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Money makes the world go round.
legal or illegal,
good guys or bad guys,

we all chase money.



vi



Acknowledgements

I would like to acknowledge some people who have contributed the most to the
successful completion of this work.

First of all, I want to express my gratitude to Antonio Artés for his guidance.
You have not only enabled and supported this thesis in all possible ways but have
also taught me how to become a researcher, collaborator, and human being. I
also want to acknowledge Fernando Pérez, who has giving me an opportunity to
enroll an internship in Switzerland focusing on sport betting and learn new ways
of thinking. Both will always be a role model to follow.

I would like to thank everyone in our research group: Fran I, Pablo G., Isa,
Melanie, Alfred, Paloma, Alberto, Vivian, Deniz, Gonzalo V., Gonzalo R., Tobi,
David R., Pablo O., Victor E., Gesus F., Pablo M., Juanjo, Alejandro, Aurora and
Sara, for making this time really enjoyable. Thanks for all the laughs and good
vibes. Grace, it has been a huge pleasure to share all our experiences in the best
‘cubiculo’. Thanks also to my Bachelor Degree students: Sergio, Verdnica and
Sara, part of this thesis is yours.

Special thanks to my hometown friends, ‘Las ranas’: Alvaro, Diego, Néstor,
Pablo, Sevi, Ribete and Ruso, for dealing with me at my best and worst, always
supporting and encouraging me. Without all of you, I would not be writing now.

I would like to thank my friends from ‘Valseca’, always standing alongside me.
Pablo M., Cuqui, Moénica and Maru, do not change ever, please. Pablete, you have
also become a Ph.D. photoshop-maker, jcongrats! my right-hand man.

Joe & Nacho, thanks for day after day analyzing and discussing sport bets.
And also thanks for being always supporting me. Thanks will never suffice.

Finally, the achievement of this doctoral thesis would have never been possible
without the unwavering support of my family and beloved ones. Thank you to my
parents and sisters, Maxi & Paco, Ana & Mat and Neli, I owe you more than I

could possibly express with words. ‘Compaifieros de vida, compaifieros de ilusiéon’.

“If you want to go fast, go alone. If you want to go far, go together.”

vii



viii



Abstract

Stress is an involuntary reaction where the human body changes from a calm
state to an excited state in order to preserve the integrity of the organism. Small
amount of stress should be good to became entrepreneur and learn new ways of
thinking, but continuous stress can carry an array of daily risks, such as, cardio-
vascular diseases, hair loss, diabetes or immune dysregulation. Recognize how,
when and where it occurs has become a step in stress assessment.

Stress recognition starts from 1973 until now. This disease has become a
problem in recent years because has increased the number of cases, especially in
workers where his/her performance decreases. Stress reactions are provoked for
the Autonomous Nervous System (ANS) and one way to estimate it could be found
in physiological signals. A list of a variety wearable sensor is presented to capture
these reactions, trying to minimize the risk of distraction due to external factors.

The aim of this work thesis is to detect stress for level assessment. A combina-
tion of different physiological signals is selected to extract stress feature an classify
in a rating scale from relax to breakdown situations.

This thesis proposes a new feature extraction model to understand physiologi-
cal Galvanic Skin Response (GSR) reactions. Last methods conclude in incongru-
ent results that are not interpretable. This model propose a robust algorithm that
can be used in real-time (low time computability) and results are sparse in time
to obtain an easily statistical and graphical interpretation.

Signal processing methods of heart rhythm and hormone cortisol are included
to develop a robust feature extraction method of stress reactions. A combination
of electrodermal, heart and hormone analysis is presented to know in real-time the
state of the individual. These features have been selected because the acquisition
is non-intrusive avoiding other factor such as distractions.

This thesis is application-focused and highly multidisciplinary. A complete fea-
ture extraction model is presented including the new electrodermal model named

and usual heart rhythm techniques. Three experiments were evaluated: a) a fea-
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ture selection model using neurocognitive games, b) a stress classifier in time dur-
ing public talks, and c) a real-time stress assessment classifier in a five-star rating
scale.

This thesis improve stress detection overcoming a system to capture physio-
logical responses, analyze and conclude a stress assessment decision. We discussed
past state of the art and propose a new method of feature extraction using signal
processing improvements. Three different scenarios were evaluated to confirm the

achievement of aims proposed.
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Introduction

1.1 Motivation

Stress is a body reaction that could appear in our daily life everyday. Do you
remember the last time you felt stressed? Maybe you had to giving a talk and very
little time to prepare it or perhaps you have a deadline and you do not have time
to finish your document and send it properly. Although you might not have been
completely aware about feeling stressed, your body might have been experiencing
a sequence of physiological changes that may have induced such as pupil dilation,
deeper breathing, intensified beating of the heart, or increased muscle tension,
among many other possible changes. These physiological alterations and their
associated behavioral effects, plays a role in our daily functioning [14]. Stress not
only regulates processes such as attention and memory acquisition but also helps

us tune the body to face daily challenges and threats [53]. Some of this response
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CHAPTER 1. INTRODUCTION

during daily activity can result in long-term stress, contributing to a wide array
of risks, including cardiovascular disease, cerebrovascular disease, diabetes, and

immune dysregulation [5].

The body experiences a series of physiological events driven by the two branches
of the ANS in a stressful situation. The Sympathetic Nervous System (SNS) mobi-
lizes the body’s resources in response to a challenge or a threat (e.g., quickens the
pulse, deepens the respiration and tenses the muscles) and the Parasympathetic
Nervous System (PNS) works antagonistically to control this process. During this
process, people may experience enhanced arousal, improved cognitive function-
ing and concentration, increased ability to withstand pain, and accelerated motor
reflexes, preparing the body to face life-threatening situations. This type of in-
stantaneous stress (usually named short-term stress) has been defined as a reaction
from a calm state to an excited state in order to preserve the integrity of the or-
ganism [25]. It has been estimated that the business costs associated with stress
are around $300 billion per year in the United States (US) alone [64]. Despite the
well-studied negative outcomes, stress is still considered a necessary evil by many

people as it helps us keep up with the pace of modem society.

This thesis focus on short-term stress changes that can be triggered in a few of
seconds instead of focusing on long-term stress. Continuous short-time stress can
impair decision making, decrease productivity, and lead to high amounts of work
accidents [52]. The relationship between arousal and performance plays a role in
terms of stress appraisal and health outcomes. According to the Yerkes-Dodson
Law [84], this achievement is a function of arousal, in Figure 1.1, performance
increases with arousal when the individual feel relaxed, then reaches its peak at
the highest arousal level because the subject is involved in the task, and decreases

when the individual feel in a breakdown or anxiety situation.

We already know how humans reacts to stress situations, next question is how
can we measure this short-term stress in the least non-intrusive way possible. Re-
searchers have studied a wide variety of approaches, such as self-reports to interpret

the performance, hormone analysis and the measurement of physiological signals to
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Figure 1.1: Yerkes-Dodson Law: relation between arousal and performance

evaluate arousal. However, each of these approaches has its own set of limitations
such as requiring the attention of the person, being obtrusive and/or capturing
partial information about stress. Moreover, there is often great variability in how
people perceive, experience and physiologically express stress, obstructing efforts
to build a stress recognition system.

We propose two points to model the Yerkes & Dodson curve while an individual

is performing a specific test:

1. x-axis can be expressed as the arousal (in this case, the short-term stress).
The x-axis represents in time, the stress of the subject. The individual is
elicit with in a controlled environment from a comfort state to an breakdown

situation,
2. and y-axis is the performance obtained for this individual during this test.

Emotional states provoke changes in different physiological signals that can be
measured in order to obtain information about the mental state of the individual.
Several physiological signals in different status are already analyzed in the litera-
ture. Electrodermal activity varies significantly between stress and relax situations
and can be extracted parameters of attention an short-term stress from the skin
monitoring the GSR. Hearth rhythm varies comparing between situations and two
signals can be monitored: Electro Cardiogram (ECG) and Blood Volume Presure

(BVP). Also another signals such as speech, hormone cortisol, Electroencephalo-
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CHAPTER 1. INTRODUCTION

gram (ECG) or pupil diameter can be biomarker patters associated with disease

stage, stress, as well as treatment efficacy.

A system has to be developed once are known possible signals to find stress.
Wearable sensors are increasingly taking part in daily activities, not only because
of the recent society health concern, but also due to their relevance in the medical
industry. A wide variety of sensors can monitor physiological signals, but, Which
is are the requirements to use one or other?. First of all, the sensor should be non-
intrusive to avoid disturbing and also because the person who wears it could be
uncomfortable. Secondly, the system acquisition should be via wireless technology
instead of via link assuming a loss of quality. Via link is intrusive and depends of
the length of the link. Finally, the sampling rate of the acquisition and the material
of the sensor have to be revised. A large majority or the sensors provide signals
with artifacts and out-layers that complicate the signal processing addressed. The

x-axis scale can be modeled using the reactions extraxted from these signals.

The second problem to overcome is to fit the y-axis of the Yerkes & Dodson
curve. For over a century, psychologists and behavioral scientists have thoroughly
studied stress and other emotions in laboratory settings in a subjective way. How-
ever, these emotions should be partly contrived in a objective way -i.e. elicited by
controlled stimuli-, which may not matter to the participants, at least not com-
pared with real life stressful events. With the recent improvement of wearable
sensors, researchers have started to study more natural and spontaneous emotions
and their role in real-life interactions, creating a new set of complex challenges that
need to be addressed. These methods have been traditionally tested in controlled
or semi-controlled settings where most of the real-life variables that introduce
noise are controlled or eliminated. The research at the core of this thesis combines
state-of-the-art physiological signals with machine learning methods to advance

the measurement and analysis of stress at work.

The initiative of this thesis was proposed for AIRBUS Group company. They
create a project entitled SAVIER, which is a real demonstrator to make operators

of Unmanned Aerial Vehicle (UAV) work easier. The project was divided into
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CHAPTER 1. INTRODUCTION

twelve thesis such as speech recognition, multi-UAV coordination, gesture control,
etc, and one of them was this work of stress level assessment. This kind of workers
are put under strong pressure while are achieving a mission. The effectiveness of
these operators depends on their stress level, so it would be useful to be able to
monitor and evaluate this magnitude. This project explains what stress is, how it
can be measured in non-intrusive way and analyze for determine a stress level in

a scale ranking.

1.2 Scientific Aims and Perspectives

The specific research aims of the thesis are the following:

e Create a novel of physiological feature extraction parameters that can be

unobtrusively measure with non-intrusive sensors.

e Evaluation of different physiological features to know which parameters are

more relevant in stress assessment.

e Interpretation of the validity of these novel parameters in controlled scenar-

ios.

e Assessment of generalization of the previous results in a longitudinal real-life

workplace settings.

e Development a software algorithm to automatically classify the level of stress

in a five-star rating scale based on physiological reactions.

1.3 Contributions

This thesis is multidisciplinary, bringing an analysis to deal with real-world stress
problems in the fields of public talks, individual characterization and neurocogni-

tive games. Throughout this thesis, we address the following points:

(A) A new feature extraction model of electrodermal sparse reactions.
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CHAPTER 1. INTRODUCTION

(B) A novel of the most relevant physiological features to detect stress reactions

modeled in objective way using wearable sensors.

(C) A new real-time method to characterize and classify stress levels in a five-star

rating scale.

The contributions of this thesis have also been or will be partially published
in [33, 35, 34, 36]. This thesis corresponds to a complete robust stress feature
extraction algorithm applied to different relevant situations where stress may be

controlled. We summarize our contributions below.

1.3.1 Electrodermal Feature Extraction Model

A GSR extraction technique has been developed in order to interpret Electroder-
mal Activity (EDA) records, which can be useful both for ambulatory and health
applications. The core of the proposed approach is a feature extraction scheme
that is based on a non-negative sparse deconvolution of the observed GSR signals.
Unlike previous approaches, the resulting algorithm is fast (immediately extract-
ing the skin conductance level and response), efficient (being able to work with
any sampling rate and signal length), and highly interpretable (due to the sparsity

of the extracted phasic component of the GSR).

1.3.2 Wearable Sensors Used to Detect Stress Levels

This contribution presents a controlled experiment design to know which physi-
ological features are more relevant in human decisions. During the experiments,
subjects are requested to either play a neurocognitive game using a computer, or
relax during interleaved intervals of time. Nine subjects performed the experi-
ments twice and twenty four once to train the model. The main objective is to
analyze the capability of the extracted features to understand individual behav-
iors. A binary classification problem is proposed to determine whether a person

was playing or relaxing, achieving 13.31% mean error.

