-

tude (θ0 = 30◦) and with non-zero mean pitch (θm = 10◦) at a Re of 1000. Regarding thrust

generation, only cases with zero mean pitch generate thrust, and the better performance is

obtained in case C00c at the highest analysed Reynolds number (Re = 3000) with a θ0 = of

20◦. For the propulsive efficiency, the case C00c also exhibits the better performance.

Additionally, it must be pointed out that the standard deviations are of the same or even

higher order of magnitude than the mean values. That is an indicative of the highly oscillatory

behaviour of the aerodynamic forces over a flapping airfoil.
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The variation of the mean force coefficients (CL, CT ) and propulsive efficiency (η) is presented

graphically in Figure 4.1 and Figure 4.2:
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Figure 4.1: Variation with Reynolds number for the cases with fixed θm and θ0 of
a) CL b) CT . θm = 10◦, θ0 = 20◦, θm = 10◦, θ0 = 0◦, θm = 0◦, θ0 = 20◦,

η [θm = 0◦, θ0 = 20◦].
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Figure 4.2: Variation with pitching amplitude for cases with Re = 1000 at different θm of
a) CL b) CT θm = 0◦, θm = 10◦, η [θm = 10◦].

From Table 4.2 and Figure 4.1 it can be noticed that increasing the Re results in higher CT

and σCT
. In addition, note how, for the cases with θm = 0◦ and θ0 = 20◦, at Re = 500 the

CT ≈ 0 and only by increasing the Re, CT ≈ 0.2 at Re = 3000. However, for the evolution

of CL with Re does not exist a clear trend. While for the cases with non-zero pitching

amplitude, increasing the Re leads to higher mean and standard deviation of lift coefficient,

for the cases with zero pitching amplitude there are not a clear tendency. In the case of η,

the only cases with positive propulsive efficiency have zero mean pitch angle but non-zero

pitching amplitude. For the cases with θm = 0◦ and θ0 = 20◦, just like for CT , the value of

η increases significantly by increasing the Reynolds numbers, from just 2% at Re = 500 to

42% at Re = 3000.

24 Numerical Simulation of Flow over a Flapping Airfoil



CHAPTER 4. RESULTS

On the other hand, from Table 4.3 and Figure 4.2 it is appreciated that at a fixed θm and Re,

there exists an optimum pitching amplitude maximizing the thrust generation in the range

from θ0 = 0◦ to θ0 = 30◦. The propulsive efficiency also has a maximum value in the θ0

range producing thrust with θm = 10◦. Also, it is interesting to see that at fixed Re = 1000

and θm = 10◦, while the obtained CT is approximately equal with a θ0 of 10◦ or 20◦, the

propulsive efficiency doubles from 12.7% with θ0 = 10◦ to 24.1% with θ0 = 20◦. Regarding to

lift generation, in cases with zero mean pitch angle there are not production of lift because

the one generated downstroke is counteracted by the negative one generated in upstroke.

This occurs due to the opposite value of the effective angle of attack in both segments as it

can be seen in Figure 4.3a. But, with the introduction of a mean pitch angle of θm = 10◦,

lift is generated. In those cases, increasing θ0 from 0◦ to 10◦, CL increases 176%, conversely

from θ0 = 10◦ to θ0 = 20◦, CL decreases a 7%, but again from θ0 = 20◦ to θ0 = 30◦, CL

increases 48%. Finally, it can be seen that the higher the pitching amplitude, the lower the

amplitude value of lift coefficient (σCL
).
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4.1.2 Evolution of force coefficients in one oscillation period.

Variation with Reynolds number (Re)

This section analyses the variations with Re of the aerodynamic force coefficients (CL, CT ).

This analysis involves the comparison between the coefficients over a period at different

Reynolds number at three flapping configurations and the study of the flow characteristics

at the vicinity of the airfoil at certain moments of interest. As the results obtained for all

the analysed cases have a periodical behaviour, the figures show only one motion period.

Cases with θm = 10◦ and θ0 = 20◦

The first analysis is performed on cases C10c,1, B10c and A10c. As described in Table 4.1,

those simulations have the same flapping configuration (θm = 10◦, θ0 = 20◦ and k = 0.2π)

but different Re, being 3000, 1000 and 500 respectively.

Figure 4.4 displays the results for CL and CT over one period for these three simulations, and

Figure 4.5 shows the vorticity and pressure fields at the vicinity of the airfoil at t/T = 0.4375.
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Figure 4.4: Results in one period for cases with fixed θm = 10◦ and θ0 = 20◦ at different Re of
a) CL b) CT . Grey region represent the downstroke and white region the upstroke. Vertical
line represents the time instant studied in flow visualization figure. C10c,1 [Re = 3000],

B10c [Re = 1000], A10c [Re = 500].
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Figure 4.5: Flow visualization of vorticity (left) and pressure (right) fields near the airfoil
at the end of the downstroke (t/T = 0.4375) for case with fixed θm = 10◦ and θ0 = 20◦

at different Re. In vorticity field, blue indicates ωc/U∞ = −20 (anticlockwise) and red
ωc/U∞ = 20 (clockwise). In pressure field, blue indicates p/ρU2

∞ = −4 and red p/ρU2
∞ = 4.

a) C10c,1 [Re = 3000] b) B10c [Re = 1000] c) A10c [Re = 500].

First of all, as it is shown in Figure 4.4, the flapping motion can be divided in two parts,

the downstroke (grey background) from t/T = 0 to t/T = 0.5 and the upstroke (white

background) from t/T = 0.5 to t/T = 1.

Figure 4.4 shows that the lift is generated during the downstroke and no lift is produced

during upstroke. This is an expected results since the effective angle of attack is almost zero

during upstroke (Figure 4.3b). On the other hand, thrust is created during the middle of the

downstroke, but during the rest of the oscillation the flapping generates drag. The differences

in lift production due to the Reynolds number take place in downstroke motion, specifically

in the last part. The higher the Reynolds number, the higher the lift created during this

part of the period. This higher lift is reflected in the integrated values shown in Figure 4.1.
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Those differences can be explained in Figure 4.5 by plotting the vorticity (ω) and pressure

(p) fields at t/T = 0.4375. This time instant is selected because the differences in both lift

and thrust are more noticeable.

The vorticity of the flow is defined as:

ω =
∂ux
∂z
− ∂uz

∂x
, (4.8)

where ux and uz are the velocity component of the flow in the streamwise and vertical

directions, respectively.

In Figure 4.5 it can be appreciated clearly the difference between lift generation in the last

part of downstroke (t/T = 0.4375). At that time instant, in the case C10c,1 (Re = 3000) there

are created one LEV and two TEV, while in cases B10c (Re = 1000) and A10c (Re = 500)

the LEV is blurred and only one TEV is formed. These flow structures generate a negative

pressure difference producing a suction effect on the upper surface of the airfoil, near to the

trailing edge. This suction is translated to a lift and drag generation. Also, decreasing the

Re results in significantly lower intensity of the vorticity and the associated pressure. Those

effects explain the differences in the lift generation of this flapping motion with the Re.

Cases with θm = 10◦ and θ0 = 0◦

The second analysis is performed on cases C10a, B10a and A10a, having the same flapping

configuration (θm = 10◦, θ0 = 0◦ and k = 0.2π) but different Re (3000, 1000 and 500,

respectively). Figure 4.6 and Figure 4.7 show the results for CL and CT over one period and

the vorticity and pressure fields at t/T = 0.4375, respectively.
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Figure 4.6: Results in one period for cases with fixed θm = 10◦ and θ0 = 0◦ at different Re of
a) CL b) CT . Grey region represent the downstroke and white region the upstroke. Vertical
line represents the time instant studied in flow visualization figure. C10a [Re = 3000],

B10a [Re = 1000], A10a [Re = 500].
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Figure 4.7: Flow visualization of vorticity (left) and pressure (right) fields near the airfoil
at the end of the downstroke (t/T = 0.4375) for case with fixed θm = 10◦ and θ0 = 0◦

at different Re. In vorticity field, blue indicates ωc/U∞ = −20 (anticlockwise) and red
ωc/U∞ = 20 (clockwise). In pressure field, blue indicates p/ρU2

∞ = −4 and red p/ρU2
∞ = 4.

a) C10a [Re = 3000] b) B10a [Re = 1000] c) A10a [Re = 500].

