
Simulation tool implementing centralized
and distributed algorithms for tracking

acoustic targets

Author: Álvaro de la Serna Martínez
Supervisor: Dr. Jerónimo Arenas García

Madrid, 2014

Acknowledgements

This document is the conclusion of a year-long process of research and work. I
would like to express my sincere gratitude to my Project supervisor, Dr. Jerónimo
Arenas, for the continuous support of my research, for his patience, motivation and
knowledge. His guidance has helped me throughout the time of research and writing
of this document. I could not have imagined having a better advisor and manager
for my Final Year Project and I hope he is satisfied with my work.

I would also like to thank my family, specially my parents, for their constant
support throughout my life and for motivating me during these tough University
years. This document is dedicated to them.

Last but not least, I would like to thank Ana González-Lahore, for her patience
at all times and for always bringing a smile to my face.

To my parents

Abstract

The goal of this document is the implementation of a software tool for the
simulation of the acoustic tracking problem over a wireless sensor network working
in a centralized or distributed manner. Its Graphical User Interface (GUI) allows
the user to configure the parameters associated to the diffusion adaptive algorithms
implemented in the simulation tool, in order to offer a visual representation of the
behavior of a real sensor network working with those settings. For illustration we
ran several simulations, which allowed us to visualize the performance of different
network configurations. The results obtained with the implemented simulation tool
show it can be very helpful to study the audio target tracking problem and ultimately
for the design of sensor networks that can guarantee certain performance criteria.

Moreover, we have developed the code for the implementation of a real acoustic-
tracking sensor network working in a centralized manner, using ©Libelium’s Waspmote™

sensor boards as the network nodes and using ©Libelium’s Meshlium-Xtreme™ as cen-
tral node.

Contents

1 Introduction 1

1.1 General introduction to Signal Processing 1

1.1.1 Introduction to Analog Signal Processing 3

1.1.2 Introduction to Digital Signal Processing 5

1.2 Introduction to adaptive filters . 8

1.3 Introduction to Acoustics . 11

1.3.1 Wave propagation: pressure levels 11

1.3.2 Wave frequency . 13

1.4 Introduction to Acoustic Source Localization 15

1.4.1 Pros & Cons of Centralized networks 17

1.4.2 Pros & Cons of Distributed networks 19

1.5 Contributions of the Project . 20

2 Acoustic target tracking 22

2.1 Problem statement . 22

2.2 Centralized LMS . 27

2.3 Distributed LMS . 28

2.4 TDOA techniques . 31

2.4.1 Estimation of the TDOA . 31

2.4.2 Estimation of the angle of arrival (DOA) 34

2.5 Conclusions . 40

3 The Simulation Tool 41

3.1 Requirements . 41

3.2 Design of the Graphical User Interface 42

3.3 Design of the functionalities of the simulation tool 49

4 Simulations 53

4.1 Effect of the value of the step size . 54

4.2 Effect of parameter η . 55

4.3 Centralized vs Distributed algorithms 56

4.4 Effect of the reach of the nodes in distributed solutions 58

4.5 Effect of the variation of the acoustic parameters 60

4.5.1 Effect of the value of the variance of the noise associated to the
SPT . 60

4.5.2 Effect of parameter α . 62

5 Implementation of the diffusion algorithms over a real wireless sen-
sor network 64

5.1 Used Hardware . 64

5.1.1 ©Libelium’s Waspmote™ . 64

5.1.2 ©Libelium’s Meshlium-Xtreme™ 65

5.2 Implementation of the code . 67

6 Conclusions and further work 69

6.1 Conclusions . 69

6.2 Possible improvements and future lines of work 70

7 Estimated budget 72

7.1 Budget for the implementation of the simulation tool 72

7.2 Budget for the implementation of the real wireless sensor network . . 73

List of Figures

1 Graphical representation of a continuous-time signal 3

2 Graphical representation of the Dirac delta function 4

3 Representation of the spectrum of a bandlimited signal 5

4 Graphical representation of a discrete-time signal 6

5 Unit sample sequence . 7

6 Unit step sequence . 8

7 Schematic of an adaptive filter . 9

8 Equal-loudness contours (in red) (from ISO 226:2003 revision). It rep-
resents the sound pressures for which a listener perceives a constant
loudness when presented with pure steady tones. The original ISO
standard for humans is represented in blue (≈40 phons) 12

9 Scheme of a centralized sensor network. In this scenario, all sensors
(microphones) will send their measured SPL value at time instant n
to the central node (blue box), which will be responsible of performing
the estimation of the position of the source at time n. 17

10 Scheme of a distributed sensor network. In this scenario, there are some
nodes in the network capable of performing the necessary estimations
(computational nodes, in blue), which will receive the measured SPL
values sent by its neighbors (sensors closer to them than a certain
distance) at time n. In the distributed configuration we will end up
having as many position estimations as computational nodes exist in
the network. Finally we can obtain a joint estimation by combining
all possible estimations. 18

11 Relative position between the noisy source and a certain sensor at time
instant n=15 in a centralized scenario. Here, t7[15] and θ[15] denote the
signal propagation time from the source to node s7 and the direction
of arrival of the signal to node s7, respectively, at time n = 15. 23

12 TDOA estimation from the correlation between r1 and r2. In this case
the delay τ = k = 27 µs . 33

13 Two-microphone model, taken from [7]. This figure illustrates how the
acoustic wave coming from source M reaches microphones A and B,
being τ the time delay of arrival (TDOA) between them and α the
direction of arrival of the wave. 33

14 Coverage angles of the two-microphone model, taken from [7]. The
value of α denotes the direction of arrival of the acoustic wave: a
negative value of α means the sound is coming from the left, a positive
value means the sound is coming from the right, and the value 0 denotes
the source is in front of the microphone pair. 35

15 Calculation of α, taken from [7]. It can be seen that the acoustic
wave reaches microphone B before microphone A, so there exists a
delay in the signal retrieved at microphone A. Therefore, segment AB′
represents the distance travelled by the signal during that delay. . . . 35

16 Possible positions of the acoustic source according to Equation (58),
given a certain delay for x = 5 . 37

17 Delay not detected, taken from [7]. In this case, the delay is equal to
the wave length λ, so the signals captured by both microphones are
the same and no delay is detected. 38

18 Wrong delay is detected, taken from [7]. In this case λ/2 < B’A < λ
and the detected delay results in a smaller value than the real one. . . 38

19 Delay smaller than the optimal, taken from [7]. The real value of the
delay is the one coloured in red, whereas the green one corresponds to
the detected value of the delay. 39

20 Greeting GUI window . 44

21 Node placement information and selection of the total number of nodes
in the network . 45

22 Node placement. This is performed by clicking on the axes as many
times as number of nodes the user wants to have in the network . . . 45

23 Trajectory generation: how to generate the real trajectory and side-
note explanation of the meaning behind the points being equidistant
in time . 46

24 Trajectory generation: trajectory generated by the user 46

25 Brief explanation of the Centralized LMS and Difussion ATC algorithms 47

26 Configuration of the parameters of each algorithm. 47

27 Simulation running: The estimated trajectories are plotted in the lower-
left axes and the MSE of each algorithm are being calculated, averaged
over 10 iterations (number of runs). 48

28 End of the simulation: Once the final MSEs of both algorithms have
been obtained, they are plotted in the lower-right axes. 48

29 Main blocks of the simulation tool. 49

30 Flowchart illustrating the simulation process. 51

31 Effect of the Step-size value on the estimation of the trajectory. . . . 54

32 Effects of parameter η in the estimation of the trajectory. 55

33 Centralized vs Distributed scenario. 56

34 Centralized vs Distributed scenario: effect of decreasing the step-size
value. 57

35 Centralized vs Distributed scenario: effect of increasing parameter η. 57

36 Illustration of the dependency of the Diffusion ATC algorithm on the
reach of the nodes: result of setting a small reach value. 59

37 Illustration of the dependency of the Diffusion ATC algorithm on the
reach of the nodes: result of setting a high reach value. 59

38 Effect of the value of the variance of the noise associated to the SPT.
Simulation ran with variance value 0.2. 61

39 Effect of the value of the variance of the noise associated to the SPT.
Simulation ran with variance value 5. 61

40 Effect of parameter α when it is set to 10. 62

41 Effect of parameter α when it is set to 0.1. 63

42 Waspmote™ with XBee™ radio antenna, taken from [20] 65

43 Meshlium-Xtreme™, taken from [22] 66

44 Wireless sensor network using Waspmote™ and Meshlium-Xtreme™,
taken from [22] . 66

This document is structured in seven sections: The first one is a general in-
troduction, in which basic concepts and terminology of the problem at hand will be
explained; the second section presents and develops the acoustic source localization
problem, along with its centralized and distributed solutions; the third section presents
the software simulation tool and its corresponding Graphical User Interface, specially
implemented for the simulation of this problem; the fourth one is a collection of sim-
ulations run with the said software tool; the fifth one presents the implementation of
the diffusion algorithms over a real wireless sensor network; the sixth section presents
the reached conclusions; and the last section is an estimation of the budget needed
for a real implementation of this Final Year Project.

1 Introduction

This Final Year Project deals with the location and tracking of noisy targets
using a wireless network of sensors and distributed processing. In this chapter the mo-
tivations and contributions of the Final Year Project are discussed, which essentially
are the following:

• Implementation of a simulation tool for the comparison of the centralized and
distributed solutions to the above problem.

• Implementation of the diffusion algorithms over a real wireless sensor network.

Prior to that discussion, we will present some basic concepts in order to give
the reader some background in the matter that will help fully understand the re-
maining sections of the Project. These concepts span different fields, such as Signal
Processing, adaptive filters, some basic Acoustics concepts, as well as an introduction
to the acoustic source localization problem and the differences between centralized
and distributed networks.

1.1 General introduction to Signal Processing

Human beings interact with the world around them by reacting to stimuli. These
stimuli are captured by the senses and processed by the brain. The human brain
is a very powerful tool, which stores, analyzes, processes and classifies information

1

1.1 General introduction to Signal Processing

and, at the same time, is constantly learning and adapting the way it processes that
information relying on previous results. By doing so, humans are capable of making
decisions based on (for example) the risks and costs associated to its execution. In the
particular case of the sense of hearing, which is nothing else than a way of processing
information, humans can know their relative position to the source, in a way that
they can know if someone is speaking close to them or if the speaker is far away,
if the speaker is behind or in front of them, etc. There are many more examples
where the human brain currently surpasses the abilities of computers of drawing
conclusions and making decisions in real-time situations, e.g. knowing how many
people there are in a room with a simple visual exploration or, in the case of the
sense of hearing, recognizing sound patterns and identifying someone/something by
the sound it makes. A good example would be what is known as the “Cocktail
party effect”, which basically means to be able to focus one’s auditory attention on
a particular stimulus while filtering out a range of other stimuli, the same way that
someone at a party can focus on a single conversation in a noisy room [1].

Nevertheless, there are cases in which we need computers to analyze certain
phenomena in a more efficient way than our brain, performing estimation and de-
cision tasks. These scenarios emerge when the considered variables are not easy to
understand, when our senses are incapable of determining the stimuli (e.g. radio
signals), when the required degree of precision surpasses human possibilities, when
the amount of information to be processed exceeds the human capacity, or simply
when the working environment is harmful for humans (e.g. measuring the pressure
of a boiler or the sound power of a plane turbine). It is in these type of cases when
Signal Processing becomes a very powerful (and useful) tool.

Telecommunication systems are a perfect example of the robustness of artificial
computing versus a human brain. In these, the analysis of the information carried
by the signals would be impossible for a human brain. Considering not only the rate
at which the information is transmitted and processed but also all the effects the
signals might have suffered during transmission (attenuation, dispersion, diffraction,
etc.), one can imagine how difficult it would be for a human to process all that data,
while artificial processors can work at extremely high rates using processing tools,
e.g. filters, estimators, decision makers, etc., that use mathematical logic and precise
operations to perform the required tasks, along with robust algorithms to deal with
data loss problems (or distortion) on transmission.

Everything said up to this point applies to Signal Processing in general. De-
pending on the nature of the data at hand, one can work using Analog or Digital

2

1.1 General introduction to Signal Processing

Figure 1: Graphical representation of a continuous-time signal

Signal Processing.

1.1.1 Introduction to Analog Signal Processing

Analog Signal Processing (ASP) is any signal processing conducted on analog
signals by analog means. The term analog indicates that a magnitude is mathemat-
ically represented as a set of continuous values, typically representing the voltage,
electric current, or electric charge around components in the electronic devices (e.g.
crossover filters in loudspeakers). Common analog processing elements include capaci-
tors, resistors, inductors and transistors. Analog signals are often depicted graphically
as shown in Figure 1.