12



CHAPTER 1. INTRODUCTION

1.3.3 Classification Physiological Stress Features

This study proposes a new framework to process signals while an individual is dis-
cussing a public talk trying to classify his/her stress levels. A dataset is presented,
composed of 17 one hour talks where speech, electrodermal activity and heart
rhythm are recorder using non-intrusive sensors. The proposed method acquire 12
features each minute and classify in three states: pre-presentation, during talk and
questions time. A database of 9 speeches were used as training set and the rest
of 8 talks as test data. We show that the proposed framework makes it possible
to detect distinctive stress patterns, verifying an average of 15.05% percentage of

error between the three classes, achieving a model to use in stress detection.

1.4 Thesis Outline

The outline of the remainder of the thesis is as follows: Chapter 2 overviews rele-
vant research in the context of stress measurement and some of its main challenges.
In particular, the chapter describes: 1) some of the commonly used workplace
stress models, 2) several approaches to measuring stress, 3) different approaches
to comfortably measure physiological signals, 4) the most important physiological
signals used in stress recognition. Chapter 3 provides new method of feature ex-
traction for GSR signals. The model is completely explained and compared with
other methods developed in the past. Chapter 4 presents some feature extrac-
tion techniques for different human activities. It is divided into heart rhythm,
electrodermal activity, speech and hormone analysis. Chapter 5 discuses three ex-
periment developed to elicit stress in a controlled environment to understand the
stress reactions of the participants. Lastly, Chapter 6 concludes the dissertation

of this thesis and finished with some possible future lines.
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Stress Assessment

This chapter provides an overview of relevant research in the context of stress mea-
surement and some of its main challenges. In particular, the chapter describes: 1)
definition and different types of stress, 2) how the Autonomous Nervous System
(ANS) reacts from stress situations, 3) objective versus subjective stress measure-
ments, 4) a novel of the most relevant physiological signals used in stress assess-
ment, 5) a list of possible wearable sensors, 6) and finally some experiments of

stress recognition using physiological signals.

2.1 Stress Definition

Stress is a natural physical and mental reaction to life experiences. Everyone
expresses stress from time to time. Anything from everyday responsibilities like

work and family to serious life events such as a new diagnosis, war, or the death
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CHAPTER 2. BACKGROUND RESEARCH

of a loved one can trigger stress. For immediate, short-term situations, stress can
be beneficial to health. The body responds to stress by releasing hormones that
increase heart and breathing rates, and ready your muscles to respond. This is
called fight-or-flight response that the body triggers in times of duress.

But stress is meant to be temporary. The body should return to a natural
state after the situation has passed. Heart rate should slow, muscles should relax,
and breathing should return to normal. The pressures and demands of modern life
may put the body in a heightened state for a long period of time, making heart
pump hard and your blood vessels constrict for longer than body can handle. Over
time, these physiological demands can take a toll on body.

Yet if stress response does not stop firing, and these stress levels stay elevated
far longer than is necessary for survival, it can take a toll on health. Long-term
stress can cause a variety of symptoms and affect the overall well-being. This chain
of physiological changes and their associated behavioral effects, plays a role in our
daily functioning. This thesis borrows the definitions of demands in these three

cases:

Long-term stress
It is body’s immediate reaction to a new challenge, event, or demand, and
it triggers your fight-or-flight response. As the pressures of a near-miss au-
tomobile accident, an argument with a family member, or a costly mistake

at work sink in, body turns on this biological response.

Short-term stress
It comes about as the result of a situation that has not been resolved or
continued for many years prior to being resolved. This might be a traumatic
event that happened during childhood. Although resolved, the feelings sur-
rounding the situation may not have been dealt with and chronic stress
remains. There may also be an ongoing situation, such as family abuse,
dysfunctional home or an ongoing illness in the family. This stress has the
ability to create additional health problems, for example heart disease or

stomach ulcers.
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Individual performance
Every person has different responses in presence of stress situations, but
present similar behaviors performing the same activity. Performance achieved
could have variance as describe [83], i.e. the time reaction for each individual
carrying out a task. It is important to characterize the capacity and abilities

of each person due their variance.

One of the main challenges when defining and measuring stress is the great vari-
ability in how people perceive and experience stress. Stress reactions are different
for each person, but present similar behaviors doing the same exercise. Moreover,
this same activity may elicit different levels of stress in the same person from one
day to another, perhaps depending on factors such as the amount of sleep s/he
had during the previous day [59], whether s/he exercises regularly [53], and the
amount and type of social interactions s/he had during the day [50]. All of these

factors complicate the task of estimate stress.

2.2 Autonomous Nervous System (ANS)

There are stressful situations where individuals must deal with changes from a calm
state to an excited state. But, how does the body react to these stimulus? Why
are these changes in the body caused? The answer is given by the Sympathetic
System (SS) and the Parasympathetic System (PS), which are part of the Nervous
System (NS) of the human body. NS is divided into two components [62]: Central
Nervous System (CNS) and ANS. This thesis will focus on the ANS, because it
is the system that controls involuntary actions of the human body, such as the
beating of heart, sweating or digestion. A hierarchical scheme of the NS is shown
in Figure 2.1.

ANS is an efferent system (i.e. it carries impulses from CNS to peripheral
organs) and it can be divided into two subsystems: Sympathetic Nervous Sys-
tem (SNS) and Parasympathetic Nervous System (PNS). Both subsystems make

actions that can seem opposite each other. The SS acts in urgent cases causing
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I Nervous System (NS)

A Y

Central Nervous Autonomous
System (CNS) Mervous System (ANS)
I Sympathetic System (55) Parasympathetic System (PS)

Figure 2.1: Hierarchical scheme of the Nervous System (NS).

reactions such as the fact of accelerating the pulse rhythm or the breathing or
breaking the digestion. This subsystem acts on this way to prepare people in
order to use their maximum energy. However, the PS keeps energy in order to
maintain the properly operation of the human body after these urgent cases where
the ANS acts.

Both subsystems control different functions of the human body which are sen-
sitive to emotional states [61], and emotions are related to stress because people
who cannot or do not know how to deal with these emotional situations are more
likely to suffer from this stress problem. Emotions can be elicited by perception,
imagery, anticipation and action [12]. There have been several researches where
different stimuli have been applied aiming at eliciting different emotions, and it is
just in this point where can take into account a set of different physiological signals
that can be measured in a non-intrusive way, and thanks to them, it is possible to

obtain information of the emotional state.

2.3 Objective vs Subjective Stress Measurement

Measuring stress has been the focus of interest of psychological and psychophysi-

ological researchers for many decades. Being able to automatically quantify stress
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during daily life could help people not only to better understand what events
elicited the highest stress levels during their daily activity but also to prevent the

negative outcomes associated with long-term stress.

From the point of view of psychology, the standard of stress measurement is
self-report measures that can be collected through retrospective surveys and/or
experience sampling. The psychologists consider that the main advantage of this
approach is that it is subjective and, therefore, it can potentially capture the indi-
vidual personal experience of stress. There are a wide array of surveys to quantify
different types of stress and their frequency during daily life. For instance, the
Daily Stress Inventory [13] allows one to quantify the daily stress by counting the
number and type of stress that appeared throughout the day. While retrospective
surveys enable capturing very detailed information, they are negatively affected by
recall problems. On the other hand, experience sampling methods minimize these
problems but severely limit the amount of information that can be captured. A
common limitation is that they require the full attention of the person, which can
be disruptive when considering very frequent real-life measurements. Moreover,
they assume that the monitored person can appropriately identify and express
their own emotions, and that they are willing to do so. These assumptions are
not always accurate in real-life (e.g., people with emotional impairments, exces-
sive work overload that negatively impacts accurate self-reflection, or discomfort

reporting some experiences).

The main alternative to self-report measures are objective measures. For in-
stance, information about stress responses can also be obtained by analyzing hor-
mones such as cortisol or adrenaline that can be gathered from saliva and blood
samples. However, these measures commonly entail costly and slow analysis. An
alternative approach consists of monitoring behaviors that are influenced by stress.
For instance, Zimmermann et al. [87] proposed monitoring the use of computer
mouse and keyboard to capture changes associated with the affective states of
users. However, this approach captures indirect information of stress that is only

available when the user is performing a specific behavior at the instrumented lo-
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cation. Finally, an alternative approach that addresses the previous limitations
consists of monitoring the physiological responses associated with stress, such as
heart rate, blood volume pulse, skin temperature, pupil dilation or electrodermal
activity [6].

The work presented in this thesis considers the last alternative where some
physiological signals are monitored. The main idea is to extract objective data to

avoid possibles incongruent results in stress scales.

2.4 Stress Recognition Using Physiological Signals

Next question is whether or not stress levels could be recognized accurately from
physiological signals using non-intrusive sensors. As was mentioned before, physi-
ological signals are needed in order to extract information about the state of each
individual. A novel of the most relevant physiological signals used for detection
stress is described below to have a reference of each one, and them, a summary of

some experiments is discussed.

Blood Volume Pulse (Blood Volume Presure (BVP))

In stress situations, it is known that there are changes in the number of heart beats
due to the fact that pulse is increasing. Also, vasoconstrictions, i.e. the narrowing
of the blood vessels resulting from contraction of the muscular wall of the vessels,
increases in response to stimulus situation that can provoke stress while decreases
in response to relaxation. Therefore, BVP can be an useful signal to measure heart

activity. One example of this signal is shwon in Figure 2.2.

This signal offers information about the heart beats and about the relative
constrictions of the blood vessels. Calculate the distance between each maximum
in seconds is applied in order to measure the heart rate. However, to count vaso-

constrictions we have to take into account the shape of the envelope of the signal.
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Figure 2.2: Example of a Blood Volume Pressure signal of 10 seconds.

R-R interval

B

Figure 2.3: ECG signal example and RR interval definition.

Electrocardiogram (ECG)

Electro Cardiogram (ECG) is also used to measure heart activity. It represents
graphically the electrical activity of hearts. The electrocardiograph, that is the
device which measures the ECG, is able to detect voltage on the surface of the skin
when heart beats happen. An example of the signal is shown in Figure 2.3. Inter-
Beat (RR) interval is defined as the time elapsing between two consecutive R waves
in the electrocardiogram. In order to detect stress, it is necessary to compute other
valuable parameter, Heart Rate Variability (HRV). Some researches, for example
in [40], show that individuals who have a better stress tolerance, they also have
significantly different patterns of Heart Rate Variability in the stress period and

also before that.

21



CHAPTER 2. BACKGROUND RESEARCH

Galvanic Skin Response
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Figure 2.4: Example of Galvanic Skin Response signal of 400 seconds.

Galvanic Skin Response (Galvanic Skin Response (GSR))

Impulses of the sudomotor nerve used to produced and sweat glands react causing
sweat diffusion when a stress situation happens. Due to this reason, skin conduc-
tance increases and transpiration can be detected by a conductivity sensor. These

are the reactions of the Electrodermal Activity (EDA).

The term GSR refers to changes in the electrical properties on the surface
of the skin in response to sweat secretions [10]. These secretions are due to an
increment in sudomotor innervation, caused by the SNS, that results in changes
in the GSR signals as the body responds to different daily circumstances: stress,
temperature, anxiety, exertion situations, etc. [76]. Hence, the sympathetic activ-
ity can be measured by analyzing the GSR signals, as already shown in[49]. For
instance, this relation between SNS acts and the observed skin conductance [79],
which determines the sympathetic innervation of the sweat glands [11], has been

extensively used in stress detection applications (e.g., see [26, 85, 74, 28]).

GSR suffers changes in the electrical properties of a person’s skin caused by an
interaction between environment events and the individual’s psychological state.
However, there exists a big limitation in this signal. In the signal example shown
in Figure 2.4, the short stress responses caused by stress are marked in green and
the signal is drawn in black. In fact, this example shows that this kind of signals

can be useful for stress detection if are processed correctly.
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Electromyogram

When the body suffers some stimulus, muscle activation reacts, which supposes
an increasing in the current measured in muscles. Therefore, by measuring muscle
activity we will be able to detect these current increasings corresponding to stress
situation. Apparently, it can be measured in any muscle, but there are some of
them that can provide more information, i. e. [57] measure the EMG on the
trapeziums muscle giving good results.

As it was explained in the electrocardiogram, in order to measure these reac-
tions that appear when a muscle is contracted we need a set of electrodes. For
example in [26], they use three electrodes: two of them located along the axis of
the muscle that they want to measure and the third one is the ground located out
of this muscle.

As it is described, there is a significant increasing in the current measured that

means that the body suffers some stimulus and muscle activation reacts.

Pupil Dilation

Pupil Dilation is wider and the eye movement is faster under a stress situation.
Therefore, this is other physiological signal that can be measured in order to know
the emotional state of an individual because the Autonomous Nervous System
innervates some of the muscles that controls the pupil size.