In those cases, as it can be seen in Figure 4.6, the upstroke counteracts many part of the

lift created during downstroke. Furthermore, the only part of this flapping motion creating

thrust is at the middle of upstroke.

The differences in lift production at different Reynolds number are smaller compared to

the previous cases. The results differ during upstroke and at the end of downstroke. In

Figure 4.7 can be appreciated the differences of flow vorticity and pressure fields at this part

of the period (t/T = 0.4375). In contrast to previous cases, the Re has not a significant

influence in the flow structures created during this flapping motion, but it can still be seen

that the intensity of the LEV created at the end of downstroke is slightly higher by increasing

Re. Also, the differences in the associated pressure field vary in a similar way.

Numerical Simulation of Flow over a Flapping Airfoil 29



CHAPTER 4. RESULTS

Cases with θm = 0◦ and θ0 = 20◦

The last analysis of this section is performed on cases C00c, B00c and A00c, having the same

flapping configuration (θm = 0◦, θ0 = 20◦ and k = 0.2π) but different Re, (3000, 1000 and

500, respectively). Figure 4.9 shows the results for CL and CT over one period for the three

simulations at different Re, and Figure 4.8 shows the vorticity and pressure fields at the

vicinity of the airfoil at the time instant t/T = 0.4375.

Figure 4.8: Flow visualization of vorticity (left) and pressure (right) fields near the airfoil
at the end of the downstroke (t/T = 0.4375) for case with fixed θm = 0◦ and θ0 = 20◦

at different Re. In vorticity field, blue indicates ωc/U∞ = −20 (anticlockwise) and red
ωc/U∞ = 20 (clockwise). In pressure field, blue indicates p/ρU2

∞ = −2 and red p/ρU2
∞ = 2.

a) C00c [Re = 3000] b) B00c [Re = 1000] c) A00c [Re = 500].
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Figure 4.9: Results in one period for cases with fixed θm = 0◦ and θ0 = 20◦ at different Re of
a) CL b) CT . Grey region represent the downstroke and white region the upstroke. Vertical
line represents the time instant studied in flow visualization figure. C00c [Re = 3000],

B00c [Re = 1000], A00c [Re = 500].

Figure 4.9 shows that in those cases, as explained in previous section, the lift created dur-

ing downstroke is completely counteracted in the upstroke because the flapping motion is

symmetric. Conversely, regarding thrust generation, the thrust created during downstroke

is exactly equal to the one created in upstroke (asymmetric behaviour).

For those cases, as in the first ones, the Re influences in the flow structures generated as

it can be seen in Figure 4.8. At Re = 3000 two LEV attached to the airfoil are formed,

while at lower Re those LEV are blurred. This produces that increasing Re leads to higher

lift created by the negative pressure of these vortex structures. Also as in all the previous

analysed cases, the higher the Re the higher the intensity of vorticity and associated pressure

of the fluid.

In conclusion, for all the analysed cases, at a flapping reduced frequency of k = 0.2π, the

higher the Re of the flow, the higher the intensity of the vorticity and associated pressure

generated by the flapping motion. This effect can suppose an increase or decrease of thrust

and lift depending on the flapping configuration. Regarding the flow structure generation, it

has been appreciated that for cases with non-zero pitching amplitude (A10c − B10c − C10c,1

and A00c−B00c−C00c) the Re has an important influence in the generation of vortex struc-

tures. For those cases, increasing Re results in higher amount of generated vortex structures.

Nevertheless, for cases with zero pitching amplitude (A10a−B10a−C10a), apparently the Re

does not influence in the creation of LEV and TEV.
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4.1.3 Evolution of force coefficients in one oscillation period.

Variation with pitching amplitude (θ0)

This section studies the variations with θ0 of the aerodynamic force coefficients (CL, CT ).

This analysis involves the comparison between the coefficients over a period changing the

value of θ0 but maintaining the Re and θm. Also, as in previous section, it will be studied

the vorticity and pressure fields at the vicinity of the airfoil at certain moments of interest.

Cases with θm = 0◦ and Re = 1000

The first analysis of this section is performed on cases B00a, B00b, B00c and B00d. As described

in Table 4.1, those simulations have the same θm, Re and k (θm = 0◦, Re = 1000 and

k = 0.2π) but different θ0, being 0◦, 10◦, 20◦ and 30◦, respectively.

Figure 4.10 displays the results for CL and CT over one period for these four simulations,

and Figure 4.11 shows the vorticity and pressure fields at the vicinity of the airfoil at the

time instant t/T = 0.71875.
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Figure 4.10: Results in one period for cases with fixed Re = 1000 and θm = 0◦ at different θ0

of a) CL b) CT . Grey region represent the downstroke and white region the upstroke. Vertical
line represents the time instant studied in flow visualization figure. B00a [θ0 = 0◦],
B00b [θ0 = 10◦], B00c [θ0 = 20◦], B00d [θ0 = 30◦].
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Figure 4.11: Flow visualization of vorticity (left) and pressure (right) fields near the airfoil
at the middle of upstroke (t/T = 0.71875) for case with fixed Re = 1000 and θm = 0◦

at different θ0. In vorticity field, blue indicates ωc/U∞ = −25 (anticlockwise) and red
ωc/U∞ = 25 (clockwise). In pressure field, blue indicates p/ρU2

∞ = −2 and red p/ρU2
∞ = 2.

a) B00a [θ0 = 0◦] b) B00b [θ0 = 10◦] c) B00c [θ0 = 20◦] d) B00d [θ0 = 30◦].
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First of all, as it can be seen in Figure 4.9 and as it was explained in section 4.1.1, the lift

created during downstroke is counteracted with the upstroke because the two motions are

symmetric (Figure 4.3a). Conversely, the thrust created during downstroke is exactly equal

to the one created in upstroke. Also, as explained in Table 4.3, increasing θ0 results in lower

amplitude of the generated lift. By increasing the pitching amplitude from 0◦ to 30◦ results

in an increase of the lift coefficient amplitude of 700%.

Regarding the flow characteristic, and taking into account the symmetric behaviour of down-

stroke and upstroke, the case B00a (θ0 = 0◦) generates a LEV detached before the middle of

upstroke and a TEV at the end of upstroke. The case B00b (θ0 = 10◦) generates the same

TEV but the LEV is detached just after the middle of upstroke. However, the case B00c

(θ0 = 20◦) generates only a weak TEV at the end of upstroke, and the case B00d (θ0 = 30◦)

does not create any vortex flow structure. These features explain the evolution of lift and

thrust coefficients. Figure 4.11 shows the flow vorticity and pressure fields just before the

middle of the upstroke at t/T = 0.71875. At that time instant, the LEV starts to be detached

in case B00a and it is attached in case B00b. However, cases B00a and B00a does not create

any LEV. These flow structures generate the displayed associated pressure field.

