
Universidad Carlos III de Madrid

Escuela Politécnica Superior

Bachelor’s degree in Computer Science

Bachelor’s Thesis

Solving Multi-agent Planning

Tasks by Using Automated

Planning

Author: Sof́ıa Herrero Villarroya

Advisors: Nerea Luis Mingueza

Moisés Mart́ınez Muñoz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288499285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

A huge thank you to:

my parents, Ángel Luis and Lućıa, for a lifetime of love and support;

my sister, Beatriz, for always being there;

Jose Carlos, for helping me when you didn’t have to;

Moisés and Nerea, for opening me a door to this world;

the friends I have made in university, for making this an even better experience;

everyone that has encouraged me and has made this project possible, thank you.

Abstract

This dissertation consists on developing a control system for an autonomous multi-

agent system using Automated Planning and Computer Vision to solve warehouse

organization tasks.

This work presents an heterogeneous multi-agent system where each robot

has different capabilities. In order to complete the proposed task, the robots will

need to collaborate. On one hand, there are coordinator robots that collect infor-

mation about the boxes to get their destination storage position using Computer

Vision. On the other hand, there are cargo robots that push the boxes more eas-

ily than the coordinators but they have no camera devices to identify the boxes.

Then, both robots must collaborate in order to solve the warehouse problem due

to the different sensors and actuators that they have available.

This work has been developed in Java. It uses JNAOqi to communicate

with the NAO robots (coordinators) and rosjava to communicate with the P3DX

robots (cargos). The control modules are deployed in the PELEA architecuture.

The empirical evaluation has been conducted in a real environment using two

robots: one NAO8 Robot and one P3DX robot.

ii

Resumen

Este trabajo presenta el desarrollo de un sistema de control para un sistema

autónomo multi-agente con Planificación Automática y Visión Artificial para re-

solver tareas de ordenación de almacenes.

En el proyecto se presenta un sistema multi-agente heterogéneo donde cada

agente tiene diferentes habilidades. Para poder completar la tarea propuesta,

los agentes, en este caso robots, deben colaborar. Por un lado, hay robots co-

ordinadores que recogen información de las cajas medinte Visión Artificial para

conocer la posición de almacenaje de la caja. Por otro lado, hay robots de carga

que empujan las cajas hasta su destino con mayor facilidad que los coordinadores

pero que no tienen cámaras de video para identificar las cajas. Por ello, ambos

robots tienen que colaborar para resolver el problema de ordenación debido a los

diferentes sensores y actuadores que tienen disponibles.

El proyecto se ha desarrollado en Java. Se ha utilizado JNAOqi para comu-

nicarse con los robots NAO (coordinadores) y rosjava para comunicarse con los

robots P3DX (carga). La evaluación emṕırica se ha realizado en un entorno real

utilizando dos robots: un robot NAO y un robot P3DX.

iii

Contents

1 Introduction 1

1.1 Problem description . 3

1.2 Motivation . 5

1.3 Objectives . 5

1.4 Document structure . 6

2 State of the art 9

2.1 Software Agents . 9

2.1.1 Types of agents . 11

2.1.2 Robots . 12

2.2 Control systems for autonomous agents 18

2.2.1 Deliberative Control Systems 18

2.2.2 Reactive Control Systems 19

2.2.3 Hybrid Control Systems 20

2.2.4 PELEA . 22

2.3 Automated Planning . 25

2.3.1 Conceptual model . 25

2.3.2 Modelling language . 26

2.3.3 Algorithms . 27

2.4 Computer Vision . 28

2.4.1 Colour spaces . 28

2.4.2 Histograms . 29

2.4.3 Blobs . 30

2.4.4 QR . 31

v

3 System description 33

3.1 Introduction . 33

3.2 System analysis . 35

3.2.1 Functional characteristics description 35

3.2.2 System restrictions . 35

3.2.3 Operating environment . 37

3.2.4 Use case specification . 38

3.2.5 Requirements specification 48

3.3 System design . 59

3.3.1 Problem design . 59

3.3.2 Computer Vision module 61

3.3.3 System architecture . 64

3.3.4 Components description 65

3.3.5 System operation . 78

4 Experiments 81

4.1 Experimentation environment . 81

4.2 NAO unitary experiments . 82

4.2.1 Vision experiments . 83

4.2.2 Movement skills experiments 90

4.3 System experiments . 95

4.3.1 Experiment 1: Problem 1 95

4.3.2 Experiment 3: Problem 2 100

4.3.3 Experiment 4: Problem 3 103

4.3.4 System experimentation conclusions 105

5 Project management 107

5.1 Phases description . 107

5.2 Planning . 109

5.3 Budgeting . 112

vi

6 Conclusions 115

6.1 General conclusions . 115

6.2 Conclusions concerning the objectives 117

6.3 Future work . 118

A Installation 121

A.1 JDK . 121

A.2 JNAOqi and NAO environment 122

A.3 ZXing . 122

A.4 ROS . 122

A.5 PELEA . 124

B User guide 125

C PDDL source code and scripts 127

vii

List of Figures

1.1 Example of the Sokoban game. (Source) 3

1.2 Problem environment. 4

2.1 Interaction between agent and its environment. 10

2.2 Robot built with LEGO NTX Mindstorm kit. (Source) 13

2.3 The ASIMO robot. (Source) . 13

2.4 The Romeo robot. (Source) . 14

2.5 The Atlas robot in three different positions. (Source) 15

2.6 The Pepper robot. (Source) . 15

2.7 Pioneer 3 DX robot. (Source) . 16

2.8 Pioneer 3 DX robot dimensions. (Source) 17

2.9 NAO robot.(Source) . 17

2.10 Basic structure of a deliberative architecture. 18

2.11 Basic structure of a reactive architecture. 20

2.12 Basic structure of a hybrid architecture. 21

2.13 PELEA architecture with variables. (Source) 22

2.14 R, G and B Histograms. The x-axis represents the intensity value

for the colour and the y-axis the number of pixels with that inten-

sity. (Source) . 30

2.15 Original image (a) and image with red blolb detection (b). 31

2.16 QR illustration. (Source) . 32

3.1 System high level diagram. 34

3.2 Use Case diagram. 39

ix

http://sokoban-jd.blogspot.com.es/2013_01_01_archive.html
http://www.tomberdanslespoires.com/plan-montage-robot-lego.html
https://twitter.com/asimo
https://www.ald.softbankrobotics.com/en/cool-robots/romeo
http://erreur42.fr/atlas-le-robot-du-futur/
http://thenextweb.com/gadgets/2014/06/05/pepper-is-an-emotionally-aware-robot-available-in-japan-next-year-for-under-2000/#gref
http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
http://doc.aldebaran.com/1-14/family/body_type.html
http://www.plg.inf.uc3m.es/pelea/execution.php
http://www.sci.utah.edu/~acoste/uou/Image/project1/Arthur_COSTE_Project_1_report.html
https://en.wikipedia.org/wiki/QR_code

3.3 System architecture diagram. 65

3.4 Components and connections for the NAO Execution module. . . 67

3.5 Flowchart for the turn correction algorithm. 69

3.6 Initial position (a) 90 degrees turn with error (b) Position after

correction (c). 70

3.7 Flowchart for the walk correction algorithm. 71

3.8 Flowchart for the colour detection algorithm. 73

3.9 Components and connections for the P3DX Execution module. . . 75

3.10 Stages for the push action. 77

3.11 Sequence diagram for the system operation. 80

4.1 Environment diagrams legend. 82

4.2 Experiment 1 environment diagram. 83

4.3 Experiment 1 real environment. 84

4.4 Experiment 1 NAO pictures. 84

4.5 Experiment 2 environment diagram. 85

4.6 Experiment 2 real environment. 85

4.7 Experiment 2 NAO pictures. 86

4.8 Experiment 3 environment diagram. 87

4.9 Experiment 3 real environment. 87

4.10 Experiment 3 NAO pictures. 88

4.11 Boxes with different QR size. 88

4.12 Experiment 1 environment diagram. 91

4.13 Walk action error in situations (1) and (2). 92

4.14 Experiment 2 environment diagram. 93

4.15 NAO position in front of the box in an unsuccessful execution. . . 94

4.16 Experiment 2 modified diagram. 94

4.17 Problem 1 environment diagram. 96

4.18 Problem 1 plan. 97

4.19 Problem 1.1 plan. 99

4.20 Problem 2 environment diagram. 100

x

4.21 Problem 2 plan. 101

4.22 NAO pictures for different size boxes. 102

4.23 Problem 3 environment diagram. 103

4.24 Problem 3 plan. 104

5.1 Waterfall development process. 108

5.2 Project Gantt Chart. Dates are in MM/DD/YYYY format. . . . 111

xi

List of Tables

3.1 Use case 001. 40

3.2 Use case 002. 40

3.3 Use case 003. 41

3.4 Use case 004. 41

3.5 Use case 005. 42

3.6 Use case 006. 42

3.7 Use case 007. 43

3.8 Use case 008. 44

3.9 Use case 009. 44

3.10 Use case 010. 45

3.11 Use case 011. 46

3.12 Use case 012. 47

3.13 Functional requirement 001. 50

3.14 Functional requirement 002. 50

3.15 Functional requirement 003. 50

3.16 Functional requirement 004. 51

3.17 Functional requirement 005. 51

3.18 Functional requirement 006. 51

3.19 Functional requirement 007. 52

3.20 Functional requirement 008. 52

3.21 Functional requirement 009. 52

3.22 Functional requirement 010. 53

3.23 Functional requirement 011. 53

xiii

3.24 Functional requirement 012. 54

3.25 Functional requirement 013. 54

3.26 Functional requirement 014. 54

3.27 Functional requirement 015. 55

3.28 Functional requirement 016. 55

3.29 Functional requirement 017. 55

3.30 Functional requirement 018. 56

3.31 Functional requirement 019. 56

3.32 Functional requirement 020. 56

3.33 Non-functional requirement 001. 57

3.34 Non-functional requirement 002. 57

3.35 Non-functional requirement 003. 58

3.36 Non-functional requirement 004. 58

3.37 Non-functional requirement 005. 58

3.38 Objects in the domain. 60

3.39 Predicates in the domain. 60

3.40 Actions in the domain. 61

5.1 Date and task definition of the project development. 110

5.2 Estimated staff direct costs. 112

5.3 Estimated equipment direct cost for a use of 6 months. 113

xiv

Chapter 1

Introduction

Warehouse and industrial scenarios have been one of the first environments where

tasks were automatized by using robots. With the industrialization, programmed

and teleoperated machines were introduced in factories to improve the production

process. Robots were machines programmed for a specific task and would always

behave the same way. They were experts in their tasks and soon replaced human

workforce. Teleoperated robots have been used, later on, for dangerous tasks that

could be risky for humans, like mine detection [1], or for tasks that a robot could

do with more precision, such as surgery [2]. In these situations, the robot is not

aware of what is doing and cannot make decisions, it is just a puppet controlled

remotely by the human.

With autonomous robots, warehouse environments were found again to be

suitable scenarios for autonomous navigation as well as organization and decision-

based problems. They pose challenges in sensing, control and deliberation tasks.

However, the critical part consist on designing the control system or control ar-

chitecture. This must determine the most suitable execution of the actions. In

addition, the process to choose these actions could be a difficult task depending

on the available information about the environment or the available time to make

decisions. There are several types of control systems that change the way the deci-

sions are made. From reactive architectures, which are based on acting depending

on the inputs, to deliberative architectures, which are based on long-term reason-

1

Chapter 1. Introduction Sof́ıa Herrero Villarroya

ing techniques. Different architectures will result in different ways of controlling

the robot in a system.

To overcome the challenges posed by warehouse environments when building

control systems, Artificial Intelligence (AI) techniques have shown to be a suitable

approach. For instance, the Kiva warehouse-management system [3] was success-

fully implemented with path planning as a homogeneous multi-agent system.

To control a robot it is necessary to generate a sequence of actions. This can

be acomplished with Automated Planning (AP). This is the branch of Artificial

Intelligence that studies the generation of an ordered set of actions (plan) that

allows a system to transit from a given initial state to a state where a set of goals

has been achieved. AP has been successfully used to solve real world problems such

as planning Mars exploration missions [4] and controlling underwater vehicles [5].

In addition, if information from the environment is obtained through images

then Computer Vision is used. This is a technique used in Artificial Intelligence

that allows the agent to process and extract useful information from images or

video of the environment. After processing this information, the agent uses it in

its decision process or for other purposes such as face detection [6].

Finally, the availability, nowadays, of low-cost robots with capabilities to

implement AI and complex techniques has enabled the creation of automated task

systems not only in scientific or business research but also in academia. These

robots are often available for educational purposes which encourages students to

tackle by themselves problems that, otherwise, would be out of their hands.

In this dissertation, I propose a multi-agent system to solve planning tasks

with heterogeneous agents. Two different robots will be used to cooperate and

solve warehouse organizational tasks in a small scale.

The system I propose is a hybrid control system that combines reactive

and deliberative control. This architecture incorporates the previously explained

AI techniques, Automated Planning and Computer Vision. Consequently, the

architecture should interleave Planning and Execution as well as an environment

model used to generate the plans. Using Computer Vision, information about the

2 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 1.1 Problem description

environment can be detected and use it to solve the tasks.

1.1 Problem description

The problem for this dissertation proposes a warehouse with a set of boxes that

needs to be organized. The boxes must be placed in specific locations in the

warehouse. Each box is tagged with information about its destination. When the

boxes arrive to the warehouse, this information is unknown and the tag needs to

be read to know the destination.

This problem is inspired in the Sokoban game1. In this Japanese puzzle the

main task for the player is to move a set of stones in a board to their goal locations.

The player can move in four directions (North, South, East and West) to empty

cells and can push a stone but never pull it. The game finishes when all the stones

are in their storage location. In Figure 1.1 an example of the Sokoban game is

presented. The purple walls delimit the board and are obstacles and the blue cells

inside are positions to which the player can move. The stones destination cells

are marked with a diamond symbol and stones already in the destination cell are

purple. The player is at the center-bottom of the board.