An analog signal is often described by a function of time, say, x(t). In many
cases, it is easier to analyse the behaviour of the signal by studying its frequency
response, i.e. X(f), which is the Fourier Transform of x(t). This type of analysis is
based on the impulse response of the signal when it is passing through the system.
While any signal can be used in ASP, there are many types of signals that are used
very frequently [2]:

• Sinusoids: Sinusoids are the building block of analog signal processing. All
real world signals can be represented as an infinite sum of sinusoidal functions
using Fourier Transform.

• Impulse: An impulse (Dirac delta function, see Figure 2) is defined as a signal

3

1.1 General introduction to Signal Processing

Figure 2: Graphical representation of the Dirac delta function

that has an infinite magnitude and an infinitesimally narrow width with a unit
area under it. It is not possible in reality to generate such a signal, but it can
be sufficiently approximated with a large amplitude, narrow pulse, to produce
the theoretical impulse response in a network to a high degree of accuracy. The
impulse response is said to define the system because all possible frequencies
are represented in the input.

• Step: A unit step function, also called the Heaviside step function, is a signal
that takes value zero before zero and a value of one after this point. The step
response (i.e. output of the system if the input is the step function) shows how
a system responds to a sudden input, similar to turning on a switch.

By sampling an analog signal, i.e. periodically measuring the value of the analog
signal every T seconds, a digital signal can be obtained. For an accurate representa-
tion of a signal x(t) by its time samples x(nT), two conditions must be met:

1. The signal x(t) must be bandlimited, that is, its frequency spectrum must be
limited to contain frequencies up to some maximum frequency, say fmax, and
no frequencies beyond that (see Figure 3).

2. The sampling rate fs must be chosen to be at least twice the maximum fre-
quency fmax, i.e.

fs ≥ 2fmax (1)

4

1.1 General introduction to Signal Processing

Figure 3: Representation of the spectrum of a bandlimited signal

The minimum sampling rate, fs = 2fmax, is called the Nyquist rate, and the value fs

2
is called the Nyquist frequency, which also defines the cut-off frequencies of the low
pass analog filters that are required in Digital Signal Processing operations [3].

Working at a sampling rate equal to the Nyquist rate guarantees that the fre-
quency replicas do not overlap and therefore the sampled continuous signal can be
recovered.

1.1.2 Introduction to Digital Signal Processing

The term digital refers to discrete (discontinuous) values. We can retrieve dis-
crete values from an analog (continuous) signal by sampling it, which translates into
a reduction of a continuous signal by taking values from it only at certain moments
t = nT , with n = 1, 2..., N ; being T ≤ 1

fmax
= 2

fs
the sampling period associated to

the Nyquist frequency of the signal.

Discrete-time signals can be obtained by sampling a continuous-time signal, or
they may be generated directly by some discrete-time process. Whatever the origin
of the discrete-time signals, discrete-time processing systems offer great flexibility of
implementation and can be used to simulate analog systems or, more importantly,
to realize signal transformations that cannot be implemented with continuous-time
hardware. Thus, discrete-time representations of signals are often desirable when
sophisticated and flexible signal processing is required [2].

Discrete-time signals are represented mathematically as sequences of numbers.

5

1.1 General introduction to Signal Processing

Figure 4: Graphical representation of a discrete-time signal

A sequence of numbers x, in which the nth number in the sequence is denoted x[n]
is formally written as:

x = {x[n]} (2)

where n ∈ (−∞,∞) is an integer. These sequences often come from the sampling
method mentioned in the previous point, and they are often depicted graphically as
shown in Figure 4.

There are multiple ways of manipulating a sequence, some of the simplest are
scaling, i.e. multiplying each element of the signal by a complex number α, and delay.
A sequence y[n] is said to be a delayed version of sequence x[n] if

y[n] = x[n− n0] (3)

where n0 is an integer.

As in the analog case, the main sequences used in Digital Signal Processing are
sinusoids, the unit sample sequence and the unit step sequence:

• Sinusoids: as in the analog case, any signal can be represented as an infinite
sum of sinusoidal functions using Fourier Transform.

6

1.1 General introduction to Signal Processing

Figure 5: Unit sample sequence

• Unit sample sequence: it is the basic sequence in discussing the theory of
discrete-time signals and systems (see Figure 5), which responds to the following
expression:

δ[n] =

1 if n = 0
0 otherwise

(4)

• Unit step sequence: it is a signal that has a magnitude of zero before zero
and a magnitude of one after zero (see Figure 6), and is given by:

u[n] =

1 if n ≥ 0
0 otherwise

(5)

It is easy to deduce that the unit step is related to the impulse (unit sample) by:

u[n] =
∞∑
k=0

δ[n− k] (6)

that is, the unit step sequence can be related to the impulse in terms of a sum of
delayed impulses.

With this in mind, any arbitrary sequence x[n] can be represented as a sum of
scaled, delayed impulses. In the general case:

x[n] =
∞∑

k=−∞
x[k]δ[n− k] (7)

7

1.2 Introduction to adaptive filters

Figure 6: Unit step sequence

Throughout the Project we will work with discrete signals of acoustic origin,
i.e. obtained from sampling the atmospheric pressure level. The objective will be to
estimate the trajectory of a noisy target, which will require the use of more advanced
signal processing than just using scaling or delay. Specifically, the signals will feed a
type FIR (Finite Impulse Response) signal filter, with impulse response p[n]. Given
that the design is performed with the objective of minimizing an error signal and
that the response of the filter may vary in time, we will resort to adaptive filtering
algorithms, which are briefly presented in the next section.

1.2 Introduction to adaptive filters

An adaptive filter is a computational tool that attempts to model the relation-
ship between two signals in real time and in an iterative manner [4]. Compared to
classical digital filters, working with adaptive filters presents the following advantages:

• They can complete some signal processing tasks that traditional digital filters
cannot, e.g. one can use adaptive filters to remove time-varying noise from a
signal.

• They can complete real-time or online modelling tasks. Typically, adaptive
filters are useful when one performs real-time or online signal processing ap-
plications where the desired filter response varies over time, e.g. the acoustic
source localization and tracking problem.

8

1.2 Introduction to adaptive filters

Figure 7: Schematic of an adaptive filter

Adaptive filtering with a FIR structure is carried out in the following way (see
Figure 7): An input signal x[n] is fed into a system which computes the output signal
y[n] at time n:

y[n] = wH [n]x[n] (8)
where the H superscript denotes conjugate transposition and w[n] represents the
vector of weights of the filter, which control the behavior of the filter, at sample time
n. Finally, x[n] represents a vector of samples of the signal:

x[n] = [x[n], x[n− 1], ..., x[n−N + 1]] (9)

where N represents the length of the vector of weights of the filter.

This output signal is then compared to d[n], the desired response signal, by
calculating the difference between them at time n:

e[n] = d[n]− y[n] (10)

which is called the error signal. This error signal is then fed into the system in a way
that modifies or adapts the parameters of the filter from time n to time n + 1 in a
specific manner. The weights of the filter can be learnt and adapted using different
algorithms, e.g. the least-mean-squares or the recursive least squares algorithms,
among others [4]. In this Project we will just pay attention to the Least Mean Square
Algorithm, that we describe next.

The Least Mean Square Algorithm

Least-mean-squares (LMS from now on) algorithms are a class of adaptive filters
used to simulate a certain filter by finding the filter coefficients, w, that minimize

9

1.2 Introduction to adaptive filters

the least-mean-squares of the error signal (10), i.e. they minimize the mean of the
quadratic error:

J [n] = E{e2[n]} (11)

where J [n] denotes the cost associated to the estimation error.

The LMS algorithm for a filter of order N (N being the number of weights of the
filter) can be performed in the following way: we want to obtain the filter coefficients
ŵ[n] that minimize the error function (11). This is carried out updating the weights
of the filter using steepest descent.
Applying steepest descent means to take the partial derivatives of (11) with respect
to the individual entries of the filter coefficient (weight) vector:

∇ŵE{e∗[n]e[n]} = 2E{∇ŵ (e[n]) e∗[n]} = −2E{e∗[n]e[n]} (12)

where ∇ denotes the gradient operator. Now, the gradient of e2[n] is a vector which
points towards the steepest ascent of the squared error. In order to find its minimum
we need to take a step in the opposite direction of the gradient, which results in the
steepest descent algorithm:

ŵ[n+ 1] = ŵ[n]− µ

2∇ŵE{e∗[n]e[n]} = ŵ + µE{e∗[n]e[n]} (13)

Finally, the LMS is obtained as an stochastic approximation of the rule above,
using an instantaneous estimation of the expectation. Thus, approximating the ex-
pectation E{x[n]e∗[n]} ≈ x[n]e∗[n], the LMS update rule is obtained:

ŵ[n+ 1] = ŵ[n] + µe∗[n]x[n] (14)

Using this notation, the boldface variables correspond to vectors, the asterisk denotes
conjugation and µ is the step size or adaptation constant, which represents the speed
at which the algorithm converges. In this sense, the higher the value of µ, the faster
the algorithm converges, but also the higher the residual error becomes. One has
to choose µ correctly for the algorithm to be convergent, otherwise the algorithm
would not converge fast enough or would not converge at all (if µ is set too high the
algorithm may diverge).

The strength of this algorithm relies on its simplicity: it does not require esti-
mations of the correlation functions, or keeping a lot of variables in memory, as other
algorithms do.

10

1.3 Introduction to Acoustics

1.3 Introduction to Acoustics

Acoustics is the science that deals with the study of all mechanical waves in
gases, liquids and solids including vibration, sound, ultrasound and infrasound [5].
Its application is present in almost all aspects of modern society, being noise control
industries the most obvious one.

If we consider its original definition, acoustics is simply the study of small pres-
sure waves in air which can be detected by the human ear (sound) and it is a part of
fluid dynamics. Fluid dynamics present a major problem: motion equations are non-
linear. This implies that an exact general solution of these equations is not available.
Acoustics is a first order approximation in which non-linear effects are neglected. In
classical acoustics the generation of sound is considered to be a boundary condition
problem (i.e. the sound generated by a loudspeaker)[5].

The study of acoustics revolves around the generation, propagation and recep-
tion of mechanical waves and vibrations. For the generation and reception parts of
the process, which are of special importance, one needs to dive into the electroa-
coustics field, which is a branch of acoustical engineering that deals with the design
of headphones, microphones, loudspeakers, sound systems, sound reproducing and
recording; but the most important part of the process relies in the propagation of the
sound wave.

1.3.1 Wave propagation: pressure levels

In fluids such as air and water, sound waves propagate as disturbances in the
ambient pressure level. While this disturbance is usually small, it is still noticeable to
the human ear. The smallest sound that a person can hear, known as the threshold of
hearing, is nine orders of magnitude smaller than the ambient pressure [5]. This great
variance in the sound levels a human ear can detect means that human hearing does
not have a flat spectral sensitivity (frequency response) relative to frequency versus
amplitude. Instead, human ears present a logarithmic frequency response. Humans
do not perceive low- and high-frequency sounds as well as they perceive sounds near
2,000 Hz, as shown in the equal-loudness contour (see Figure 8). An equal-loudness
contour is a measure of sound pressure (dB SPL), over the frequency spectrum, for
which a listener perceives a constant loudness when presented with pure steady tones.
The unit of measurement for loudness levels is the phon, and is arrived at by reference
to equal-loudness contours. By definition, two sine waves of differing frequencies are

11

1.3 Introduction to Acoustics

Figure 8: Equal-loudness contours (in red) (from ISO 226:2003 revision).
It represents the sound pressures for which a listener perceives a constant
loudness when presented with pure steady tones. The original ISO stan-
dard for humans is represented in blue (≈40 phons)

said to have equal-loudness level measured in phons if they are perceived as equally
loud by the average young person without significant hearing impairment [6, p.276].

The loudness of the disturbances detected by the human ear is called the sound
pressure level (SPL) and is measured on a logarithmic scale in decibels, dB, follow-
ing Equation (15) below. Technically, the sound pressure level (or sound level) Lp is
a measure of the effective sound pressure of a sound relative to a reference value.

The effective value of the sound pressure would be prms, the reference sound
pressure value would be pref = 20 µPa (rms), which corresponds to the threshold of
hearing at 1 kHz for a typical human ear [5], so that the SPL can be calculated as
follows:

Lp = 10 · log10

(
p2
rms

p2
ref

)
= 20 · log10

(
prms
pref

)
dB (15)

The rms acronym stands for root mean square and it is the square root of the

12

1.3 Introduction to Acoustics

arithmetic mean (average) of the squares of the original values:

xrms =

√√√√ 1
N

n′+N−1∑
n=n′

x2[n] (16)

where n = n′, n′ + 1, ..., n′ + N − 1 is the sampling window size, i.e., the number of
samples we are working with. Note that we are working with discrete values, otherwise
this expression would respond to the integral over the sampling time interval of the
measured signal squared.