Pupil Dilation is not used as other biosignals, such as, for instance, skin con-
ductance, because it is more difficult to obtain the acquired signal, but there are

several researches where they measured for stress detection [24] [85].

Cortisol Hormone

The conditions of each person can influence at the moment of undergoing activities
satisfactorily. Tiredness, family problems, distractions or anxiety are examples of
situations where a person’s performance can decrease. [51] argues that the measure
of cortisol can be an identifier pattern associated with stress as well as in terms of

efficiency of individual performance.

23



CHAPTER 2. BACKGROUND RESEARCH
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Figure 2.5: Twenty-four hour pattern of cortisol levels [81]

The hormone cortisol is necessary for the functioning of almost every part of
the body. Excesses or deficiencies of this hormone also lead to various physical
symptoms and disease states. It has been found that the level of salivary cortisol
serves as a biochemical marker for post-traumatic psychological distress disorders
and other conduct disorders [78]. However, cortisol achievement in the body fluc-
tuate throughout the day with levels, being highest in the morning and lowest in

the evening as is presented in Figure 2.5.

Skin Temperature

Skin temperature can change due to the sympathetic innervation of the sweat
glands. The main information that can be obtained about the skin temperature
is in the transient decreases when the stimulus affects to the individual. Once the
acquired signal is measured, the information about when stimulus occurs due to
the fact that the slope of the skin temperature signal generally shows a negative
trend.

Skin Temperature is not so used because the signal obtained does not provide
too much information about the emotional state of the individual. However there
exist some researches where this signal is measured and used in order to extract

information about it [6].
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2.5 Physiological Sensing

A first step towards unobtrusively measuring daily stress consists of the develop-
ment of tools that can monitor relevant cues of stress without creating additional
stress. The current standard approach for measuring heart rate (electrocardio-
gram) requires sticky gels and uncomfortable electrodes attached to the skin which
can be quite cumbersome. Moreover, existing physiological sensors require main-
tenance (e.g., recharging batteries, replacing electrodes) preventing many people
from regularly measuring their vital signs.

One of the least invasive physiological measurement approaches to measure
cardiac and respiratory information is Photoplethysmography (PPG), which cap-
tures color variations of reflected light from, or transmitted through the skin.
Traditional measurements of PPG require a dedicated light source in close contact
with the surface of the skin such as the finger [4]. Researchers have also started to
consider more wearable approaches which are more appropriate for daily life mon-
itoring. For instance, Kwon et al. [43] attached a smart-phone to the chest and
used its accelerometer to monitor heart rate. Similarly, Phan et al. [60] proposed a
different method to extract both heart and breathing rates. While moving us one
step closer to unobtrusive physiological monitoring during daily life, they mostly
considered the chest location where both cardiac and respiratory motions are more
prominent. Recently, most of the researchers use several type of smart-wrists to
know the information related to hearth rhythm. In the end, some many studies
only use the mean heart rate to perform and statistical model so the wave of the
electrocardiogram is insignificant.

In the other hand, electrodermal activity signals are more sensitive to recalled
a useful signals for signals changes or artifacts. In terms of non intrusive, Shimmer
[73] sensor are take placed two electrodes on the palmar surface of the middle and
index finger. These sensors could be intrusive, so, some wrist band appear in
recent years, such as, Empatica E4 [19] or Q sensor [1] which the bracelet should
be placed on the wrist of the non-dominant hand. Wear it snugly, so that it does

not move around, but not so snugly that it is uncomfortable.
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This thesis systematically evaluates the possibility of measuring heart and elec-
trodermal activity from different wrist with commercially available wearable sen-
sors such as accelerometers and gyroscopes.

This thesis only use non-intrusive sensor to avoid external factors. The sensors
used send signals via Bluetooth which is a technology standard for exchanging data
over short distances. Bluetooth is a standard wire-replacement communications
protocol primarily designed for low-power consumption, with a short range based
on low-cost transceiver microchips in each device. Because the devices use a radio
communications system, they do not have to be in visual line of sight of each
other. This technique leave behind sensors that must need the acquisition via
link because the information extracted could be also acquired via wireless without
complications.

The wireless sensors used in this thesis are briefly detailed below:

e Empatica E4 [55] is a compact wristband that allows obtaining data about
electrodermal activity, heart rate, R-R interval, device position and angular

velocity. This bracelet is shown in Figure 2.6 (a).

e Qsensor [1]. It allows only the measurement of galvanic skin activity through
two silver electrodes placed on the base of the device. The quality obtained

is better than Empatica E4. This sensor is displayed in Figure 2.6 (b).

e Speech is obtained using a Zoom H1 handheld recorder with a Rode lavalier
microphone. Non lossy compressed files (wav), 24-bit quantification and

44 kHz sampling rate are used.

e A Shimmer3 ‘GSR Unit’ sensor was used to capture BVP and GSR signals.
On the left hand, the BVP optical pulse sensor was placed on the palmar
surface of the pinky finger [72]. For GSR signals two electrodes on the palmar

surface of the middle and index fingers were placed [71] as shown in Fig. ?7?.

e Another sensor model, Shimmer3 ‘ExG Unit’, was used to capture EMG and
ECG signals. In the case of ECG, Fig. 7?7 shows how the electrodes were

positioned on the chest [69].
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a: Empatica E4 b: Affectiva Q Sensor

Figure 2.6: Two sensor are shown: (a) Empatica E4 captures BVP and GSR signals and
(b) Q sensor acquires only GSR signals.

a: Shimmer used for GSR b: Shimmer used for c:  Shimmer used for the
and BVP signals acquiring the ECG  measurement EMG measurement elec-
electrodes and optical pulse electrodes trodes

sensing probe

Figure 2.7: Family of Shimmer sensors is displayed.

e In order to capture EMG signals, Fig. 7?7 shows an example of right arm
electrode layout. Two electrodes were placed in parallel with the muscle
fibres of the biceps, near the centre of the muscle and the reference electrode
an electrically neutral point of the body, as far away as reasonably possible

from the muscle being measured [70].

2.6 Stress Recognition In Controlled Environments

Several automatic stress recognition techniques have been explored in the research
literature. In most cases, data are collected in the laboratory where variables that

may introduce noise are partially controlled or eliminated. Traditional methods
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for inducing stress and some complete experiments are described below.

2.7 Elicit Stress Using Controlled Experiments

Stroop Color-Word Interference Test [39]
It is a test in which individuals are presented with lists of color words in
matching and non-matching colors and the time they take to read the dif-
ferent words, or the number of errors they make, is recorded. The Stroop
effect is the degree of difficulty people have with naming the color of the ink
rather than the word itself. There is interference between the color of the
ink and the word meaning. This interference occurs no matter how hard you
try, which means that it is uncontrollable with the best conscious effort. It

implies that at least part of our information processing occurs automatically.

Trier Social Stress Test (TSST) [41]
The TSST is designed to exploit the vulnerability of the stress response to
socially evaluative situations. Most current implementations follow a pattern

similar to the following:

The period of induced stress lasts approximately 15 minutes, and is divided
into 5 minute components. The first 5 minute component is the anticipatory
stress phase, during which the judges ask the participant to prepare a 5
minute presentation. The participant is allowed to use paper and pen to
organize their presentation, but this paper is then unexpectedly taken away

from them when it is time to begin the presentation.

During the 5 minute presentation component, the judges observe the partic-
ipant without comment. If the participant does not use the entire 5 minutes,
they will ask him or her to continue. This goes on until the entire 5 minutes

have been used.

The presentation is immediately followed by the mental arithmetic compo-
nent, during which the participant is asked to count backwards from 1,022

in steps of 13. If a mistake is made, then they must start again from the
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beginning. This component lasts for 5 minutes and is followed by a recovery

period.

Trier Mental Challenge Test (TMCT)
This test is a selection of mathematical problems. The computer screen
displays the actual score un the upper left corner, the mathematical problems
in the center and a horizontal bar extending from the left to the right margin
on the bottom controlling the time to answers.The time allotted for problem
solution varies varies with the difficulty with increasing time for more difficult

problems.

After 5 minutes, the computer program stops and only the total scores are
displayed. The subjects had to work on 4 trials of arithmetic problems of 5

minutes, this, the stress lasted for 20 min in total.

2.8 Stress Recognition from Physiological Signals

Researchers have explored a variety of classification methods, and techniques to
minimize physiological differences across people. Barreto, Zhai & Adjouadi [7], for
example, used Support Vector Machines (SVMs) to discriminate between stressful
and non-stressful responses (elicited by different versions of the Stroop Test) [39]
in a laboratory setting. The SVMs outperformed other classification algorithms,
obtaining an accuracy of 90.1%. Various physiological signals were used in the
classification, including EDA, BVP, pupil diameter and skin temperature.

In a separate study, Setz et al. [67] used EDA to automatically distinguish be-
tween cognitive load and stress elicited by arithmetic computations without and
with time pressure and social-evaluative threat, respectively. In this case, Lin-
ear Discriminant Analysis (LDA) obtained 82.8% accuracy, outperforming SVMs.
Setz et al. [67] found that the average number of EDA peaks, as well as the dis-
tribution of their amplitudes, were the most relevant features to the problem. To
account for participant variability, distributions were computed for each partici-

pant independently.
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In another study, Shi et al. [68] discriminated between stressful and non-
stressful responses under social, cognitive and physical stressors. They obtained
68% precision (a.k.a., positive predictive value) and 80% recall (a.k.a., sensitiv-
ity) using SVMs with EDA, electrocardiogram, respiration and temperature. The
problem of participant variability in terms of physiological variance was addressed
by subtracting a person specific parameter from the features of each participant.
This parameter was estimated as the average feature of all-non-stressful events of
the participant.

Finally, another example to comment was to automatically recognize stress in
less controlled settings, Healey & Picard [27] monitored electrocardiogram, elec-
tromyogram of the trapezius (shoulder), EDA and respiration from people during
a real world driving task. They used LDA to automatically discriminate between

low (at rest), medium (highways) and high (city) levels of stress with 97% accuracy.
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Sparse Non-Negative Driver Model

This section presents a new method of feature extraction of Galvanic Skin Re-
sponse (GSR) signals. It is divided as follows: a signal processing review of GSR
methods is discussed, then, the mathematical sparse model is explained, a prac-
tical implementation of the model in 100 records is examined and finally some

conclusions are considered.

3.1 Signal Processing Review For GSR signals

GSR signals carry information about Sympathetic Nervous System (SNS) activity,
but are also influenced by other factors, like temperature changes or sweating due
to aerobic exercise [37]. The challenge in analyzing them is thus to develop a
method which is able to extract only SNS activity symptoms while avoiding other

unrelated components. Indeed, GSR signals, which are usually denoted as s(t),
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can be expressed as a sum of two components [10]:

e The tonic component, s¢(t), or Skin Conductance Lelvel (SCL), which is a
slow changing signal. The SCL is related to several non-SNS activity factors
but also to the level of attention of the subject, even in the absence of

instantaneous stimuli.

e The phasic component, spy(t), also called Skin Conductance Response (SCR),
which is the reaction to sporadic SNS stimuli. The SCR, which is superim-
posed on top of the tonic component, includes higher frequency components
and appears only within specific time windows whose length typically lasts

from one to five seconds [10].

Furthermore, SCRs can be modeled as the standard linear convolution between
a sudomotor SNS innervation, dp(t), that corresponds to the non-negative un-
known sparse driver that causes the observable skin conductance response, and
the response triggered by that driver, r(¢). Hence, GSR signals can be finally
decomposed as [45],

s(t) = sp(t) + se(t) = dp(t) = r(t) + se(t). (3.1)

GSR signal processing models then focus on the estimation of the SCR and SCL
components in the absence of other factors.

Alexander et al. [3] were the first to introduce a decomposition algorithm based
on the model of Eq. (3.1). Their approach estimates first the SCL contribution,
which is subtracted from s(¢), and then reconstructs the SCR signal using an
iterative inverse filter deconvolution method. However, this method leads to a
non-sparse driver that can present negative impulses, which are not physiologically
interpretable. Moreover, it is very slow, thus preventing its application for long
time registers or on-line signal extraction.

Benedek et al. [9] addressed the decomposition using a different signal model
and considering a non-negative deconvolution scheme based on Gauss elimination

to avoid negative SCRs. After estimating the SCL and subtracting it from s(t),
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this approach obtains an initial estimation of the SCR through a Gauss elimina-
tion deconvolution. The negative components of the SCR are then removed by
introducing an arbitrary waveform that is fitted by minimizing the error with re-
spect to the observed signal. Unfortunately, this method produces a noisy driver
which is not sparse, and the waveforms introduced to force the non-negativity are

not physiologically interpretable.