Figure 1.1: Example of the Sokoban game. (Source)

1http://www.mobygames.com/game/soko-ban, last visit 18 May 2016

Solving Multi-agent Planning Tasks by Using Automated Planning 3

http://sokoban-jd.blogspot.com.es/2013_01_01_archive.html
http://www.mobygames.com/game/soko-ban

Chapter 1. Introduction Sof́ıa Herrero Villarroya

The problem environment is designed based on this game and depicted in

Figure 1.2. The warehouse is modelled as the board composed by a set of cells or

locations that can be traversed in the four directions. The boxes are the stones

in the original game and can only be pushed as well. The boxes storage locations

are the stones destination cells. For the proposed problem, each box will have the

same colour as its storage location. This is the information needed to know where

to place the box.

(0,0)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,3)

(1,3)

(2,3)

(0,1) (0,2)

Figure 1.2: Problem environment.

The solution I propose in this dissertation to solve the problem is a multi-

agent system composed of two types of robot: a humanoid robot and a mobile

robot. The system uses Computer Vision to extract from the environment infor-

mation about the storage locations. It also uses Automated Planning to generate

plans for the robots to execute and solve the problem. The humanoid robot is able

to see the environment but it is not efficient and precise when interacting with

objects or walking from one position to another. Meanwhile, the mobile robot,

which has two wheels, will reinforce this lack of skill of the humanoid robot. It can

move faster through the environment but cannot see. This leads to a necessary

4 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 1.3 Objectives

collaboration between the robots to successfully complete the warehouse organi-

zation task. Therefore, a hybrid control architecture using Automated Planning

and Computer Vision will control the robots and solve the proposed task.

1.2 Motivation

Current technology and AI has successfully shown that homogeneous multi-agent

systems can navigate autonomously and solve tasks, such as the Kiva warehouse-

management system mentioned before. In heterogeneous multi-agent systems,

the robots are different and have different capabilities and characteristics. To take

advantage of them, they can collaborate to solve the tasks. This allows to propose

more complex tasks. Motivated by this, this work will built a heterogeneous multi-

agent system and experiment in real environments that simulate small warehouse

environments.

The problem proposed in this work faces the challenges related to organi-

zational tasks in warehouse environments. These are a wide variety of challenges

from autonomous navigation to deliberation and sensing. This makes it a very

complete work where several Computer Science techniques are involved making it

very interesting.

Finally, the final result is one of the main motivations. Building an au-

tonomous system where the robots coordinate correctly to solve tasks without

human intervention is very promising. This work is in small-scale what bigger

scientific researches with current technology have built but is ideal to understand

the techniques, challenges and solutions that apply to this type of systems and an

excellent closure to my degree in Computer Science.

1.3 Objectives

As previously stated, the main objective of this work consist on building a hybrid

control system able of controlling a heterogeneous multi-agent system to relocate

Solving Multi-agent Planning Tasks by Using Automated Planning 5

Chapter 1. Introduction Sof́ıa Herrero Villarroya

some boxes in a warehouse. To accomplish so, several sub-goals need to be reached

in order to achieve the main goal. These sub-goals are:

• Carry out an initial study of the technologies that will be used to become

familiar with them and learn how to use them.

• Design a model to represent the problem environment based on the Sokoban

and implement it.

• Develop the NAO control system that must enable the robot to move and

turn.

• Develop a module that uses Computer Vision techniques to identify the

colours of the boxes and integrate it with the NAO functionality.

• Coordinate the NAO and P3DX robots to solve tasks in the domain by using

a hybrid control system.

• Evaluate the correctness of the system with experiments in a real-world

environment trying to simulate a small warehouse.

• Generate the corresponding documentation.

1.4 Document structure

This document has been organized in 6 chapters and 3 appendices. Here is pro-

vided a general overview of each of them.

• Chapter 1 presents a detailed description of the problem, the motivation

and the objectives. Finally, it is presented a description of the document’s

structure.

• Chapter 2 includes a study of the theoretical base used for this dissertation.

6 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 1.4 Document structure

• Chapter 3 provides a description of both the analysis and the design of

this work. In the first part of the chapter it is included the functionality

description, hardware and software restrictions, use cases specification and

requirements specification. In the second part is described the design and

implementation of the system.

• Chapter 4 includes the empirical evaluation: unitary and system experi-

ments.

• Chapter 5 describes the project management that has been used with the

planification and the budgeting.

• Chapter 6 presents the conclusions drawn from this dissertation after its

completion as well as proposing future work.

• Finally, the appendices A, B and C include the installation instructions, a

user guide and the PDDL source code created for the dissertation, respec-

tively.

Solving Multi-agent Planning Tasks by Using Automated Planning 7

Chapter 2

State of the art

This chapter provides a general overview of the theoretical background in which

this work is included. First, a detailed definition of Software Agents and its types

is presented. It includes a section in robotics since robots are the agents used in

the system built for this dissertation. Second, the different types of control archi-

tectures are described. Then, Automated Planning is introduced with its formal

definition and its components definition. Finally, Computer Vision techniques

proposed for this dissertation are explained.

2.1 Software Agents

As it usually happens with abstract concepts, a unique definition for software

agent has not been agreed yet. One of the reasons for this is that the word itself

represents a heterogeneous body of development and research [7]. However, in

Computer Science, we agree that software agents are computer programs that

carry out tasks on behalf of their user. This, usually, implies some degree of

authority and autonomy to decide which action to perform [8].

To be more precise, software agent systems have evolved from Multi-Agent

Systems (MAS), which are closely related to Distributed Artificial Intelligence

(DAI). This area solves problems of AI, specially if they require large data sets,

by distributing parts of the problem to several processing agents. The main goal

9

Chapter 2. State of the art Sof́ıa Herrero Villarroya

is to exploit large scale computation and parallel computation to be able to solve

complex problems. MAS inherited the main goals and benefits of this area and

focused on how agents could coordinate their activities and knowledge. From

these two fields, DAI and MAS, the concept of software agent was first coined

by Carl Hewitt as [9]: “A self-contained, interactive and concurrently-executing

object, possessing internal state and communication capability.”

According to Wooldridge in his book “An introduction to multi-agent sys-

tems” [10], the agent is a system situated in an environment and reacting to it as

it is depicted in Figure 2.1 from his book. This definition differentiates the agent

from ordinary computer programs because the latter will not have an effect on the

environment with its output. Meanwhile, an agent has a continuous interaction

with the environment.

Figure 2.1: Interaction between agent and its environment.

10 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 2.1 Software Agents

2.1.1 Types of agents

There are several types of software agents according to their capabilities. A basic

idea is provided for each of the types but agents can fall under several types

depending on their capabilities:

• Mobile agents: these agents have the capability of transporting their state

across platforms, processes or networks, deciding when to do so or having a

fixed path. This way, they can achieve better performance by migrating to

different environments when needed for reasons, for instance, of efficiency.

When an agent does not have this capability it can be considered static.

When dealing with physical agents, such as robots, mobile refers to their

ability to navigate throughout the environment.

• Autonomous agent: these agents have the capability of performing on behalf

of the owner without its intervention. These agents, usually, use sensors and

actuators that provide data from the environment to decide which action is

the appropriate to achieve their goal.

• Intelligent agent: these agents exhibit an intelligent behaviour usually through

AI techniques that can be very simple or very complex. This capability in-

volves in a high degree the autonomous capability and thus agents are often

called autonomous intelligent agents [11].

• Multi-agent systems: these agents work in a cooperative system where the

goal cannot be achieved by one of them alone and they have the ability to

communicate with each other.

2.1.1.1 Multi-agent systems

As defined previously, the type of problems that can be addressed with Multi-

Agent Systems (MAS) are those where cooperation is needed and are hard or

impossible to be solved by individual agents. For that, the study of MAS focuses

on developing the best way to achieve the cooperation between agents.

Solving Multi-agent Planning Tasks by Using Automated Planning 11

Chapter 2. State of the art Sof́ıa Herrero Villarroya

A MAS involves an environment, objects, agents, the actions that can be

performed with the changes that result and the relationships between all entities

[12]. Agents can be software agents, such as robots, but also humans. They are

classified in passive, when the agent has no goal, or active, when the agent has a

goal in the system [13]. Regarding the environments, they can be modelled with

a wide range of characteristics. For instance, its determinism, to characterize the

actions as deterministic or not in the environment or its accessibility, to determine

how much visibility (information from the environment) can be obtained.

2.1.2 Robots

The concept of robot was first introduced by Karel Capek [14] in 1920 but the

concept that the term robot represents was present for long before. Since ancient

mythologies, the idea of creating an agent that could work on behalf of us has

been exploited [15]. With remote-controlled systems, the idea seemed to be closer

and in 1928 we had one of the first humanoid robots: Eric by H. W. Richardson1.

Since then, the robotic field has seen enormous advances towards new forms of

robots in different industrial and general-purpose areas. Some of the most modern

robots that have had great impact are:

• The Lego Mindstorms2 was launched in 1998 as a customizable robotic kit

set aimed towards children. It was created by LEGO and the Massachusetts

Institute of Technology (MIT) and introduce the robotics concepts in other

fields, such as the educational field. Figure 2.2 shows different robots that

have been built and customize with LEGO Mindstorm NXT

1http://www.reffell.org.uk/people/ericrobot.php, last visit 6th June 2016
2http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com, last

visit 17th June 2016

12 Solving Multi-agent Planning Tasks by Using Automated Planning

http://www.reffell.org.uk/people/ericrobot.php
http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com

Sof́ıa Herrero Villarroya 2.1 Software Agents

Figure 2.2: Robot built with LEGO NTX Mindstorm kit. (Source)

• In 2000, Honda released ASIMO3, a more modern, small and faster robot

than the previous ones it had released. The ASIMO is a humanoid robot

able to interact with humans by recognizing postures, gestures and faces.

This work led to further research in walking-assist gear. Figure 2.3 shows

the ASIMO robot.

Figure 2.3: The ASIMO robot. (Source)

3http://asimo.honda.com/, last visit 17th June 2016

Solving Multi-agent Planning Tasks by Using Automated Planning 13

http://www.tomberdanslespoires.com/plan-montage-robot-lego.html
https://twitter.com/asimo
http://asimo.honda.com/

Chapter 2. State of the art Sof́ıa Herrero Villarroya

• Aldebaran Robotics started developing Romeo4 in 2009 and is nowadays a

140 cm tall humanoid robot. It was designed for research in assisting people

losing their autonomy and elderly people. Due to its size, it can open doors,

climb stairs and reach objects on a table. Figure 2.4 shows the Romeo robot.

Figure 2.4: The Romeo robot. (Source)

• The Atlas robot5 is a humanoid robot aimed towards rescue and search tasks.

It was financed by the United States Defense Advanced Research Projects

Agency (DARPA) and developed by Boston Dynamics. The robot is robust

and strong and prepared to rough terrains and tasks such as climbing. Figure

2.5 shows the Atlas robot.

4http://projetromeo.com/en, last visit 17 June 2016.
5http://www.bostondynamics.com/robot_Atlas.html, last visit 17 June 2016.

14 Solving Multi-agent Planning Tasks by Using Automated Planning

https://www.ald.softbankrobotics.com/en/cool-robots/romeo
http://projetromeo.com/en
http://www.bostondynamics.com/robot_Atlas.html

Sof́ıa Herrero Villarroya 2.1 Software Agents

Figure 2.5: The Atlas robot in three different positions. (Source)

• The Pepper robot6 was launched in 2014 by Aldebaran Robotics as a robot

with the ability to perceive emotions. Based on the user’s voice, expres-

sions, movements and words it will interpret your emotion and offer content

accordingly. It is sold as a companion and used to welcome customers in

stores in Japan. Figure 2.6 shows the Pepper robot.

Figure 2.6: The Pepper robot. (Source)

6https://www.ald.softbankrobotics.com/en/cool-robots/pepper, last visit 17 June

2016.

Solving Multi-agent Planning Tasks by Using Automated Planning 15

http://erreur42.fr/atlas-le-robot-du-futur/
http://thenextweb.com/gadgets/2014/06/05/pepper-is-an-emotionally-aware-robot-available-in-japan-next-year-for-under-2000/#gref
https://www.ald.softbankrobotics.com/en/cool-robots/pepper

Chapter 2. State of the art Sof́ıa Herrero Villarroya

The robot is, therefore, the most common physical agent and is present,

nowadays, in a wide variety of forms, not limited only to humanoid shape. Among

the different robots that have been created for research and academic purposes,

we can find the Pioneer 3 DX robot and the NAO robot, both of which are used

in this thesis.

The P3DX robot (Figure 2.7) is a mobile robot fully programmable dis-

tributed by the company ActivMedia. The motion controller of this robot has

three physical components: motors and wheels to move, ultrasonic sonar sensors,

front and rear, to analyse the environment and a CPU to automatically measure

the velocity and provide control and state information. As mentioned before, it

does not have any kind of vision devices. All of this, with other more specifica-

tions7, makes the P3DX an all-purpose robot for applications such as monitor-

ing, autonomous navigation, multi-robots’ cooperation, etc. Figure 2.8 shows the

P3DX dimensions.

Figure 2.7: Pioneer 3 DX robot. (Source)

7http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx, last visit 18 May

2016

16 Solving Multi-agent Planning Tasks by Using Automated Planning

http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

Sof́ıa Herrero Villarroya 2.2 Control systems for autonomous agents

Figure 2.8: Pioneer 3 DX robot dimensions. (Source)

The NAO robot was developed by Aldebaran Robotics as a humanoid robot

fully programmable as well. An Academic Edition was released in 2008 and is

widely used in many institutions and a lot of projects in the educational and med-

ical area with children have been carried out with this robot [16]. The version

used in this work is the NAO H25 with 25 degrees of freedom, that is, the number

of joints that it has. It includes an inertial measurement system with two com-

ponents: accelerometer and gyrometer. The NAO also counts with microphone,

speakers and two cameras, as well as, sonar, infrared, tactile sensors and pressure

sensors. The operating system of the robot is Linux-based with an API in C,

called NAOqi. Figure 2.9 shows the NAO robot and its parts.

Figure 2.9: NAO robot.(Source)

Solving Multi-agent Planning Tasks by Using Automated Planning 17

http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
http://doc.aldebaran.com/1-14/family/body_type.html

Chapter 2. State of the art Sof́ıa Herrero Villarroya

2.2 Control systems for autonomous agents

The control system is the component in charge of controlling the agent. If the

agent is a robot with a basic degree of autonomy, then the control system needs

to enable the robot to: sense its environment and react to it, perform actions

in a secure way, handle malfunctions (robustness and reliability) and exhibit an

intelligent behaviour solving the tasks, among other characteristics. The control

system must ensure that the robot will perform the task taking into account these

requirements and constraints.