When working with a sound pressure level, the distance between the emitter
and the receptor is a crucial variable, because sound pressure levels are inversely
proportional to distance. This means that the value of the SPL suffers an attenuation
proportional to the distance travelled by the sound wave. The measured SPL can be
calculated using the following equation with r1 = 1 m, which is the standard reference
distance:

Lp2 = Lp1 + 20 · log10

(
r1

r2

)
dB (17)

where:

• Lp2 is the measured SPL at distance r2.

• Lp1 is the reference SPL value, measured at distance r1.

• r1 is the reference distance, that is, the distance at which we can ensure the
source emits a SPL value equal to Lp1 .

• r2 is the distance between the source and the receiver.

Note that the SPL suffers an attenuation proportional to the square of the travelled
distance r2.

This SPL propagation model will be essential for some of the acoustic source
tracking algorithms that we will describe and implement in this Project.

1.3.2 Wave frequency

In the field of engineering, sound pressure levels are frequently analyzed as a
function of frequency, partly because this is how our ears interpret sound. What we

13

1.3 Introduction to Acoustics

experience as higher pitched or lower pitched sounds are pressure vibrations having a
higher or lower number of cycles per second (frequency). Normally, acoustic signals
are sampled in time and then presented in more meaningful forms such as octave
bands or time frequency plots. Both these methods are used to analyze sound and
better understand the acoustic phenomenon. Analytic instruments such as the spec-
trum analyzer facilitate visualization and measurement of acoustic signals and their
properties.

The entire frequency spectrum can be divided into three sections: audio, ul-
trasonic, and infrasonic. The audio range falls between 20 Hz and 20,000 Hz. This
range is very important because its frequencies can be detected by the human ear.
This range has a number of applications, including speech communication and music.
Moreover, it is the frequency range we are going to work with in the acoustic source
localization problem.

The ultrasonic range refers to the very high frequencies: 20,000 Hz and higher.
This range has shorter wavelengths which allow better resolution in imaging tech-
nologies. Medical applications such as ultrasonography and elastography rely on the
ultrasonic frequency range.

On the other end of the spectrum, the lowest frequencies are known as the
infrasonic range. These frequencies can be used to study geological phenomena such
as earthquakes.

Since the goal of this Project is to implement an acoustic-based localization
algorithm we will be working with acoustic waveforms whose frequencies fall in the
audio spectrum.

We will be working with noise sensors, which are a type of transducer that
convert sound pressure waves into electrical signals and those electrical signals into
digital values, which will be the input data to the algorithms.

14

1.4 Introduction to Acoustic Source Localization

1.4 Introduction to Acoustic Source Localization

Sound localization is the task of determining the direction and distance to a
source with the only help of the sounds it makes. Getting these two parameters
allows an accurate localization of a noisy source, e.g. a vehicle in motion or a person
speaking, which is crucial for a certain number of applications [7].

Despite comprising several methods which have been studied for several years,
acoustic localization systems are very difficult to find outside research papers and
military applications. This offers endless possibilities for researchers, who can add
acoustic-source localization algorithms to image-based systems, e.g. video tracking
and image processing, to study the improvement of the system in terms of localization
efficiency. This acoustic addition to tracking systems makes sense in scenarios in
which visual localization presents limitations in angle, reach and/or brightness of the
image. The acoustic-visual combination would be more efficient in the way that the
acoustic localization system can “alert” the visual localization system of the direction
from which the target is coming, making its tracking easier and faster. This example
illustrates how each system complements the weaknesses of the other: visual tracking
helps in the determination of the height at which the source is moving, since 3-D
estimation in the acoustic system is not necessary (if we know the direction from
which a sound is coming, we cannot really know how its position varies in altitude
unless we are able to see it); and acoustic tracking helps in the determination of the
direction from which the source is approaching in the cases the visual system, i.e. a
camera, is not pointing in the direction of the source, thus not recognizing it.

There have been several approaches to the solution of this problem, which one
could group into two big families: Solutions based the calculation of the Time Delay of
Arrival (TDOA) and solutions based on the measured signal pressure level, inversely
proportional to the square of the distance (see Equation (17)).

The first family of solutions has been widely used for the following reasons [8]:

• Such systems are conceptually simple.

• They are reasonably effective in moderately reverberant environments.

• Their low computational complexity makes them well-suited to real-time im-
plementation with several sensors.

Some authors propose a two-microphone implementation which tries to simulate

15

1.4 Introduction to Acoustic Source Localization

the way our ears locate the sound source. Others prefer a three or more microphones
array arranged in different ways. In all of them, the modus operandi consists in first
estimating the delay between the signals received in every sensor (microphone) and
afterwards calculating the Direction of Arrival (DOA) of the sound. These models
can present errors in their estimation, mostly due to phase errors in the retrieval
of information and synchronization errors [7, 8, 9, 10]. It is important to note that
all the solutions to the acoustic source localization problem present good behaviour
in two dimensions. There is no need for a three-dimensional solution because one
cannot exactly know how the position of the source varies in altitude without visual
aid. Nevertheless, an N -dimensional solution to this problem can be found in [11] for
outdoor sound localization applications.

With respect to the second family, some approaches [12, 13] rely on the robust-
ness of a sensor network working either in a centralized or distributed manner, which
is the approach taken for study in this Project. In these, every element of the network
(node from now on) has a built-in noise sensor. By taking samples of the sound signal,
it makes an estimation of the position of the source at time instant n, shares it with
its neighbours and, using its neighbors’ estimations, adapts its result and calculations
to estimate the final position. A node is said to be a neighbor of another node inside
a network if they are separated a certain distance, smaller than a given threshold,
thus making their communication possible.

In the case of the centralized solution (see Figure 9), a central node is responsible
of retrieving the data measured by all the nodes in the network and combining them
into a final estimate. In the case of the acoustic source localization problem, each node
in the network takes a sample measurement of the SPL at time instant n, makes a first
estimate of the position of the source, makes an estimation of the possible estimation
errors and sends both values along the network until it reaches the central node, which
will be responsible for retrieving the estimations of all the nodes in the network and
perform the necessary calculations to give the final estimation of the position of the
source at time n.

In the distributed scenario (see Figure 10), each node takes a sample measure-
ment at time instant n, makes a first estimate of the position of the source and makes
an estimation of the possible estimation errors. Then it exchanges those estimations
with its neighbors in order to obtain a joint estimation of the position at time n, thus
resulting in as many estimated trajectories as nodes are in the network.

Diffusion methods endow networks with powerful adaptation abilities that en-

16

1.4 Introduction to Acoustic Source Localization

Figure 9: Scheme of a centralized sensor network. In this scenario, all
sensors (microphones) will send their measured SPL value at time instant
n to the central node (blue box), which will be responsible of performing
the estimation of the position of the source at time n.

able the individual nodes to continue learning even when the cost function changes
with time (the cost function is still MSE (11) but since our acoustic target is in
motion, its position, and therefore the cost function, changes with time). In the dif-
fusion approach, information is processed locally and simultaneously at all nodes and
the processed data are diffused through a real-time sharing mechanism that ripples
through the network continuously [13].

Figures 9 and 10 show an example of a centralized and a distributed sensor
network respectively, in which a noisy source is moving along the depicted path. These
are the two main scenarios to be studied and compared along the following sections.
A diffusion sensor-network-based solution to the acoustic source localization problem
presents several advantages and disadvantages, which will be discussed in the next
sections.

1.4.1 Pros & Cons of Centralized networks

A centralized system is one in which a central controller exercises control over
the lower-level components of the system directly or through the use of a power

17

1.4 Introduction to Acoustic Source Localization

Figure 10: Scheme of a distributed sensor network. In this scenario, there
are some nodes in the network capable of performing the necessary estima-
tions (computational nodes, in blue), which will receive the measured SPL
values sent by its neighbors (sensors closer to them than a certain distance)
at time n. In the distributed configuration we will end up having as many
position estimations as computational nodes exist in the network. Finally
we can obtain a joint estimation by combining all possible estimations.

hierarchy (such as instructing a middle level component to instruct a lower level
component). The complex behaviour exhibited by this system is thus the result of
the central controller’s “control” over lower level components in the system, including
the active supervision of the lower level components.

The term centralized is used for diffusion networks that rely on a single (central)
node of the network to perform the computations. This architecture model presents
several advantages, like higher computational speed, easy maintenance (simpler pro-
gramming code, which allows to easily track each node and locate all possible errors
along the network) and provides greater control to the person managing the network.

However, the drawback of a fully centralized control system is that everything
must be routed back to a single control device. This rendezvous point could cause
slower communications (large networks can cause congestion at the central node be-
cause all nodes are trying to communicate with it at the same time), and is a potential
single point of failure for the network. Moreover, the routing must be automatic. If
a network node crashes the whole network has to be re-routed. This translates into
a lack of flexibility when changes in the network need to be made [17].

18

1.4 Introduction to Acoustic Source Localization

1.4.2 Pros & Cons of Distributed networks

A distributed (or decentralized) system is a system in which lower level com-
ponents operate on local information to accomplish global goals. In other words, a
distributed system is one in which components located at networked computers com-
municate and coordinate their actions only by passing messages. This definition leads
to the following especially significant characteristics of distributed systems: concur-
rency of components, lack of a global clock and independent failures of components
[18].

In contrast to centralized control, networks that distribute its intelligence and
computation resources among the constituent nodes allow local devices to make de-
cisions on their own, without communicating with a “master” device. This speeds
response times and eliminates the single point of failure. Moreover, distributed net-
works offer a slightly slower computational speed (since the nodes have to be con-
stantly communicating with each other and have to process the information obtained
by their neighbors) but they are more robust against node failures. In the distributed
scenario, the network does not stop working if a single node crashes, but if the num-
ber of nodes in the network is too large, this kind of network architecture can get
saturated if the communications are not programmed correctly (some nodes might
end up receiving larger amount of data than others, resulting in local bottlenecks).
Moreover, because all decisions are made at the nodes themselves, the (human) man-
ager loses control and visibility into the network. Worse, intelligent devices capable
of making their own decisions require more processing power, and greater upkeep,
in order to handle the additional costs in gathering, maintaining and updating the
data. So the cost of a fully distributed network is usually greater than that of a fully
centralized network [17].

Considering the paragraphs above, one could summarize the advantages of dis-
tributed systems over centralized ones in a short list:

1. Incremental growth: Computing power can be added in small increments.

2. Reliability: If a single node crashes, the system as a whole can still survive.

3. Speed: A distributed system can have more total computing power than a cen-
tralized one. For example, imagine we have 10.000 CPU chips, each running at
50 MIPS (Million Instructions Per Second). It is not possible to build a 500.000
MIPS single processor since it would require 0.002 nanosecond instruction cy-
cles. Therefore we obtain enhanced performance through load distributing.

19

1.5 Contributions of the Project

On the other hand, choosing distributed systems over centralized ones can
present the following disadvantages:

1. Network security: Network managers have to be careful with the encryption
of the channel used in the communication to prevent errors and to strengthen
them against the threat of being exposed by hackers, because in a distributed
system information is transmitted using messages which carry the information
instead of just sharing the measured data as in the centralized case.

2. Networking: If the network gets saturated then problems with transmission will
surface.

3. Troubleshooting: Troubleshooting and diagnosing problems in a distributed sys-
tem can become very difficult, because the analysis may require connecting to
remote nodes or inspecting communications between nodes.

1.5 Contributions of the Project

In the previous section we have described how centralized and distributed net-
works work and we have highlighted their respective strengths and weaknesses. The
motivation of the Project is to develop a software simulation tool that simulates a
sensor network working on an acoustic target tracking problem either in a central-
ized or distributed way, which allows to compare the results obtained by diffusion
networks and to compare them to the optimal theoretical result of the centralized
solution. With it, we want to study the different behaviours of the system depending
on the number of nodes in the network and depending on the relative distances be-
tween the nodes and the trajectory of the acoustic source, this last one to determine
if the model adjusts to “reality”, in the sense that noisy sources that are far from the
sensors (human ears if the sensor were a person) are harder to locate.

Moreover, when working with distributed networks, we will test how the cover-
age range of the nodes affects the accuracy of the algorithm. It will be shown that
increasing the coverage range of the nodes leads to more nodes in the network becom-
ing neighbors and, consequently, the accuracy of the algorithm increases drastically.

In order to compare the performance of both types of solutions we have devel-
oped a MATLAB®-based software for their simulation and comparison, in which the

20

1.5 Contributions of the Project

network configuration parameters can be set using a graphical user interface (GUI).
The software allows to manage some simulation parameters, such as:

• The trajectory of the noisy source, i.e. the one that the network will estimate.