In another work, Benedek et al. [8] proposed an alternative non-negative de-
composition based on the model of Eq. (3.1) that shows common ground with the
method of [3]. It is based on a spectral division deconvolution with a Gaussian
window (after removing the estimated SCL component again), and the SCR de-
tection is performed by searching for the zeros in the first derivative of the driver.
This approach yields an individual estimate of the typical SCR shape through
optimization, but the estimated driver is still non-sparse and the computation is

slow (as shown in the simulations).

Greco et al. [23] proposed a non-negative sparse deconvolution based on cu-
bic B-splines for the SCR component, an Autoregressive-Moving-Average Model
(ARMA) model for the sudomotor SNS innervation, and an additive white Gaus-
sian noise term. Although the resulting convex optimization problem can be
solved, the solution obtained is still not sparse (values close to zero, but not ex-
actly equal to zero, are obtained) and the interpretability is not improved w.r.t.
previous approaches. They introduce the joint estimation of the SCL and SCR
components, but this method is still not fast enough for on-line application. An-
other sparse deconvolution technique has been introduced very recently in [38].
This approach recovers a truly sparse driver and takes into account potential dis-
continuities in the SCL due to motion artifacts. However, they assume that the
length and shape of the response r(¢) are known, they do not enforce the sep-
aration between SCR events that typically occurs due to physiological reasons,
and the resulting algorithm is not directly applicable for on-line extraction of SNS

information.

In summary, the sparse nature of the driver dy(t) that triggers the SCR re-
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sponse has not been fully exploited by previous methods. Consequently, the in-
terpretability of the decomposition obtained is limited, since true SCR events are
difficult to locate in the driver and artificial signals that have no physiological
interpretation are introduced by some methods (e.g., [9]) to reduce the error of
the model. Furthermore, none of these approaches is able to provide the real-time
results required for on-line operation. We addresses all these issues, developing a
novel non-negative sparse deconvolution method (SparsEDA), that introduces the

following main contributions:

e Multi-scale analysis that addresses the variable time width of the SCR im-
pulses by using an overcomplete dictionary that includes responses, r(t), with
different widths and selects the appropriate width for each driver’s impulse

automatically.

e Exploitation of the sparsity of the SCR component (in order to obtain an in-
terpretable decomposition) by formulating the estimation of d,(t) as a sparse

inference problem.

e Fast and efficient solution of the resulting optimization problem, thus allow-

ing for on-line extraction of the SNS information.

e Fully automated implementation of the algorithm in Matlab (released through
a free web-based repository) that requires only the selection of two easily in-

terpretable parameters by the user.

Following subsection describes the core of the SparsEDA algorithm: the sparse non-
negative deconvolution model used. This includes the description of the discrete-
time equivalent of Eq. (3.1) in Section 3.2.1; the multi-scale analysis to account
for the variable width of the impulses in Section 3.2.2; the approach used to model
the SCL in Section 3.2.3; the optimization problem for the joint estimation of
the SCL and SCR components in Section 3.2.4; and the post-processing stage in
Section 3.2.5. Then, Section 3.3 addresses three issues that are essential to obtain

a robust and efficient implementation of the SparsEDA method: the preprocessing
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stage (Section 3.3.1); the continuous mode of operation for on-line signal recovery
(Section 3.3.2); and the feature extraction (Section 3.3.3). Finally, Section 3.4
validates the method on 100 signals from 100 different subjects and Section 3.5

provides some concluding remarks.

3.2 Proposed Sparse Model

3.2.1 Discrete-Time Model

The discrete-time model that we consider in the sequel is the following:

s[n] = sg[n] + dp[n] * r[n] + win]. (3.2)

where n = 0,...,N — 1 with N denoting the total number of samples available;
s¢[n], dp[n] and r[n] are obtained through uniform sampling of s,(t), dy,(t) and r(t)
in Eq. (3.1), with a sampling frequency fs = 1/Ts Hz; and w[n] is an Additive
White Gaussian Noise (AWGN) term that takes into account both measurement
noise and discretization error.

Note that (3.2) is not the discrete-time equivalent of (3.1) (as obtained by
applying the bilinear transformation [22]), but its sampled version. However, it is
a standard model [45, 3, 8, 38|.

For finite-length sequences, Eq. (3.2) can be expressed more compactly in

matrix form as

5=, + Rd, + . (3.3)

where 57 = [s[0], ..., s/([N—1]]7, Risan N x N Toeplitz matrix, d, = [dp[0],...,dp[N—
1]]7 is an N x 1 sparse non-negative vector, and @ = [w[0],...,w[N — 1]]T is
the noise vector. The vector d; is sparse, since its number of non-null elements
(indicated by its Lo pseudo-norm, HaEJHO) is small compared to its length, i.e.,
||d;|\0 = LIN [18]. Note that a universally accepted threshold to define a vector as
sparse does not exist, but we may consider that a vector is sparse when it contains

less than 10 % of non-null elements (i.e., L/N < 0.1). Since r[n] = 0 when n < 0

35



CHAPTER 3. SPARSE NON-NEGATIVE DRIVER MODEL

orn > M —1 (see Section 3.2.2),

o) 0 e 00 - 0 0 |
r[1] W] - 0 0 - 0 0
G| M2 =3 el 0 00
ol M1 #M—9 - 1] 0] - 0 O
0 0 - 0 0 - r0] 0

0 0 - 0 0 - r] o] |

Our global aim is inferring both dy[n] and s,[n] jointly when r[n] (and thus R)
is unknown. In order to achieve this goal, we describe first how to approximate R

in Section 3.2.2 and then how to model s¢[n] in Section 3.2.3.

3.2.2 SCR Model: Multi-scale Analysis

We assume that the sudomotor nerve activity can be described by a biexponential

function [3] regarding the specific response triggered by the driver:
r(t) = e ¥ — ¢t for t>0. (3.4)

According to [3], the optimum performance in their experiments is obtained by
setting 70 = 0.75 and 71 = 2. Therefore, we will use these values in the sequel.
Another assumption made in [3] is that the duration of a response varies between
one and five seconds. Thus, if 71 and 7 are fixed, in order to construct several
waveforms with different time scales we have to use different sampling periods when
discretizing r(t). This leads to an overcomplete dictionary, which is a common
approach to circumvent the scale problem in sparse inference methods [18]. Using

Q different sampling periods, we have
ESCR = [Rl) é?a ey RQL (35)

where Rgcp is an N x NQ matrix, and the éq (g=1,...,Q) are a collection of
N x N matrices (the elements of the dictionary) constructed using a predefined

set of waveforms (r1[n], ..., rq[n]) with different scales. If these waveforms are
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carefully chosen, they will be able to provide a very good approximation of the
SCR, even if its scale changes over time. The selection of the element used at each

time instant is performed by the N@Q x 1 extended vector,
dscr=1d], di, ..., db)", (3.6)

which is still a sparse vector with Hd;”o < |ldscrllo¢NQ. Hence, the signal model

becomes

5= S_é—i-R'SCR G?SCR—FID'. (3.7)

We propose using () = 5 waveforms,

Tz[n] — e_nTs/TZi _ e_nTS/TM,
forn=0,...,M—landi=1,...,5, with 7; = k;71, 70; = kiTo, k; € {%, %, 1, %, %},
and M = 10/Ts (i.e., M is the number of samples obtained in a time interval of 10

seconds using a sampling period 7). Therefore, the SCR matrix finally becomes:
Rscr = [Br,, Ry, Rr,, Rr,, R, (3.8)

where Ry, is constructed using r4[n] for i = 1,...,5. Note that this matrix allows
us to cater both for short time-scale processes (e.g., 1-2 seconds) and long time-
constant processes (e.g., 3-5 seconds). Furthermore, since we construct the periods
T1,...,T5 as a function of T, we are also able to deal with any sampling period
automatically. Fig. 3.1 shows the shape of the five different SCR waveforms used
to construct ﬁsc r. Note that all of them correspond to an SNS occurring at the
same time instant ¢t = 0 (i.e., without any delay), although their effective lengths
and the positions of the peaks of the SCR responses are different. The peak of
the SCR response is located %ki seconds after the SCR event that triggered

the response. For the k; € {%, %, 1, %, %} used in Fig. 3.1 this corresponds

approximately to {0.5885, 0.8827, 1.1770, 1.4712, 1.7655} seconds, respectively.
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Figure 3.1: Multi-Scale SCR waveforms (r1[n], ..., r5[n]), obtained discretizing r(t) in
Eq. (3.4) using five different periods: Ty = Ts/2, To = 3Ts/4, Tz = Ts, Ty = 5Ts/4, and
Ts = 3Ts/2. All of them correspond to an SNS occurring at the same time instant ¢ = 0.

3.2.3 SCL Model: Taylor Series Expansion

In order to approximate the SCL in a simple and efficient way, we propose to use

a first order Taylor series expansion:

So=(1/IITll2 £/Ilellz —&/11elle] dscr = Rscrdscr, (3.9)
where 1 = [1, ..., 1T and £ = [0, 1, ..., N — 1]T are constant and linearly
increasing N x 1 column vectors, respectively; || - ||2 denotes the Ly norm, so

IT]l = V/N for instance; Rscr is the N x 3 matrix built using those column

vectors; and dgcy, is a non-negative coefficients vector.

3.2.4 Joint SCL and SCR estimation

The standard approaches to GSR signal analysis in the literature are based on the
sequential extraction of sy(t) and sp,(t). On the one hand, sy(t) can be estimated
as an average of s(t) over short intervals (10 to 100 seconds [3, 9]), and then
subtracted from s(¢) in order to obtain s,(t). Alternatively, s,(t) can be obtained

from s(t) through a high pass filter [21], and then, if desired, sy(¢) can be obtained
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again by subtraction. Either way, as pointed out in [8], this sequential extraction
tends to underestimate the SCR, component.

Here, it is proposed to estimate both the SCL and the SCR components simul-
taneously, exploiting the fact that ﬁgc 1, and ﬁgc r can be combined into a single
N x (NQ + 3) matrix: Rr = [Rscr Rscr]. Hence, can be rewritten Eq. (3.7)
more compactly as

s = Rypdp + 0, (3.10)
where dp = [d5,; dbep]” € RNQH3. This is the joint SCL-SCR model that we
use in the sequel to perform the joint estimation of the SCL and SCR components.

The proposed solution is based on the following key characteristics of the skin

conductance response [79, 48]:

e The driver, d,(t), represents sudomotor nerves activations, and thus it cor-
responds either to non-negative deflections (during states of activity) or re-

mains equal to zero otherwise.

e A single impulse corresponds to each SNS act [8] and triggers an SCR re-

sponse that typically lasts from 1 to 5 seconds [8].

e The sudomotor impulses arrive as discrete and separate (i.e., non-overlapping)

events, implying that JSCR should be sparse in time.

These facts lead us to consider a non-negative sparse driver, with the constraint
that dp(i) > 0 for 1 < ¢ < N, which is characterized by a zero baseline and
occasional (i.e., sparse) discrete positive impulses with a compact support. Hence,

the estimation of dy can be formulated as the following constrained optimization

problem:
dr= argmin  [§— Rrdyl (3.11a)
d
subjeTct to dr(i) > 0Vi (3.11b)
ldrllotNQ (3.11c)

Eq. (3.11a) corresponds to the minimization of the mean squared error Mean

Square Error (MSE) between the available signal and the reconstructed one, Eq.
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(3.11Db) is the non-negativity constraint, and Eq. (3.11c) is the sparsity constraint.
Since the Ly pseudo-norm is untractable from a mathematical point of view, the
sparsity constraint in Eq. (3.11c) can be imposed using an L regularization term,
that leads to the following non-negative version of the Least Absolute Shrinkage

and Selection Operator (LASSO) [77]:

dp = argmin |5 Rrdr|3 + A|dr|h (3.12a)
d
subject to dr(i) > 0 Vi (3.12Db)

which can be solved efficiently using the Least Angle Regression (LARS) algorithm
[17].

Note that the regularization parameter, X, controls the amount of sparsity
in the reconstruction: the larger the value of A the sparser the signal obtained.
However, A has no clear interpretation in terms of GSR signals, and thus it can
be difficult for the user to find an appropriate value for it. Instead, since LARS
is a greedy algorithm, we propose to replace the choice of A by the selection of
a stopping rule that can be set much more easily by users without a detailed
technical knowledge of the algorithm. For instance, we stop the optimization
when the residual of the GSR reconstruction is less than a pre-defined value (i.e.,
|5 — R)TC?TH% <€) or a maximum number of iterations Ky .x have been performed.
Furthermore, since a final post-processing stage is performed (see Section 3.2.5) to
remove redundant impulses, the user can simply set values of € and K, which
ensure that all the potential impulses have been discovered by LARS (e.g., in the
simulations we have used € = 10~% and Ko = 40), and then control the degree

of sparsity during the post-processing.