There exist three main control paradigms [17] to control an agent that will

be discussed in the following sections: deliberative, reaction and hybrid. The

difference between them is on the process by which they decide the actions to

perform in the environment.

2.2.1 Deliberative Control Systems

A deliberative control system was first used in the robot Shakey 8 developed by

the Stanford Research Institute in 1966. This system uses a global world model

to plan the optimal path creating a plan that the robot will, then, execute. The

architecture includes three modules. Figure 2.10 depicts the interaction of them.

Sensing Planning Action

Figure 2.10: Basic structure of a deliberative architecture.

8http://www.ai.sri.com/shakey/, last visit 18 May 2016

18 Solving Multi-agent Planning Tasks by Using Automated Planning

http://www.ai.sri.com/shakey/

Sof́ıa Herrero Villarroya 2.2 Control systems for autonomous agents

• Sensing module: first, using information form its sensors, the robot processes

the information from the static environment to create a world model.

• Planning module: then, this module searches for the solution of the problem

using Automated Planning and the model. It generates a plan for the robot.

• Action module: finally, the robot will execute the actions in the plan. How-

ever, after each action it will stop to update the information and re-plan if

necessary.

In the deliberative control system, time and resources are spent in the plan-

ning process for decision-making. This requires efficient processing capabilities

and enough memory, posing a limitation to the system. Besides that, the planning

process depends on the world model. Therefore, a plan without having received

first the information from the environment could be a risk to the robot’s integrity

in a dynamic environment.

These two aspects are an important limitation in systems where the environ-

ment is very dynamic since the planner cannot keep up with the rate of changes

in the environment. If the planner takes too much time generating a plan and the

environment changes meanwhile, the plan could not be valid anymore. Therefore,

they are also inconveniences for systems that need to react quickly. However, this

architecture is useful for complex problems where long term reasoning is necessary

to reach the goals.

2.2.2 Reactive Control Systems

To tackle the drawbacks in deliberative architecture for dynamic environments,

Rodney Brooks proposed in 1986 the Subsumption architecture [18], a reactive

control architecture. In this system, all possible behaviours are defined as strict

rules that are activated depending on the sensory input and have an output action

for the robot to carry out. The main loop of action is shown in Figure 2.11, in

this case composed of two modules.

Solving Multi-agent Planning Tasks by Using Automated Planning 19

Chapter 2. State of the art Sof́ıa Herrero Villarroya

Action Sensing

Figure 2.11: Basic structure of a reactive architecture.

• Sensing module: first, using information form its sensors, the robot processes

the information to determine which predefine behaviour is activated.

• Action module: the robot executes the action of the behaviour that was

activated.

As it can be seen, the robot uses the local model of environment to take

actions, without a time-consuming planning process. This allows the control sys-

tem to quickly provide a response to the changes in the environment. In addition,

the response will always be the same since behaviours and responses are already

predefined.

One of the disadvantages in this architecture is that, due to the lack of

the planning module, is not appropriate for complex problems where long term

reasoning is necessary. Another one is that it cannot correctly react to unexpected

behaviours since they have not been predefined. However, for problems where this

does not happen, this type of control architecture makes the robot experts in their

tasks and enables it to react rapidly in very dynamic environments.

2.2.3 Hybrid Control Systems

Deliberative paradigms are mechanisms that allow the robot to make decisions

while reactive have predefined behaviours. If both are combined it is obtained a

hybrid control system with both characteristics. In this type of systems, while

being deliberative, it still has a constant direct communication with the environ-

ment [19]. This system is composed of four modules depicted in Figure 2.12.

20 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 2.2 Control systems for autonomous agents

Sensing Control Action

Planning

Figure 2.12: Basic structure of a hybrid architecture.

• Sensing module: gathers information from its surroundings and sends it to

the Control module.

• Planning module: as part of the deliberative approach, there is a planner or

any other deliberative system that will provide the Control module with a

plan of actions.

• Control module: decides which action to perform: a reactive one from the

sensors or a deliberative one. Then sends it to the Execution module.

• Execution module: receives the actions and ensures the robot carries them

out.

It can be seen that this approach still requires processing time but is able

to face both scenarios: very dynamic environments and complex problems.

This paradigm is the one used in this project for the control system that

has been built. As it will be described in the chapter 3, the control system uses a

planner to determine the sequence of action but relies on sensor information to do

so, which will be processed through computer vision. Therefore, from the sensors,

it does not only obtain information to create a world map but also information

to decide which action performs. The Computer Vision will be the reactive part

while the Automated Planning will be the deliberative part.

Solving Multi-agent Planning Tasks by Using Automated Planning 21

Chapter 2. State of the art Sof́ıa Herrero Villarroya

2.2.4 PELEA

The system architecture that will be used in this dissertation is called PELEA

(Planning, Execution and Learning Architecture), a system developed by three

Spanish universities, one of them being the Carlos III University [20]. PELEA

is a generic architecture that uses Automated Planning and Machine Learning to

solve automated tasks. The architecture is distributed in different components

that can be easily substituted depending on the task to be solved.

The architecture has 8 modules9 which are depicted in Figure 2.13 together

with the messages and variables passed in the system. Next, the modules are

briefly described.

Figure 2.13: PELEA architecture with variables. (Source)

9http://www.plg.inf.uc3m.es/pelea/modules.php, last visit 23 May 2016

22 Solving Multi-agent Planning Tasks by Using Automated Planning

http://www.plg.inf.uc3m.es/pelea/execution.php
http://www.plg.inf.uc3m.es/pelea/modules.php

Sof́ıa Herrero Villarroya 2.2 Control systems for autonomous agents

• Monitoring. This module ensures the synchronization between the planning

process (high level) and the execution process (low level). For that, it will

manage the communication between the modules and will ensure that the

low-level predicates have the expected value. From the DecisionSupport

module it will receive which predicates to monitor along with their range

values. Actions to be executed will be sent to the Execution module from

the plan and will receive the new state after the execution of each action.

• Execution. This module is used for communicating with the real environ-

ment, usually, with the robot. It receives the high-level actions or low-level

actions and sends them to the robot. It also receives information from the

robot sensors to send them to Monitoring. The system should have one

Execution module per robot.

• Decision Support. This module will decide which predicates to monitor and

their valid values. Also, it will call the High − level replanner when the

current state does not match to the expected one in high-level to determine

if re-planning is needed and do so.

• High − level replanner. This module encapsulates a domain-independent

automatic planner. It receives the problem and the domain in XPDDL and

translates them to the language that the planner uses. Then, receives the

plan created by the planner and translates it to XPDDL to send it to the

Decision Support module.

• Low− level planner. In cases where high-level actions correspond to several

low-level actions, this domain-independent planner will do the planning for

the transformation. In other cases, the transformation can be done directly

and this planner is not needed.

• LowToHigh. Gathers information in low-level format from the sensors and

converts it to high-level to build the high-level state.

Solving Multi-agent Planning Tasks by Using Automated Planning 23

Chapter 2. State of the art Sof́ıa Herrero Villarroya

• Learning. This module generates different type of knowledge from the re-

sults of the plans and past executions. This gives support to the high-level

replanner and refines the domainH, for instance.

• Goal and metric generation. This is an optional module that manages the

goals and metrics. For example, it calculates subset of goals or establishes

the metric criteria to optimize the plans.

Information is passed between the modules in the form of messages with

variables. There exist variables for the high-level part of the architecture, such

as domainH, stateH and planH, where information is expressed in high-level in-

structions. There are also variables for the low-level part such as domainL, stateL

and planL, with the information expressed in low-level instructions. Finally, there

are also monitoring variables with their associated valid ranges and variables to

store problem information like the goals, the heuristics and metrics used in the

planner.

An execution cycle with PELEA starts with the Execution module. This

modules receives high-level information about the problem, initial state and goals

as well as domainL and domainH with the possible actions that can be executed.

This information is sent to the Monitoring module. If necessary, this module will

call LowToHigh to get a high-level state stateH from the low-level stateL.

The high-level state stateL and domainL are sent to DecisionSupport. This

sends them to the High-level planner which creates planH and returns it to Deci-

sion Support. This module, with a plan, calculates the variables that need to be

monitored and sends everything to Monitoring.

Monitoring sends the plan to the Low-level Planner module to get the planL

and send it to Execution. Execution executes the first action and returns to

Monitoring the low-level state. Monitoring checks if goals have been reached,

otherwise, it checks if the current state is valid. If not, it is resent to Decision

Support for replan or repair. Otherwise, next action is executed. This cycle is

repeated until the goals are reached.

24 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 2.3 Automated Planning

PELEA can be deployed using different configurations where there are only 3

modules (Monitoring, Decision Support and Execution) or 5 modules (Monitoring,

Decision Support, Execution, LowToHigh and Low-level planner), depending on

the problem. In this dissertation, the 3-module configuration has been used and

how it has been specifically used will be described in section 3.3.

2.3 Automated Planning

Automated Planning (AP) is a field of Artificial Intelligence which generates se-

quence of actions, called plans, that transform the current state of the environment

into another state where a set of goals are reached. Commonly, these plans are

used for the execution on autonomous robots, intelligent agents or unmanned

vehicles providing the agent with decision-making capabilities.

There are different planning paradigms depending on both the observability

level of the environment and the structure of the action model (deterministic or

non-deterministic). Classical Planning is considered the most simple paradigm

which assumes that the environment is fully observable and the action execution

is deterministic.

A Classical planning task can be modelled with three elements: a conceptual

model to describe the environment and the problems; a description language, such

as PDDL, to encode the conceptual model in a generic way; and an algorithm to

solve the task and generate a solution.

2.3.1 Conceptual model

The conceptual model for a Classical Planning task can be defined as a tuple

Π = (F,A, I,G), where:

• F is a finite set of grounded literals (also known as facts or atoms).

• A is a finite set of grounded actions derived from the action schemes of the

domain.

Solving Multi-agent Planning Tasks by Using Automated Planning 25

Chapter 2. State of the art Sof́ıa Herrero Villarroya

• I ⊆ F is a finite set of grounded predicates that are true in the initial state.

• G ⊆ F is a finite set of goals.

Any state s is a subset of facts that are true at a given time step. Each action

ai ∈ A can be defined as a tuple ai = (Pre,Add,Del), where Pre(ai) ⊆ F are

the preconditions of the action, Add(ai) ⊆ F are its add effects, and Del(ai) ⊆ F

are the delete effects. Eff(ai) = Add(ai) ∪ Del(ai) are the effects of the action.

Actions can also have a cost, c(ai) (the default cost is one). An action a is

applicable in si, if Pre(a) ⊆ si. Then, the result of applying an action a in state

si generates a new state that can be defined as: si+1 = (si \Del(a)) ∪ Add(a). A

plan π for a planning task Π is an ordered set of actions (commonly, a sequence)

π = (a1, . . . , an), ∀ai ∈ A, that transforms the initial state I into a state sn where

G ⊆ sn. This plan π can be executed if the preconditions of each action are

satisfied in the state in which it is applied; i.e. ∀ai ∈ π, Pre(ai) ⊆ si−1 such that

state si results from executing the action ai in the state si−1. s0 is the initial state

I.

2.3.2 Modelling language

The modelling language describes the semantics of the Classical Planning task.

One of the first languages was STRIPS [21] which represents the world model

with first-order predicate calculus. Then, in 1987 Pednault proposed the Action

Description language (ADL) to adapt STRIPS to more realistic problems. How-

ever, the standard came with the Planning Domain Definition Language (PDDL),

which is a superset of ADL and STRIPS.

In PDDL [22], planning tasks are described in terms of objects of the world

(robots, locations, boxes, etc), predicates which describe static or dynamic features

of these objects or relations among them (e.g. boxes are at locations), actions that

manipulate those relations (a robot can move from one location to another, a box

can be pushed by a robot), an initial state that describes the initial situation

before plan execution, and a goal definition which describes the objectives that

26 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 2.3 Automated Planning

must be reached by the solution plan. This information is provided in two input

files: domain and problem. The domain file contains a definition of a set of

generalized actions A, a set of ungrounded predicates F and a set of object types.

The problem file defines a set of objects, an initial state (I), and a set of goals

(G).

2.3.3 Algorithms

The third element of a planning task is the algorithm that will generate the plan

to solve a proposed task. Some of the algorithms that Classical Planning uses are

Forward Chaining, Backward Chaining and State Space Search.

Forward Chaining and Backward Chaining are both algorithms that follow

a reasoning based in propositional logic. They consist on the application of the

logic concept Modus Ponens on a set of rules. Forward Chaining reasoning starts

from the problem to get to the goals while Backward Chaining reasoning starts

with the list of goals and reasons backwards until it gets to the problem’s initial

state.

State space search models the problem as a set of states in a state space. The

goals is a set of states or a state that need to be reached. There exist operators

to transit from one state to another. The algorithm checks for each state the

operators that can be applied to transition from state to state until it reaches the

goal. This way it builds a search graph.

State search can be enhanced using heuristic. These are functions that ranks

the possible operators that can be applied for a given state. Then, the algorithm

will choose the best option. Heuristic search space for planners was lost after

STRIPS and it was not until 1996 that was again contemplated, with the UNPOP

planner [23] and Bonet and Geffner with HSP planner [24].

With that in mind, the FastForward (FF) [25] planner uses a very fast search

algorithm that combines forward chaining local searches with the heuristic devel-

oped for the HSP planner. FF has been used and considered the fastest until

Lama [26], a planner by Richter, won the International Planning Competition

Solving Multi-agent Planning Tasks by Using Automated Planning 27

Chapter 2. State of the art Sof́ıa Herrero Villarroya

in 2011. This algorithm is based on heuristic forward search built on the Fast

Downward planning system [27]. The core feature of this algorithm is the use of

pseudo-heuristics to optimize the search.

2.4 Computer Vision

Computer Vision is a field that studies techniques to extract information from

images, video or any other visual input to understand them [28]. These Computer

Vision techniques allow systems to analyse the environment and recognise objects,

faces, routes or patterns in it. In a general way, the phases that a Computer Vision

algorithm follows are:

1. Image acquisition: receive the image either through sensors and cameras or

from an external supplier.

2. Pre-processing: process the image to change the colour space (RGB, HSV,

etc.) or re-sample it to adjust its quality and size. In this stage, modify the

image so that the relevant features can be easily extracted later on.