• The size and topology of the network.

• Some parameters of the diffusion algorithms, e.g. the step size.

Such software has been validated by a number of experiments in which the
behavior of both solutions is analized.

Moreover, using hardware resources of the research group, a software implemen-
tation of a diffusion-based distributed strategy has been developed for ©Libelium’s
wireless sensor motes.

21

2 Acoustic target tracking

In this chapter we present the algorithms for target localization and tracking
over sensor networks. We start by introducing the problem, notation and cost func-
tion. Then, we derive algorithms for on-line tracking using distributed and centralized
processing in sensor networks. These algorithms are based on measurements of the
acoustic pressure and time delay at each node, the latter normally not being available
in this application. For completeness, we conclude the chapter by presenting some
alternatives for estimating such time delay.

2.1 Problem statement

We consider a network of wireless nodes with fixed positions, sk, over a coverage
area (see Figure 11). Each node uses one omnidirectional noise sensor (i.e., a noise
sensor that can “hear” noise from virtually any direction) to obtain the sound pressure
level (SPL) and an antenna to communicate with other nodes in the network.

We consider a time-varying trajectory with coordinates x[n], n being the itera-
tion number (associated with discrete time). The target emits with a constant energy
over this trajectory, and it is therefore characterized by a constant, Lps , which is the
SPL measured at 1 meter. The objective is to estimate the position, w = [x, y]T ,of
the target with a sensor network either in a centralized or distributed manner. The
idea is that each network node k has a microphone that measures the acoustic pres-
sure, Lpk

, and has access to the propagation time required for the acoustic wave to
get from the source to node k, tk[n].

The value of the SPL received by every noise sensor depends on its directivity
pattern and on the relative distances of every node to each point of the trajectory
of the acoustic source. In section 1.3.1 we presented the equation that returns the
value of the SPL of the acoustic waveform after it has travelled a given distance
(see Equation 17). In addition, acoustic waves are very sensitive to noise. Here,
the term noise refers to any disturbance in the original signal, e.g. echoes, obstacles
in the path, additional sounds, etc. In order to simulate information losses due to
attenuation, diffusion, noise and presence of obstacles [12], some corrections have to
be added to (17), so the measured SPL value at node k at time instant n, Lpk

[n], can

22

2.1 Problem statement

Figure 11: Relative position between the noisy source and a certain sensor
at time instant n=15 in a centralized scenario. Here, t7[15] and θ[15]
denote the signal propagation time from the source to node s7 and the
direction of arrival of the signal to node s7, respectively, at time n = 15.

be expressed as:

Lpk
[n] = Lps + gk (θ[n]) + 10 · log

(
d0

dk[n]

)α
+ nk[n] (18)

where:

• Lpk
[n] is the sound pressure level measured by sensor k at time n, in dB.

• Lps is the sound pressure level of the acoustic source, in dB, measured at a
distance d0 = 1 m.

• gk (θ) [n] is the gain of sensor k at time n, in dB, due to its directivity pat-
tern. Since in this Project we assume omnidirectional microphones we will have
gk (θ) [n] = 0 dB ∀θ, n

• dk[n] is the Euclidean distance between node k and the acoustic source at time
n.

• α is the attenuation exponent corresponding to the log-distance path loss model.

23

2.1 Problem statement

• nk[n] is a Gaussian noise at time instant n.

As previously said, we also assume that each node has access to a variable tk[n]
which is associated to the propagation time of the acoustic wave between the target
and the node at time instant n, i.e.:

tk[n] = dk[n]
v

(19)

where dk[n] is the real distance between the target and node k.

Thus, considering a network of N nodes, the objective is to find the coordinates
of the source that minimize the hybrid cost function over w [12]:

J(w) =
N∑
k=1

(
(1− η) · Jpk (w) + η · ν · J tk(w)

)
(20)

which denotes the sum of the local costs over all the nodes in the network, and where:

• w = [x, y]T are the coordinates of the estimated position of the source.

• Jpk (w) is the local cost associated with node k related to the measured SPL.

• J tk(w) is the local cost associated with node k related to time interval measure-
ments and communications.

• η ∈[0,1] represents the weights of the SPL and time interval cost terms in the
localization of the source, i.e. how much importance we assign to each error
term.

• Variable ν is used to make the value of J tk(w) be approximately in the same
numerical range as Jpk (w).

Considering the following grouping of terms in (18):

hk[n] = Lps + gk (θ[n]) + 10αlog(d0) (21)

the local cost functions can be defined as [12]:

Jpk (w) = E
[∣∣∣Lpk

[n] + 10 · α · log (‖ w[n]− sk ‖)− hk[n]
∣∣∣2] (22)

J tk(w) = E
[∣∣∣∣∣tk[n]− ‖ w[n]− sk ‖

v

∣∣∣∣∣2
]

(23)

24

2.1 Problem statement

where:

• v ≈ 340 m/s is the speed of sound (we are working with acoustic waves).

• w[n] is the estimated coordinates of the noisy source at time instant n.

• sk represents the coordinates of sensor k.

• tk[n] denotes the measured propagation time needed for the acoustic signal to
reach sensor k (see Equation (19)).

• hk[n] is a variable which depends on the directivity of sensor k at time n due to
the relative position between node k and the trajectory (see Figure 11) and is
common to all nodes, but only when working with omnidirectional microphones
[12], as we will explain shortly.

Equation (22) corresponds to the mean squared difference between the SPL
value measured at node k considering the acoustic wave has travelled the correspond-
ing distance between node k and the estimated coordinates of the target, Lpk

, and the
original SPL emitted by the target, Lps . This cost term takes value 0 if the measured
SPL value is equal to the theoretical value we would obtain after substituting the
estimated distance, ‖ w[n]− sk ‖, into Equation (22).

In the same way, Equation (23) corresponds to the squared difference between
the real propagation time of the acoustic wave from the target to node k, tk[n] and
the theoretical propagation time from the estimated coordinates of the target, w[n],
to node k, sk, at time instant n. This expression takes value 0 if the measured SPT
value is equal to the theoretical value we would obtain substituting the estimated
distance, ‖ w[n]− sk ‖, into Equation (23).

Simplifications

Working with directivity patterns can result in very complicated propagation
models. For the purpose of this Project we will be working under the assumption that
the source and the sensors are omnidirectional. This means that the source emits
with constant level in every direction and the sensors are capable of detecting sound
coming from any direction, so an important simplification can be made to (18):

25

2.1 Problem statement

• gk(θ)[n] = 0 ∀ k, n, due to the omnidirectionality of the noise sensor, i.e. every
sensor is designed to get the same SPL value independently of the direction
from where the sound is coming.

This implies that the hk[n] variable becomes constant:

hk[n] = Lps + 10αlog(d0) (24)

Since our reference distance d0 = 1, the logarithmic term takes value 0 and:

hk[n] = h = Lps (25)

This results in a simpler expression for the local cost function associated to the
measured SPL:

Jpk (w) = E
[∣∣∣Lpk

[n] + 10 · α · log (‖ w[n]− sk ‖)− Lps

∣∣∣2] (26)

The calculation of the local costs associated to time interval measurements and
communications (see Equation (23)) requires that the network nodes have access to
the value of tk[n]. This might be possible in e.g., phone localization in mobile net-
works [12] under the assumption that the phone and all nodes are synchronized and
a timestamp is included in the transmitted packages. However, this is not realistic
in an acoustic localization situation. In practice, the only possibility would be to
estimate tk[n] using approaches based on TDOA measurements either sharing infor-
mation between the measured waves in different nodes or implementing two (or more)
microphones at each node. This has also been suggested in [12]. In this document
this possibility is briefly described at the end of the chapter for completeness. How-
ever, for simplicity, in the simulations and the implemented software we will assume
that tk[n] is known at each node. In order to use a more or less realistic model we
generate such measurements with the theoretical model (19), to which we add a noisy
term which accounts for error terms of different nature, e.g., multi path, measurement
noise, etc.

tk[n] = dk[n]
v

+ nt[n] (27)

In order to optimize the hybrid cost (20) associated to the tracking of the
acoustic source, two adaptive algorithms have been tested over the wireless sensor
network: the centralized and the distributed LMS algorithms.

26

2.2 Centralized LMS

2.2 Centralized LMS

In the centralized least-mean-squares algorithm, every node in the network con-
tributes to jointly estimate the acoustic source position at time n. In this scenario,
all Lpk

[n] and/or tk[n] measurements are sent to a central node, which is in charge of
minimizing the hybrid cost (20). If a stochastic gradient scheme is used, since all the
nodes work as a whole, the gradient of (20) can be calculated and used by the central
node as [12]:

∇wJ(w) =
N∑
k=1

(
(1− η)∇wJ

p
k + ην∇wJ

t
k

)
(28)

where:

∇wJ
p
k = 20α

ln10E
{

w− sk
‖ w− sk ‖2 e

p
k[n]

}
(29)

∇wJ
t
k = −2

v
E
{

w− sk
‖ w− sk ‖

etk[n]
}

(30)

with error functions:

epk[n] = Lpk
[n] + 10αlog (‖ w− sk ‖)− h (31)

etk[n] = tk[n]− ‖ w− sk ‖
v

(32)

where tk[n] denotes the signal propagation time (SPT) from the source to node k (19)
and h = Lps .

In [12], the steepest descent algorithm (see section 1.2) for the minimization of
(20) takes the form:

wi[n] = wi−1[n]− µcent∇wJ(wi−1[n]) (33)

where µcent > 0 is the step size, and wi[n] is the estimate of the position of the
acoustic source at iteration i.

This iterative approach may cause problems when the trajectory approaches a
node in the network. That is because the gradients (29) and (30) become very large in
that case. This problem can be lightened by multiplying ∇wJ

p
k by ln

(
1
2

)
· ‖ w−sk ‖2

and scaling ∇wJ
t
k with v ·

‖w−sk‖
2 . Doing so, and approximating the gradient (28) with

27

2.3 Distributed LMS

the instantaneous data at time n, we arrive to the centralized LMS algorithm for
the tracking of an acoustic source in motion [12]:

∇̂wJk(w[n− 1]) =
(
α(1− η)epk[n]− νηetk[n]

)
· (w[n− 1]− sk) (34)

w[n] = w[n− 1]− µcent

N∑
k=1
∇̂wJk(w[n− 1]) (35)

where errors epk[n] and etk[n] are evaluated using (31) and (32) at w = w[n − 1] and
where:

• α is the attenuation exponent corresponding to the log-distance path loss model
(see Equation (18))

• η ∈ [0, 1] represents how much importance we assign to each error term.

• ν is used to make the value of etk[n] be approximately in the same numerical
range as epk[n].

• µcent is the step size of the centralized LMS algorithm.

2.3 Distributed LMS

In the distributed scenario the estimation of the position of the acoustic source
is performed in two steps: a local estimation at every node in the network and a
merger of the estimations of each node’s neighbors into a final estimation of the
position. This means that in the distributed scenario the network nodes no longer
exchange their Lpk

[n] nor tk[n] measurements, but instead they use them to update
a local estimate, ψk,n, and it is this intermediate estimation which is interchanged
among the neighbor nodes in order to obtain a final estimation of the position, wk[n].
As mentioned in the previous section, a node is said to be a neighbor of another
node inside the network if they are separated a certain distance, smaller than a given
threshold r. This threshold value depends on the transmission power of the node.

In [12], they point out the impossibility of the nodes to respond quickly in real-
time situations if they were to use the alternating directions method of multipliers in
which the global cost (20) is decoupled and written as a group of local constrained op-
timization problems, and they propose an alternative algorithm in which minimizing

28

2.3 Distributed LMS

the global cost (20) can be accomplished by solving the following unconstrained local
optimization problems for k ∈ 1, .., N , being N the number of nodes in the network:

minw

∑
l∈Nk

cl,k
[
(1− η)Jpk (w) + ηνJ tk(w)

]
+

∑
l∈Nk\{k}

gl,k ‖ w−ψl ‖2

 (36)

where Nk denotes the set of neighbors of node k (including k itself), ψl is a local
variable that represents the global parameter at node l (its intermediate estimate of
the position) and Nk\{k} denotes the set Nk excluding node k. In this formulation,
{gl,k} are non-negative parameters and {cl,k} denote non-negative entries of a right-
stochastic matrix C satisfying:cl,k = 0 if l 6∈ Nk∑

cl,k = 1 if l ∈ Nk

(37)

Each cl,k represents a weight value that node k assigns to information arriving
from its neighbor l [13].