3.2.5 Post-Processing

The goal of the post-processing stage is to obtain a driver signal, d,(t), which is
as sparse as possible. In order to achieve this goal, we propose to apply a greedy
algorithm that eliminates weak impulses which are too close to stronger impulses,

following a similar approach to [56, 46]. These impulses are included by LARS
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in order to decrease the MSE, but are useless from a physiological point of view
and hinder the interpretability of the recovered signals. In summary, the proposed

approach is the following:
1. Initialize the set of accepted impulses as the empty set: A = ().

2. Sort the elements of cfgc r in descending order according to their L; norm.

Hence, the resulting ordered vector, d:,rd, fulfills that

| dora(W)l1 > |dora(2)ll1 > -+ > ||dora(N) |1

Note that, since CZSCR is sparse, only the first LgorfN(Q elements of d_;Td are

different from zero.
3. Fort=1, ..., Lscr:

(a) If the location of J;Td(i) is not within Ti,i, seconds (i.e., Npin = Tmin fs
samples) of an existing impulse in A, add it to the set of accepted

impulses.

(b) Otherwise, discard it.

4. Discard the accepted impulses whose Ly norm lies below the following thresh-

old:

v = pmax ||dscr|1,

where 0 < p < 1 is a user specified parameter that can be used to control

the final sparsity of the solution obtained.

The minimum distance constraint enforced by the previous algorithm could
also be included within the optimization problem, as shown by the Cross-Products
LASSO algorithm [47]. However, this leads to a substantial increase in computa-
tional cost (since the resulting problem is not convex anymore), that would prevent

the on-line implementation that we are seeking here.
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3.3 Practical Implementation

3.3.1 Preprocessing

Continuous and unobtrusive measurement of GSR, using wearable devices makes
the signal collected vulnerable to several types of noise and artifacts. Artifacts can
be generated from electronic noise or variation in the contact between the skin and
the recording electrode caused by pressure, excessive movement or adjustment of
the device. If these artifacts remain in the signal when it is analyzed, they can
easily be misinterpreted and skew the analysis; for example, they may be easily
mistaken for an SCR [76].

In order to remove these artifacts, Sara Taylor et al. [76] developed a machine
learning algorithm to detect automatically Electrodermal Activity (EDA) artifacts
that will be used before applying our novel SparsEDA algorithm. This method
takes segments of 5 seconds and classifies them either as artifacts or as valid GSR
signals. In those slots that are classified as artifacts, the signal is replaced by a
polynomial regression of order 1 between the last non-artifact point in previous
slots and the first non-artifact sample in subsequent slots, and no further processing
is performed.

Besides the artifact removal stage, the complete signal is resampled to 8 Hz
if the sampling frequency, fs, is higher than 8 Hz. This resampling does not
have any influence on the signal’s quality, since SCR waveforms can be perfectly
represented using fs = 8 Hz (or even fs = 4 Hz), but allows us to reduce notably

the computation time.

3.3.2 Continuous-mode Operation

The final goal of the SparsEDA method is being able to extract EDA-related fea-
tures continuously using shorter signal sets of N = W+ M +1 < L samples, where
M is the length of the waveforms used to construct the SCR dictionary and L is the
total number of samples available of the GSR signal. This continuous-mode oper-

ation allows us to deal with large signals of arbitrary length (since the approach
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0 0 0 0 0 0
i 0 0 0 0 0 0 i
(3.13)

is applied on segments of fixed length) and even to process signals on-line (i.e., as
they are being acquired) in real-time or quasi-real-time. The SparsEDA algorithm
incurs in a fixed processing delay equal to the time shift used (W or W/3), but
afterwards it is able to return the SCL and SCR values almost instantaneously. In
order to describe this mode of operation, let us set M = 10/T (i.e., the duration
of the SCR waveforms is 10 seconds), W = 60/Ts, and refer to the current slot
being processed (whose duration is 70 seconds) as the active set.

First of all, a naive implementation of the SparsEDA algorithm for large/on-line

signals is straightforward:

1. Extend the signal by adding M samples before the first one and W samples
after the last one. These samples are required to ensure that the whole signal
is properly processed and can take arbitrary values. For instance, we simply
replicate the first and last samples in the signal M and W times, respectively,

to perform this extension.
2. Set the first NV samples of the extended signal as the active set.

3. Apply the SparsEDA method described in Section 3.2 on the current active
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set, obtaining an estimate of its SCL and SCR components for the first W

samples.

4. Keep shifting the active set by W samples and repeating the previous stage

until all the samples in the original GSR signal have been processed.

5. Discard the SCL and SCR components corresponding to the samples added

at the beginning and the end of the signal.

However, this naive approach does not ensure the continuity of the signal
among the different segments for the SCL component and can lead to high MSE
values. In order to promote the continuity, we propose to divide the active set
into three continuous sets, composed of %W samples each one, and to use a mod-
ified Rgcy, matrix, E%CL' This matrix, shown in Eq. (3.13), is composed of W
rows (i.e., the length of the active set) and six columns that correspond, respec-
tively, to the positive and negative versions of the SCL model for each of the three
segments of the active set. In Eq. (3.13), the £; are linearly increasing column
vectors (€1 from 0 to 1 with a length L; = W, £5 from 0 to 2/3 with a length
Ly = 2W/3, and £3 from 0 to 2/3 with a length Ly = W/3); £; = £;/||€1]|2 are
the normalized vectors (w.r.t. the Lo norm of £1); and /;(k) denotes the k-th
element (k =1,2,...,L;) of £;. This construction of the matrix enforces the con-
tinuity among those three segments, since a discontinuity results in an increase in
the MSE. Hence, the continuous-mode operation SparsEDA algorithm proposed is

finally:

1. Extend the signal by adding M samples before the first one and W samples

after the last one.
2. Set the first N samples of the extended signal as the active set.

3. Subtract the value of the first sample, and apply the SparsEDA method
described in Section 3.2 on the current active set, using a matrix R"T =
[RZ%‘L Rscr], with R'fgCL given by (3.13) and Rgcg given by (3.8), thus
obtaining an estimate of the SCL and SCR components for the first /3
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samples. Note that (3.13) does not contain the offset term for the Taylor
series expansion used to model the SCL. Hence, we subtract the first sample
of the active set to ensure that the line used to model the SCL starts at 0.

Add back the value of the subtracted sample to obtain the final solution.

4. Keep shifting the active set by /3 samples and repeating the previous stage

until all the samples in the original GSR signal have been processed.

5. Discard the SCL and SCR components corresponding to the samples added

at the beginning and the end of the signal.

Note that the difference w.r.t. the naive implementation lies in steps 3 and 4 (using

a modified matrix R/, and shifting the active set by /3 samples instead of W).
The proposed SparsEDA algorithm has been made freely available (altogether

with the results presented in Section 3.4, which are provided in a .mat file) through

a well-known web-based code repository (https://github.com/fhernandogallego/

sparsEDA) and can also be found in the first author’s web-page (http://www.tsc.

uc3m.es/~fhernando/Research.html). The code, which has been developed in

MATLARB, is based on the implementation of the LASSO algorithm provided by

[80].

3.3.3 Feature Extraction

The SparsEDA algorithm allows us to extract two GSR components (features) that

should be interesting for SNS studies:

e Tonic component (SCL): The slope is related to the level of attention
of the subject. If the patient is concentrated and/or involved in a task, an
increasing slope should be observed [29]. Otherwise, the SCL slope should

either decrease or remain constant.

e Phasic component (SCR): This is the indicator of SNS reactions. The
proposed method allows us to extract both their locations and durations.
Furthermore, the sparsity of the resulting driver enhances its interpretability,

whereas the post-processing stage allows us to avoid false alarms.
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Figure 3.2: Signal extraction example using SparsEDA. (Top) A GSR signal (blue) of
duration equal to 70 seconds (i.e., length L = 70/Ty samples), and the SCL signal (red)
obtained by SparsEDA. (Bottom) Sparse driver obtained (black) and the SCR waveform
for each mark (dash-dotted green).

An example of the application of the SparsEDA method is shown in Fig. 3.2.
The input is a GSR signal of length N = W + L + 1 (in blue), and the results
(features) are a sparse driver signal of length W (displayed as black impulses), the
corresponding SCR component of length W (in green), and the low-frequency SCL
components for each length %W set (in red) with their associated slope. Purple
vertical lines separate each %W set, whereas the cyan line indicates the end of the

signal.

3.4 Results

First of all, we show the qualitative behavior of SparsEDA on a record acquired at
fs = 16 Hz with length equal to 400 seconds that is freely available at [44]. Fig.
3.3 compares the SCL and SCR components extracted by the novel SparsEDA
algorithm (without decreasing the sampling rate) and two alternative approaches:

the Continuous Decomposition Analysis (CDA) technique introduced in [8] (CDA

46



CHAPTER 3. SPARSE NON-NEGATIVE DRIVER MODEL

Ledalab), and the convex approach proposed in [23] (cvxEDA). Regarding the SCL
component, it can be seen that SparsEDA retrieves an SCL component which is
very similar to the one returned by cvxEDA, and both of them lie below the SCL
component obtained using CDA Ledalab. However, the main difference can be
appreciated in the SCR component. On the one hand, the SCR signal returned
by CDA Ledalab is not at all sparse and the driver’s impulses are very difficult to
locate. On the other hand, although cvxEDA returns a sparser SCR. component, it
still contains too many activations to be useful for the task of locating the driver’s
impulses and counting their number. Finally, SparsEDA returns a truly sparse
SCR signal (with a degree of sparsity that can be easily controlled by the user, as
described in Section 3.2) that contains the main impulses of the driver and which

is much more interpretable than the other two from a physiological point of view.

Then, in order to show the versatility of the proposed approach, we have com-
pared the performance of the novel SparsEDA method with the same two algorithms
as before: CDA Ledalab [8] and cvxEDA [23]. The simulations have been performed
on a database composed of 100 GSR signals from 100 different patients acquired
at several sampling rates from 4 Hz to 128 Hz, with different sensors and a wide
range of signal lengths. 50 signals were recorded within the ES3 project [2], using
Medicom MTD sensors [54] and following the procedure described in [30]. The rest
were recorded in our laboratory using: the Empatica E4 sensor [19] (5 signals),
Microsoft’s Band 2 [55] (5 signals), Qsensor [1] (35 signals), and Shimmer3 [73] (5
signals). Regarding our SparsEDA algorithm, we have used the same parameters
as before: € = 1074, Kpax = 40 iterations, Npin = gfs samples, and p = 0.025.
All the signals have been preprocessed using the web-based method proposed in
[76], segmenting them into slots of 5 seconds that correspond either to a valid GSR
signal or artifact/noise, and replacing the slots that were labelled as artifacts by a
linear regression. After this preprocessing stage, each signal was processed using

the three aforementioned algorithms, extracting the SCR and SCL components.

Table 5.1 summarizes the characteristics of the six groups of data used in the

simulations (number of signals, sampling rate, type of sensor used and duration
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Figure 3.3: Signal processing for GSR =signal feature extraction using a sampling rate
fz = 16 Hz. (a) Black line representing the GSR =signal and several lines with markers
showing different SCL approximations: CDA Ledalab (blue crosses), SparsEDA (red circles)
and cvxEDA (vellow stars). (b) CDA Ledalab driver obtained using 4 iterations of the
optimization tools. (¢) Driver obtained using cvxEDA. (d) Driver obtained using SparsEDA
with e = 10 4, K., = 40 iterations, N, = 3fs = 20 samples, and p = 0.025.
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Figure 3.4: Ratio (dB) between the MSE and the signal energy for the 100 signals in the
database and two of the methods compared: SparsEDA and cvxEDA. Blue and green lines

show the ratio of SparsEDA and cvxEDA for each particular signal in the database, whereas

the horizontal red and black lines display their average values.
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Figure 3.5: Ratio between the computation time (in seconds) and the signal’s duration (in
minutes) for the 100 signals in the database and the three methods compared: SparsEDA,
CDA Ledalab and cvxEDA. Cyan, blue and green lines show the ratio of SparsEDA, CDA
Ledalab and cvxEDA for each signal in the database, whereas the horizontal purple, red

and black lines display their average values.