3. Feature extraction and segmentation: in this stage methods are applied to

determine locally where the relevant features are. These can be lines, edges

or points such as blobs.

4. High-level processing: at this point, the feature is isolated and it can be

processed to achieve the goal, e. g.: classification, comparison or verification.

In this dissertation, Computer Vision is used to extract information of an

object in the image. There are several techniques to extract this information from

an image. The most common ones are explained in detail in the following sections.

2.4.1 Colour spaces

The colour space specifies the organization of colours in the image with a notation

to represent them. There is a wide variety of colour spaces [29] with colour models

28 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 2.4 Computer Vision

to represent colours in an image or video. Two of the most used ones are:

• RGB (Red, Green and Blue) colour model: additive colour model where red,

green and blue light are added together to produce other colours.

• HSV (Hue, Saturation and Value) colour model: it was derived from the

RGB space but represents the colours in terms of their three characteris-

tics, hue, saturation and value, which is more similar to the way humans

understand colours and therefore, more intuitive.

It is possible to perform a conversion from one space to another without

any difficulty. Most of image software nowadays has space colour conversion tools

available.

2.4.2 Histograms

Colour histograms are a graphical representation of the colours of each one of

the pixels in an image. They give the distribution of the colour over a range

in different colour spaces, usually RGB or HSV. Since these spaces are three-

dimensional, there are three histograms, one for each dimension. That is R, G

and B in RGB space. Each of them represents the quantity of that colour that

each pixel has. Figure 2.14 shows an example of histograms representation. There

is one per color channel. In this case the colour space is RGB so there is one for

Red, another for Blue and another for Green.

As an example of this technique, histograms are used to detect moving ob-

jects in an image [30]. For that, the histogram representing the colour distribution

in the background image and the current frame histogram are compared to obtain

the similarity. The background histogram is calculated from an image with no

objects, just the background. The current frame histogram is obtained from the

image in which the object wants to be detected. Two experiments are described

in the paper, one with colour histograms and another one with edge histograms.

The results show better performance for the latter.

Solving Multi-agent Planning Tasks by Using Automated Planning 29

Chapter 2. State of the art Sof́ıa Herrero Villarroya

Nu
m
be
r	o

f	p
ix
el

Nu
m
be
r	o

f	p
ix
el

Nu
m
be
r	o

f	p
ix
el

Intensity Intensity Intensity

R G B

Figure 2.14: R, G and B Histograms. The x-axis represents the intensity value

for the colour and the y-axis the number of pixels with that intensity. (Source)

2.4.3 Blobs

Blobs are regions of an image where certain properties are constant and differ

from other regions surrounding. It is based on the algorithm of graph theory of

connected-component labelling [31].

Therefore, given an image or a sequence of images, with blob detection we

can locate similar areas according to properties such as colour or brightness. Once

the blobs are located, other relevant information can be extracted such as the po-

sition and the points that are part of them, as well as calculating the area. This

possibility has been one of the main reasons to consider using blobs in this dis-

sertation, since edge and corner detection, which are similar techniques, did not

provide this information. Figure 2.15 shows an image before being processed (a)

where red balls are going to be detected and an image after applying blob detec-

tion (b) where the red balls have been identified.

30 Solving Multi-agent Planning Tasks by Using Automated Planning

http://www.sci.utah.edu/~acoste/uou/Image/project1/Arthur_COSTE_Project_1_report.html

Sof́ıa Herrero Villarroya 2.4 Computer Vision

(a) (b)

Figure 2.15: Original image (a) and image with red blolb detection (b).

This technique is used in [32] to identify human bodies. They use blobs to

represent the global aspects of the shape of a human body forming blobs for parts

with similar colours or close. For instance, a human would be composed of: a

blob for the head, a blob for the neck and torso, a blob for each arm, a blob for

both legs and a blob for each foot. Combined with scene analysis and statistical

techniques, the results show successful human detection in real-time.

2.4.4 QR

A QR code (Quick Responsive code) is a matrix barcode that can store data in

four types of encoding (numeric, alphanumeric, binary and kanji). It was first

designed by Denso Wave 10 in 1994 for automotive purposes in Japan. However,

nowadays it has been extended to a much broader market aimed at mobile-phone

users.

Computer Vision can be used to detect objects in an image such as a QR.

Once the QR is detected it can be read and extract from it relevant information.

It is another way of obtaining information from the environment. This is used

in this dissertation to store information about the boxes. The coordinator robot

identifies the QR through Computer Vision and then reads it with a QR reader

to get the information about the colour of the box.

10http://www.globaldenso.com/en/, last visit 18 May 2016

Solving Multi-agent Planning Tasks by Using Automated Planning 31

http://www.globaldenso.com/en/

Chapter 2. State of the art Sof́ıa Herrero Villarroya

A QR code is decoded following a pattern 11 which is shown in Figure 2.16.

The three distinctive big squares help orientate the QR code so that information

can be found. Around them we have format information that includes the error

correction and the mask pattern. The error correction level can be specified and

indicates how much code can be restored. There are four levels: L, M, Q and H,

being L the one where the least information can be restored (7%) and H where the

most information can be restored (30%).The mask pattern indicates how data was

mixed so that it can be decoded without leaving blank areas. Then, the message is

placed following the encoding type and including alignment and error correction.

There is an open-source library very common, ZXing12, that implements

functions to process an image to detect QR codes as well as a QR reader (or

decoder). It is available in several programming languages.

Figure 2.16: QR illustration. (Source)

11http://www.qrcode.com/en/. last visit 18 May 2016
12https://github.com/zxing/zxing, last visit 18 May 2016

32 Solving Multi-agent Planning Tasks by Using Automated Planning

https://en.wikipedia.org/wiki/QR_code
http://www.qrcode.com/en/
https://github.com/zxing/zxing

Chapter 3

System description

This chapter describes the system developed to solve the problem proposed in the

first chapter. A system analysis is described in detail with its corresponding use

cases definition and requirements definition, as well as the restrictions that the

system has. Finally, the system architecture and components developed will be

described in details.

3.1 Introduction

This dissertation consists on building a multi-agent system that solves problems

using Automated Planning and Computer Vision. The problems take place in a

warehouse environment where several boxes need to be moved to their correspond-

ing destination locations. Two different robots cooperate using their different ca-

pabilities to carry out the actions that solve the problem because the destination

location of the boxes is unknown.

There is a coordinator agent that has the capability to extract information

about the environment using camera devices. It is called coordinator because it

retrieves information from the boxes to determine where they must go. There is

also a cargo agent which is able to move the boxes. The coordinator agent is a

humanoid robot while the cargo agent is a mobile robot. Therefore, both robots

can execute two different types of actions: (1) common actions related to the

33

Chapter 3. System description Sof́ıa Herrero Villarroya

navigation process (move and turn); (2) specific actions related to the capabilities

of each robot type. The coordinator robot is capable of identifying the colour so

that the final destination of the box is known and the box can be pushed by the

cargo robot.

The system is composed of the following elements:

• A laptop to execute the control system.

• The coordinator agent, in this case the NAO robot. There can be several of

them.

• The cargo agent, in this case the P3DX robot. There can be several of them.

This robot requires a PC to connect to the system.

• A router for the communications.

Figure 3.1 show a high-level diagram of the whole system.

Router

Control	System

Coordinator

WiFi

PC

COM4

Network

Figure 3.1: System high level diagram.

34 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

3.2 System analysis

In this section, it is presented an analysis from the point of view of functionality,

restrictions and the operating environment. Then, the uses case and subsequent

requirements will be described.

3.2.1 Functional characteristics description

The system developed for this dissertation must be able to solve multi-agent tasks

in a warehouse domain based on the Sokoban domain. The functional character-

istics describe aspects of the functionality that the system must include to achieve

the whole system functionality. These characteristics are:

• Be able to identify the colours of the boxes through Computer Vision tech-

niques.

• Be able to push the boxes around the board as precise as possible.

• Be able to move around the board as precise as possible.

• Be able to turn to change the agents’ orientation as precise as possible.

• Be able to determine a plan to solve the problem using Automated Planning.

• Have a representation of the domain and problems for the planner (in high-

level).

• Process the actions from the planner and adapt them for the robot to carry

them out (translate form high-level to low-level).

• Connect all components of the system so that it works automatically.

3.2.2 System restrictions

In this section, the restrictions that have been taken into account when designing

the system are described as well as the ones found during its development and

experimentation.

Solving Multi-agent Planning Tasks by Using Automated Planning 35

Chapter 3. System description Sof́ıa Herrero Villarroya

3.2.2.1 Hardware restrictions

These restrictions refer to physical limitations imposed by the hardware used, in

this case, the NAO, P3DX robots and the laptop.

• The model of NAO used corresponds to the H25 V3.2 that has 25 degrees

of freedom (DOF). These are located in the following way: two in the head,

five in each arm, one in each hand, one in the pelvis and five in each leg.

• The connection to the NAO robot is through Wi-Fi.

• Regarding the vision, the NAO robot has two video cameras in the head

with a resolution of 1.22 Mp and 30 frames per second.

• The NAO robot has an inertial unit with a 3-axis gyrometers with angular

speed of around 500o/s and a 3-axis accelerometer with an acceleration of

around 2g.

• The laptop characteristics are: double core Intel Atom N550 1.5 GHz, 1GB

RAM DDR3, 250GB hard disk and graphics Intel GMA 3150.

• The P3DX has to be physically connected through a COM4 port to a laptop

so that is connected to the whole system.

3.2.2.2 Software restrictions

Software restrictions include limitations due to the software used in the system.

• The operating system requires Java SE 1.7 or above.

• For Computer Vision, version 2.2 of XZing library is needed.

• The JNAOqi library is the version 2.1.4.13.

• Metric-FF planner is version 2.1.

• PELEA is version 2.1.

36 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

3.2.3 Operating environment

In this section, the operating environment is described in terms of hardware and

software.

3.2.3.1 Hardware environment

This environment includes hardware devices that are required for the system to

work.

• NAO H25 V3.2 robot from Aldebaran Robotics.

• Pioneer 3 DX robot.

• Router.

• Laptop with software characteristics described in the following section.

• COM4 wire.

3.2.3.2 Software environment

This environment includes the operating system used and the libraries used. These

are:

• The operating systems that have been used are: OS X EL Capitan 10.11.4,

Ubuntu 12.04 LTS.

• The control architecture is PELEA with Metric-FF planner version 2.1.

• Java SE 1.7.

• Library and API versions: XZing 2.2, JNAOqi 2.1.4.13, rosjava.

The programs that have been used to develop and test are:

• Eclipse Mars.

• Webots 8.3.2 for NAO: this is a NAO simulator.

Solving Multi-agent Planning Tasks by Using Automated Planning 37

Chapter 3. System description Sof́ıa Herrero Villarroya

• Choregraph 2.1.4: graphic interface to control the NAO and execute be-

haviours.

Links for these can be found in the installation manual in the appendix A.

3.2.3.3 Problem environment

This environment refers to the physical environment where the system is going to

be deployed, including the ground, light and other external agents.

• The ground should allow the robot to walk without difficulties, having no

bumps that can make the robot fall.

• The environment lighting should be adequate for the robot’s camera to take

clear pictures. It cannot be dark or very bright since objects in the image

will not be recognizable. It is, therefore, suggested an indoor space with

artificial lighting.

• The boxes used should not be very heavy so that the robot can push them

and must fit in a board location.

• The board cells need to be big enough to fit the robots.

3.2.4 Use case specification

In this section, the use cases that cover the objectives of the project are presented.

In Figure 3.2 it is depicted the Use Case Diagram with the use cases and the actors

that take part in each of them.

3.2.4.1 Actors description

The actors that participate in the use cases are the following:

• User: corresponds to the person that uses the system.

• NAO robot: corresponds to the physical NAO robot.

• P3DX robot: corresponds to the physical P3DX robot.

38 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

Figure 3.2: Use Case diagram.

3.2.4.2 Use case attributes description

For the textual description of the use cases several attributes have been selected.

They are described in detail next:

• ID: Abbreviated univocal identification of the use case. It is formed by UC

followed by a - and three digits. For example, UC-001.

• Name: Extended identification of the use case.

• Actors: Set of entities that interact in the use case. The use case represents

a functionality demanded by the actors.

• Description: this is a basic description of the use case functionality.

• Preconditions and effects: this is a description of the conditions that need to

be true before (preconditions) and after (effects) the functionality described

by the use case is performed.

• Scenario: this is a basic description of the actions that will be executed in

the use case.

3.2.4.3 Use case textual description

The following tables contain the textual description of each use case.

Solving Multi-agent Planning Tasks by Using Automated Planning 39

Chapter 3. System description Sof́ıa Herrero Villarroya

Use case

ID UC-001

Name Model PDDL problem.

Actors User.

Description The user models the problem in PDDL.

Preconditions None.

Effects Problem is modelled.

Scenario The user models the problem following the domain. The user

generates a .pddl file for the problem.

Table 3.1: Use case 001.

Use case

ID UC-002

Name Create configuration file.

Actors User.

Description The user creates the configuration file for PELEA.

Preconditions The problem has been defined in PDDL for the system (Use

Case in Table 3.1).

Effects Configuration file is created.

Scenario The user creates a .xml configuration file.

Table 3.2: Use case 002.

40 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

Use case

ID UC-003

Name Start execution.

Actors User.

Description The user starts the robots and the control system to start

the execution.

Preconditions The problem and the configuration file have been defined.

Effects System execution starts.

Scenario The user starts every robot. The user turns on the router

for the Wi-Fi connection. The user starts the control system

execution (PELEA) executing a script.

Table 3.3: Use case 003.

Use case

ID UC-004

Name Robot starts execution.

Actors NAO, P3DX.

Description The robot starts the execution.

Preconditions The user has started the system (Use Case in Table 3.3).

Effects Execution has started. The robot sends the domain and

problem to Monitoring.

Scenario The robot sends the domain and problem to Monitoring to

start the execution.

Table 3.4: Use case 004.

Solving Multi-agent Planning Tasks by Using Automated Planning 41

Chapter 3. System description Sof́ıa Herrero Villarroya

Use case

ID UC-005

Name NAO Walk.

Actors NAO.

Description The NAO robot walks a specified distance.

Preconditions NAO robot has been started and it is connected to the Wi-Fi (Use

Case in Table 3.1). NAO has received from control system the

order.