Following the arguments in [13, pp.4-7] and performing a similar normalization
of the gradient as in the centralized algorithm, [12] arrives to the following nor-
malized distributed LMS algorithm for minimizing the hybrid cost (20) in a
distributed and adaptive manner:

ψk[n] = wk[n− 1]− µdist,k
∑
l∈Nk

cl,k∇̂wJl(wk[n− 1]) (38)

wk[n] =
∑
l∈Nk

al,kψl[n] (39)

In this algorithm, µdist,k > 0 is the step size at node k, ψk,n denotes an inter-
mediate estimate at node k of the value of the position at iteration n, wk,n is the
estimation at node k of the position of the source at iteration n after merging the
local estimation with the estimations received from the neighbors, and the gradient
takes the form:

∇̂wJl(wk[n− 1]) =
(
α(1− η)epl [n]− νηetl [n]

)
(wk[n− 1]− sl) (40)

where epl [n] and etl [n] are evaluated using (31) and (32) at w = wk,n−1.

Moreover, the {gl,k} parameters are replaced with the {al,k} coefficients [12],
which are non-negative entries of a left-stochastic matrix A ∈ RNxN that satisfy:al,k = 0 if l 6∈ Nk∑

al,k = 1 if l ∈ Nk

(41)

29

2.3 Distributed LMS

In addition, we make parameters al,k in (39) constant and equal to the inverse of the
number of neighbors of node k, to make the nodes’ neighbors equally relevant in the
computations.

Just for completeness, these cl,k and al,k parameters can be obtained using
adaptive methods in order to find an optimal value for each node instead of taking
constant values. The interested reader can consult [14, 15, 16] for a more insightful
development of these methods.

As said at the beginning of this section, the distributed LMS algorithm is per-
formed in two steps: the first one is an adaptation step in which node k updates its
intermediate estimation from wk[n− 1] to ψk[n] using the measured data Lpl

[n], tl[n]
(all other nodes in the network are performing a similar step and generating their
intermediate estimate ψl[n]) and the second one is a combination step, in which node
k combines its intermediate state ψk[n] with those of its neighbors to obtain wk[n].
This is the reason this type of algorithm is referred as Adapt-then-Combine (ATC).
Finally, the step size parameters µdist,k, according to [13], can assume constant values
(µdist,k = µdist), which is critical to endow the network with continuous adaptation
and learning abilities (otherwise, when step sizes die out, the network stops learning).
Actually, constant step sizes also empower networks with tracking abilities, in which
case the algorithms can track time changes in the optimal estimated trajectory [13].

For simplification we will consider the cl,k terms in (38) to be:

cl,k = 1 if l = k

cl,k = 0 otherwise
(42)

In the following sections of this Project, Equations (38) and (39) will be referred
as diffusion ATC algorithm instead of distributed LMS algorithm. Considering the
paragraphs above and denoting the number of neighbors of a node as nk, the diffusion
ATC algorithm results in the following equations:

ψk[n] = wk[n− 1]− µdist∇̂wJk(wk[n− 1]) (43)

wk[n] = 1
nk

∑
l∈Nk

ψl[n] (44)

30

2.4 TDOA techniques

2.4 TDOA techniques

In previous sections we assumed that tk[n] measurements are known at each
node. In practice, this is rarely the case and we can proceed by:

a) Ignoring the signal propagation time (SPT) term in the cost function (i.e., setting
η = 0 in the hybrid cost function).

b) Estimating the SPT through some TDOA technique.

In this section we present the basics of these techniques and also include refer-
ences to some previous works that try to locate the target based only on the correlation
among the received acoustic signals. These approaches rely on the availability of at
least two different measured signals and, by computing the cross-correlation between
them, they obtain the TDOA between the signals. Here, we will consider that these
two signals are acquired with two microphones connected to the same node, although
extensions that use microphones from different nodes could also be considered.

2.4.1 Estimation of the TDOA

The objective is to find which is the difference in propagation time between the
acoustic source and the two microphones. TDOA methods are based on selecting
the delay that maximizes the correlation between the signals registered at the two
microphones, given by:

r1[n] = x[n−D[n]] + n1[n] (45)
r2[n] = x[n] + n2[n] (46)

where:

• x[n] denotes the source signal.

• ri[n] is the received signal at the ith sensor.

• ni[n] is the additive noise signal at the ith sensor.

• D[n] is the value of the delay at time instant n.

31

2.4 TDOA techniques

It is assumed that x[n], n1[n] and n2[n] are mutually uncorrelated.

The target is to find the value of the delay, D[n], that minimizes the error
function, e[n], which can be defined as the difference between r1 and r2, i.e.:

e[n] = r1[n]− r2[n] = x [n−D[n]]− x[n] + nT [n] (47)

where nT [n] is a noise term denoting the difference between n1[n] and n2[n].

In [9] they obtain the value of the delay at time n using an LMS estimation model
based on the autocorrelation function of r2[n] and the correlation between r1[n] and
r2[n]. The said LMS solution gives the estimated delay value, τ , between the two
received signals, but may not be intuitive enough for the inexperienced reader. Using
a graphical representation, this algorithm “looks for” the value k that maximizes the
cross-correlation between r1 and r2 (see Figure 12), that is:

maxk
(
E{r1[n]r2

T [n]}
)

= maxk
(
E{r1[n]r1

T [n− k]}
)

(48)

To do so, they start by taking a window (finite set) of input samples, thus working
with r1[n] and r2[n] as vectors. From this, the following expressions can be defined:

R12[n] = E{r1[n]rT2 [n]} (49)
R22[n] = E{r2[n]rT2 [n]} (50)

where R12[n] denotes the correlation between r1[n] and r2[n] and R22[n] is the auto-
correlation function of r2[n].

The said LMS model requires an adaptive filter to estimate the delay. Now, at
every time instant n, the filter weight vector minimizing E{e2[n]} can be obtained as:

Ĥd[n] = R−1
22 [n]R12[n] (51)

where sub-index d is related to the delay we want to estimate. Then, they obtain the
least-squares solution using a similar expression to (14):

Ĥd[n+ 1] = Ĥd[n] + µτe[n]r2[n] (52)

where e[n] represents the difference between r1[n] and r2[n] and µτ is the step size.

32

2.4 TDOA techniques

Figure 12: TDOA estimation from the correlation between r1 and r2. In
this case the delay τ = k = 27 µs

Figure 13: Two-microphone model, taken from [7]. This figure illustrates
how the acoustic wave coming from source M reaches microphones A and
B, being τ the time delay of arrival (TDOA) between them and α the
direction of arrival of the wave.

33

2.4 TDOA techniques

2.4.2 Estimation of the angle of arrival (DOA)

The objective is to find which is the direction of arrival of the acoustic wave
after we have determined its TDOA.

Considering an acoustic source M located in front of two omnidirectional mi-
crophones (see Figure 13), the goal is to determine the direction of arrival (DOA) of
its sounds. The microphones are placed in a fixed position and separated by a certain
distance and then the origin of coordinates of the system, O, is set in the middle of
them. Considering the orthogonal line to the microphone axis at the origin, ~ON , the
angle α is defined by the separation angle between this line and line ~OM . From now
on, the term direction of arrival (DOA) refers to the angle α where the noisy source
is located [7].

This system presents an obvious drawback: it cannot locate sounds coming
from behind the microphones. Since the microphones are omnidirectional (i.e. the
microphone can “hear” from all directions with the same sensitivity), they will sense
the same sound pressure level regardless of its DOA, which becomes problematic when
the sound is coming from behind them because they would output the same values
as if the sound were in front of them (see Figure 14).

Considering the case in which the acoustic source is located “in front of” the
microphones, once both signals are captured, they are processed to estimate this time
delay. Then, with the help of trigonometric calculus, the angle α is returned.

Taking a look at Figure 15 we can state the following: considering that the
coordinates of the source M are given by (x,y) and the coordinates of microphones A
and B are (xA,yA) and (xB,yB) respectively, it is clear that the sound wave reaches
microphone B before it can reach microphone A, so there exists a delay, τ , in the
signal retrieved at microphone A. Segment AB′ represents the distance travelled by
the signal during that delay.

Considering this and having Figure 15 in mind, the following equation can be
derived (taken from [7]):

AB′ = AM −B′M = AM −BM (53)
where AM and BM are expressed as (see Figure 15):

AM =
√

(xA − x)2 + (yA − y)2 (54)

BM =
√

(xB − x)2 + (yB − y)2 (55)

34

2.4 TDOA techniques

Figure 14: Coverage angles of the two-microphone model, taken from [7].
The value of α denotes the direction of arrival of the acoustic wave: a
negative value of α means the sound is coming from the left, a positive
value means the sound is coming from the right, and the value 0 denotes
the source is in front of the microphone pair.

Figure 15: Calculation of α, taken from [7]. It can be seen that the acoustic
wave reaches microphone B before microphone A, so there exists a delay in
the signal retrieved at microphone A. Therefore, segment AB′ represents
the distance travelled by the signal during that delay.

35

2.4 TDOA techniques

In order to get rid of the square roots, Equation (53) is squared. Now, since the
two microphones have fixed positions the following statements apply (see Figure 15):

xA = −xB (56)
yA = yB = 0 (57)

which simplifies the previous equations and, after several calculations and term re-
ordering, leads to:

y = ±

√√√√AB′2

4 − x2
B + x2 ·

(
4 · x2

B

AB′2
− 1

)
(58)

Since both the values of xB and AB′ remain unchanged regardless of the di-
rection, Equation (58) represents all the possible positions of the source M , given a
certain delay [7]. But this presents a problem: for a certain delay, Equation (58) is
not defined for all values of x, only for those which make the expression inside the
square root positive, that is:

x ≥

√√√√−AB′2 · (AB′2 − 4x2
B)

4 · (4x2
B − AB′2)

(59)

In order to better understand this, Figure 16 represents Equation (58), which
takes positive values from a certain value of x. Considering that the signal travels at
the speed of sound, v ≈ 340 m/s, the distance AB′ = τ · v. The value of τ is obtained
following the steps in section 2.4.1.

It can be seen in Figure 16 that Equation (58) has a hyperbolic evolution until
a certain point and then becomes linear. Only taking the linear part, first its slope
must be obtained and then its arctangent in order to get angle α′, which is the angle
formed by the x-axis and y(x) in Figure 15:

α′ = tan−1
(
dy(x)
dx

)
= tan−1

2x
√

(AB′2−4x2
B)(AB′2−4x2)
AB′2

AB′2 − 4x2

 (60)

Since α is the angle formed by the y-axis and y(x), we do the following:

α =

90− α′ if α′ ≥ 0
90 + α′ if α′ < 0

(61)

36

2.4 TDOA techniques

Figure 16: Possible positions of the acoustic source according to Equation
(58), given a certain delay for x = 5

Note that the negative values of α′ correspond to the cases in which the signal arrives
first to microphone A than to microphone B.

In the two-microphone scenario the problems that may appear are related to
temporal or spatial aliasing. The first one can be easily solved using Nyquist theo-
rem. The second one can take place in the following case: Having in mind Figure
15, distance B′A depends on the distance between microphones, d. If this distance
increases up to d′, the distance B′A increases too. It is clear that the delay has the
same behavior.

The problems appear when the microphones are too separated (see Figure 17).
In this case, the delay can increase until a maximum value of λ/2 (λ is the acoustic
wave length). If that occurs, two situations may arise: the detected delay is wrong or
the delay is not detected at all. The delay is the time it takes for the signal to traverse
B′A. In this case, B′A is equal to a whole wavelength, so the signals captured by
both microphones are equal and no delay is detected. This is obviously untrue, since
the delay exists.

The case in which the detected delay is not the real one takes place when
λ/2 < B′A < λ (see Figure 18). This means that the microphones must be separated
at least a distance larger than the acoustic wave length λ (or smaller than λ/2 but
then they would be too close to each other).

37

2.4 TDOA techniques

Figure 17: Delay not detected, taken from [7]. In this case, the delay is
equal to the wave length λ, so the signals captured by both microphones
are the same and no delay is detected.

Figure 18: Wrong delay is detected, taken from [7]. In this case λ/2 <
B’A < λ and the detected delay results in a smaller value than the real
one.

38

2.4 TDOA techniques

Figure 19: Delay smaller than the optimal, taken from [7]. The real value
of the delay is the one coloured in red, whereas the green one corresponds
to the detected value of the delay.

Taking a closer look (see Figure 19), the real delay τ is the one coloured in red.
In Figure 18 we can see that the source is closer to MIC B so the signal reaches MIC
B before MIC A. However, if these signals are inserted into a system whose aim is to
obtain the delay, the system would return the green coloured delay, τ ′. Actually τ ′ is
the only delay smaller than λ/2, thus it will be mistakenly identified as the existing
delay. So when two signals like those are captured, it would seem that the speaker
is closer to MIC A than to MIC B, hence the delay obtained is false. The condition
that must be fulfilled in order to avoid spatial aliasing is:

B′A ≤ λ

2 (62)

To obtain the maximum distance between microphones, it is necessary to find the
minimum value for λ. That value depends on the source of the sound, since every
source may work on a different frequency range:

d ≤ λ

2 ; λmin = v

fmax
; d ≤ v

2 · fmax
(63)

where v is the speed of sound.