50



CHAPTER 3. SPARSE NON-NEGATIVE DRIVER MODEL

[mean and standard deviation (std.)]), altogether with the results obtained: the
relative MSE for SparsEDA (mean and std.) and the computation time for the
three algorithms tested (mean and std.). Note that sampling rates larger than 8
Hz has been re-sampled to 8 Hz for all of the methods. A detailed analysis of the

results obtained is provided in the sequel:

e Fig. 3.4 displays the MSE obtained by SparsEDA and cvxEDA for each record.
Let us remark that the main goal of SparsEDA is obtaining an interpretable
SCL/SCR decomposition in a small amount of time (i.e., attaining a good
balance between computation time and MSE), not fitting the SCL and SCR
components in order to obtain a zero remainder. However, very good values
of MSE are attained: from a minimum value of —83.29 dB to a maximum
value of —29.55 dB, with an average MSE equal to —48.50 dB. Although
cvxEDA attains lower MSE values (from —111.26 dB to 5.47 dB, with —50.95
dB on average), this is hindered by the much lower interpretability of the

resulting SCR signal (as shown in Fig. 3.3 and discussed below).

e The MSE obtained by CDA Ledalab is not included in Fig. 3.4 because
it is fitted to zero by using a non-sparse SCR component (which is not
physiologically interpretable) that contains all the elements of the signal
that do not belong to the SCL.

e The computation time is summarized for each method in Table 3.1, showing
that SparsEDA is always faster than cvxEDA, and both of them are much
faster than CDA Ledalab. Fig. 3.5 delves deeper into this important feature,
showing the ratio between the computation time (in seconds) and the dura-
tion of the signal (in minutes). The average values of the ratios, which are
also displayed, are 1.327 for CDA Ledalab, 0.088 for cvxEDA and 0.012 for
SparseDA (i.e., on average SparsEDA is 7.42 times faster than cvxEDA and
111.58 times faster than CDA Ledalab).

e The level of sparsity in the SCR component is directly related to the inter-

pretability of the decomposition obtained: the sparser the signal the more in-
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terpretable from a physiological point of view. In this sense, while SparsEDA
attains an average sparsity of 0.287% (percentage of non-zero values out of
the total number of samples), the other two methods are non-sparse, always
returning 100% non-zero values (cvxEDA contains many samples with small

but non-null values).

e Confidence intervals and p-values comparing SparsEDA with CDA Ledalab
and cvxEDA (both in terms of relative MSE and computation time) have been
computed and are displayed in Table 3.2. These values have been computed
through the t-test (using Matlab’s ttest2 function) on the hypothesis that
the mean of the two distributions of the results (i.e., those of SparsEDA and
the compared algorithm) are equal. From the p-values obtained (well below
the 0.05 threshold typically used) we can see that both the differences in
relative computation time and MSE are statistically significant. However,
note that the loss in MSE attained by SparsEDA is small with respect to the
decrease in computation time, as shown in Figs. 3.4 and 3.5 and evidenced

by the p-values in Table 3.2.
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Duration MSE/SE Computation Time (seconds)
# Sampling Rate Sensor (minutes) (dB) CDA Ledalab SparsEDA cvxEDA

Mean  Std Mean  Std Mean Std Mean Std Mean Std

1-5 4 Hz Empatica E4 50.00 00.00 -55.90 7.27 78.29 1236 0.31 0.09 1.65 0.34
6-10 5 Hz Microsoft Band 2 33.99 19.50 -66.92 19.28 52.51 41.65 0.28 0.23 1.09 0.78
11-60 8 Hz Medicom MTD 39.43 05.47 -44.03 597 4853 10.37 0.46 0.11  3.50 0.72
61-65 16 Hz Qsensor 32.62 22.00 -59.88 7.07 41.15 53.46 0.29 0.24 2.73 2.71
66-70 128 Hz Shimmer 3 9.90 00.00 -53.42 6.62 1156 1.14 0.14 0.03 1.13 0.03
71-100 8 Hz Qsensor 9.89 00.00 -48.92 9.20 72.80 10.13 0.41 0.10 4.70 0.55

Table 3.1: Summary of the characteristics of the 100 GSR records used in the simulations and the results obtained. They are separated into
six groups according to the sampling rate and the sensor. The duration (mean and standard deviation [std.]) of each group are also shown.

Relative MSE (MSE/Signal Energy (SE)) is only shown for SparsEDA. Computation time (mean and std.) is shown for the three algorithms

compared: SparsEDA, CDA Ledalab and cvxEDA.

THAOW HHATHA HALLVOHAN-NON HSHUVdS '€ HAHLdVHD



24

MSE/SE CT/SD CT/SD

# Sampling Rate SparsEDA vs cvxEDA SparsEDA vs CDA Ledalab SparsEDA vs cvxEDA

p-values conf. int. p-values conf int. p-values conf. int.
lower  upper lower upper lower  upper
1-5 4 Hz, 9.09 e-04 1409 3720 6.21e07 -1.81 -1.32 296e05 -0.03 -0.020
6-10 5 Hz 3.40 e-03 16.54 58.84 2.39e09 -1.81 -1.05 826e07 -0.027 -0.019
11-60 8 Hz 8.67 e-06 3.16 7.79 6.77e-68 -1.25 -1.15 4.0l e68 -0.080 -0.073
61-65 16 Hz 7.30 e-03 9.35 4349 3.10e10 -298 -0.86 2.50e04 -0.18 -0.090
66-70 128 Hz 4.81 e-05 2268 4141 1.90e08 -1.25 -1.02 2.07e10 -0.091 -0.081
71-100 8 Hz 6.58 e-07 -28.89 -13.63 -2.21e43 -1.43 -1.30 -3.90e-45 -0.085 -0.077

Table 3.2: Statistical comparative between SparsEDAand cvxEDAIn terms of relative MSE/SE and SparsEDAversus cvxEDAand CDA Ledalab in

terms of CT/SD. P-values and confidence intervals (lower and upper limits) are displayed to show the significant differences. MSE/SE =

MSE/Signal Energy. CT/SD = Computation Time (s)/Signal Duration (min).
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3.5 Conclusions

We have developed a novel feature extraction method for GSR signals: the SparsEDA
algorithm. The main contributions of SparsEDA are the joint estimation of the SCL
and SCR components, the multi-scale analysis using an over-complete dictionary,
the retrieval of a sparse driver for the SCR component, and the efficient imple-
mentation of a fully automated, continuous-mode operation algorithm for on-line
processing. The proposed approach has been tested on a database of 100 GSR
records from 100 different patients acquired using different sensors and sampling
rates, confirming its good performance in terms of relative MSE (-48.50 dB) and
computation time (1-2 orders of magnitude lower than other existing algorithms
like CDA Ledalab and cvxEDA). Furthermore, the interpretability of the SCR com-
ponent extracted is enhanced w.r.t. previous approaches, thanks to the sparsity of
the driver (unlike both CDA Ledalab and cvxEDA, which return non-sparse drivers)
and the lack of artificial non-interpretable signals introduced to minimize the MSE
(as done by CDA Ledalab). In summary, SparsEDA confirms the feasibility of de-
veloping a fast and fully automated method for extracting the GSR components
from large EDA records. One possible future line would be embedding this soft-
ware within a wearable sensor or a real-time mobile application to detect SNS
symptoms using driver activations. Another potential application would be inte-
grating it within medical software to detect stress reactions while an patient is

performing some activity.
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Stress Feature Extraction

This chapter presents a novel of the physiological features used in this thesis for
stress assessment. Each subsection focus on a human activity: heart rhythm,

sweating, speech and hormone analysis.

While research on automated stress recognition has taken many different forms,
the systems that have been proposed in the engineering literature typically contain
two principle components: 1) a sensor-based architecture that records relevant fea-
tures and 2) a software-based system that makes predictions about an individual’s
current stress level. The sensing modalities can take many forms, including au-
dio and visual modalities, but biosensors provide the most direct access into the

physiological changes that accompany stress.

The criteria selection for each feature is based on two assumptions: there are

features used in the past for another researchers and the acquisition should be
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non-intrusive. Some examples of past feature extraction models are: D. Wu et al.
[83] captured physiological responses from: Galvanic Skin Response (GSR), res-
piration, electroencephalogram and electrocardiogram for identification and clas-
sification into several stress levels. Another case was Zhai and Barreto [86], who
acquired different affective features: GSR, Blood Volume Presure (BVP) and pupil
diameter to differentiate states (relax or mental stress) in computers user. Speech
also plays a role in detecting stress as can be depicted form [16] where stress is
estimated using pitch and speech energy features and [58] where Log Frequency
Power Coefficients (LFPC) are used to detect stress and emotion.

The minimum length in time of the experiments proposed in the following
section is 30 minutes. As the changes of the Autonomous Nervous System (ANS)
are provoked slowly, we accept to extract the mean of the features each minute

(60 seconds) to reduce the redundancy in theses feature extraction algorithm.

4.1 Heart Rhythm Activity

The most common feature is Heart Rate Variability (HRV) which analyses the
physiological phenomenon of the oscillation in the interval between consecutive
heart beats [15].

The proposed features can be divided in time or frequency domain. On one

hand, the following features are computed in the time domain:

e Standard Deviation of NN Intervals (SDNN). Computed following the ex-

pression:

n

SDNN; = . > (RR; - RR)

j=1
where RR is the inter-beat (RR) interval, RR is the mean of the RR over
the window, and n is the number of RR points in the window (60 in this

case).

e Root Mean Square of Successive Differences (RMSSD). Obtained as the

square root of the mean of the sum of the squares of differences between
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adjacent intervals. It can be expressed as:

n

. Y (BRRj41 — RR;)?
j=1

1

n —

RMSSD; =

e Pairs of adjacent RR intervals differing by more than 50 ms (pNN50). Com-
puted as the the number of pairs satisfying the condition in the analysis
period divided by the by the total number of all RR intervals. It is denoted
as:

pNNE)Oi = P(|RR]'+1 — RRJ" > 50m3)
On the other hand, the following feature is computed in the time domain:

e LF/HF ratio (Low Frequency/High Frequency). It is computed as the ratio
between the power in the low frequency LFry and high frequency H Fyry

frequency bands. It is computed following the expression:

0.15Hz
LF/HF ratio, = “%:04H= FN)dA

0.40Hz
0150z f (M)A

where f(A) spectrum of the RR. This feature reflect the degree of sympa-

thovagal balance with a higher ratio.

4.2 Electrodermal Activity

This feature extraction model employs our previously presented GSR feature ex-
traction method available at [32]. This model divide the GSR signal into two

components:

e Skin Conductance Lelvel (SCL): This is related to the level of attention
of the subject. If a person is concentrated and/or involved in a task, an
increasing slope should be observed [29]. Otherwise, the SCL slope should

either decrease or remain constant.

e Skin Conductance Response (SCR): This is the indicator of sympa-

thetic reactions (smaller than 10 seconds). This method allows to extract
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their locations and durations. Furthermore, the sparsity of the resulting sig-
nal enhances its interpretability, whereas the post-processing stage allows to

avoid false alarms.

The two components are computed for each ¢ — th interval obtaining the in-
terval tonic component SCL; and interval phasic component SCL;. Given those
components the following features can be computed:

e SCL slope.
 SCLiy1 — SCL;

tiv1 — 1

myg

where SCL are the values of the slope for the i** interval and ¢ is the elapsed

time (in this case are always 1 minute).

e SCR: peaks on an interval.
SCR; =) (d; > 0)

where d is the driver obtained for each i*" interval (non-zero values are sym-

pathetic reactions).

e AUC: area under the curve.

AUC; = Z d;

and finally values of the driver for each i** interval are summed.

4.3 Speech Features

There are different ways to capture information contained in speech relevant to
stress detection. In this paper, a simplified feature set is used, based on the
InterSpeech 2009 Emotion [65] and Paralinguistic Challenge [66] features. The
features are extracted with the openSMILE toolbox [20].

Five low-level descriptors of voice quality and pitch are computed: the esti-
mated pitch, the voicing probability, the Jitter and the Shimmer. Finally the

smoothed energy computed using the overlapping time frames is also included.
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The pitch is computed as the envelope of the smoothed fundamental frequency
contour obtained from the Cepstrum, the voicing probability is also obtained using
the same estimated fundamental frequency. The Jitter and Shimmer are computed
as the local (frame-to-frame) Jitter (pitch period length deviations) or Shimmer
(amplitude deviations between pitch periods).

Finally in order to combine the speech features with the previously presented
hearth rhythm and electrodermal activity features the arithmetic mean of the

features contour is performed in a 60 second basics.

4.4 Cortisol Hormone

A cortisol test is performed by the participant right before and after of the experi-
ment realization. The difference between obtained values provides a feature of the

stress levels subjected by the participant during the experiment.
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Stress Modeling

This chapter presents three different experiments developed in controlled situations
where stress is incited to participants: 1) first experiment consists on 24 subjects
playing neurocognitive games of increase difficulty mixed with relax periods, 2)
second proof represents the motorization of individuals while are discussing a pub-
lic talk, and finally 3) third case is a complete system created to extract features

and classify stress level in a five-start raking scale.