Cases with θm = 10◦ and Re = 1000

The second analysis of this section is performed on cases B10a, B10b, B10c and B10d, having

the same θm, Re and k (θm = 10◦, Re = 1000 and k = 0.2π) but different θ0 (0◦, 10◦,

20◦ and 30◦, respectively). Figure 4.12 displays the results for CL and CT over one period

for these four simulations, and Figure 4.13 shows the flow vorticity and pressure fields at

t/T = 0.71875.
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Figure 4.12: Results in one period for cases with fixed Re = 1000 and θm = 10◦ at different θ0

of a) CL b) CT . Grey region represent the downstroke and white region the upstroke. Vertical
line represents the time instant studied in flow visualization figure. B10a [θ0 = 0◦],
B10b [θ0 = 10◦], B10c [θ0 = 20◦], B10d [θ0 = 30◦].
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Figure 4.13: Flow visualization of vorticity (left) and pressure (right) fields near the airfoil
at the middle of upstroke (t/T = 0.71875) for case with fixed Re = 1000 and θm = 10◦

at different θ0. In vorticity field, blue indicates ωc/U∞ = −25 (anticlockwise) and red
ωc/U∞ = 25 (clockwise). In pressure field, blue indicates p/ρU2

∞ = −2 and red p/ρU2
∞ = 2.

a) B10a [θ0 = 0◦] b) B10b [θ0 = 10◦] c) B10c [θ0 = 20◦] d) B10d [θ0 = 30◦].
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Figure 4.13 shows that by increasing the θm to 0◦ results in lift generation for all the cases.

Also, it must be pointed out that case B10d (θ0 = 30◦) generates lift during all the flapping

motion. Regarding thrust generation, the asymmetry in thrust creation of upstroke and

downstroke of previous cases disappears by introducing a mean pitch value.

Concerning the flow characteristics, the vortex structures created during downstroke vary

slightly with respect to the previous analysis. Cases B10a (θ0 = 0◦) and B10b (θ0 = 10◦)

generate a LEV at the beginning of downstroke of greater intensity than in cases without

mean pitch. This LEV is detached sooner than previous cases. Conversely, cases B10c

(θ0 = 20◦) and B10d (θ0 = 30◦), as opposite to cases B00c and B00d, generate both a LEV

and TEV during upstroke. Albeit, these flow structures are weak.

However, during upstroke different performance are observed. Case B10a generates one LEV

and one TEV, but the rest of the cases does not generate any vortex structure. Indeed, for

case B10d the suction over the airfoil is higher than the suction under the airfoil, meaning lift

generation. Those features can be appreciated in Figure 4.13. This figure shows the vorticity

and pressure fields at the middle of upstroke (t/T = 0.71875), when the LEV of case B10b

starts to be attached.

In conclusion, for the analysed flapping configurations, by increasing θ0 results in lower

effective angle of attack. This reduction of αe produces a disappearance of vortex structures,

resulting in lower lift generation. The introduction of a mean pitch angle of θm = 10◦

produces the elimination of the symmetric behaviour of the wake structure created during

upstroke and downstroke of cases without mean pitch. Also, it is highlighted that the case

with θm = 10◦ and θ0 = 30◦ at Re = 1000 generates lift during all the motion period.
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4.2 Modelling of Forces

One of the key factor to understand the unsteady aerodynamic and control mechanism of

flapping wings is to develop a simplified model predicting the aerodynamic forces as a function

of the airfoil motion parameters.

This section is divided in three parts. The first part defines a simplified model of forces devel-

oped in a parallel project [Moriche et al., 2016]. The second part evaluates the performance

of this model for the analysed cases under this work. And the last part of this project varies

the value of the coefficient, of which the model is dependent, to optimize the results for each

case to find the influence of the key parameters Re, θm and θ0 on these free parameters.

4.2.1 Definition of the model

The model studied in this section was developed in the parallel project [Moriche et al., 2016],

which introduces a modification on the model proposed in [Pesavento and Wang, 2004].

Firstly, this simplified model is defined. It tries to replicate the unsteady aerodynamic

problem with a quasi-stationary model of forces acting on the airfoil.

The force predicted by the model (~F ) is divided in three terms, the added mass forces

(~F a), the circulatory forces (~F c) and the viscous forces (~F v). The viscous forces (~F v) can

be neglected because they are small in comparison with the other terms. So to define the

model, the added mas forces and the circulatory forces must be modelled.

Fx = F ax + F cx + F vx ≈ F ax + F cx (4.9a)

Fz = F az + F cz + F vz ≈ F az + F cz (4.9b)

Added-mass Forces

The added mass forces in the global coordinate system are:

F ax = Xa
0 cos(θ) + Za0 sin(θ) (4.10a)

F az = −Xa
0 sin(θ) + Za0 cos(θ) (4.10b)

where Xa
0 and Y a

0 are the added mass force components normal to the wing as defined in

[Sane and Dickinson, 2002]:

Xa
0 = −λx

dU0

dt
− λxz

dV0

dt
− λxw

dΩ

dt
+ Ω(λxzU0 + λzV0 + λzwΩ) (4.11a)

Za0 = −λxz
dU0

dt
− λz

dV0

dt
− λzw

dΩ

dt
− Ω(λxU0 + λxzV0 + λxwΩ) (4.11b)
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where λ∗ are the given coefficients for the virtual masses from [Sedov et al., 1965] and U0,

V0 and Ω are the transitional velocity components and angular velocity respectively of the

center of gravity of the airfoil in a reference frame fixed to the airfoil.

For a symmetric Joukowsky airfoil, the λ∗ coefficients are:

λxz = λxw = 0 (4.12a)

λx = φπ
a2

4
(l − 2)(l + 1) (4.12b)

λz = φπ
a2

4
[4 + (l − 2)(l + 1)] (4.12c)

λzw = φπ
a3

16
l(2l2 − l + 2) (4.12d)

λw = φπ
a4

32
l2(2l2 + 1) (4.12e)

where ξ is the position of the center of gravity from the leading edge and l and a are geometric

quantities depending on the airfoil. For similarity with this work, the selected parameter are

the ones that generate an airfoil of eMAX/c = 0.12:

a = 0.4499c (4.13a)

l = c/a (4.13b)

ξ = c− al

4
(1 +

l2

l2 − l + 2
) (4.13c)

On the other hand, the local velocity and rotation are given by:

U0 = −U∞ cos(θ)− ḣ sin(θ) (4.14a)

V0 = −U∞ sin(θ) + ḣ cos(θ)− θ̇(ξ − xp) (4.14b)

Ω = −θ̇ (4.14c)

And their time derivatives:

dU0

dt
= U∞θ̇ sin(θ)− ḧ sin(θ)− ḣθ̇ cos(θ) (4.15a)

dV0

dt
= −U∞θ̇ cos(θ) + ḧ cos(θ)− ḣθ̇ sin(θ)− θ̈(ξ − xp) (4.15b)

dΩ

dt
= −θ̈ (4.15c)

where θ and h are the pitching and heaving motions defined in eq 3.3 and eq 3.2, θ̇ and ḣ

are their first time derivatives defined in eq 4.17 and eq 4.16 and θ̈ and ḧ are their second
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time derivatives:

ḧ = −h0(2πf)2 cos(2πft) (4.16)

θ̈ = −θ0(2πf)2 cos(2πft+ φ) (4.17)

Circulatory Forces

The circulatory component of the force is reconstructed from the circulation according to

Kutta-Joukowsky theorem:

~FKJ = ρ~V × Γ~ej (4.18)

where Vx and Vz are the components of the velocity of the fluid seen by the airfoil:

Vx = U∞ (4.19a)

Vz = −ḣ (4.19b)

and where the circulation Γ is estimated from the modelization of [Pesavento and Wang, 2004]

as follows:

Γ =
1

2
Cvc | ~V | sin(2αe) +

1

2
Cθc

2θ̇ (4.20)

leaving Cθ and Cv as free parameters.

Therefore, the circulation force components can be expressed as:

FKJx = ρḣΓ (4.21a)

FKJz = ρU∞Γ (4.21b)

However in [Moriche et al., 2016] is proposed that the circulatory component of the force

predicted by Kutta-Joukowsky theorem is tilted by an angle β = αe, which means that the

force is normal to the airfoil instead of normal to the stream seen by the airfoil, leaving the

previous equations in:

F cx = FKJx cos(αe) + FKJz sin(αe) (4.22a)

F cz = FKJx sin(αe) + FKJz cos(αe) (4.22b)

In [Moriche et al., 2016], the free parameter are selected by means of the optimization of the

results for simulations with Re = 1000, k = 1.41, θ0 = 30◦ and h/c = 1 varying θm and φ.