But from a practical point of view this value causes difficulties. Actually, the
accuracy when placing the microphones was not assured: the smaller the distance
d, the higher would be the impact of a possible error of placement. Furthermore, a
higher value of d leads to a higher number of delay samples which leads to a higher
precision [7], so we usually pick a higher value for d.

39

2.5 Conclusions

This approach to the solution to the acoustic source localization problem can be
extended to any number of microphones, but it is very computationally expensive and
not suitable for real-time applications. The interested reader can consult [8, 9, 10, 11],
in which they also estimate the position of an acoustic source via the estimation of
the TDOA of the sound waves it generates, for a more extensive analysis of the use
of the cross-correlation between any number of signals to estimate the position of the
acoustic source.

2.5 Conclusions

In this chapter we have presented the centralized and distributed LMS algo-
rithms for source localization and tracking of acoustic sources. These methods are
based on the availability of two kinds of measurements: one based on the registered
acoustic pressure, and a second one based on the propagation time. The availabil-
ity of the latter is difficult in practice and we can either neglect the corresponding
term (i.e. setting η = 0) or we can exploit results based on TDOA techniques. In
the centralized case the central node is responsible for estimating the position of the
source using the Lpk

[n] and tk[n] measurements sent from every node in the network,
whereas in the distributed scenario each node uses that pair of values to update an
intermediate state, ψk,n, which will then interchange with its neighbors in order to
merge those intermediate states into a final estimation of the position of the target.

In the following section we present a simulation tool that allows to examine the
properties of the centralized and distributed algorithms, while allowing also to assign
different importances to the SPT and SPL terms of the hybrid cost function (20).

40

3 The Simulation Tool

The implementation of a simulation tool for centralized and distributed audio
target localization is the main goal of this Final Year Project. In previous sections we
have presented the centralized LMS and diffusion ATC algorithms for the localization
and tracking of noisy targets. In order to get a visual representation of their respective
behaviors we have developed a simulation tool implementing the said algorithms and
a Graphical User Interface (GUI) to help the user build and configure the network
parameters that will define the tracking process.

The implemented simulation tool allows the user to configure several param-
eters of the acoustic source localization and tracking problem in order to simulate
the behavior of the algorithms under those conditions. It needed to fulfill certain
requirements, listed below.

3.1 Requirements

The functionality of the simulation tool is given by the supervisor of the Project,
who has defined the following criteria:

1. Both the software and the GUI must be implemented in MATLAB®, a very
powerful matrix-oriented mathematical processing tool.

2. The software must implement a function for each diffusion algorithm, which
have to be robust regardless of the network configuration.

3. The GUI must be simple enough to follow, since it will serve as the network-
configuring tool for the simulations.

4. In that configuration the user must be able to define:

• Topology of the network:
– Number of nodes in the network.
– Behavior of the network, i.e., centralized or distributed.
– Reach of the nodes in the distributed scenario. Consequently, this also

establishes the number of neighbors of each node.

41

3.2 Design of the Graphical User Interface

• Real trajectory followed by the target, i.e., the one which will be estimated
by the algorithms.

• Step sizes for both algorithms, µcent, µdist.
• Parameter η.
• Parameters associated to the acoustic source:

– SPL measured at d0 = 1 m, Lps .
– Standard deviation of the noise associated to propagation time, σnt .
– The attenuation exponent corresponding to the log-distance path loss

model, α.
• Number of runs to average the estimation error.

5. The simulation must be real-time oriented, that is, it must represent a noisy
source in motion and its trajectory estimation by the sensor network at every
time instant n.

6. The simulation must show the estimated trajectories of two algorithms simul-
taneously.

7. Finally, a graphical representation of the errors in the estimation must be pro-
vided in order to compare the chosen configurations.

3.2 Design of the Graphical User Interface

The GUI has been designed to guide the user through all the steps needed
for configuring a sensor network, which will be working in either a centralized or
distributed manner in order to estimate the trajectory followed by an acoustic source
in motion, as well as to show the accuracy of the estimation performed by such
network:

1. Introduction: In this window (Figure 20) the GUI greets the user and lets
him know the Demo will guide him/her through the process.

2. Node placement: In the windows corresponding to Figures 21 and 22, the
GUI informs the user of the way of placing the nodes in the network and lets
him introduce the total amount of nodes in the network. The user will then
place the said number of nodes in the network by clicking on an empty axes.

42

3.2 Design of the Graphical User Interface

After the user has placed the last node, the GUI saves the selected coordinates
in the axes into an array of coordinates, s = {s1 = [x1, y1], ..., sN = [xN , yN]}.

We limited the total number of nodes in the network to a minimum of
4 and a maximum of 10 for computational and user-experience reasons. Since
the tool has to wait for the user to manually place each node in the network,
working with a large number of nodes can be tedious for the user and, moreover,
would lead to very slow simulations.

3. Virtual trajectory generation: We need to track a trajectory using the noise
sensors. In order to do that the user is asked to provide such trajectory. In the
window corresponding to Figure 23 the GUI informs the user about the need
of a virtual trajectory and gives instructions for its generation. Then the GUI
displays the final simulation environment, which contains the network nodes
and the virtual trajectory (see Figure 24).

For the generation of the trajectory the user is asked to select ten points.
After those points have been selected we perform a spline approximation of
the resultant curved trajectory using the MATLAB® function EvaluateCardi-
nal2DAtNplusOneValues, which is available at www.mathworks.com. It is im-
portant to highlight that there exist the same amount of points between each se-
lected point. This means that the points selected by the user will be equidistant
in time, i.e., it will take the same time to get from one point to the next regard-
less of the distance between them. This allows the user to simulate changes in
the speed of the acoustic source, by increasing the distance between the selected
points.

4. Algorithm description: Once the simulation setup is finished, the GUI dis-
plays the window corresponding to Figure 25, in which a brief explanation of
the algorithms is displayed.

5. Simulation setup and display of results: In the window corresponding to
Figure 26 the user will be able to configure the parameters for the two algorithms
that will perform the estimation. Such parameters are the ones listed in the
previous section. If the user chooses to perform one of the estimations by using
the diffusion ATC algorithm, the user can select the coverage range of each
node in the network. By doing so, each node will compare that range with its
relative distances to the remaining nodes in order to identify its neighbors and
the neighbor groups are displayed in a small axes.

Figure 27 shows the simulation taking place. It first plots the trajec-
tories estimated by each algorithm on a single run, and then calculates each

43

3.2 Design of the Graphical User Interface

algorithm’s mean-square error averaged over the specified number of iterations,
which are then plotted (see Figure 28).

The possibility of setting all these parameters provides the user complete
control of the stage on which to run the simulations, as well as the visual
illustration of the results. In this way, the user can set the same network,
working under two different parameter configurations, to compare the achieved
performance in terms of MSE.

Figure 20: Greeting GUI window

44

3.2 Design of the Graphical User Interface

Figure 21: Node placement information and selection of the total number
of nodes in the network

Figure 22: Node placement. This is performed by clicking on the axes as
many times as number of nodes the user wants to have in the network

45

3.2 Design of the Graphical User Interface

Figure 23: Trajectory generation: how to generate the real trajectory and
side-note explanation of the meaning behind the points being equidistant
in time

Figure 24: Trajectory generation: trajectory generated by the user

46

3.2 Design of the Graphical User Interface

Figure 25: Brief explanation of the Centralized LMS and Difussion ATC
algorithms

Figure 26: Configuration of the parameters of each algorithm.

47

3.2 Design of the Graphical User Interface

Figure 27: Simulation running: The estimated trajectories are plotted in
the lower-left axes and the MSE of each algorithm are being calculated,
averaged over 10 iterations (number of runs).

Figure 28: End of the simulation: Once the final MSEs of both algorithms
have been obtained, they are plotted in the lower-right axes.

48

3.3 Design of the functionalities of the simulation tool

3.3 Design of the functionalities of the simulation tool

In this section we will describe the processes taking place in the background
of the simulation tool, i.e., all the calculations and functions used throughout the
simulation process, which is illustrated in the following diagram:

Figure 29: Main blocks of the simulation tool.

The processes corresponding to blocks 1 and 2 are very straightforward:

1. An editable field allows the user to manually select the total number of nodes
in the network. That value is stored internally in a variable, N , after pressing
the ‘NEXT’ button.

2. In order to place the nodes in the network, we call the MATLAB® ginput(N)
function and wait until the user has finished selecting the points. Once the user
has placed the last node we store the coordinates of all the nodes in an array of
points, ND = {sk = [xk, yk]}, with k = 1, ..., N .

3. After the user has been informed of the way of generating the virtual trajectory,
we do the following:

(a) We call the MATLAB® ginput(N) function with N = 10 (the user is asked
to select 10 points) and wait until the user has selected the last point.

(b) After that, we perform a spline approximation of the resultant curved tra-
jectory using the MATLAB® function EvaluateCardinal2DAtNplusOneValues,
available at www.mathworks.com.

(c) Finally we display the resultant virtual trajectory and store it as a global
variable, called trajectory, into an array of length 4500.

After the node placement and trajectory generation steps the GUI shows a
window with several editable fields and a single button (see Figure 26). This window

49

3.3 Design of the functionalities of the simulation tool

corresponds to block 3 and includes the fields for configuring the algorithms: step
sizes, η, reach of the nodes in the case of the Diffusion ATC algorithm; and the
parameters corresponding to the acoustic source: sound pressure level measured at 1
meter (i.e., the intensity of the source), variance of the noise term associated to the
signal propagation time, the attenuation exponent corresponding to the log-distance
path loss model, α, and the number of runs to average the estimation error.

A block diagram illustrating the simulation process is depicted in Figure 30.
Every time the user presses the ‘Run demo’ button a sequence of steps is triggered:

1. Reset the plots: The GUI first clears the contents of the plots, leaving just
the nodes and the real trajectory.

2. Generation of the SPL and SPT values: In this step we calculate the
respective SPL and SPT values that would be measured at each node following
Equations (17) and (19) respectively.

These equations are based on the real distance between every point in the
trajectory and each node in the network, so we need to obtain those distances.
Once we have obtained the distances we are able to calculate the theoretical
SPL and SPT values by calling a function for each node in the network, called
gen_pressure, which takes as input values the SPL value emitted by the source,
Lps , a vector of distances from the node to every point of the trajectory, d,
the reference distance, d0, and parameter α. The latter is obtained from the
editable field labeled as ‘α’ in the GUI. The SPT values are obtained directly
by dividing the vector of distances d by the speed of sound.

3. Loop: First, the nruns variable is set to the value appearing in the editable
field labeled as ‘Number of runs’. Now, for every run we do the following:

(a) Generation of the real SPL and SPT values: The real SPL values
are obtained by adding random noise to the calculated theoretical SPL
values, following Equation (18). Meanwhile, the real SPT values are ob-
tained by adding random noise to the calculated theoretical SPT values.
The standard deviation of the noise in propagation time is selected as the
squared root of the value contained in the editable field labeled as ‘Noise
variance (in SPT)’

(b) Run the algorithms: The algorithms that will perform the estimation
have been selected by the user in the top popupmenus.

Depending on the chosen algorithms we call the following functions:

50

3.3 Design of the functionalities of the simulation tool

Figure 30: Flowchart illustrating the simulation process.

51

3.3 Design of the functionalities of the simulation tool

• w = centralized((ND,alpha,mu,etha,v,SPL,SPT,h)):
This function runs the Centralized LMS algorithm. It takes as input
parameters the ones mentioned previously and it returns the estimated
trajectory, w.

• w = difusion(ND,reach,alpha,mu,v,etha,SPL,SPT,h):
This function runs the Diffusion ATC algorithm. It takes as input
parameters the ones mentioned previously, along with the reach of
the nodes, and returns the estimated trajectory, w, which corresponds
to the mean of the N estimated trajectories, N being the number of
nodes in the network.

(c) Plotting the estimated trajectories: In the first run we plot the tra-
jectories estimated by each algorithm, w1 and w2, in the lower left axes.
We only perform this step once because we want to illustrate the real be-
havior of the algorithm, i.e. the typical aspect of the estimated trajectory
in each run of the algorithm. The average over the number of runs of all
the estimations would be a much less informative result.

We want to highlight that in the case of the Diffusion ATC algorithm
we plot a trajectory which corresponds to the average of the N estimated
trajectories, N being the number of nodes in the network. Remember that
in the distributed case each node in the network performs an estimation of
the position based on the intermediate states of its neighbors (see Section
2.3 for a complete explanation of this).