These three implementations use some features discussed in previous section.
Finally, some conclusions are reviewed to finish the implementation of this stress

level improvement.
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5.1 Physiological Feature Extraction In Neurocogni-

tive Games

Neurocognitive games have recently been introduced in our daily life with the
evolution of the smart-phones technology. Who has not played tetris while being
in the subway? or have escaped a stressful day playing five minutes before going
to sleep?. Candy Crash game, became the first ever game to be number 1 on iOS,
Android and Facebook at the same time, and his slogan is ‘play five minutes and
remove your stress day’. But, do neurocognitive games really decrease our stress
as their marketing says?. Which are the physiological features varying when we
change our emotions?.

Emotional states provoke changes in physiological signals and could be ac-
quired in non intrusive a way to obtain information about the mental state of the
individual. The problem of recording these signals in real-time is that a supervised
grand truth is needed to understand witch is the subjects state. Some authors have
used neurocognitive games as ground truth to understand these human behaviors
in a subjective way. P. Renaud and J. Blondin [63] used Stroop color test [39], a
recognition test with in congruent questions to obtain the individual performance
based on number of correct answers. They concluded that a solid relation exists
but this test does not overcome an individual characterization. E. Jovanov et al.
[40] used specific military personal training to know the performance of a soldier
based on time reaction to achieve a mission and correlated it with physiological
responses, obtaining a high correlation, but was not rating in a scale to measure
it.

This experiment continues last authors works, performing a open schedule
composed of neurocognitive games mixed with relaxing slots. The main objectives

of this work are:

e To determine relevant physiological features which predict individual perfor-

mance based on neurocognitive games.

e To classify between different states (relaxing or playing games) using the
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most relevant features.

e To analyze the learning capabilities of a specific subject and show the differ-

ences between them.

e To compare between the subjective impression of each subject and the ob-

jective results of the physiological features extracted.

The overview of this experiment is divided into three main steps: first one
is a feature extraction algorithm applied over the heart rhythm, Galvanic Skin
Response (GSR) and hormone cortisol signals, obtaining relevant features. Sec-
ondly, the experiment design and a multi-classification stage used to determine
the performance state. Finally, a individual learning criteria is applied to compare

objective impressions versus the physiological results obtained.

5.1.1 Feature Selection Criteria

The duration of each experiment session is 106 minutes. Each feature is extracted
using a period of one minute. The following eight stress features have been ex-

tracted from each record:

e Heart rhythm features:

SDNN,

— RMSSD,

pNN50,

LF/HF ratio.
e Electrodermal activity:

— slope of the signal,
— area under the curve of the driver,

— number of sparse driver activations.

e Hormone analysis:
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— cortisol hormone (linear line regression between both points).

These features attempts to model the relationship between variables xgx 106
by fitting a linear regression model to the observer data (scores obtained) six106-
LASSO (Least Absolute Shrinkage and Selection Operator) [77] algorithm assigns
different weights wixg to each of the input variables depending on the information
provided by each one.

The selection of the most relevant features is calculated using the Mean Square
Error (MSE) between normalized scores and the linear regression obtained. MSE; =
Zf;l(sj —w;x;)?, where 7 is the iteration of the i —th feature leave out of the MSE,
N is the number of features and 4 is the subject. The MSE is calculated using the
method Leave-One-Out (LOO) so this work find the minimum MSE obtained to

know which features contribute more.

5.1.2 Experiment Design
Classification between relaxing and playing games

The objective is to classify only using the most relevant features obtained in the
previous subsection. The idea is to perform a binary classification achieving the
maximum accuracy using a cross validation. Proposed classification methods were:
binary decision trees, regularized linear and quadratic discriminant analysis, naive
Bayes model with Gaussian, k-nearest neighbors classification, support vector ma-
chine and random forest. Secondly, the problem varies in a six multi-class support,
where the same methods are used to classify between: relax time, speed, memory,

attention, flexibility and problem solving tests.

Individual learning criteria

Subjects perform the experiment twice in order to know the capacity of learning
the repetition of the same action one week later. A priori, scores should be higher
the second time, since taking into account that the subject already knows the

game and his ability to overcome himself. The technique to evaluate this is a
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simple ratio, where: learning ratio; = Score 2nd time;/Score 1st time;, where i

is the category game or relax time and T denote the mean average.

Objective impression versus physiological subjectives results

The experiment consists of a set of neurocognitive tasks that measure five aspects:
speed, memory, attention, flexibility and problem solving abilities. These tasks
are developed by Lumosity labs and this experiment is composed by two games

for each category (a total of ten games per experiment).

e Speed test: the intended primary skill targets are brain processing speed and

participant reaction time.

e Memory tests: they are categorized under memory brain area, focusing on

short-term memory.
e Attention tests: they are selective attention combined with multitasking.

e Flexibility tests: they are meant to determine mental skills to process mul-

tiple tasks simultaneously and the ability to switch between them.

e Problem solving tests: participants are expected to work through the details

of a problem to reach a solution.

Finally, each participant fill a subjective questionnaire where they are asked
what performance they think they have obtained from 1 to 5, where 1 was the worse
and 5 the best performance. A multinomial logistic regression model was fit for
each participant. The output was an integer number from 1 to 5, trying to compare

these objective magnitudes with the subjective answers for each participant.

Relax time vs neurocognitive games

Experiment consists on an alternating set of games followed by a 150 seconds of
participant relax. The hold time is 106 minutes. A representation of the schedule

is shown in Fig. 5.1. It has been completed on a set of 24 participants with age
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R[1]R]2]R[3]R[4]R|5]R][6]R][7[R]S|R]9]R[1OR]

Figure 5.1: Experiment overview, where integer numbers represent the slot of each test
and letter ‘R’, relax time. Note that number 1 and 6 belong speed tests, and so on:
memory tests are 2 and 7, attention 3 and 8, flexibility 4 and 9, and problem solving tasks

are 5 and 10.

interval from 20 to 59, mean age of the group was 29.16 years, with a standard
deviation of 33.21. All subjects have undergone the experiment on a voluntary

basis.

Data acquisition

Two non-intrusive sensors were used to measure physiological signals. The devices
selected have been chosen from a wide range of available commercial sensors due

to their reliability and small size.

Heart rhythm features acquired with Microsoft Band 2 [55]: is a compact
wristband that allows obtaining data about GSR, heart rate, Inter-Beat (RR)

interval, device position and angular velocity.

Electrodermal activity recorded with @ sensor [1]. @ sensor allows the mea-
surement of galvanic skin activity through two silver electrodes placed on the base

of the sensor.

Individual Performance Every person has different responses in presence of
difficult situations, but present similar behaviors performing the same activity. In
this experiment, individual performance is simulated from different scores obtained

on games with the given reaction time and to the correct answers of the tasks.

5.1.3 Results
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(1) Relax vs games [Pe] (2) Classification between games [Pe] (3) Individual Learning averages [ratio] (4) Comparative
# Re Ga T gl g2 g3 g4 g5 Re T gl g2 g3 g4 g5 T | Qu C1 MSE
1| 30.77 6.25 12.26 | 75.00 62.50 87.50 43.75 50.00 53.85 61.32 | 1.22 1.31 145 1.34 1.88 144 | 4 1 9
2 | 23.08 7.50 11.32 | 50.00 50.00 62.50 81.25 50.00 57.69 58.49 | 0.45 0.32 080 0.70 1.10 0.67 | 2 3 1
3 | 23.08 7.50 11.32 | 50.00 81.25 56.25 37.50 75.00 4231 55.66 | 1.20 134 134 156 2.23 15314 4 O
4 | 30.77  10.00 15.09 | 43.75 18.75 31.25 62.50 43.75 96.15 53.77 | 1.60 1.22 1.76 1.22 4.20 2.00 | 5 5 0
5 | 30.77 6.25 12.26 | 93.75 75.00 56.25 68.75 62.50 50.00 66.04 | 2.02 043 0.65 0.54 5.30 1.79 | 4 3 1
6 | 26.92 7.50 12.26 | 50.00 50.00 50.00 75.00 43.75 57.69 54.72 | 1.30 045 043 098 1.11 08 |3 3 0
7 | 38.46 8.75 16.04 | 75.00 75.00 93.75 43.75 56.25 42.31 62.26 | 2.51 1.22 1.23 1.03 1.00 140 | 3 4 1
8 | 19.23 7.50 10.38 | 50.00 93.75 31.25 50.00 81.25 76.92 65.09 | 2.01 156 192 1.09 1.09 42 | 5 4 1
9 | 38.46 11.25 17.92 | 75.00 31.25 50.00 81.25 62.50 4231 55.66 | 1.29 140 191 1.34 1.20 143 | 3 3 0
T | 29.06 8.06 13.31 ‘ 62.50 59.72 57.64 60.42 58.33 57.69 59.22 ‘ 1.51 1.03 1.28 1.09 2.47 1.48 ‘ 3.67 3.33 1.44

Table 5.1: Statistical report for each subject(#): (1) probability of error of binary classification between relax and games. (2) probability
of error of a multi-class classification. (3) ratio between first and second experiment. (4) Comparative between subjective appreciation and

objective regression
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An example of the signals recorded is shown in Fig. 5.2, as well as the scores
obtained for half part of the experiment (53 minutes).

A Least Absolute Shrinkage and Selection Operator (LASSO) regression of the
extracted features was fulfilled, using 8 = 0.01. Fig. 5.3 shows an example of how
this regression adjust to the normalized scores, appearing rise during performed
tasks and falls while rest periods.

Performing MSE function cost and the LOO method called before, the most
relevant features that adjust better the regression was: (1) area under the curve of
galvanic skin responses, and (2) LF/HF ratio and (3) Standard Deviation of NN
Intervals (SDNN) of heart activity.

Classification results are shown in Table I, where appear the probability of error
for each subject, between relax (Re) and games (Ga), and finally a the totals (T).
This results were performed using the best accuracy option, a cross validation of
Bayes naive with 64 neighbors and euclidean distance applied. Multi-classification
was also calculated using a multi-modal logistic regression, optimizing the residual.
In this case, as shown in Table I, it has higher errors differencing between games
(g1, g2, g3, g4 and g5) and relax time (Re).

Learning averages are displayed in Table I, showing a statistical reporting for
each subject. Finally, a rational quadratic regression was implemented to obtain
an objective performance (Cl) and compare with the subjective (Qu) obtaining

MSE between both.

5.1.4 Conclusions

The main goal of this experiment is to determine which physiological features are
the most relevant to predict individual cognitive performance. In this open work,
a statistical analysis of the predictive capacity of physiological signals is discussed.

LASSO regression algorithm combined with a cost function determines that
the most relevant features were: area under the curve of electrodermal activity,
LF/HF ratio and SDNN of cardiac activity. These three features are the most

used in stress detection, and this work demonstrates that these can also be useful.
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Figure 5.2: Example of data collected for half session of the experiment (53 minutes).
Vertical red lines represent the differentiation between relax times and test. First subfigure
(upper) shows GSR, Second (medium) the Heart Rate recorder and last figure (lower) the

scores obtained.

1.5 : :
—— Score
1l —— Regression | |
0.5 8
O | | | | | | | | | |

0 10 20 30 40 50 60 70 8 90 100

time [min]

Figure 5.3: Example of a linear regression. Line blue represent the scores obtained for the
participant (zero in relax times) and in color red the regression obtained using physiological

signals.
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In this experiment, the binary classifier distinguish between play games and
relax slots achieving a 13.31% probability of error. A multi-modal classifier per-
formed more poorly, achieving only 59,22% mean square error where it is not
possible to correlate the type of game with physiological features.

Moreover, results of nine subjects has been shown in Table I where each one
has different capabilities. Besides, on average, they have achieved a 1.48 learning
ratio so it can be said that each participant learned while playing, and achieved
better results once the games were already familiar to them.

Depending on the game, the learning time was different of the game, capability
of learning change, for example, problem solving task has a ratio of 2.47 on average
instead of 1.03 in memory test.

Finally, a regression fit physiological features in a subjective way, and correlate
with the subjective appreciation of each person, reaching only a 1.44 MSE on
average, as shown in Table I. This mean that the appreciation of each volunteers
seem to be what his physiological reactions mean.

Taking this work as a reference, some future lines of research can be followed
to improve the development of a complete system of stress detection to know our

capabilities in real time.

5.2 Stress States Classification In Public Talks

Do you remember the last time you give a public talk? How did you feel when
you start? Did you feel nervous in order to perform an impressive talk?. These
affective symptoms that appear can suppose the appearance of stress [28].
Emotional symptoms provoke changes in different physiological signals that can
be monitored to detect stress. D. Wu et al. [83] captured physiological responses:
GSR, respiration, electroencephalogram and electrocardiogram for identification
and classification into several stress levels. Another case was Zhai and Barreto
[86], who acquired different affective features: GSR, blood volume pressure and
pupil diameter to differentiate states (relax or mental stress) in computers user.