Their values are Cv = 1.6 and Cθ = 3.5.
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For this selection of parameters, it must be taken into account that:

• The effects of Re are not reflected in this model, neither in modelled added mass forces

nor in modelled circulatory forces.

• For a flapping motion with zero pitching amplitude (θ0 = 0◦), the free parameter Cθ

has not influence in the modelled circulation.

• For a pure heaving motion (θ(t) = 0◦), the modelled total force is normal to the airfoil,

so the modelled streamwise force component is always zero.

4.2.2 Evaluation of model

This section evaluates the performance of the model described in the previous section for the

cases studied in this work by means of a comparison with the results obtained in DNS. Two

options of the simplified model are examined, the first defining the circulatory term of forces

by means of the Kutta-Joukowski model [Pesavento and Wang, 2004] and the second one

defining this term with the correction in the circulatory force direction [Moriche et al., 2016]

with Cv = 1.6 and Cθ = 3.5.

The following figures show the comparison between the results obtained from DNS and the

ones obtained from the two models for both lift and thrust coefficients. This comparison is

analysed only for four cases (B00a, B00c, B10b and B10d). The comparison for the remaining

cases is shown in the Appendix of Chapter 8.
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Figure 4.14: Results in one period of a) CL b) CT for case B00a [Re = 1000, θm = 0◦,
θ0 = 0◦]. ~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 4.15: Results in one period of a) CL b) CT for case B00c [Re = 1000, θm = 0◦,
θ0 = 20◦]. ~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 4.16: Results in one period of a) CL b) CT for case B10b [Re = 1000, θm = 10◦,
θ0 = 10◦]. ~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 4.17: Results in one period of a) CL b) CT for case B10d [Re = 1000, θm = 10◦,
θ0 = 30◦]. ~FDNS , ~F a + ~FKJ , ~F a + ~F c
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First of all, it can be seen that assuming that the circulatory forces are normal to the

airfoil [Moriche et al., 2016] instead of normal to stream flow [Pesavento and Wang, 2004],

the simplified model is more accurate to the DNS results for all the analysed cases.

Focusing in the model proposed by [Moriche et al., 2016], depending on the flapping configu-

ration, different performances of this model are obtained. In Figure 4.14, for a pure heaving

motion, the modelled forces are normal to the airfoil so the modelled thrust coefficient is al-

ways zero, a result completely different to the obtained in DNS. So, for pure heaving motion,

the simplified model is not useful at all. Also, there exist another flapping configurations in

which the performance of the simplified model is inadequate. For example, it can be appre-

ciated in case B10d (Figure 4.17), with Re = 1000, θm = 10◦, and θ0 = 30◦, that the results

are very imprecise, where the predicted thrust forces double the obtained in DNS and the

lift forces have a large phase shift. It must be highlighted that this flapping configuration

is exactly the same to the used one for the optimization in [Moriche et al., 2016] except for

the reduced frequency, which is less than half. It follows that the flapping frequency has an

important influence on the selection of the coefficients Cv and Cθ.

However, for some of the analysed cases the model is considerably precise. In case B00c

(Figure 4.15), with Re = 1000, θm = 0◦, and θ0 = 20◦, the predicted thrust forces are very

close to the obtained from DNS while the lift forces have a small phase shift. Also, in case

B10b (Figure 4.16), with Re = 1000, θm = 10◦, and θ0 = 10◦, both the predicted lift and

thrust forces follow closely the DNS results in the most part of the motion period.

Also, as it was seen in previous section, the lift and thrust coefficients obtained from DNS

varying with Re. In these models the effects of Re are not included. Therefore, the predicted

aerodynamic forces will not change by varying the Reynolds numbers, as it can be seen in

the the following figure:
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The following tables display the results for the mean (CLDNS
, CLmod

) and standard deviation

(σCLDNS
, σCLmod

) of the lift and thrust coefficients obtained from DNS and simplified model

of [Moriche et al., 2016], respectively. In addition, the error of the results obtained with

the model (εCL
, εCT

) and their standard deviations (σεCL
, σεCT

) are included. The error

is quantified as the root mean squared deviation between the force coefficients, normalized

with the amplitude of the reference case:

εCX
=

√
1
n

∑n
i=1(CXref,i − CXi)2

ACXref

(4.23)

where the sub-index x stands for lift or thrust coefficient. The force coefficients obtained in

DNS are the references CXref , and ACXref
are their amplitude values (ACXref

= CXmax −
CXmin).

On the other hand, the standard deviation is defined as:

σεCX
=

√√√√ 1

n

n∑
i=1

(εCXi
− εCX

)2 =

√√√√ 1

n

n∑
i=1

(
εCXi

− 1

n

n∑
i=1

(εCXi
)

)2

(4.24)

Case CLDNS
σCLDNS

CLmod
σCLmod

εCL
σεCL

C10c,1 0.8679 0.9104 0.6160 0.7887 0.1523 0.2555
B10c 0.6506 0.8608 0.6160 0.7887 0.1921 0.2648
A10c 0.5008 0.7341 0.6160 0.7887 0.2687 0.3449
C10a 0.3855 1.9897 0.4325 1.3796 0.1345 0.5028
B10a 0.2534 2.0122 0.4325 1.3796 0.1245 0.4204
A10a 0.3374 1.9410 0.4325 1.3796 0.1143 0.3926
C00c 0.0384 1.0462 0.0000 0.8091 0.1175 0.1704
B00c 0.0000 0.8367 0.0000 0.8091 0.2487 0.3223
A00c -0.0001 0.7252 0.0000 0.8091 0.2420 0.2484

Table 4.4: Comparison between lift coefficient mean (CLDNS
, CLmod

) and standard deviation
(σCLDNS

, σCLmod
) of the results of DNS and model and mean (εCL

) and standard deviation
(εCL

) of error of the cases analysed with different Reynolds numbers.
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Case CLDNS
σCLDNS

CLmod
σCLmod

εCL
σεCL

B00a 0.0010 1.9832 0.0000 1.4821 0.0973 0.4243
B00b -0.0004 1.5507 0.0000 1.1262 0.0967 0.2735
B00c 0.0000 0.8367 0.0000 0.8091 0.2487 0.3223
B00d -0.0001 0.2523 0.0000 0.7883 0.7242 0.2587
B10a 0.2534 2.0122 0.4325 1.3796 0.1245 0.4204
B10b 0.6699 1.3852 0.5551 1.0573 0.1166 0.3054
B10c 0.6506 0.8608 0.6160 0.7887 0.1921 0.2648
B10d 0.9641 0.4953 0.6052 0.7838 0.4407 0.2772

Table 4.5: Comparison between lift coefficient mean (CLDNS
, CLmod

) and standard deviation
(σCLDNS

, σCLmod
) of the results of DNS and model and mean (εCL

) and standard deviation
(σεCL

) of error of the cases analysed with different pitching amplitude.

Case CTDNS
σCTDNS

CTmod
σCTmod

εCT
σεCT

C10c,1 -0.0307 0.2456 0.0413 0.1867 0.1678 0.0851
B10c -0.0649 0.2167 0.0413 0.1867 0.2164 0.1059
A10c -0.1294 0.1650 0.0413 0.1867 0.3470 0.1310
C10a -0.1061 0.3555 -0.0763 0.2402 0.1592 0.0982
B10a -0.1186 0.3516 -0.0763 0.2402 0.1722 0.0985
A10a -0.2004 0.3353 -0.0763 0.2402 0.2055 0.1277
C00c 0.1925 0.2327 0.1571 0.1588 0.1398 0.0413
B00c 0.0834 0.2033 0.1571 0.1588 0.2086 0.0931
A00c 0.0061 0.1467 0.1571 0.1588 0.3893 0.0635

Table 4.6: Comparison between thrust coefficient mean (CTDNS
, CTmod

) and standard de-
viation (σCTDNS

, σCTmod
) of the results of DNS and model and mean (εCT

) and standard
deviation (σεCT

) of error of the cases analysed with different Reynolds numbers.