Effects The NAO robot has walked the specified distance.

Scenario The NAO robot receives from the control system the walk order.

NAO walks.

Table 3.5: Use case 005.

Use case

ID UC-006

Name NAO Turn.

Actors NAO.

Description The NAO robot turns the specified degrees.

Preconditions NAO robot has been started and it is connected to the Wi-Fi (Use

Case in Table 3.1). NAO has received from control system the

order.

Effects The NAO robot has turned the specified degrees.

Scenario The NAO robot receives from the control system the turn order.

NAO turns.

Table 3.6: Use case 006.

42 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

Use case

ID UC-007

Name Detect colour.

Actors NAO.

Description The NAO robot detects and reads a box QR.

Preconditions NAO robot has been started and it is connected to the Wi-Fi (Use

Case in Table 3.1). NAO has received from control system the

order.

Effects The NAO colour tries to detect the QR and read it. QR can be

detected or not. In case it is not detected PELEA will replan.

Scenario The NAO robot receives from the control system the get − colour

order. The NAO robot takes a picture. Applies image filters.

Attempts to detect a QR. If detected, it reads the QR and obtains

information (colour and box name) from it.

Table 3.7: Use case 007.

Solving Multi-agent Planning Tasks by Using Automated Planning 43

Chapter 3. System description Sof́ıa Herrero Villarroya

Use case

ID UC-008

Name NAO Update partial state representation.

Actors NAO.

Description The robot updates its world model with the changes after executing

an action.

Preconditions The robot has executed an action, either walk, turn or get− colour.

Effects The partial state representation is updated with the changes

produced by the execution of the action.

Scenario The changes are interpreted and translated to high-level to update

the model in PDDL. The changes can be: change in position

(walk), change in orientation (turn) and change in environment

information (get− colour).

Table 3.8: Use case 008.

Use case

ID UC-009

Name P3DX Move.

Actors P3DX.

Description The P3DX robot moves a specified distance.

Preconditions P3DX robot has been started and it is connected to the system

(Use Case in Table 3.1). P3DX has received from control system

the order.

Effects The P3DX robot has moved the specified distance.

Scenario The P3DX robot receives from the control system the move order.

P3DX moves.

Table 3.9: Use case 009.

44 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

Use case

ID UC-010

Name P3DX Turn.

Actors P3DX.

Description The P3DX robot turns the specified degrees.

Preconditions P3DX robot has been started and it is connected to the system

(Use Case in Table 3.1). P3DX has received from control system

the order.

Effects The P3DX robot has turned the specified degrees.

Scenario The P3DX robot receives from the control system the turn order.

P3DX turns.

Table 3.10: Use case 010.

Solving Multi-agent Planning Tasks by Using Automated Planning 45

Chapter 3. System description Sof́ıa Herrero Villarroya

Use case

ID UC-011

Name Push box.

Actors P3DX.

Description The P3DX robot pushes a box to the next cell.

Preconditions P3DX robot has been started and it is connected to the Wi-Fi

(Use Case in Table 3.1). P3DX has received from control system

the order.

Effects The P3DX has pushed a box to the next cell.

Scenario The P3DX robot receives from the control system the push order.

The P3DX moves to the cell with the box to push it. S¿It stops

when the box is in the next cell. Then, it returns to its cell, the

one where the box was.

Table 3.11: Use case 011.

46 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

Use case

ID UC-012

Name P3DX Update partial state representation.

Actors P3DX.

Description The robot updates its world model with the changes after executing

an action.

Preconditions The robot has executed an action, either move, turn or push.

Effects The partial state representation is updated with the changes

produced by the execution of the action.

Scenario The changes are interpreted and translated to high-level to update

the model in PDDL. The changes can be: change in position

(move), change in orientation (turn) and change in environment

information (push).

Table 3.12: Use case 012.

Solving Multi-agent Planning Tasks by Using Automated Planning 47

Chapter 3. System description Sof́ıa Herrero Villarroya

3.2.5 Requirements specification

In this section, the requirements that the system must fulfill are described. For

each requirement presented a detailed description in section 3.2.5.1. Then, the

functional requirements are presented in section 3.2.5.2 and the non-functional in

3.2.5.3.

3.2.5.1 Requirements attributes description

For the textual description of the requirements, several attributes have been se-

lected. The meaning of each attribute is described next:

• ID: Abbreviated univocal identification of the use case. It is formed by

requirement’s code followed by a - and three digits. The requirements are

classified into functional and non-functional and their codes will be FR and

NFR, respectively. For instance, FR-001.

• Name: Extended identification of the requirement.

• Description: this is a basic description of the use case functionality.

• Source: indicates from which source the requirement was identified. Usually,

this corresponds to one or more use cases.

• Significance: determines the implementation degree of the requirement. It

can take the following values:

– Essential: the requirement must be implemented.

– Desirable: it is preferable to implement the requirement, but is not

mandatory.

– Optional: the requirement can be implemented, but is not important

nor mandatory.

• Priority: defines the requirement importance to determine the order in which

it will be included in the design and implementation process. It can take

the following values:

48 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

– High: The requirement must be implemented in the initial development

stages.

– Medium: the requirement must be implemented once all high-priority

requirements have been implemented.

– Low: the requirement must be implemented in the final development

stages. These requirements will not affect the correct system operation.

• Stability: defines the requirements stability during the software useful life.

This implies whether the requirement can be modified or not during the

software’s life cycle. It can take the following values:

– Stable: the requirement cannot be modified during the system’s life

cycle.

– Unstable: the requirement can be modified during the system’s life

cycle.

• Verifiability: defines the verifiability degree of the requirement, that is, in-

dicates in which degree is possible to check that the requirement has been

implemented in the system. It can take the following values:

– High: it can be verified that the requirement has been implemented.

This type of requirements correspond to the basic system functionality.

– Medium: it can be verified that the requirement has been implemented

but requires a complex verification or involves the system source code.

– Low: it is difficult to verify if the requirement has been implemented.

In some cases is not possible.

3.2.5.2 Functional requirements textual description

In this section the functional requirements are presented. This requirements define

the system functionality.

Solving Multi-agent Planning Tasks by Using Automated Planning 49

Chapter 3. System description Sof́ıa Herrero Villarroya

System Requirement

ID FR-001 Source UC-003.

Name Execution script.

Description Creation of a script with the commands to start the system execution .

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.13: Functional requirement 001.

System Requirement

ID FR-002 Source Client and UC-004.

Name Execution without user interaction.

Description Once the execution has started, the user does not have to interact

with the system to ensure the correct execution (the system is

autonomous).

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.14: Functional requirement 002.

System Requirement

ID FR-003 Source Analyst.

Name Continuous connection between all components.

Description All modules as well as the robots must be connected during the

whole execution process.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.15: Functional requirement 003.

50 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

System Requirement

ID FR-004 Source Client.

Name Modify Sokoban PDDL domain.

Description Modify the original Sokoban PDDL domain to introduce the

changes required for this project.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.16: Functional requirement 004.

System Requirement

ID FR-005 Source Analyst.

Name Create problems in PDDL.

Description Create a set of PDDL problems following the PDDL domain

restrictions to define the tasks and for the experimentation.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.17: Functional requirement 005.

System Requirement

ID FR-006 Source Client.

Name Solve the problem.

Description The system must be able to solve the problems proposed

using automated planning.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.18: Functional requirement 006.

Solving Multi-agent Planning Tasks by Using Automated Planning 51

Chapter 3. System description Sof́ıa Herrero Villarroya

System Requirement

ID FR-007 Source Analyst.

Name Generate a plan.

Description The system must be able to decompose the problem solution

in a sequence of actions.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.19: Functional requirement 007.

System Requirement

ID FR-008 Source Analyst.

Name Send action.

Description The Monitoring module must be able to send actions to the

Execution module that must be able to receive them.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.20: Functional requirement 008.

System Requirement

ID FR-009 Source UC-005

Name NAO Walk.

Description The NAO robot must walk when received the order.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.21: Functional requirement 009.

52 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

System Requirement

ID FR-010 Source UC-005 and Client

Name NAO Walk correction.

Description The NAO Execution module must be able to correct the walk

action. Due to the inherent error, the movement must be

just acceptable to allow the correct performance of the system.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.22: Functional requirement 010.

System Requirement

ID FR-011 Source UC-006

Name NAO Turn.

Description The NAO robot must turn when received the order.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.23: Functional requirement 011.

Solving Multi-agent Planning Tasks by Using Automated Planning 53

Chapter 3. System description Sof́ıa Herrero Villarroya

System Requirement

ID FR-012 Source UC-006 and Client.

Name NAO Turn correction.

Description The NAO Execution module must be able to correct the turn

action. Due to the inherent error, the movement must be

just acceptable to allow the correct performance of the system.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.24: Functional requirement 012.

System Requirement

ID FR-013 Source UC-009

Name P3DX Move.

Description The P3DX robot must be able to walk when received the order.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.25: Functional requirement 013.

System Requirement

ID FR-014 Source UC-009

Name P3DX Stop.

Description The P3DX Execution module must be able to calculate when

to stop the P3DX to complete the move action.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.26: Functional requirement 014.

54 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

System Requirement

ID FR-015 Source UC-010

Name P3DX Turn.

Description The P3DX robot must be able to turn when received the order.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.27: Functional requirement 015.

System Requirement

ID FR-016 Source UC-007 and Analyst.

Name NAO take picture.

Description The NAO robot must be able to take a picture when received

the order.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.28: Functional requirement 016.

System Requirement

ID FR-017 Source UC-007 and Analyst.

Name NAO move head.

Description The NAO robot must be able to move the head to take

several pictures at different angles.

Significance Desirable Priority High

Stability Unstable Verifiability High

Table 3.29: Functional requirement 017.

Solving Multi-agent Planning Tasks by Using Automated Planning 55

Chapter 3. System description Sof́ıa Herrero Villarroya

System Requirement

ID FR-018 Source UC-007 and Analyst.

Name Detect QR.

Description The NAO Execution module must be able to detect a QR in

the picture.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.30: Functional requirement 018.

System Requirement

ID FR-019 Source UC-007 and Analyst.

Name Read QR.

Description The NAO Execution module must be able to read a QR.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.31: Functional requirement 019.

System Requirement

ID FR-020 Source UC-011.

Name Push.

Description The P3DX robot must be able to push a box to the next cell

and finish in its position.

Significance Essential Priority High

Stability Stable Verifiability High

Table 3.32: Functional requirement 020.

56 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.2 System analysis

3.2.5.3 Non-functional requirements textual description

In this section the non-functional requirements are presented. These define char-

acteristics that the system must have related to its operation.

System Requirement

ID NFR-001 Source Analyst.

Name Security

Description The system will not jeopardize the robot’s or user’s integrity

during the execution.

Benefit Essential Priority High

Stability Stable Verifiability High

Table 3.33: Non-functional requirement 001.

System Requirement

ID NFR-002 Source UC-003 and UC-004

Name Autonomy

Description The robots will have to be switched on and with battery for

the whole execution.

Benefit Essential Priority High

Stability Stable Verifiability High

Table 3.34: Non-functional requirement 002.

Solving Multi-agent Planning Tasks by Using Automated Planning 57

Chapter 3. System description Sof́ıa Herrero Villarroya

System Requirement

ID NFR-003 Source Operational environment.

Name Use the NAO robot.

Description The coordinator robot will be the NAO robot.

Benefit Essential Priority High

Stability Stable Verifiability High

Table 3.35: Non-functional requirement 003.

System Requirement

ID NFR-004 Source Operational environment.

Name Use the P3DX robot.

Description The cargo robot will be the P3DX robot.

Benefit Essential Priority High

Stability Stable Verifiability High

Table 3.36: Non-functional requirement 004.

System Requirement

ID NFR-005 Source Analyst.

Name Use Java.

Description The programming language used to program and for any

library or API is Java.

Benefit Essential Priority High

Stability Stable Verifiability High

Table 3.37: Non-functional requirement 005.

58 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

3.3 System design

In this section is explained in detail the system design. First, the problem domain

design in PDDL is described in section 3.3.1. Second, the Computer Vision tech-

niques analysis is presented in section 3.3.2. Then, a general vision of the whole

system architecture is presented in section 3.3.3. In section 3.3.4 each component

is described with its functionality. Finally, it is described how the system works

in section 3.3.5.

3.3.1 Problem design

To model the warehouse tasks in PDDL it has been used the Sokoban PDDL

definition because the structure and the actions are similar. The modifications

included in the Sokoban Domain to create the Warehouse Domain are described

next:

• Colour for the boxes. This includes predicates to define the color of the

boxes and which boxes had their colour detected or not.

• Multi-agent. The original Sokoban domain had a single agent. For this case,

two type of agents exist and more than two agents can exist in a problem.

• Additional actions. For the NAO robot the turn and get color actions were

added. For the P3DX, the turn action and push action were modified.

The objects defined in the modelled domain are presented in table 3.38 with

their names and their types.

Solving Multi-agent Planning Tasks by Using Automated Planning 59

Chapter 3. System description Sof́ıa Herrero Villarroya

Object Type

LOC (location) Object

DIR (direction) Object

Thing Object

Box Thing

Robot Thing

P3DX Robot

NAO Robot

Colour Object

Table 3.38: Objects in the domain.

The predicates defined in the modelled domain are presented in table 3.39

with the properties or relations between objects that they model under the Char-

acteristics column.

Predicate Characteristic

(at ?t - thing ?l - LOC) A thing t is in cell with location l of the board.

(robot-dir ?robot - robot ?d - DIR) Robot robot is facing direction d.

(at-goal ?b - BOX) Box b is in a goal cell.

(is-goal ?l - LOC) The cell l is a goal cell.

(adjacent ?l1 - LOC ?l2 - LOC ?d - DIR) Cell l1 is adjacent to cell l2 in the direction d. Than is,

you can go from l1 to l2 moving in the direction d.

(clear ?l - LOC) Cell l can be accessed.

(colour-cell ?l - LOC ?c - colour) Cell l has colour c.

(has-colour ?b - BOX ?c - colour) Box b has colour c.

(known-colour ?b - BOX) The colour of box b has been identified.

(unknown-colour ?b - BOX) The colour of box b has not yet been identified.

(no-storage ?b - BOX) Box b is not yet is a goal cell.

Table 3.39: Predicates in the domain.

The actions defined in the modelled domain are presented in table 3.40.