(d) Update the value of the MSE: The calculation of the MSE is performed
by averaging the squared error in the estimation over the total number of
runs. In every run we add different noise to the theoretical SPL and
SPT values in order to simulate how real noise affects the estimation, and
we calculate the squared Euclidean distance between each point of the
estimated trajectory and the corresponding point in the trajectory, i.e.,
‖ w− trajectory ‖2

4. Once the loop has finished, we plot the MSE on the lower-right axes. Specifi-
cally, we plot a curve corresponding to:

10log10

(
1

nruns

nruns∑
i=1

MSEi

)

52

4 Simulations

In the previous section we have presented the aspect and functionalities of the
implemented simulation tool. In this section we will show its utility, i.e., we will run
some simulations under different conditions in order to illustrate how the simulation
tool can be used to analyze the influence of different algorithm parameters, as well
as to compare the centralized and distributed solutions.

We will illustrate the behavior of the algorithms when we modify the following
settings:

• Step size, µ.

• Parameter η.

• Centralized vs. Distributed solutions.

• Topology of the network in distributed solutions (reach of the nodes).

• Variance of the noise associated to the signal propagation time.

• Parameter α.

We should emphasize that our goal when providing these simulation results is
not to provide a complete evaluation of the algorithms and their properties, but just
to illustrate the functionality of the implemented simulation tool, and how it can be
very helpful to study the audio target tracking problem and ultimately for the design
of sensor networks that can guarantee certain performance criteria.

53

4.1 Effect of the value of the step size

4.1 Effect of the value of the step size

The step size of the algorithms represents the speed at which each algorithm
converges.

We simulated an acoustic source emitting a SPL value of 60 dB, performing a
time-varying trajectory over a wireless sensor network formed by six sensors, working
in a centralized manner. The trajectory has been generated in a way that at the
beginning its points are close to each other, i.e., points in which the acoustic source is
moving slower, and from a point on they become very distant. For the first algorithm
we set the step-size value to µ1 = 0, 0002 and, for the second algorithm, to µ2 = 0, 002.
The remaining parameters are equal for both algorithms and have been adjusted as
indicated in Figure 31.

Figure 31 illustrates how for small values of µ, the algorithm takes longer to
converge but still presents a better behavior than the one with the higher step size,
i.e., the one which converges faster, until the moment the source accelerates. From
this moment on the algorithm with the smallest step-size value will not be able to
track the optimal solution fast enough, whereas the algorithm with the highest step-
size value will be able to adapt to those fast variations.

Figure 31: Effect of the Step-size value on the estimation of the trajectory.

54

4.2 Effect of parameter η

4.2 Effect of parameter η

Parameter η denotes how much importance we assign to each error term in the
hybrid cost function (20).

To illustrate its relevance we ran a simulation in which an acoustic source emit-
ting with a SPL of 30 dB makes a time-varying trajectory over a wireless sensor
network formed by 6 sensors working in a distributed manner, i.e., running the Dif-
fusion ATC algorithm. In order to compare the effects of varying parameter η, we
set the reach of the nodes and their respective step sizes to the same value, r = 70
m and µ = 10−3, and assigned a value of η1 = 0.7 for the first algorithm and a value
of η2 = 0.1 for the second one. Looking at Figure 32 it is clear that the algorithm
running with the smallest value of η gives a better estimation of the trajectory and
lower MSE values. This means that it is not advisable to give excessive weight to the
SPT term, although the optimal value of θ from a practical point of view may vary
depending on the emission level of the source and the variance of the noise associated
to the SPT.

Figure 32: Effects of parameter η in the estimation of the trajectory.

55

4.3 Centralized vs Distributed algorithms

4.3 Centralized vs Distributed algorithms

In this section, we will compare the behavior of both Centralized LMS and
Diffusion ATC algorithms when operating under the same conditions.

For the simulations we set a network of 6 nodes. We selected the Centralized
LMS as the first algorithm and the Diffusion ATC as the second, with their respective
parameters set as shown in Figure 33. It can be seen that under these conditions the
distributed solution gives almost as good estimations as in the centralized case.

For a better illustration we performed 2 additional simulations under the same
network configuration: in the first one we decreased the step-size value in both al-
gorithms (see Figure 34) and in the second one we set parameter η to 0.5 in both
algorithms (see Figure 35). It can be easily seen in Figure 34 that decreasing the
step-size value allows the centralized scenario to better adapt to the changes in the
trajectory, whereas the distributed scenario is not able to adapt fast enough. Figure
35 shows how increasing the weight associated to the SPT term under these conditions
does not affect the estimation results in a positive way.

Figure 33: Centralized vs Distributed scenario.

56

4.3 Centralized vs Distributed algorithms

Figure 34: Centralized vs Distributed scenario: effect of decreasing the
step-size value.

Figure 35: Centralized vs Distributed scenario: effect of increasing param-
eter η.

57

4.4 Effect of the reach of the nodes in distributed solutions

4.4 Effect of the reach of the nodes in distributed solutions

In the networks which operate in a distributed manner, the reach of each network
node defines its neighbors. An increase in the reach, i.e., an increase in the number
of neighbors, means that each node now has access to more information, thus making
the Diffusion ATC algorithm more accurate. To illustrate this we simulated a network
of ten nodes working in a distributed manner. We assigned each algorithm a node
reach of r1 = 25 m and r2 = 40 m respectively. We chose the same step size and η
parameter values for both Diffusion ATC algorithms in order for the simulation to
be completely neighbor-dependant, i.e., the accuracy of the algorithms will depend on
the number of neighbors each node has.

Figure 36 illustrates this scenario. It can easily be seen how an increase on the
reach of the nodes results in an increase of the number of neighbors of each node
and, as a result, it increases the accuracy of the algorithm, thus obtaining a better
estimation of the trajectory. Moreover, this Figure illustrates the importance of each
node having at least two neighbors in the network. As said in Section 2.4.2, working
with a pair of omnidirectional microphones gives poor results, we need at least three
to obtain a good estimation of the trajectory. This also applies to isolated nodes,
i.e. those which do not have neighbors, because they cannot properly adapt their
estimations since they do not have access to any network information.

As a final illustration, for the simulation shown in Figure 37 we set r1 = 100 m.
In this case each node in the network is neghbor of the rest, thus being able to access
the information of the whole network, which results in a more accurate estimation of
the trajectory.

58

4.4 Effect of the reach of the nodes in distributed solutions

Figure 36: Illustration of the dependency of the Diffusion ATC algorithm
on the reach of the nodes: result of setting a small reach value.

Figure 37: Illustration of the dependency of the Diffusion ATC algorithm
on the reach of the nodes: result of setting a high reach value.

59

4.5 Effect of the variation of the acoustic parameters

4.5 Effect of the variation of the acoustic parameters

In this section we want to illustrate the effect of varying the different param-
eters associated with the acoustic source. Since the GUI does not allow the user to
set different values of the acoustic parameters to each algorithm, we performed the
simulations under the same network configuration and trajectory, but with variations
in the acoustic parameters, in order to get a visual representation of these effects.

4.5.1 Effect of the value of the variance of the noise associated to the
SPT

The value we assign to the noise term corresponding to the signal propagation
time will determine how much we alter the measured SPT values. It is our way of
simulating losses due to attenuation, diffusion, noise and presence of obstacles.

For this simulation we used a network of five nodes. We chose the Centralized
LMS and Diffusion ATC algorithms as the first and second algorithms respectively.
Both algorithms have the same step size and η parameter values. Figure 38 shows a
simulation with the noise variance parameter set to 0.2.

On the other hand, Figure 39 illustrates the effect of increasing the variance
value to 5. It can be seen that increasing the value of the SPT noise variance makes
both algorithms obtain very similar estimations of the trajectory. Moreover, it can
be seen that we obtain a worse behavior of the algorithms in terms of MSE. This is
because the SPT term in the hybrid cost function (see Equation (20)) is noisier than
the SPL one.

60

4.5 Effect of the variation of the acoustic parameters

Figure 38: Effect of the value of the variance of the noise associated to the
SPT. Simulation ran with variance value 0.2.

Figure 39: Effect of the value of the variance of the noise associated to the
SPT. Simulation ran with variance value 5.

61

4.5 Effect of the variation of the acoustic parameters

4.5.2 Effect of parameter α

Parameter α is the attenuation exponent corresponding to the log-distance path
loss model.

For the illustration of the effect of this parameter we used the same network
configuration as in the previous case, but for the first simulation we set parameter
α to a very high value and, for the second one, to a very low value, leaving the
remaining parameters unchanged. It can be seen in Figures 40 and 41 that, using this
configuration, increasing the value of α is beneficial for the Diffusion ATC algorithm,
whereas the Centralized LMS one tends to diverge.

For the simulation corresponding to Figure 41 we set parameter α to 0.1. From
the absence of estimated trajectories in the axes we can assume that the estimated
trajectories rely too far from the real one to even fit the GUI axes. It is obvious that
working under these conditions does not give any significant results.

Figure 40: Effect of parameter α when it is set to 10.

62

4.5 Effect of the variation of the acoustic parameters

Figure 41: Effect of parameter α when it is set to 0.1.

We want to highlight that the values of α chosen for these simulations do not
make physical sense. This term usually takes value α ≈ 2. In the theoretical, lossless,
noiseless case, setting parameter α = 2 in Equation (18) results in Equation (17) with
r1 = d0.

63

5 Implementation of the diffusion algorithms over
a real wireless sensor network

This section is dedicated to the implementation of the Centralized LMS diffusion
algorithm in a real network of wireless noise sensors manufactured by ©Libelium com-
pany. It begins with a description of the technical characteristics of this company’s
sensor boards and the noise sensor that will be used for building the network in which
we will implement the adaptive algorithms for the acoustic source localization.

Prior to that, we want to state that the reason for choosing ©Libelium’s products
for the implementation is that they follow the Open Source philosophy, as other
companies such as Arduino™ or Raspberry™, providing detailed documentation and
an on-line forum in which they offer support for developers. Moreover, they provide
code examples of every functionality of every device they manufacture, making it
relatively intuitive to make ad-hoc combinations.

5.1 Used Hardware

In this section we give a brief description of the technical characteristics of the
hardware used in the implementation, which was provided by the University research
group.

5.1.1 ©Libelium’s Waspmote™

Waspmote™ is ©Libelium’s advanced mote for Wireless Sensor Networks. It
is an open source wireless sensor platform specially focused on the implementation
of low-consumption modes to allow the sensor nodes (motes) to be completely au-
tonomous and battery powered, offering a variable lifetime between 1 and 5 years
depending on the duty cycle.

The omnidirectional noise sensor needed for the sound pressure level measure-
ments is built directly on an additional board called SensorCities™, which needs to
be connected on top of the Waspmote™ to work [21].

Communication between motes is achieved via radio using XBee™ radio antenna
(see Figure 42).

64

5.1 Used Hardware

Figure 42: Waspmote™ with XBee™ radio antenna, taken from [20]

For the network implementation, the XBee™-802.15.4 model is chosen, which
has a transmission power consumption of 1 mW and a 500 m range of coverage [20].

5.1.2 ©Libelium’s Meshlium-Xtreme™

As central node we used ©Libelium’s Meshlium-Xtreme™, shown in Figure 43.
It is a Linux router which works as the Gateway of the Waspmote™ Sensor Networks,
which is connected to the sensor network as shown in Figure 44.

This device has a built-in database in which the values measured by the network
sensors are stored. These values can be accessed either from a web interface or by
sending messages to the network.

65

5.1 Used Hardware

Figure 43: Meshlium-Xtreme™, taken from [22]

Figure 44: Wireless sensor network using Waspmote™ and Meshlium-
Xtreme™, taken from [22]

66

5.2 Implementation of the code

5.2 Implementation of the code

This subsection focuses mainly on the implementation of the wireless sensor
network in a real environment. The resulting scenario will be used as a reference for
the final part of the Project: the comparison between the theoretical model and the
real wireless network; which is still a work in progress. For the implementation to
be successful we need to program the nodes following the desired network configura-
tion. For simplification reasons we chose to implement a wireless noise-sensor network
working in a centralized manner.

Waspmote™ devices are programmed in C++ using an SDE (Software Develop-
ment Environment) provided by ©Libelium, which allows the user to upload the code
to the motes. When programming for these devices one has to take into account that
the motes operate in a cyclical manner. This means that there is a loop() function
which contains the sequence of operations that the node needs to perform. Taking
advantage of this cyclical behavior we defined the following sequences inside the loop:

1. Initialization of the constant parameters: During the setup() block of
the execution, prior to the loop(), we initialize parameters h, α and η.