Case CTDNS
σCTDNS

CTmod
σCTmod

εCT
σεCT

B00a -0.0882 0.2097 0.0000 0.0000 0.3381 0.1347
B00b 0.0867 0.2927 0.1332 0.1067 0.2329 0.0996
B00c 0.0834 0.2033 0.1571 0.1588 0.2086 0.0931
B00d -0.0765 0.0766 0.0539 0.2443 0.9852 0.1265
B10a -0.1186 0.3516 -0.0763 0.2402 0.1722 0.0985
B10b -0.0787 0.2562 0.0292 0.1566 0.1845 0.1200
B10c -0.0649 0.2167 0.0413 0.1867 0.2164 0.1059
B10d -0.1460 0.2125 -0.0553 0.3658 0.3456 0.1440

Table 4.7: Comparison between thrust coefficient mean (CTDNS
, CTmod

) and standard de-
viation (σCTDNS

, σCTmod
) of the results of DNS and model and mean (εCT

) and standard
deviation (σεCT

) of error of the cases analysed with different pitching amplitude.
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First of all, although this model is not useful for some flapping configurations as pure heaving,

the results for the majority of cases are accurate. Also, it must be taken into account that the

model was optimized for different flapping configurations. For that, the accuracy obtained

for this simplified model is much more higher than the expected one.

From previous tables, it can be drawn some conclusions about the performance of the sim-

plified model. As it was explained before, the model does not take into account the Re, so it

should be adjusted to the variation of Re. With respect to thrust generation, by decreasing

the Re results in higher error in the model. For example, with fixed θm = 0◦ and θ0 = 20◦, at

Re = 3000 the error is 14%, at Re = 1000 it increases up to 21% and at Re = 500 it increases

up to 39%. Therefore, in term of thrust generation, the model is more precise at higher Re.

It must be noticed that the values of Cv and Cθ are optimized in [Moriche et al., 2016] for

cases with Re = 1000. Another interesting point is that, the results of both DNS and model

show that there exists an optimum value of θ0 maximizing the integrated value of the thrust

coefficient in a motion period as it can be seen in Figure 4.19

Regarding the lift coefficient, apparently, there is not a clear tendency in the variation of

the error with the value of Re. However, it can be appreciated that increasing θ0 results in

higher error in lift coefficient. For the cases with fixed Re = 1000 and θm = 10◦, with a θ0 of

0◦ and 10◦ the error is conserved around 12%, but increasing θ0 to 20◦ the error increases up

to 19%, and for θ0 = 30◦ the error increases up to 44%. Therefore, in term of lift generation,

the model is more precise at lower θ0.
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Figure 4.19: Variation with pitching amplitude for cases with Re = 1000 at different θm of
a) CTmod

b) CTDNS
. θm = 0◦, θm = 10◦.
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4.2.3 Optimization of model

At this section, the objective is to vary the value of coefficients (CT , CR) to optimize the

results for each case to find the influence of the Re, θm and θ0 on those free parameters. The

selected coefficients are those that give the lower error magnitude (εT ), defined as the square

root of the sum of the error in lift and thrust coefficients to square:

min(εT ) = min

(√
[εCL

]2 + [εCT
]2
)

(4.25)

Firstly, the variation of the influence of Cv and Cθ on the error (εT ) is analysed to find the

influence of Re, θm and θ0 on them.
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Figure 4.20: Influence of Cv and Cθ values on the total magnitude error between the results
of DNS and model (εT ) for cases with different Re at fixed θm = 10◦ and θ0 = 20◦.
a) C10c,1 [Re = 3000], b) B10c [Re = 1000], c) A10c [Re = 500].
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Figure 4.21: Influence of Cv and Cθ values on the total magnitude error between the results
of DNS and model (εT ) for cases with different θ0 at fixed Re = 1000 and θm = 0◦.
a) B00a [θ0 = 0◦], b) B00b [θ0 = 10◦], c) B00c [θ0 = 20◦], d) B00d [θ0 = 30◦].

In Figure 8.14 is analysed the influence of Cθ and Cv on the error for the cases C10c,1, B10c

and A10c. From this figure it can be appreciated that increasing the Re the influence of Cθ

increase, but the Cv influence remains the same. In Figure 8.16 the analysed cases are B00a,

B00b, B00c and B00d. From this figure it can be noticed that for pure heaving (B00a) Cθ does

not influence in the results. Albeit, increasing the pitching amplitude, the influence of Cθ

increases significantly while the influence of Cv decreases substantively.
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Secondly, it is analysed the influence of Re, θm and θ0 in the value of the obtained optimum

coefficients. Figure 4.22 shows the variation of those parameters with Re at different flapping

configurations and Figure 4.23 displays the variations with θ0.
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Figure 4.22: Variation of optimum value of free parameters Cv and Cθ with Re
at fixed θm and θ0. Cv [θm = 10◦, θ0 = 20◦], Cv [θm = 10◦, θ0 = 0◦],

Cv [θm = 0◦, θ0 = 20◦], Cθ [θm = 10◦, θ0 = 20◦], Cθ [θm = 10◦, θ0 = 0◦],
Cθ [θm = 0◦, θ0 = 20◦], Cv fixed, Cθ fixed.

−5 0 5 10 15 20 25 30 35
0

1

2

3

4

θ
0

C
o

ef
fi

ci
en

ts

 

 

C
vB00x

C
vB10x

C
θB00x

C
θB10x

Figure 4.23: Variation of optimum value of free parameters Cv and Cθ with θ0 at fixed
Re = 1000 and θm. Cv [θm = 0◦], Cv [θm = 10◦], Cθ [θm = 0◦], Cθ
[θm = 10◦], Cv fixed, Cθ fixed.

The results obtained are not conclusive. From Figure 4.22 it can be appreciated that for the

cases with non-zero pitching amplitude, by increasing Re the value of Cθ must apparently be

increased to optimize the model, but the value of optimum Cv varies slightly. Similarly, from

Figure 4.22, by increasing θ0 there are not a clear trend in the evolution of the coefficients.
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Thirdly, in the following figures the lift and thrust coefficients obtained from the model with

the optimized coefficients are compared to the ones for the model with fixed parameters

and the ones obtained from DNS. This comparison is performed on the cases analysed in

previous section (B00a, B00c, B10b, B10d). The comparison of the remaining cases is displayed

in Appendix of Chapter 8.
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Figure 4.24: Results in one period of a) CL b) CT for case B00a [Re = 1000, θm = 0◦,
θ0 = 0◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 4.25: Results in one period of a) CL b) CT for case B00c [Re = 1000, θm = 0◦,
θ0 = 20◦]. ~FDNS , ~Fmod, ~Fopt

48 Numerical Simulation of Flow over a Flapping Airfoil



CHAPTER 4. RESULTS

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

3

(a)

C
L

t/T
0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

(b)

C
T

t/T

Figure 4.26: Results in one period of a) CL b) CT for case B10b [Re = 1000, θm = 10◦,
θ0 = 10◦]. ~FDNS , ~Fmod, ~Fopt

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

3

(a)

C
L

t/T
0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(b)

C
T

t/T

Figure 4.27: Results in one period of a) CL b) CT for case B10d [Re = 1000, θm = 10◦,
θ0 = 30◦]. ~FDNS , ~Fmod, ~Fopt

First of all, it can be noticed that the value of the coefficients Cv and Cθ has not influence

on the fact that for a pure heaving motion the force predicted by the model are normal to

the airfoil, so the predicted thrust is always zero, a completely wrong result.