For each action it is described: (1) the preconditions that need to be true before

60 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

the action’s execution and (2) the effects after the execution given by an added

predicates list and a deleted predicates list.

Action name Preconditions Added Deleted

Move (clear ?to) (at ?robot ?from)

(adjacent ?from ?to ?dir)

(robot-dir ?robot ?dir)

(at ?robot ?to)

(clear ?from)

(at ?robot ?from)

(clear ?to)

Push-goal (at ?robot ?rloc) (at ?b ?bloc) (clear ?floc)

(robot-dir ?robot ?dir)

(adjacent ?rloc ?bloc ?dir)

(adjacent ?bloc ?floc ?dir)

(is-goal ?floc) (known-colour ?b)

(has-colour ?b ?c) (colour-cell ?floc ?c)

(no-storage ?b)

(at ?robot ?bloc)

(at ?b ?floc)

(clear ?rloc)

(at-goal ?b)

(at ?robot ?rloc)

(at ?b ?bloc)

(clear ?floc)

(no-storage ?b)

Push-not-goal (at ?robot ?rloc) (at ?b ?bloc) (clear ?floc)

(robot-dir ?robot ?dir)

(adjacent ?rloc ?bloc ?dir)

(adjacent ?bloc ?floc ?dir)

(known-colour ?b) (no-storage ?b)

(at ?robot ?bloc)

(at ?b ?floc)

(clear ?rloc)

(at ?robot ?rloc)

(at ?b ?bloc)

(clear ?floc)

Get-colour (at ?robot ?rloc) (at ?b ?bloc)

(adjacent ?rloc ?bloc ?dir)

(robot-dir ?robot ?dir)

(unknown-colour ?b)

(known-colour ?b) (unknown-colour ?b)

Turn (robot-dir ?robot ?dr) (robot-dir ?robot ?db) (robot-dir ?robot ?dr)

Table 3.40: Actions in the domain.

The PDDL domain is included in Appendix C. Besides, a benchmark of

problems has been created in order to perform the experimental evaluation. Each

problem defines the warehouse enviroment (cells and connections among them),

the positions of the robots and boxes and the cell colours.

3.3.2 Computer Vision module

In order to detect the box colour several Computer Vision techniques have been

contemplated. They were studied in the first stages of the dissertation and their

possible viability was discussed to finally chose the one that seemed the most

appropriate. The three possible ideas were: colour histograms, blobs and QR

Solving Multi-agent Planning Tasks by Using Automated Planning 61

Chapter 3. System description Sof́ıa Herrero Villarroya

detection. QR detection was the one chosen. The colour of the box and its

identifier are stored in the QR but more information could be stored to extend

the functionality of the system.

3.3.2.1 Detection mechanism based on Histrograms

The main idea for colour histograms was to extract the histograms of an input

image and determine which colour was maximum, red or blue (in RGB space),

since the boxes were decided to be of those two colours. This is based on the idea

that if there is a blue box in the image the blue colour will be maximum in the

histograms, thus identifying the box and the same for the red one.

However, histograms do not determine the position of the colour, just the

quantity. Therefore, an image with a blue box in the centre could have the same

histograms as an image with several small blue boxes scattered around. Also, the

surroundings of the box in the image would affect the colour level and a threshold

would be needed to determine when a colour is considered to have enough intensity

to determine if it is a blue or a red box. In addition, in RGB variations of a color

are a mixture of the three primary colours. If the red colour is dark it would also

have blue color. In this case, the histogram would not be maximum for one colour

and it would not be accurately detected. Histograms are, therefore, more useful

to detect variations of colour in an image.

3.3.2.2 Detection mechanism based on Blobs

The blob detection idea was also analysed. The algorithm would find blobs in the

image according to a colour (in the HSV space) and a minimum area given. To

specifically find the boxes, their colour and minimum area needed to be known so

that they could be passed as parameters to the algorithm. Given an image, the

algorithm would return if there was a box or not in it and its colour. Therefore,

before each system execution or every time the light conditions changed, a cali-

bration process would be needed to determine the parameters for the boxes and

colours that are going to be used. This calibration process would be manual: the

62 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

robot would take a picture of each box and the developer would carry out the

image processing to determine the values and set them in the program.

However, one major problem is found when determining the value of the

parameters. Since boxes are displayed in a real environment with several light

sources, the colour value for one box under certain light sources is not the same as

the one for another box in another location of the environment, with light incising

differently. It could require, then, to have different parameters for each box and

calibration process and this is, clearly, not practical nor scalable. In addition, the

calibration process should be automatically done, but that would require an initial

phase where the NAO robot is located in front of each box and process an image

of the box with an algorithm that would need to be implemented. This algorithm

would carry out the tasks that are done manually at the moment and would need

to be repeated everytime the lightning conditions changed.

The approach was discarded due to the external factor of the real environ-

ment and the tedious calibration process, the blob idea was not very practical and

seemed the less appropriate.

3.3.2.3 Detection mechanism based on QR codes

The QR option seemed to be the best one. This would require that each box has

in each side a QR barcode glued with information about its ID and colour. The

QR technique eliminates the idea of detecting the colour and processing an image.

It also has no threshold like the histograms and it is accurate in the information

that it provides. An advantage for future work is that other information can be

stored in the QR very easily. This would allow to extend the systems box ordering

criteria. Finally, no calibration process is required. Thus, the QR is the technique

chosen.

Solving Multi-agent Planning Tasks by Using Automated Planning 63

Chapter 3. System description Sof́ıa Herrero Villarroya

3.3.3 System architecture

The system architecture for this project uses the 3-module configuraiton of PE-

LEA, described previously in section 2.2.4. This architecture allows modules of

three types: Monitoring, Decision Support and Execution. For this work, I have

configured the architecture to deploy 4 modules: one Monitoring, one Decision

Support and two Execution. Each of the execution modules implements two fea-

tures: the robot low-level functionality (robot controller) and the partial state

representation.

The partial state representation describes the world from the point of view of

the robot. An action execution can produce changes in the environment which are,

then, updated by the robot in its partial model. Changes made in the environment

by the other robots will not be visible in its own model until Monitoring updates

it. The Monitoring module merges the information that receives from the different

robots in order to keep a global state of the environment. Since the Monitoring

module is the one sending the actions from the plan to the robots, it also ensures

that the robots do not collide since it has the state partial model from both robots.

The whole architecture is depicted in Figure 3.3 showing how these modules

are connected among them. If more robots were added to the system, it would

only require to add an Execution module for each additional robot. In this archi-

tecture the NAO Execution module has been entirely developed. The Monitoring

and Decision Support modules have not been modified and the P3DX Execution

module has a few small modifications to adapt it to this dissertation.

64 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

Monitoring

NAOExecution

Partial State

Decision

Support P3DXExecution

Metric-FF

NAOqi

ROSJava

Partial State

Action

Action

PlanState

State

State

State

State

Plan

Figure 3.3: System architecture diagram.

3.3.4 Components description

In this section, the four components of the system will be described indicating the

modifications that have been made will be described.

3.3.4.1 Monitoring module

The monitoring module is the main module in the architecture. This module

synchronizes the execution of the other modules using messages. This messages are

sent using Java RMI. Besides, this module deploys the main monitoring algorithm

that controls the planning and execution process.

The execution can be started by Monitoring or by one Execution module

which requests to Monitoring solve a problem. Once the execution has started,

Monitoring will receive the plan from Decision Support. Then, it will have to send

Solving Multi-agent Planning Tasks by Using Automated Planning 65

Chapter 3. System description Sof́ıa Herrero Villarroya

the actions one by one to both Execution modules. After each action execution,

it updates the state of the environment with the information received from the

Execution modules and checks whether the goals have been reached. In case

they have the execution would stop. Otherwise, before sending the next action,

the Monitoring module compares the predicates in the current state with the

preconditions of the next action that is going to be executed. If the preconditions

are fulfilled then the action is executed. Otherwise, it means that the state is not

the expected one and requests for a new plan to Decision Support.

No modifications have been made to this module since the algorithm that it

uses is perfectly valid for this dissertation and no further functionality is needed.

3.3.4.2 Decision Support module

This module generates a plan of actions for a domain and a specific problem.

There is no need to monitor variables other than the state, domain and plan.

Therefore, it will not have to determine any extra monitoring information for the

Monitoring module.

The Decision Support module offers two functionalities: (1) planning from

scratch and (2) replanning or repair. Decision Support is called at the beginning

of the execution to provide an initial plan which is generated from scratch. If the

execution continues as expected in this first plan then Decision Support is not

called again. However, if, at some point of the execution, the state is not the

expected one the Decision Support module is called to fix this. For instance, this

situation would happen if the NAO robot is not be able to detect the QR of a box.

When such situations happen, Decision Support is called to replan. In this case,

it determines if the plan can be repaired (2) or if it needs to generate a new plan

using the current state as initial state (1). The new plan is sent to Monitoring

and the execution continues, with the new valid plan.

For this module, no modifications have been made since the algorithm that

it uses is perfectly valid for this dissertation and no further functionality is needed.

66 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

3.3.4.3 NAO Execution module

This module has been the main work in this dissertation. It has been entirely

programmed to implement the functionality for the NAO robot: move, turn and

colour detection. To achieve them these libraries have been used:

• JNAOqi: it is an API in Java provided by the robot manufacturers Alde-

barán Robotics to control de actuators (servos) and collect information from

the sensors (gyrometer, accelerometer, cameras, etc).

• Zxing: it is an open-source API in Java for QR image processing.

Figure 3.4 shows the different parts this module has and their interactions.

The NAO Execution module is represented by the black box. Inside it has the

different parts. First, there is the controller that implements the control primi-

tives (move, turn and get color) which corresponds to the PDDL actions. Second,

the Zxing library. Finally, the partial state that stores the state of the environ-

ment from the NAO point of view. The NAO Execution to the NAO robot using

TCP/IP.

Figure 3.4: Components and connections for the NAO Execution module.

Solving Multi-agent Planning Tasks by Using Automated Planning 67

Chapter 3. System description Sof́ıa Herrero Villarroya

Turn

The turn primitive allows the robot to make a turn (in radians). The direc-

tion of the turn, either left or right, is given by the sign of the degrees (negative

or positive).

The robot has an internal reference system which consist on a circumference

(in radians) from 0 to Π (first half) and from –Π to 0 (second half), instead of

from 0 to 2Π. Due to this fact, for calculations in the turn, the angle is converted

to an angle between 0 and 2Π to make it easier. The robot calculates its position

using this reference system. Therefore, at every moment, the robot is at a certain

position, which is expressed as an angle in radians with respect to the reference

system.

Given that the board has squared cells and the robot can be in the board

facing four possible directions, the turn function receives as an argument the new

direction (orientation) to face. Therefore, the degrees to turn will be calculated

taking into account the initial and the new orientation and can either be 90 degrees

(to the left or to the right) or 180 degrees to turn.

The main problem with the turn is that the robot staggers while walking

due to how the movement is performed. This process generates an error which

has been corrected using the algorithm shown in Figure 3.5.

The algorithm uses an error threshold in degrees that has been chosen during

the developed process manually. It is set to Π/16 (11.25 degrees), which means

that if the error is smaller the position will not be corrected. It cannot be set to a

smaller value because given the NAO’s feet size, it cannot turn such small values

with precision. The algorithm works in the following way:

1. The robot performs a turn (initial turn). Then, the actual degrees that the

robot has moved are computed. This value is computed using the internal

reference system that the robot has: store the position before the turn and

after the turn and subtract them.

2. Compute the error (in radians) by subtracting the expected degrees to turn

68 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

Receive	turn
order

Store	initial	
position

Turn

Store	final
position

Calculate
error

Error	>	Threshold?Calculate
correction	angle Turn	finished

Yes No

Input:	new	orientation

Figure 3.5: Flowchart for the turn correction algorithm.

and the actual degrees turned. If the error is smaller than a threshold then

the turn is acceptable, otherwise, it needs to be corrected.

3. If an error is detected, a second turn is performed (correction turn) in the

opposite direction. The direction of the correction turn needs to be calcu-

lated taken into account the direction of the initial turn and if the error was

by excess or by defect. Once the direction has been calculated the algorithm

is repeated (go to step one) for the correction turn until the error is smaller

than the threshold. For the correction turn the degrees to turn is the error

magnitude.

Figure 3.6 shows an example of the turning process of the NAO robot. The

first image (a) shows the position before the turn. The NAO will turn 90 degrees

to its left. The second image (b) shows the position after having turned. The

NAO has turned less than 90 degrees. Finally, the third image (c) shows the final

Solving Multi-agent Planning Tasks by Using Automated Planning 69

Chapter 3. System description Sof́ıa Herrero Villarroya

position after having corrected the turn.

(a) (b) (c)

Figure 3.6: Initial position (a) 90 degrees turn with error (b) Position after cor-

rection (c).

Walk

The walk primitive allows the robot to walk straight given a distance in

meters. When walking straight, the robot has an error that increases with the

distance, making it unable to accurately walk in a straight line. This is due to

both the walking mechanism implemented in NAOqi and the floor texture.

A correction mechanism has been implemented in order to compensate this

error. This algorithm is similar as the one implemented for the turn and it uses as

well the internal reference system. Figure 3.7 shows the flowchart of the correction

algorithm.

70 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

Receive	move	
order

Store	initial	
position

Move

Store	final
position

Deviation	
computation

Error	direction
computation

Move	finished

Input:	distance

Correction

Figure 3.7: Flowchart for the walk correction algorithm.

1. Before executing the move action, the current position is stored (initial

position) with respect to the internal reference system (an angle in radians).

2. The action is executed and the current position is stored (final position).

3. Error calculation. This process is composed of two steps:

(a) Deviation computation. The deviation is calculated subtracting the ini-

tial position from the final position to get the deviation that the action

has had. This value is calculated with respect to the internal reference

system explained in the turn action. Consequently, the deviation is in

radians.

(b) Error direction computation. Given that the angles are in the range [0,

Solving Multi-agent Planning Tasks by Using Automated Planning 71

Chapter 3. System description Sof́ıa Herrero Villarroya

2Π], depending on the sign of the error calculated in the previous step,

it can be determined if the deviation was to the left or to the right.

4. Correction. The correction is performed using the information computed

in the previous phase. First, the error sign is changed according to the er-

ror direction (it should correct in the opposite direction). Then, a turn is

performed to correct the deviation (which is in radians), so that the robot

positions itself where it should have ended if the walk action had been per-

formed accurately.