2. Receive the previous estimation of the position: In order to being able
to calculate the error terms associated to the cost function in the Centralized
LMS algorithm (see Section 2.2) each node needs to have access to the previous
estimation of the position of the source. This is performed by the central node,
which broadcasts each new estimation to the whole network after it has been
computed. We start the process with a previous position estimation equal to
w[0] = [0, 0]T .

3. Measurement of the SPL: Each node reads the SPL value measured by the
noise sensor, which is given in dBA (acoustic decibels). The dBA units are used
to denote the use of different weighting filters, used to approximate the noise
sensor intensity measurement to the human ear’s response to sound, in SPL.

4. Calculation of the error terms and local gradient values: For this cal-
culation we must take into account that in a real scenario we will not have
access to the real trajectory followed by the acoustic source, thus lacking the
real distances of each node to every point in the trajectory. Therefore, the error
terms are calculated using Equation (31) at each node. Since we only take the
local error terms corresponding to SPL measurements, the local gradients are
calculated using Equation (34) setting parameter η to zero.

67

5.2 Implementation of the code

5. Sending the gradient values to the central node: In order to obtain
a joint estimation of the trajectory, each node sends its local gradient to the
central node, which is responsible of computing the estimation of the position
of the source following Equation (35). This is computationally easier than
sending the SPL and SPT measurements directly to the central node, because
while Meshlium™ is a very powerful router, it does not perform “complex”
mathematical operations. Implementing such operations in the device might
result in unwanted communication delays.

68

6 Conclusions and further work

In this section we will summarize the main conclusions reached along the doc-
ument, most of which have already been discussed at the end of each of the previous
sections, along with some possible future lines of work and research.

6.1 Conclusions

In this document we have dealt with the implementation of a software tool for
the simulation of the acoustic localization and tracking problem using a wireless sensor
network that works either in a centralized or distributed manner, which allows the user
to compare the results obtained by diffusion networks working in a distributed manner
and to compare them to the optimal theoretical result of the centralized solution.
This tool allows the user to visualize the effect of altering different parameters over
the same sensor network in order to simulate the behavior of a real wireless sensor
network working with those settings, as well as the average MSE values associated to
that configuration.

In order to give the inexperienced reader the needed theoretical background
to understand both the terminology and the functionalities of this simulation tool,
we covered the basics of Signal Processing, adaptive algorithms, Acoustics and the
Acoustic Source Localization problem. Moreover, we defined the hybrid cost function
associated with this problem, formed by the combination of the local costs associ-
ated to the SPL and SPT measurements obtained by each node in the network. We
also saw the way of computing those error terms and the corresponding gradients
and adaptation steps for the minimization of the said cost function using an adap-
tive diffusion algorithm: the Centralized LMS and Diffusion ATC algorithms; which
estimate the coordinates w[n] = [x, y]T that minimize the said cost function.

The implemented simulation tool guides the user through a number of steps
that configure the simulation parameters:

• Setting the total number and placement of the nodes in the network.

• Generating the “real” trajectory to be estimated by the algorithms.

• Choosing the algorithms and setting the parameters associated to each one:

69

6.2 Possible improvements and future lines of work

– Step size, µ.
– The SPT weight parameter, η.

• Setting the parameters associated to the acoustic source:

– SPL measured at 1 m, Lps .
– The variance of the noise associated to the SPT.
– The value of the loss-path model exponent α.

• Setting the number of runs for the calculation of the average MSE.

For illustration reasons we ran several simulations in order to exemplify the
functionality of the simulation tool. These simulations showed the results of modifying
the parameters mentioned above, as well as a visual comparison between the different
settings.

The results obtained with the implemented simulation tool show it can be very
helpful to study the audio target tracking problem and ultimately for the design of
sensor networks that can guarantee certain performance criteria.

We also implemented a real wireless sensor network using hardware manufac-
tured by ©Libelium. This on-going work was not defined initially as one of the
objectives of the project. Nevertheless, an initial implementation has been carried
out, and this piece of work is currently under validation.

6.2 Possible improvements and future lines of work

The implemented simulation tool offers great functionalities. Nevertheless, there
is still room for future development that would enhance the system and increase its
value. After being tested by some classmates and colleagues from the research group,
we saw that the implemented tool lacks two functionalities that would make the user
experience much better:

1. Allow the user to configure different acoustic parameters for each scenario. This
would be very helpful for comparing the same network settings using different
acoustic parameters for each algorithm, instead of having to run additional
simulations to obtain new results.

70

6.2 Possible improvements and future lines of work

2. Allow a method to re-configure the number and placement of the nodes in the
network, as well as to create a new trajectory, instead of having to re-run the
simulation tool.

Regarding the implementation of the real wireless sensor network, there is still
a lot of testing and data gathering left to do in order to be able to give proper results
and conclusions, but it looks promising so far.

71

7 Estimated budget

This section is dedicated to the breakdown of the estimated budget needed for
the development of this Project. We will differentiate between the implementation of
the simulation tool and the implementation of the real wireless sensor network.

7.1 Budget for the implementation of the simulation tool

For the calculation of this budget we need:

• The price of a MATLAB® license.

• The average salary of a MATLAB® developer.

• The amortized cost of the computer.

The price of a MATLAB® license can be obtained from the MathWorks® web
page: http://www.mathworks.es. Depending on the target use of the program, the
price of a license can go from €35 to €2000. For the calculation of this budget we
chose the “Home” license, which is €105.

The value of the average salary of a MATLAB® developer was obtained from
ITJobsWatch (http://www.itjobswatch.co.uk/, June 17, 2014) and it was £45000
a year, which correspond to €56338.70 a year. Considering that it took 3 months to
develop and test the simulation tool, we estimate a total of:

56338.70
12 · 3 = €14084.67

corresponding to the salary of the MATLAB® developer.

The amortized cost of the computer can be calculated as its depreciation. The
straight-line method of calculating depreciation would be to divide the initial cost, i.e.
its price, by the computer’s “useful life”. Since MATLAB® can run on most of today’s
computers, we chose to perform this calculation using a €1568.52 ($2129) Dell Preci-
sion T3610 computer (http://www.pcmag.com/article2/0,2817,2372609,00.asp,
June 20, 2014), with an estimated useful life of 8 years, thus obtaining an amortized
cost of:

€1568.52
8 years ·

1 year
12 months · 3 months = €49.01

72

7.2 Budget for the implementation of the real wireless sensor network

Considering the values mentioned above, the approximate budget needed for
the implementation of the simulation tool is:

7.2 Budget for the implementation of the real wireless sensor
network

For the calculation of this budget we need:

• The price of ©Libelium’s Waspmote™.

• The price of ©Libelium’s SensorCities™ sensor board and noise sensor.

• The price of ©Libelium’s Meshlium-Xtreme™.

• The average salary of a C++ developer.

• The amortized cost of the computer.

The respective prices of ©Libelium’s Waspmote™, XBee™ and Meshlium-Xtreme™

can be obtained from ©Libelium’s web page, http://www.libelium.com/, by either
downloading the full product catalog or by choosing an official distributor and check-
ing the prices. We chose to download the product catalog and found the following
prices:

• Waspmote Digimesh-PRO SMA 2 DBI (XBee antenna included): €155.

• Meshlium-Xtreme Digimesh-PRO-AP: €690.

For the prices of the SensorCities™ sensor board and noise sensor we went to
CookingHacks web site, http://www.cooking-hacks.com and found the following
prices:

73

7.2 Budget for the implementation of the real wireless sensor network

• Waspmote Smart Cities sensor board: €120.

• Noise sensor: €20.

The value of the average salary of a C++ developer was obtained from ITJob-
sWatch (http://www.itjobswatch.co.uk/, June 17, 2014) and it was £55000, which
corresponds to €68858.42. Considering that the adaptation of the MATLAB® code
to C++ for the implementation of the Centralized LMS algorithm took a month to
complete, we estimate a total of:

68858.42
12 = €5738.20

corresponding to the salary of the C++ developer.

The amortized cost of the computer can be calculated in the same way as in the
previous case:

€1568.52
8 years ·

1 year
12 months · 1 month = €16.34

Taking into account that in order to obtain a good performance from the sensor
network we need at least four nodes in the network, we will estimate the budget
needed for a wireless sensor network formed by 10 nodes in order to cover a large
area. Using the above values and assuming the physical installation of the nodes
costs €300 we estimate a total budget for implementing the real sensor network of:

74

References

[1] Adelbert W. Bronkhorst (2000), “The Cocktail Party Phenomenon: A Review of
Research on Speech Intelligibility in Multiple-Talker Conditions”. Acta Acustica
united with Acustica, Vol. 86, pp. 117-128.

[2] Oppenheim, Alan V., Ronald W. Schafer and John R. Buck (1999), “Discrete-
time Signal Processing”. Englewood Cliffs, NJ: Prentice Hall.

[3] Orfanidis, Sophocles J. (1996), “Introduction to Signal Processing”. Englewood
Cliffs, NJ: Prentice Hall.

[4] Madisetti, V., and Douglas B. Williams (1998), “Chapter 18: Introduction to
Adaptive Filters”. The Digital Signal Processing Handbook. Boca Raton, FL:
CRC.

[5] S.W. Rienstra, A. Hirschberg (2013), “An Introduction to Acoustics”, Extended
and revised edition of IWDE 92-06.

[6] Eargle, John (1994), “Part Five: Psychoacustical Data.” Electroacoustical Refer-
ence Data. New York: Van Nostrand Reinhold.

[7] Carlos Fernandez Scola, Maria Dolores Bolaños Ortega (2010), “Direction of
arrival estimation. A two microphones approach”. Masters Thesis, Blekinge In-
stitute of Technology.

[8] Ashok Kumar Tellakula (2007), “Acoustic Source Localization Using Time Delay
Estimation”. Masters Thesis, Supercomputer Education and Research Centre of
the Indian Institute of Science.

[9] D.H.Youn, Nasir Ahmed and G.Clifford Carter (1982), “On Using the LMS Al-
gorithm for Time Delay Estimation”. IEEE Transactions on Acoustics, Speech
and Signal Processing Magazine, vol. ASSP-30, no. 5, pp. 798-800.

[10] Michal Mandlik, Vladimir Brazda (2011), “Sound source location method”. Pert-
ner’s Contacts Magazine. Number 5, Volume VI, pp.197-204.

[11] Pourmohammad and Ahadi (2013), “N-dimensional N-microphone sound source
localization”. EURASIP Journal on Audio, Speech, and Music Processing, vol.
27.

[12] R. Abdolee, S. Saur, B. Champagne, and A.H. Sayed (2013), “Diffusion LMS
localization and tracking algorithm for wireless cellular networks”, in Proc.
ICASSP, pp.4598-4602.

[13] J. Chen and A.H. Sayed (2011), “Diffusion Adaptation Strategies for Distributed
Optimization and Learning over Networks”, presented at CoRR.

[14] N. Takahashi, I. Yamada, and A.H. Sayed (2010), "Diffusion least-mean squares
with adaptive combiners: formulation and performance analysis", presented at
IEEE Transactions on Signal Processing, pp.4795-4810.

[15] A.H. Sayed (2012), "Diffusion Adaptation over Networks", presented at CoRR.

[16] Fernandez-Bes, Jesus ; Azpicueta-Ruiz, Luis A. ; Silva, Magno T.M. ; Arenas-
Garcia, Jeronimo (2013), “Improved least-squares-based combiners for diffusion
networks”. IEEE Proceedings of the Tenth International Symposium on Wireless
Communication Systems (ISWCS 2013).

[17] Ricard Heeks (1999), “Centralized vs. Decentralised Management of Public In-
formation Systems: A Core-Periphery Solution”. Information Systems for Public
Sector Management. Working Paper Series, no. 7, pp. 4-14.

[18] G. Coulouris, J. Dollimore, and T. Kindberg (2002), “Distributed systems - con-
cepts and designs (3. ed.)”, presented at International Computer Science Series,
pp.1-772.

[19] Yong-Eun Kim, Dong-Hyun Su, Chang-Ha Jeon, Jae-Kyung Lee, Kyung-
Ju Cho and Jin-Gyun Chung (2011), “Sound Source Localization
Method Using Region Selection”, Advances in Sound Localization, Dr.
Pawel Strumillo (Ed.), ISBN: 978-953-307-224-1, InTech, Available from:
http://www.intechopen.com/books/advances-in-sound-localization/sound-
source-localization-method-using- region-selection.

[20] ©Libelium Comunicaciones Distribuidas S.L. (2013), “Waspmote Datasheet”.
Document version: v4.4, pp. 2-3.

[21] ©Libelium Comunicaciones Distribuidas S.L. (2012), “SmartCities technical
guide”. Document version: v0.5, p. 26.

[22] ©Libelium Comunicaciones Distribuidas S.L. (2013), “Meshlium Xtreme
Datasheet”. Document version: v4.2.