Also, it must be taken into account that in the optimization, the minimized error is weighted

in the value of both lift and thrust errors. For that, as the values of lift coefficients are much

higher than the thrust coefficients, and consequently the error magnitude in lift is higher

than in thrust, the correction in lift coefficient error predominates. This can be appreciated

in all the previous results. The accuracy in the predicted lift coefficients is extremely high

for all the analysed cases even though the thrust coefficient is not properly adjusted.

Although the simplicity of this model makes that some cases like pure heaving motion cannot

be predicted, those results highlights that the potential of this simplified model is very high.

It has been shown that the model can achieve very close results to the obtained in DNS.
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Finally, the following tables show the results for the mean (CLDNS
, CLopt) and standard de-

viation (σCLDNS
, σCLopt

) of the lift and thrust coefficients obtained from DNS and optimized

model, respectively. In addition, the error of the results obtained with the optimized model

(εCL
, εCT

) and their standard deviations (σεCL
, σεCT

) are included.

Case CLDNS
σCLDNS

CLopt σCLopt
εCL

σεCL

C10c,1 0.8679 0.9104 0.8085 0.8994 0.0667 0.1299
B10c 0.6506 0.8608 0.6160 0.7088 0.1065 0.2353
A10c 0.5008 0.7341 0.5390 0.6379 0.1240 0.2154
C10a 0.3855 1.9897 0.5947 1.8574 0.1034 0.3617
B10a 0.2534 2.0122 0.6217 1.9379 0.1041 0.4464
A10a 0.3374 1.9410 0.5946 1.8575 0.1010 0.4199
C00c 0.0384 1.0462 0.0000 0.9878 0.0678 0.1225
B00c 0.0000 0.8367 0.0000 0.7762 0.0766 0.1197
A00c -0.0001 0.7252 0.0000 0.6627 0.0442 0.0539

Table 4.8: Comparison between lift coefficient mean (CLDNS
, CLopt) and standard deviation

(σCLDNS
, σCLopt

) of the results of DNS and optimized model and mean (∆CL) and standard

deviation (σ∆CL
) of error of the cases analysed with different Reynolds number.

Case CLDNS
σCLDNS

CLOPT
σCLOPT

εCL
σεCL

B00a 0.0010 1.9832 0.0000 1.9125 0.0581 0.1776
B00b -0.0004 1.5507 0.0000 1.5276 0.0516 0.1314
B00c 0.0000 0.8367 0.0000 0.7762 0.0766 0.1197
B00d -0.0001 0.2523 0.0000 0.2372 0.0452 0.0166
B10a 0.2534 2.0122 0.6217 1.9379 0.1041 0.4464
B10b 0.6699 1.3852 0.6938 1.3275 0.0728 0.2057
B10c 0.6506 0.8608 0.6160 0.7088 0.1065 0.2353
B10d 0.9641 0.4953 0.9078 0.4435 0.0997 0.0906

Table 4.9: Comparison between lift coefficient mean (CLDNS
, CLopt) and standard deviation

(σCLDNS
, σCLopt

) of the results of DNS and optimized model and mean (∆CL) and standard

deviation (σ∆CL
) of error of the cases analysed with different pitching amplitude.
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Case CTDNS
σCTDNS

CTopt σCTopt
εCT

σεCT

C10c,1 -0.0307 0.2456 0.0542 0.1849 0.1464 0.0852
B10c -0.0649 0.2167 0.0413 0.1468 0.1831 0.0838
A10c -0.1294 0.1650 0.0361 0.1327 0.2931 0.0878
C10a -0.1061 0.3555 -0.1049 0.3252 0.1324 0.0901
B10a -0.1186 0.3516 -0.1096 0.3395 0.1536 0.0991
A10a -0.2004 0.3353 -0.1048 0.3252 0.1898 0.1332
C00c 0.1925 0.2327 0.2160 0.1938 0.1109 0.0415
B00c 0.0834 0.2033 0.1669 0.1602 0.1692 0.0515
A00c 0.0061 0.1467 0.1375 0.1399 0.3229 0.0350

Table 4.10: Comparison between thrust coefficient mean (CTDNS
, CTopt) and standard de-

viation (σCTDNS
, σCTopt

) of the results of DNS and optimized model and mean (∆CT ) and

standard deviation (σ∆CT
) of error of the cases analysed with different Reynolds number.

Case CTDNS
σCTDNS

CTOPT
σCTOPT

εCT
σεCT

B00a -0.0882 0.2097 0.0000 0.0000 0.3381 0.1347
B00b 0.0867 0.2927 0.1831 0.1422 0.2218 0.1140
B00c 0.0834 0.2033 0.1669 0.1602 0.1692 0.0515
B00d -0.0765 0.0766 0.0034 0.1050 0.4547 0.0575
B10a -0.1186 0.3516 -0.1096 0.3395 0.1536 0.0991
B10b -0.0787 0.2562 0.0365 0.1923 0.1883 0.1092
B10c -0.0649 0.2167 0.0413 0.1468 0.1831 0.0838
B10d -0.1460 0.2125 -0.0829 0.3509 0.2259 0.1110

Table 4.11: Comparison between thrust coefficient mean (CTDNS
, CTopt) and standard de-

viation (σCTDNS
, σCTopt

) of the results of DNS and optimized model and mean (∆CT ) and

standard deviation (σ∆CT
) of error of the cases analysed with different pitching amplitude.

From previous tables it can be seen that the errors in lift coefficients are significantly reduced.

In the most cases the error is lower than 10% in lift coefficient, and for example in cases B00d

and A00c the differences are reduced to only 4%.

However, as explained before, the optimization is more weighted in the correction of lift

coefficient error, therefore the corrections in thrust coefficient are smaller. Also, it must be

taken into account that the optimization is made to minimize the differences between the

time history results in lift and thrust coefficients. For that, although the results obtained can

be closer, the integrated value of the force coefficients (the mean value) can be worst. For

example, the CL obtained in DNS for case B10a is 0.3855 and the result for the optimized

model is 0.5947. However for the model with fixed parameters, the predicted CL is 0.4325,

a closer result.
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In conclusion, it has been checked that the model proposed by [Moriche et al., 2016] obtains

more accurate results than the model of [Pesavento and Wang, 2004] for the analysed cases

under this work. Note that the model is non useful for some flapping configurations as pure

heaving, where the predicted forces are normal to the airfoil being the predicted thrust always

zero, a completely wrong result. However, even though the model has a great simplicity,

for the most cases the obtained results are close to the obtained ones in DNS. Also when

this model is optimized, it is highlighted the enormous potential of this simplified model

especially in lift generation, where the differences are reduced even up to 4%. However, the

results obtained regarding the influence of Re, θm and θ0 on the optimized coefficients Cv and

Cθ are not conclusive. To strengthen understanding of this influence it must be performed

a more specific analysis than the developed in this work. Also, the optimization should be

more sophisticated.
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Project Planning

This chapter shows the followed planning for the development of this project. The elaboration

of this project can be divided in four working phases. Figure 5.1 presents the Gantt chart of

this project showing the work time distribution of those phases.

Figure 5.1: Gantt Chart of this project

• Documentation and research. This first phase, developed during the first month,

is divided in two stages:

– A literature review to acquire the needed information concerning flapping airfoils.

– A study of the used numerical method in order to understand the background of

flow solvers of unsteady aerodynamic problems.

• Computation of simulations. Once the numerical method had been understood,

the first flapping motions were simulated with the in-house code TUCAN. This second

phase, performed during the following two and a half months, is divided in two stages:

– The computation of the first three simulations to perform a resolution analysis for

cases with Re = 3000.
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– The simulation of the remaining cases to analyse the aerodynamic forces at dif-

ferent flapping configurations.

• Analysis of results. At the same time that the last cases were simulated, the resulting

data of the cases already computed started to be analysed. This analysis was completed

once all the cases was developed.