Speech also plays a role in detecting stress as can be depicted form [16] where stress

72



CHAPTER 5. STRESS MODELLING

is estimated using pitch and speech energy features and [58] where Log Frequency
Power Coefficients (LFPC) are used to detect stress and emotion.

The main scope of this experiment is to extract physiological features of mon-
itoring subjects discussing public talks and classify their stress levels. A novel
dataset composed of 17 subjects is presented where speech, electrodermal activity
and heart rhythm were recorder using non-intrusive sensors. A proposed classifier
determine the status of 8 volunteers of the dataset: [A] pre-presentation period, [B]
talk, [C] questions. The differentiation between theses three classes are imposed
to replicate the protocol used in Trier Social Stress Test (TSST) test. Another
authors also used this three intervals to: show stress activations induced cortisol
levels [82], stress detection from speech using Galvanic Skin Responses [42], or
acute stress and its relation with chronic trapezius myalagia [75].

Each feature is extracted using a period of one minute. The following twelve

stress features have been extracted from each record:

e Heart rhythm features:

SDNN,

RMSSD,

pNN50,

— LF/HF ratio.
e Electrodermal activity:

— slope of the signal,
— area under the curve of the driver,

— number of sparse driver activations.
e Speech:

— estimated pitch,
— voicing probability,
— jitter,
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— shimmer,

— smoothed energy.

The feature vector can be denoted as x12xp, where D is the duration of the
speech in minutes and 12 are the number of features. Several multi-class super-
vised classification methods were tested: k-nn neighborhoods, multi-class logis-
tic regression and decision trees. Also non-supervised methods were validated as
the expectation-maximization algorithm (EM) and Gaussian Mixture Models with
Dirichlet Process (GMM-DP).

The models are trained using 9 talks as training set and tested in the rest.
Note that monitoring each talks needs the acceptance of each individual, storage
all the data and process it which involves difficult to make bigger the database.

Finally, the algorithm proposed was an multi-class logistic classifier parametrized
by a weight matrix and a bias vector (W,b). Classification is done by projecting
data points onto a set of hyper-planes, the distance to which is used to determine

a class membership probability. Mathematically this can be expressed as:

P(Y:2‘$,W,b) = W
, corresponding to each class (y;) logistic classifier is characterized by a set of

parameters (W;,b;).

5.2.1 Experimental Set-up

The experiment has been completed on a set of 17 participants with age interval
from 20 to 59, mean age of the group was 29.2 years, with a standard deviation of
33.21. All subjects have undergone the experiment on a voluntary basis.

Three non-intrusive sensors were used to measure physiological signals. The
devices selected have been chosen from a wide range of available commercial sensors
due to their reliability and small size. The different signal are acquired using the

following devices and configurations:

e Heart rhythm signal is acquired with Microsoft Band 2 [55], it is a com-

pact wristband that allows obtaining data about galvanic skin responses
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Classification between states
# Duration (min) A B C | Average
1 43 00.00 16.67 8.33 13.95
2 40 00.00 30.00 18.18 20.00
3 57 00.00 8.51  20.00 1.75
4 66 20.00 17.02 11.11 16.67
5 58 00.00 12.90 57.89 25.86
6 66 00.00 14.29 22.22 15.15
7 63 50.00 14.89 14.29 15.87
8 63 00.00 12.50 12.50 11.11
Average 57 ‘ 15.85 8.06  20.57 ‘ 15.05

Table 5.2: Statistical report for each subject(#): probability of error of a multi-class
classification. Each column represent: (1) speaker identifier, (2) Duration of the talk, (3)
Probability of error before talk [A], (4) Probability of error during talk [B], (5) Probability

of error in question time [C] and (6) Total average.

(GSR), heart rate, RR interval, device position and angular velocity.

e Electrodermal activity is recorded with a @ sensor [1]. It allows the
measurement of galvanic skin activity through two silver electrodes placed

on the base of the sensor.

e Speech is obtained using a Zoom H1 handheld recorder with a Rode lavalier
microphone. Non lossy compressed files (wav), 24-bit quantification and

44 kHz sampling rate are used.

The captured signals and the computed features can be download form [31].

5.2.2 Results

Multi-class logistic regression algorithm achieves the better accuracy of the models
raised before. Table 1 display the probability of error achieved for classification
obtained. It is displayed the duration of the talks and the probability of error for

each time division: probability of error pre-presentation period [A], probability of
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Figure 5.4: Examples of data classified of the experiment. Vertical red lines represent the
differentiation between states: before talk [state A], talk [state B] and questions [state
C]. Left figure corresponds to number 3 subject and right to number 5. First sub-figure
(upper) shows Heart Rate, Second (medium) the Galvanic Skin Response and last figure

(lower) the classification obtained in three classes: blue, red and yellow.

error during talk [B], probability of error in question time [C]. Besides an average
column is included for further conclusions. Fig. 2 shows two examples of the heart
rate, galvanic skin response and the classification obtained for the subjects number

4 and number five displayed in Table 5.2.

5.2.3 Conclusions

This work proposes a new framework to classify stress states using only physio-
logical signals. 17 volunteers were monitored while discussing a public talk. 9 of
them were used as training set and the rest were used as test set.

Model proposed was selected among many others used because obtain the best
accuracy no over-fitting. Table 1 represents the multi-class classification obtained
using a multi-class regression algorithm. Results show a 15.05% probability of
error in average that confirms stress features were well chosen and model achieve
the expectations.

Two examples of the recorded signals and their stress classification were dis-
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played in Fig. 2 to understand the model proposed. The classifier also give the
more relevant features (17): the slope of the GSR signal, the LF/HR ratio of heart

rhythm and the estimated speech pitch.

5.3 Real-time Stress Classification

Daily work supposes the first factor of stress as it was mentioned in this thesis
introduction [64]. In fact, depends on the type of work can be more dangerous,
need a deal of concentration, questions of the boss could imply an extra difficulty,
anxiety situations, etc. Therefore a wrong decision can bring serious consequences.
Besides, also depends on the individual performance for each person: how reacts
the worker in presence of pressure or indecision situations, and if s/he is trained
and qualified to this end.

The aim of this experiment is to monitor a Unmanned Aerial Vehicle (UAV)
operator in his/her work environment and determine in real-time his/her stress
level. These kind of workers are trained in pressure situations, so first the system
should characterized each individual and them, test it in a real work environment
situation. The operator use to be sitting but also use to move around the UAV
controller so the system acquisition should acquire the signals in a non-intrusive
way.

The hold system analyzes physiological signals captured and the output is a
level of stress from one to five, where one seem the most relaxed and five the most
stressed. Another additional outputs could be: no signal (NS) and died (D).

This work is subdivided in three parts: individual stress characterization for
each operator, a complete real-time system for stress classification and some results

and conclusions obtained.

5.3.1 Individual stress characterization

Two operators of UAV (named Sofia and Oscar) were asked in voluntary basis to
fulfill the neurocognitive games presented in Section 5.1.2. They completed the

experiment twice, with a month of difference between them.
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Figure 5.5: Comparative between the scored obtained in the first and second sessions.

The games could be clustered in five abilities: speed, memory, attention, flex-
ibility and problem solving tests. Figure 5.5 presents the difference between first
and second sessions in average for each participant. As are scores normalized, the
capacity of learning can be extracted for each participant and also know if they
are over/under the global mean (normalized as 1).

Second question is to characterize the Yerkes & Dodson curve named in chap-
ter 1 and can be found in Figure 1.1. Each test is normalized and of increased
complexity. Also taking the average for all the tests, Figure 5.6 represents the
mean average scores normalized by difficulty. These curves shows the level of
difficulty from 1 to 9 and the y-axis represents the level of performance. Both

representations show a similar inverted-U as the YerKes & Dodson curve.

5.3.2 Complete system

A complete real-time system was developed for stress level assessment. The scheme

of this system, that can be followed in Figure 5.7, is composed of:

e A non-intrusive sensor, Microsoft Band 2, that monitor heart rhythm and
electrodermal activity signals, and send the values and their correspondent

timestamps to a threat installed in a computer.
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Figure 5.6: Simulated Yerkes & Dodson curves for each participant and session.
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Figure 5.7: Graphical scheme of the real-time acquisition, signal processing and stress

level classification.

A threat developed in Visual Studio is waiting each second for a package

send from the sensor via bluetooth. Once it receive the values in form of

package, the program save them in a buffer.
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Another threat in parallel send the package from Visual Studio to Matlab.

Matlab receives each second a package and process it in frames of 60 seconds.

The final output is a stress level assessment closed in a five-star rating scale.
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Figure 5.8: Example of real-time demonstrator report of 60 seconds.

5.3.3 Results

Two different reports are developed. The first one is real-time report of 60 seconds
that display the Heart Rate and GSR signals and the correspondent level of stress.
An example is displayed in Figure 5.8.

The second report is an overview for an session finished. Figure 5.9 shows an
example of an record of 15 minutes while an operator was working.

In general for every work session worked use to be at level 3 that implies that a
normal performance. In some critical slot time the level of stress increases because
of lot of warning or a critical problem. In the other hand, the levels could decrease

from 3 if the UAV is totally controlled or stooped.

5.3.4 Conclusions

In this experiment two objectives have been achieved. First one is to characterize
an individual because the reaction of each person are different even performing
the same activity. This experiment presents a controlled test where the capacities
for each volunteer in five different abilities: speed, memory, attention, flexibility
and problem solving tests. Besides, Figure 5.5 is normalized to 1 where respect

to a global average mean. An individual Yerkes & Dodson curve is also defined in
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Figure 5.9: Example of a report of an experiment of 15 minutes.

term of the level difficulty that is shown in Figure 5.6.

On the other hand, a real-time classifier was implemented based on Heart Rate
and Electrodermal activity. A Microsoft Band 2 captured the signals and send
it to a computer that analyze and decide the level of stress. This system is a
complete real-time non-intrusive level assessment that cloud be useful to manage
the workload for each operator. Basides, this method can be extrapolated to others

critical workers, such as, comercial flight pilots, police, etc.
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Conclusions

6.1 Summary

The main objective of this thesis is the development of novel stress assessment
employing the raw signals provided by wearable sensors. In this chapter, contribu-

tions of this thesis are summarized, and some future research lines are described.

e In Chapter 2, the state of the art of stress assessment is presented. A stress
models history, an introduction of the Autonomous Nervous System (ANS)
and possible objectives measurements are discussed to overcome contribu-
tions of this thesis. Besides, the sensors used during this thesis are included

and a novel of possible physiological signals for stress reactions detection.

e In Chapter 3, a new feature extraction method for Galvanic Skin Response

(GSR) signals is presented. Past methods are not interpretable to apply
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statistical feature extraction and this improvement employs an sparse model
that clarify the output obtained. Furthermore, the method is faster than
others and can be implemented in a wearable sensor due to its low need of

signal processing. The contributions of this chapter were presented in [35].

e In Chapter 4, most usual signal processing methods are presented to extract
stress features. It includes the cited algorithm [32] of GSR responses, and
some common methods for heart rhythm, speech and cortisol hormone anal-
ysis. All of them compose a complete feature extraction model that can be

applied depending on the work or experiment requirements.

e Finally, Chapter 5 defines three experiments implemented to validate the

feature extraction model proposed.

— The first one captured signals and extract features in a controlled envi-
ronment while the subject play neurocognitive games. We can conclude
which were the most relevant features using a linear regression: area
under the curve of electrodermal activity, LF/HF ratio and Standard

Deviation of NN Intervals (SDNN) of cardiac activity.

— Second experiment is a controlled environment of public talks. It shows
a percentage of 15.05% probability of error in average while differentiate
between talk, before and after talks, using the feature extraction model

proposed in Chapter 4.

— The last experiment shows a complete system that individualize stress
reaction evaluating the model proposed. The system captured in real-

time physiological signals and classify in a five levels rating scale.

These three implementations consolidate the objectives proposed for this

thesis focusing on stress level assessment.
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6.2 Future Lines

This work also suggests several paths for further research in the stress modeling
system with wearable sensors. We provide below a list with what we consider are

some potential research lines.

Real-time stress bracelet. This thesis has overcome a feature extraction model
for stress assesment and could be implemented in a wearable sensor. A proposed
application of this method should be a linear classifier that notify the level of
stress in real-time. The bracelet should include a display where shows a number

normalized in a scale as a commercial wearable.

Workload assessment. In a work environment, it should be useful a non-
intrusive system to know the level of stress to increment or decrement the workload
in time. This technique can be implemented in critical works such as: operator of
Unmanned Aerial Vehicle (UAV), police, flight pilots, firefighters, etc, depending

on the need.
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