In this case, no threshold is needed because for the distance walked the error

is very small. Also, the turn to correct the error has no error correction because

it is also very small and the NAO robot performs it accurately.

Colour detection

This module controls the extraction process of the QR codes from the boxes

and decodes it. The algorithm has been implemented using the ZXing library.

The algorithm is composed of three main operations:

• Take picture: The NAO robot takes a picture of the box using the top

camera. To ensure that the NAO will capture in the picture the QR, it

has been programmed to take three pictures at different angles of the head.

Therefore, for the first picture it will move the head upwards to take it.

For the second picture it will position the head looking at middle distances.

For the third picture it will move the head downwards to take the picture

looking down. This procedure will allow to identify QR in boxes of different

sizes and at different distances since it covers the whole range of possible

vision.

• Get QR: identify the QR in the picture taken with a pre-processing method.

• Get colour: read the QR to obtain its information, which is the box’s colour.

72 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

Figure 3.8 shows the flowchart of the algorithm described below. The algo-

rithm receives no input.

Receive	get	
colour	order

Take	picture

Process	image

Read	QRQR	detected? QR	detected
Yes

No

Is	it	the	3rd image?
Yes

QR	not	detected
Yes

Figure 3.8: Flowchart for the colour detection algorithm.

This algorithm does not ensure the detection of the QR. If the QR is not

detected PELEA will replan. On the other hand, the walk and turn actions

were ensured and every time the NAO executes them it completes them. In this

dissertation, the robot is supposed to be reliable for the walk and turn primitives.

Solving Multi-agent Planning Tasks by Using Automated Planning 73

Chapter 3. System description Sof́ıa Herrero Villarroya

Partial state representation

As briefly introduced in previous sections, the NAO robot will keep a model

of the world from its point of view. After performing each action the robot will

update the model with the changes produced in the environment. For the NAO

robot, it has three possible actions that have the following changes in the world:

• Walk. When the NAO walks from one cell to another its position changes.

The position that the NAO has walked to is calculated and updated in the

model.

• Turn. When the NAO turns its orientation changes and it faces another

direction. This is also a change that is calculated and updated in the model

• Get a colour. When the NAO reads a QR code from a box and unveils its

colour it introduces it into the environment. The box’s colour is no longer

unknown.

3.3.4.4 P3DX Execution module

The P3DX Execution module implements the P3DX functionality and the par-

tial state representation module. Similar to the NAO module, it can be grouped

into sub-modules. The controller module implements the actions of move, turn

and push. Then, it has the module to handle the partial state representation. It

connects to PELEA through RMI and to rosjava to communicate with the robot

through a COM4 wire. These modules are depicted in Figure 3.9 where the P3DX

Execution module is the black blox with the sub-modules inside.

74 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

Figure 3.9: Components and connections for the P3DX Execution module.

ROS (Robotic Operating System) is the OS that the P3DX uses. ROS works

with three elements: nodes, messages and topics. Each node is a process that can

publish messages to a topic or subscribe to a topic to receive messages. To control

the P3DX, a node in the remote computer is used to connect to the robot trough

a TCP port. The node is subscribed and is a publisher in topics that control the

robot. Therefore, by publishing on them, the robot is controlled. This node is the

p2os driver. Its installation is explained in the appendix A.

The node is in a launch file in which the node parameters are specified. One

of them is the port to which it has to connect. Therefore, the available port has to

be identified before starting the execution. That has been done in experimentation

and it is usually the same port always, in this case /dev/ttyUSB0.

Minor modifications to the algorithms to adjust the actions to the board size

were made, but overall no modifications were necessary in this module.

Move

Contrary to the NAO robot, the P3DX robot does not move a given distance.

Instead, it receives as an input a value for the linear velocity and it will start

moving at that velocity infinitely until it is stopped. To move a specific distance,

it is calculated the time that it takes the robot to travel the distance at a given

Solving Multi-agent Planning Tasks by Using Automated Planning 75

Chapter 3. System description Sof́ıa Herrero Villarroya

speed. When the time has passed it is stopped. Notice that, before moving, the

motor needs to be on.

To send the velocity to ROS, the P3DX Execution module publishes it to the

topic cmd vel. Then, the P3DX Execution module calculates the time needed for

the P3DX to move from one cell to another given the velocity. To calculate this,

the dimension of the cells is passed to the P3DX Execution module. When the

time is finished it publishes again to the same topic to send velocity zero and stop

the P3DX. The topic cmd vel uses messages of the type geometry msgs/Twist.

These have two tridimensional vectors (x,y,z). The first vector is for linear ve-

locity and the second one for angular velocity. Therefore, this same topic can be

used for the second action: turn.

Turn

Turning the P3DX follows the same idea as in the move action. However for

this one, the p2os driver node will publish a message with only angular velocity to

turn. To calculate the time it takes to turn, the P3DX Execution module will use

in this case the degrees to turn. In addition, it calculates the direction of the turn.

The possible turns are: 90 degrees left, 90 degrees right and 180 to either direction.

Push

The push functionality consist on pushing a box to the next cell. After that,

the P3DX must end in the cell where the box previously was. Therefore, it moves

a cell forward. The box does not occupy the whole cell and it should be placed

in the center of the next cell when pushed. Also, because the size of the cells is

larger than the robot, once the P3DX has pushed the box it is not in the cell it

should be. Consequently, it will need to move backwards to position itself in the

cell where it should be.

To achieve so, the P3DX performs three movements for the push action. In

the first one, it moves the distance to the center of the cell where the box is (Move

1). In the second one, it moves the distance to push the box to the next cell and

76 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

leave it in the center (Move 2). In the third one, it moves backwards the same

distance as in the second move (Move 3) so that the P3DX ends in the center of

the cell where the box was. This concept is illustrated in Figure 3.10. The three

stages for the turn action are depicted with the distances mentioned before. Each

square is a cell.

(1)

(2)

Move	1

Move	2

Move	3

(3)

Figure 3.10: Stages for the push action.

Solving Multi-agent Planning Tasks by Using Automated Planning 77

Chapter 3. System description Sof́ıa Herrero Villarroya

Partial state representation

The P3DX robot also keeps a model of the world from its point of view.

After performing each action the robot will update the model with the changes

produced in the environment. For the P3DX robot, it has three possible actions

that have the following changes in the world:

• Move. When the P3DX moves from one cell to another its position changes.

The position that the P3DX has moved to is calculated and updated in the

model.

• Turn. When the P3DX turns its orientation changes and it faces another

direction. This is also a change that is calculated and updated in the model

• Push a box. When the P3DX pushes a box it introduces changes into the

environment. The box’s position has changes and it could have been pushed

to a goal destination or not. Also, the P3DX position is updated.

3.3.5 System operation

For the planning-execution process to start, all modules need to register with

Monitoring. The modules communicate with each other using RMI. The planning

and execution process starts when one of the coordinator robots request to Moni-

toring solve a planning task by sending a PDDL domain and problem. Then, the

Monitoring module requests a plan to the Decision Support module. This plan is

generated from scratch using the initial state and the domain. Next, the Moni-

toring module iteratively sends every action ai in π to the corresponding module.

The Execution modules execute the action and respond to Monitoring with their

partial state. After every action execution, a new observed state is built using

the partial states of the execution modules. Then, the Monitoring module checks

if the next action can be executed according to the observed state. If the action

cannot be executed a new plan is requested to Decision Support. This process is

repeated until the goals are reached.

78 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 3.3 System design

Figure 3.11 presents the sequence diagram for the system operation. Each

object is represented with a colour.

Solving Multi-agent Planning Tasks by Using Automated Planning 79

C
h

ap
ter

3.
S
y
stem

d
escrip

tion
S

of́ıa
H

errero
V

illarroya

Figure 3.11: Sequence diagram for the system operation.

80
S

olv
in

g
M

u
lti-agen

t
P

lan
n

in
g

T
ask

s
b
y

U
sin

g
A

u
tom

ated
P

lan
n

in
g

Chapter 4

Experiments

In this section it is explained in detail the experimentation that has been carried

out. The experimentation is divided in two parts. In the first one, the functionality

that has been developed for the NAO robot has been tested in unitary experiments.

In the second one it is conducted the experimentation for the whole system.

The environment used is described in section 4.1. The unitary experimen-

tation is detailed in section 4.2 and the system experimentation in section 4.3.

4.1 Experimentation environment

The experimentation has been conducted in the hallway 2.1.B in the Sabatini

Building at Carlos III University. The characteristics of the environment are:

• Lighting. There is natural light as well as artificial light. There are big

windows all along the corridor which makes natural light predominant. Only

if there is no natural light then the lightness can be modified using the

artificial light. However, this has not been the case for the experiments,

where natural light was the main form of lighting.

• Floor. This environment has marble tiles that made the NAO robot slightly

slip. In addition, the tiles are shiny and reflect the boxes, the QR and the

NAO.

81

Chapter 4. Experiments Sof́ıa Herrero Villarroya

• Cells. The cells in the board are 0.9x0.9 cm. They have been marked on

the floor with adhesive tape for the experiments since the floor tiles had

different sizes.

For each experiment, the environment is graphically show in a picture. Fig-

ure 4.1 shows the legend used for this models.

EMPTY
CELL

RED	
GOAL

BLUE
GOAL

BLUE
BOX

RED
BOX

NAO
ROBOT

P3DX
ROBOT

Figure 4.1: Environment diagrams legend.

4.2 NAO unitary experiments

The NAO unitary experiments have been conducted to test the functionality de-

veloped for the NAO robot. This functionality is composed of three actions:

get − colour, walk and turn. The experimentation is subdivided in two parts:

Vision experiments and Movement skills experiments. The latter one groups both

the walk and turn actions while the former is just for the get− colour.

This experimentation has used partial execution of the system using only the

NAO robot in real environments. For each experiment is presented the description

of the environment, the objectives and the results.

82 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.2 NAO unitary experiments

4.2.1 Vision experiments

Computer Vision techniques usually have limitations due to lighting conditions. In

the real environment available for the experimentation in this work there is mainly

natural light that comes from one source, therefore just from one direction. Given

that natural light cannot be controlled, unitary experiments have been carried out

to determine how it affects the QR detection. Also, the get− colour functionality

is tested.

The experiments have been conducted between 12 pm (noon) and 6 pm.

Before 12 pm the sun light occupied the hallway and created backlighting.

4.2.1.1 Vision experiment 1

The environment for this experiment is presented in Figure 4.2. The NAO orien-

tation is North. The goal of the problem consists on identifying the color of the

box located in position (1,2). In this environment the NAO reads the QR on the

side of the box that faces the window and receives natural light directly. Figure

4.3 shows the robot and the box during the planning and execution process. The

objective of this experiment is to determine the light influence in the Computer

Vision system for the box position and the NAO position to get the QR.

(0,0) (0,1)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,2)

Figure 4.2: Experiment 1 environment diagram.

Solving Multi-agent Planning Tasks by Using Automated Planning 83

Chapter 4. Experiments Sof́ıa Herrero Villarroya

Figure 4.3: Experiment 1 real environment.

After the experiment execution, it could be seen that light incises directly

in the box and increases the brightness of the picture. This made the detection of

the QR unsuccessful since it was hard to distinguish. The QR was not detected in

any of the three pictures taken. Figure 4.4 shows the pictures taken by the NAO

robot. The picture on the left is the second picture taken and the picture on the

right the third picture taken.

Figure 4.4: Experiment 1 NAO pictures.

84 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.2 NAO unitary experiments

4.2.1.2 Vision experiment 2

The environment for this experiment was changed to have the box facing the

opposite direction as before. Figure 4.5 shows the environment diagram and Figure

4.6 the picture in the real environment. The goal of the problem consists on

identifying the color of the box located in position (1,0). The objective of this

experiment is to determine the light influence in the Computer Vision system for

the new box position as well as the influence of NAO’s new initial position.

(0,0) (0,1)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,2)

Figure 4.5: Experiment 2 environment diagram.

Figure 4.6: Experiment 2 real environment.

Solving Multi-agent Planning Tasks by Using Automated Planning 85

Chapter 4. Experiments Sof́ıa Herrero Villarroya

In this case, the lighting is even worse for the picture since it is very dark

for the NAO to detect the QR in any of the pictures. This is due to backlighting.

The pictures where the box was visible taken by the NAO robot to detect the QR

are shown in Figure 4.7. The picture on the left is the second picture taken and

the picture on the right the third picture taken.

Figure 4.7: Experiment 2 NAO pictures.

4.2.1.3 Vision experiment 3

In this last experiment, the environment was changed to have the light incising

in the box from the side when the NAO takes the picture. Figure 4.8 depicts the

environment diagram and Figure 4.9 the real environment. The objective of this

experiment is to determine the light influence in the Computer Vision system for

the new box position and the new NAO position to get the QR.

86 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.2 NAO unitary experiments

(0,0) (0,1)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,2)

Figure 4.8: Experiment 3 environment diagram.

Figure 4.9: Experiment 3 real environment.

For this experiment the results were successful. The light allowed the QR to

be detected in the second picture so there was no need to take a third picture. In

addition, the detection of the QR was carried out as expected and the information

from it could be retrieved (box name and colour). The pictures where the box

was visible taken by the NAO robot to detect the QR are shown in Figure 4.10.

In this case, the box was not visible in the first picture taken but it was visible in

the second picture taken and the QR also detected in it.

Solving Multi-agent Planning Tasks by Using Automated Planning 87

Chapter 4. Experiments Sof́ıa Herrero Villarroya

Figure 4.10: Experiment 3 NAO pictures.

4.2.1.4 Vision experiment 4

This experiment was conducted to analyse if the QR size affects its detections.

The two sizes that were tested are shown in Figure 4.11. No specific problem was

used for this experimentation. For the experiment, the NAO had a box in front

and executed the get− colour action. The objective of this experimentation is to

determine if the QR size is determinant for its detection.

(a) (b)

Figure 4.11: Boxes with different QR size.

88 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.2 NAO unitary experiments

The experiment was executed 10 times, 5 for each size. The big QR had 4

successful detections and the small had 2 successful detections. It can be concluded

that the larger QR is better than the smaller.

4.2.1.5 Vision experimentation conclusions

From the experimentation it can be concluded that light affects the QR detection.