• Report writing. In the final phase the present report was written, collecting all the

work performed in previous stages. This phase spanned until the end of the project.
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Chapter 6

Regulatory and socioeconomic

framework

6.1 Socioeconomic impact

The development of small autonomous flying machine used as aerial reconnaissance robots

for inside buildings and confined spaces has focused many efforts in last years. Industry,

commerce and the military have all identified potential roles for such micro-aerial vehicles

(MAVs). Research on MAVs, conducted by aerodynamic and robotic engineers, are attempt-

ing to develop a design similar to those with much better aerodynamic performance than

conventional wings and rotors; the small birds and insects.

However, the flapping wing flight of those animals is not yet properly understood. The main

objective of this work is to contribute to the understanding of the unsteady aerodynamics

of flapping wings and to the development of a simplified model predicting the aerodynamic

forces as a function of the wing motion parameters. These are key factors to better under-

stand the flapping wing flights to enhance the performance of bio-inspired MAVs.

This progress has the potential to bring about a huge impact in the aeronautical field result-

ing in a positive social, economic and industrial impact. MAVs applications span a very wide

range, and the majority of them are military. MAVs are equipped with different sensors to

perform intelligence, surveillance and reconnaissance missions in very challenging environ-

ments. This implies a positive impact in the aerospace industry and it economy as well as

an important advance on military technology.

But also, those application involve a beneficial contribution to society. The development

of very small robotic flying machines with the performance of an insect and equipped with

cameras would be very helpful in rescue works for inspect unsafe or collapsed buildings after
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disaster cases, such as earthquakes, hurricanes or collapsed mines. In these cases, locating

survivors faster increases the probability of saving lives and the use of MAVs would decrease

considerably the time necessary to explore those areas.

6.2 Regulatory framework

Regarding regulatory framework, no regulations apply for this project since actually it does

not exist any specific rule on the creation, development, manufacture or use of micro-aerial

vehicles. Furthermore, this project is a computational analysis with the objective to acquire

a better understanding of the unsteady aerodynamics involving flapping airfoils. For that,

even though there exists a current debate on the legal operating places for MAVs, these

regulations most probably would not affect to this work.

6.3 Budget

This section shows the budget describing all the cost associated to this project. The cost

attributed to this project are splitted into personnel, material and software costs. Table 6.1

displays each of them.

PERSONNEL EXPENSES

Item Cost per hour [e/h] Time [h] Cost [e]

Engineering hours 20 500 10000

MATERIAL COSTS

Item Price [e] Use [h] Lifespan [h] Cost [e]

Laptop 650 2928 35064 54.28

SOFTWARE COSTS

Item Use [h] Cost per hour [e/h] Cost [e]

CPU Costs 2820 0.2 564

MATLAB License - - 500

Table 6.1: Breakdown of the budget. Personnel, material and software costs.
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• Personnel expenses reduce to the engineering hours, which have been estimated to

be covered with a hourly salary of 20 e/h for the duration of this project.

• Material costs set the amortization cost of a needed laptop assuming a straight line

depreciation. The laptop has been used 4 months and the estimated lifespan is 4 years.

Cost =
Use

Lifespan
× Price (6.1)

• Software costs are composed by the needed MATLAB Academic License [MATLAB]

and the costs derived from the use of a computational center to perform the DNS. The

last ones are estimated taking as reference the pricing of CESGA (Centro de Super-

computación de Galicia) [CESGA].

Finally, Table 6.2 summarizes the budget of this project showing the total costs.

TOTAL COST

Personnel Expenses 10000 e

Material Costs 54.28 e

Software Costs 1064 e

Total Cost 11118.28 e

Table 6.2: Summary of the budget of this project.
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Conclusions

The main objective of this work is to contribute to the understanding of the unsteady aero-

dynamic of flapping wings. It is presented a numerical analysis of the flow around a plunging

and pitching airfoil by means of Direct Numerical Simulation (DNS).

Firstly, it has been studied the aerodynamic performance of different flapping motions. This

study shows the influence of three parameters, Re, θm and θ0, on the mean and standard

deviation and on the time history results of the aerodynamic force coefficients. Also the

different formed wake structures are examined.

In this analysis, it was observed that for the analysed cases, by increasing Re leads to higher

produced thrust. Cases with θm = 0◦ and θ0 = 20◦, only with the increase of Re from 500

to 3000, the CT increases from 0.01 to 0.19 and the η from 2% to 42%. Also, it was found

that, for the analysed flapping configurations, there exists an optimum pitching amplitude

in the θ0 range from 0◦ to 30◦ maximizing the thrust generation. In addition, for cases with

θm = 10◦ and Re = 1000, while the thrust is approximately the same with a θ0 of 10◦ and

20◦, the propulsive efficiency doubles from 12.7% with θ0 = 10◦ to 24.1% with θ0 = 20◦.

The intensity of the vorticity and associated pressure in the wake structures generated by

the flapping motion increases considerably by increasing Re. Also, while in cases with zero

pitching amplitude, the Re apparently has no influence in the creation of LEV and TEV, in

cases with non-zero pitching amplitude, by increasing Re results in greater vortex structures

generation. On the other hand, it was noticed that, for the flapping configurations analysed

under this work, by increasing θ0 results in lower effective angle of attack. This reduction in

αe produces the disappearance of vortex structures, resulting in lower lift generation. Also,

it is highlighted that the case with θm = 10◦ and θ0 = 30◦ at Re = 1000 generates lift both

in upstroke and downstroke.
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Finally, it was evaluated the performance of a simplified model for the simulated cases under

this project. This model was developed in [Moriche et al., 2016] and it is used to predict

the aerodynamic forces acting on the flapping airfoil. It was noticed that the model is non

useful for some flapping motions like pure heaving, where the predicted forces are normal

to the airfoil being the thrust component always zero, a completely wrong result. However,

even though the model has a great simplicity, it is highlighted its enormous potential where,

after the optimization, the differences in the most analysed cases are lower than 10% in

lift generation. However, the results obtained regarding the influence of Re, θm and θ0 on

the model coefficients Cv and Cθ are not conclusive. To strengthen understanding of this

influence it must be performed a more specific analysis than the developed in this work.

It must be taken into account that all the cases have the same reduced frequency (k = 0.2π),

same plunging amplitude (h/c = 1) and same phase shift between pitching and plunging

motions (φ = 90◦) for a NACA-0012 airfoil. It means that all the results obtained and the

conclusions drawn from them are useful for similar parametric combinations than the used

ones. Also, it must be noted that for cases with Re = 3000, a 3D study should be performed

in order to check whether or not there are instabilities. However, the computational cost of

these simulations would be too large for a project like this one. Albeit, the results obtained

in this work are treated in order to analyse the tendencies with the variation of Re. For

that, the possible presence of 3D instabilities does not affect to the analysis developed in this

document.

For future projects, it would be important to realize the initial objective of this work, to

validate the results obtained in DNS with the experimental analysis in a companion project.

Even so, this project can be a starting point for future researches. Those studies can be

focused in the analysis of the influence of other flapping parameters that are fixed in this

work, like the flapping frequency or heaving amplitude. With these complementary analyses

it will be possible to obtain a better understanding of the flapping parameter influences. Also,

it would be interesting to perform a deeper study of the influence of a specific parameter in

the aerodynamic forces. Regarding to the simplified model, it would be more conclusive to

research the influence of a specific flapping parameter on the model coefficients Cv and Cθ,

including a more sophisticated optimization precess.
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Appendix

8.1 Additional results for the evaluation of model

This section includes the comparison for all the analysed cases between the results obtained

in DNS and in the two models, [Pesavento and Wang, 2004] and [Moriche et al., 2016], for

the lift and thrust coefficients to complement the result shown in section 4.2.2.

8.1.1 Comparison varying the Reynolds number

Cases with θm = 10◦ and θ0 = 20◦
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Figure 8.1: Results in one period for the cases with fixed θm = 10◦ and θ0 = 20◦ at different
Re of a) CL b) CT FDNS [C10c,1] , FDNS [B10c], FDNS [A10c], ~F a + ~FKJ ,

~F a + ~F c
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Cases with θm = 10◦ and θ0 = 0◦
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Figure 8.2: Results in one period for the cases with fixed θm = 10◦ and θ0 = 0◦ at different
Re of a) CL b) CT . FDNS [C10a] , FDNS [B10a], FDNS [A10a], ~F a + ~FKJ ,

~F a + ~F c

Cases with θm = 0◦ and θ0 = 20◦

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

C
L

t/T
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

(b)

C
T

t/T

Figure 8.3: Results in one period for the cases with fixed θm = 0◦ and θ0 = 20◦ at different
Re of a) CL b) CT . FDNS [C00c] , FDNS [B00c], FDNS [A00c], ~F a + ~FKJ ,

~F a + ~F c
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8.1.2 Comparison varying the pitching amplitude

Cases with θm = 0◦ and Re = 1000
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Figure 8.4: Results in one period of a) CL b) CT for case B00a [Re = 1000, θm = 0◦, θ0 = 0◦].
~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 8.5: Results in one period of a) CL b) CT for case B00b [Re = 1000, θm = 0◦, θ0 = 10◦].
~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 8.6: Results in one period of a) CL b) CT for case B00c [Re = 1000, θm = 0◦, θ0 = 20◦].
~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 8.7: Results in one period of a) CL b) CT for case B00d [Re = 1000, θm = 0◦, θ0 = 30◦].
~FDNS , ~F a + ~FKJ , ~F a + ~F c

Cases with θm = 10◦ and Re = 1000
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Figure 8.8: Results in one period of a) CL b) CT for case B10a [Re = 1000, θm = 10◦,
θ0 = 0◦]. ~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 8.9: Results in one period of a) CL b) CT for case B10b [Re = 1000, θm = 10◦,
θ0 = 10◦]. ~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 8.10: Results in one period of a) CL b) CT for case B10c [Re = 1000, θm = 10◦,
θ0 = 20◦]. ~FDNS , ~F a + ~FKJ , ~F a + ~F c
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Figure 8.11: Results in one period of a) CL b) CT for case B10d [Re = 1000, θm = 10◦,
θ0 = 30◦]. ~FDNS , ~F a + ~FKJ , ~F a + ~F c
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8.2 Additional results for the optimization of model

This section includes the additional results obtained from the optimization of the model

proposed by [Moriche et al., 2016] to complement the result shown in section 4.2.3. Firstly,

it is displayed the results obtained for the variation of influence of Cv and Cθ on the error

(εT ) for all the analysed cases. Secondly, it is shown the comparison between the results of

lift and thrust coefficients obtained in DNS and [Moriche et al., 2016] model with both fixed

and optimized coefficients Cv and Cθ.

8.2.1 Influence of coefficients on error varying the Reynolds number

Cases with θm = 10◦ and θ0 = 20◦
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Figure 8.12: Influence of Cv and Cθ values on the total magnitude error between the results
of DNS and model (εT ) for cases with different Re at fixed θm = 10◦ and θ0 = 20◦.
a) C10c,1 [Re = 3000], b) B10c [Re = 1000], c) A10c [Re = 500].

Cases with θm = 10◦ and θ0 = 0◦

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

C
v

C
θ

(a)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

C
v

C
θ

(b)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

C
v

C
θ

(c)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8.13: Influence of Cv and Cθ values on the total magnitude error between the results
of DNS and model (εT ) for cases with different Re at fixed θm = 10◦ and θ0 = 0◦.
a) C10a [Re = 3000], b) B10a [Re = 1000], c) A10a [Re = 500].
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Cases with θm = 0◦ and θ0 = 20◦
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Figure 8.14: Influence of Cv and Cθ values on the total magnitude error between the results
of DNS and model (εT ) for cases with different Re at fixed θm = 0◦ and θ0 = 20◦.
a) C00c [Re = 3000], b) B00c [Re = 1000], c) A00c [Re = 500].

8.2.2 Influence of coefficients on error varying the pitching amplitude
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Figure 8.15: Influence of Cv and Cθ values on the total magnitude error between the results
of DNS and model (εT ) for cases with different θ0 at fixed Re = 1000 and θm = 0◦.
a) B00a [θ0 = 0◦], b) B00b [θ0 = 10◦], c) B00c [θ0 = 20◦], d) B00d [θ0 = 30◦].
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Figure 8.16: Influence of Cv and Cθ values on the total magnitude error between the results
of DNS and model (εT ) for cases with different θ0 at fixed Re = 1000 and θm = 10◦.
a) B10a [θ0 = 0◦], b) B10b [θ0 = 10◦], c) B10c [θ0 = 20◦], d) B10d [θ0 = 30◦].
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8.2.3 Comparison varying the Reynolds number

Cases with θm = 10◦ and θ0 = 20◦
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Figure 8.17: Results in one period of a) CL b) CT for case C10c,1 [Re = 3000, θm = 10◦,

θ0 = 20◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.18: Results in one period of a) CL b) CT for case B10c [Re = 1000, θm = 10◦,
θ0 = 20◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.19: Results in one period of a) CL b) CT for case A10c [Re = 500, θm = 10◦,
θ0 = 20◦]. ~FDNS , ~Fmod, ~Fopt
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Cases with θm = 10◦ and θ0 = 0◦
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Figure 8.20: Results in one period of a) CL b) CT for case C10a [Re = 3000, θm = 10◦,
θ0 = 0◦]. ~FDNS , ~Fmod, ~Fopt

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

4
(a)

C
L

t/T
0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

(b)

C
T

t/T

Figure 8.21: Results in one period of a) CL b) CT for case B10a [Re = 1000, θm = 10◦,
θ0 = 0◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.22: Results in one period of a) CL b) CT for case A10a [Re = 500, θm = 10◦,
θ0 = 0◦]. ~FDNS , ~Fmod, ~Fopt
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Cases with θm = 0◦ and θ0 = 20◦

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

C
L

t/T
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

(b)

C
T

t/T

Figure 8.23: Results in one period of a) CL b) CT for case C00c [Re = 3000, θm = 0◦,
θ0 = 20◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.24: Results in one period of a) CL b) CT for case B00c [Re = 1000, θm = 0◦,
θ0 = 20◦]. ~FDNS , ~Fmod, ~Fopt

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

C
L

t/T
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

(b)

C
T

t/T

Figure 8.25: Results in one period of a) CL b) CT for case A00c [Re = 500, θm = 0◦, θ0 = 20◦].
~FDNS , ~Fmod, ~Fopt
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8.2.4 Comparison varying the pitching amplitude

Cases with θm = 0◦ and Re = 1000
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Figure 8.26: Results in one period of a) CL b) CT for case B00a [Re = 1000, θm = 0◦,
θ0 = 0◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.27: Results in one period of a) CL b) CT for case B00b [Re = 1000, θm = 0◦,
θ0 = 10◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.28: Results in one period of a) CL b) CT for case B00c [Re = 1000, θm = 0◦,
θ0 = 20◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.29: Results in one period of a) CL b) CT for case B00d [Re = 1000, θm = 0◦,
θ0 = 30◦]. ~FDNS , ~Fmod, ~Fopt

Cases with θm = 10◦ and Re = 1000
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Figure 8.30: Results in one period of a) CL b) CT for case B10a [Re = 1000, θm = 10◦,
θ0 = 0◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.31: Results in one period of a) CL b) CT for case B10b [Re = 1000, θm = 10◦,
θ0 = 10◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.32: Results in one period of a) CL b) CT for case B10c [Re = 1000, θm = 10◦,
θ0 = 20◦]. ~FDNS , ~Fmod, ~Fopt
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Figure 8.33: Results in one period of a) CL b) CT for case B10d [Re = 1000, θm = 10◦,
θ0 = 30◦]. ~FDNS , ~Fmod, ~Fopt
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