In situations when it strikes directly the box or when there is backlighting it

is harder to detect the QR. In addition, the material of the floor tiles also affect

since they reflect the light and the QR. Sometimes it happens for the third picture

that there is in the picture the QR as well as its reflection, making it harder to

detect. A solution to this is to execute the system in a controlled environment

with artificial light. However, it was not possible to arrange such environment so

the hallway was the best option.

Solving Multi-agent Planning Tasks by Using Automated Planning 89

Chapter 4. Experiments Sof́ıa Herrero Villarroya

4.2.2 Movement skills experiments

These experiments have been conducted in order to check whether the functions

implemented to control the movements of the robot work in an acceptable way,

that is, without stepping out of the cells. Since the cells are quite big for the NAO

robot, this gives it some space for error, which is needed due to the inherent error

that this robot has when walking or turning. More precisely, the experimentation

objectives are:

• Check that the error correction in the turns works as expected in a single

movement.

• Check that the error correction in the turns works as expected in concate-

nated movements.

• Check that the error correction when walking straight works as expected in

a single movement.

• Check that the error correction when walking straight works as expected in

concatenated movements.

• Check that the whole performance is acceptable.

Checking both corrections for single movements has been done while devel-

oping the code since feedback was needed to do so. Therefore, once they worked

in single movements, concatenated movements need to be tried to see how the

error was accumulated and if that influenced the whole performance. For that,

two experiments are conducted changing the environment size.

4.2.2.1 Movement experiment 1

In this experiment the environment includes two boxes, one blue and one red. The

goal of the problem is to discover the colours of boxes located at (1,1) and (1,2).

Figure 4.12 depicts the environment. The experiment has been designed so that

90 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.2 NAO unitary experiments

the NAO performs two turn actions and two walk actions. When the NAO locates

itself in a cell to then get a colour, its position has to be in front of the box so that

the picture taken has the QR. The objective of the experiment is to determine if

the turn and walk functionalities work in a small environment and to check that

they work in order for the NAO to be centered in fron of a box to get the QR in the

picture. The expected result is that the NAO turns or walks with errors but the

correction error algorithm compensates them enough so that the NAO never steps

out of the cells. Also that the NAO is centered in front of a box to take the picture.

(0,0) (0,1)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,2) (0,3)

(1,3)

(2,3)

Figure 4.12: Experiment 1 environment diagram.

To solve the problem the NAO has performed 7 actions. The experiment

has been executed six times. In two of them the NAO step out of cell (0,2) into

(1,2) which made the execution unsuccessful. The other four times the execution

was successful.

In the successful executions the NAO performance was acceptable. It tra-

versed the board without stepping out of the cells and the goal of the problem

was reached. The NAO did not walk straight but the correction implemented was

enough to adjust the position and allow the NAO to have an acceptable trajec-

tory, in this case almost perfect. The turn was corrected and performed with no

remarkable error that affected the correct execution of the plan.

Solving Multi-agent Planning Tasks by Using Automated Planning 91

Chapter 4. Experiments Sof́ıa Herrero Villarroya

In the unsuccessful experiments the NAO deviate more than in the success-

ful ones when walking. This is due to the floor tiles that are slippery for the

NAO. It is also due to the way the NAO has been built as mentioned in chapter

3. Both are restrictions of this thesis problem. Figure 4.13 shows the deviation

in the successful executions (1) and the one of the unsuccessful executions (2).

Pictures (a) are the NAO position before the walk action and pictures (b) after

the action. For (1) the deviation is not very large and the error propagates less

than in (2) where the deviation is extremely large.

1.a 1.b

2.a 2.b

Figure 4.13: Walk action error in situations (1) and (2).

92 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.2 NAO unitary experiments

4.2.2.2 Movement experiment 2

For this experiment a larger environment has been used. It is adapted to the

hallway’s shape in which the experiments take place. Figure 4.14 depicts the en-

vironment. It has again two boxes, one blue and one red, and a NAO robot. The

goal for this problem is to discover the box colours. The experiment has been de-

signed so that the NAO has to concatenate several walk actions and some turns.

The objectives of the experiment are the same as in experiment 1 but in a larger

domain.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,2)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,3) (3,3)

(0,6)

(2,6)

Figure 4.14: Experiment 2 environment diagram.

The experiment has been executed five times and the NAO executes 7 ac-

tions. Three of the executions were unsuccessful and two of them were successful.

In some of the unsuccessful executions the trajectory that the NAO follows

is very close to the cell edges but does not step out of them. However, when it

gets to the red box its position is not centered and the QR cannot be detected.

Figure 4.15 shows the NAO position not centered in front of the box. This is due

to the error when it turns 180 degrees in cell (1,2) from left to right. In others, it

deviates and steps out of cell (1,4).

Solving Multi-agent Planning Tasks by Using Automated Planning 93

Chapter 4. Experiments Sof́ıa Herrero Villarroya

Figure 4.15: NAO position in front of the box in an unsuccessful execution.

The environment was modified as seen in Figure 4.16 to experiment with

the same objectives as the previous ones. The experiment was executed five times

and four of them were successful. This is because there was no 180 degrees turn,

only 90 degrees turn which the NAO performs with more precision so less error is

accumulated. In addition, factors mentioned before like the deviation in the walk

action due to the slippery floor affect each execution in different ways.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(3,2)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,3) (3,3)

(0,6)

(2,6)

(1,0)

(2,0)

Figure 4.16: Experiment 2 modified diagram.

94 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.3 System experiments

4.2.2.3 Movement experiments conclusions

The NAO performs successful executions without stepping out of the cells, keep-

ing a reasonable trajectory corrected by the algorithms that allows to solve the

problem.

Nonetheless, two conclusions can be drawn from this experimentation. Firstly,

the error propagation due to the walk actions starts to be noticeable with 8 or

more actions. It is more noticeable if there are several consecutive walk actions

than when turn and walk actions are intercalated. This is because the correction

algorithm corrects the final position of the NAO after the walk action but does

not recover the distance lost in the deviation. However, in the turn it does save

the distance but there is a threshold. The threshold is needed because of the NAO

feet size that makes very small turns (around 10 degrees) hard to do. The error

smaller than the threshold is accumulated and will be corrected later in the next

turn, but if there is no turn then it is kept.

The second conclusion is that the the floor texture affects the NAO walk

and turn as well as the way it is been built. The NAO is not a robot designed

to perform walk with extreme precision. While this can be achieved with good

results for small distances, as seen in this dissertation, it is a hard and tedious

work. It can still be improved as it will be outlined in future work.

4.3 System experiments

Four experiments have been conducted to test the whole system once it was inte-

grated.

4.3.1 Experiment 1: Problem 1

The problem proposed for this experiment simulates a small warehouse environ-

ment with one red box in location (1,2). The goal is to move the box to its

destination location (1,3). However, the destination location is unknown and has

Solving Multi-agent Planning Tasks by Using Automated Planning 95

Chapter 4. Experiments Sof́ıa Herrero Villarroya

to be first discover by reading the QR. The problem has one NAO robot and one

P3DX robot. Figure 4.17 shows the environment. The complexity of the problem

is fairly easy because there is only one box and the domain is small so the space of

states for the search is small. The objective of this experiment is to check that the

system is able to solve a problem in the domain and that the system is correctly

integrated and works as expected.

(0,0) (0,1)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,2) (0,3)

(1,3)

(2,3)

Figure 4.17: Problem 1 environment diagram.

The execution of the system was successful and it was able to solve the prob-

lem. Figure 4.18 shows the plan executed. With the completion of this experiment

it is shown that the system integration is correct and that the system is able to

solve problems with one box. During the experiment the NAO robot corrects its

walking. The errors when walking are not very big in this experiment and the

corrections are small. For the turn movement, the NAO turns less than 90 de-

grees and it is successfully corrected. During the experimentation the corrections

help the NAO to keep a centered trajectory. The P3DX pushes the box straight

without deviation and also traverses the environment with a centered trajectory.

The experiment was repeated several times. In some of them the NAO

96 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.3 System experiments

robot was not able to get the QR. This might be due to the light conditions or

the complexity of the picture to detect the QR. Given the distance between the

NAO and the box, other elements surrounding the box are included in the picture.

More specifically, the floor, which has black color, is also included in the picture

and makes it harder to detect the QR. In other experiments, the P3DX robot did

not push the box straight but the box still got to the destination cell without

getting into other cells.

0: MOVE F2-0F F2-1F RIGHT P3DX1

1: MOVE F2-1F F2-2F RIGHT P3DX1

2: MOVE F0-0F F0-1F RIGHT NAO1

3: MOVE F0-1F F0-2F RIGHT NAO1

4: TURN NAO1 RIGHT DOWN

5: MOVE F0-2F F1-2F DOWN NAO1

6: TURN NAO1 DOWN RIGHT

7: GET-COLOUR NAO1 BOX1 F1-2F F1-3F RIGHT

8: MOVE F2-2F F2-3F RIGHT P3DX1

9: TURN P3DX1 RIGHT UP

10: TURN NAO1 RIGHT LEFT

11: TURN P3DX1 UP LEFT

12: MOVE F1-2F F1-1F LEFT NAO1

13: MOVE F2-3F F2-2F LEFT P3DX1

14: TURN P3DX1 LEFT UP

15: MOVE F2-2F F1-2F UP P3DX1

16: MOVE F1-2F F0-2F UP P3DX1

17: TURN P3DX1 UP RIGHT

18: MOVE F0-2F F0-3F RIGHT P3DX1

19: TURN P3DX1 RIGHT DOWN

20: PUSH-GOAL F0-3F F1-3F F2-3F DOWN BOX1 P3DX1 BLUE

Figure 4.18: Problem 1 plan.

Solving Multi-agent Planning Tasks by Using Automated Planning 97

Chapter 4. Experiments Sof́ıa Herrero Villarroya

After several executions of the experiment this video was obtained with a

successful execution:

https://www.youtube.com/watch?v=QcoKGA2lm8o

4.3.1.1 Experiment 2: Problem 1.1

It is interesting to make the robots return to their original position after the task

has been completed. For this, the goals of problem 1 have been modified to include

that the robots must return to their original position, which are (0,0) and (2,0).

This slightly increments the level of complexity because the number of actions

increases and the NAO has to walk more. The objective of this experimentation

is to test the system with a more complex problem with an interesting goal.

The experiment was repeated several times and most of them were successful.

Figure 4.19 shows the plan executed with 23 actions. The NAO robot was able to

return to its original position without deviating too much of its trajectory. The

unsuccessful executions were due to the NAO being unable to detect the QR. A

video of the execution can be found in:

https://www.youtube.com/watch?v=clanKaScye0

98 Solving Multi-agent Planning Tasks by Using Automated Planning

https://www.youtube.com/watch?v=QcoKGA2lm8o
https://www.youtube.com/watch?v=clanKaScye0

Sof́ıa Herrero Villarroya 4.3 System experiments

0: MOVE F0-0F F0-1F RIGHT NAO1

1: MOVE F0-1F F0-2F RIGHT NAO1

2: MOVE F0-2F F0-3F RIGHT NAO1

3: TURN NAO1 RIGHT DOWN

4: GET-COLOUR NAO1 BOX1 F0-3F F1-3F DOWN

5: TURN NAO1 DOWN LEFT

6: MOVE F0-3F F0-2F LEFT NAO1

7: MOVE F0-2F F0-1F LEFT NAO1

8: MOVE F0-1F F0-0F LEFT NAO1

9: MOVE F2-0F F2-1F RIGHT P3DX1

10: MOVE F2-1F F2-2F RIGHT P3DX1

11: TURN P3DX1 RIGHT UP

12: MOVE F2-2F F1-2F UP P3DX1

13: MOVE F1-2F F0-2F UP P3DX1

14: TURN P3DX1 UP RIGHT

15: MOVE F0-2F F0-3F RIGHT P3DX1

16: TURN P3DX1 RIGHT DOWN

17: PUSH-GOAL F0-3F F1-3F F2-3F DOWN BOX1 P3DX1 BLUE

18: TURN P3DX1 DOWN LEFT

19: MOVE F1-3F F1-2F LEFT P3DX1

20: MOVE F1-2F F1-1F LEFT P3DX1

21: MOVE F1-1F F1-0F LEFT P3DX1

22: TURN P3DX1 LEFT DOWN

23: MOVE F1-0F F2-0F DOWN P3DX1

Figure 4.19: Problem 1.1 plan.

Solving Multi-agent Planning Tasks by Using Automated Planning 99

Chapter 4. Experiments Sof́ıa Herrero Villarroya

4.3.2 Experiment 3: Problem 2

In this second experiment is presented a larger problem. In this one, there are

two boxes, one blue and one red, a NAO robot and a P3DX robot. The goal of

the problem is to get the blue box to the blue location and the red to the red one.

Figure 4.20 shows the environment. The complexity of this problem increases

because there are two boxes so the search space is bigger and the plan needs more

actions. For this experiment the boxes were changed to bigger boxes created with

the combination of two small ones, one on top of the other. The reason for this is

that the QR will be at the NAO’s height and it may be easier to detect it, given

that QR detection was sometimes a problem in some executions in the previous

experiment. The objective of the experiment is to check how the system works in

a more complex problem than the one before with two boxes. It is also to check

how the QR detection works with bigger boxes.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(3,2)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,3) (3,3)

(0,6)

(2,6)

(1,0)

(2,0)

Figure 4.20: Problem 2 environment diagram.

100 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.3 System experiments

Figure 4.21 shows the plan to solve this problem.

0: MOVE F1-6F F1-5F LEFT P3DX1

1: MOVE F2-1F F2-2F RIGHT NAO1

2: MOVE F1-5F F1-4F LEFT P3DX1

3: GET-COLOUR NAO1 BOX1 F2-2F F2-3F RIGHT

4: TURN P3DX1 LEFT DOWN

5: TURN NAO1 RIGHT UP

6: MOVE F2-2F F1-2F UP NAO1

7: MOVE F1-2F F0-2F UP NAO1

8: MOVE F1-4F F2-4F DOWN P3DX1

9: TURN P3DX1 DOWN LEFT

10: PUSH-NOT-GOAL F2-4F F2-3F F2-2F LEFT BOX1 P3DX1

11: PUSH-NOT-GOAL F2-3F F2-2F F2-1F LEFT BOX1 P3DX1

12: PUSH-GOAL F2-2F F2-1F F2-0F LEFT BOX1 P3DX1 BLUE

13: TURN NAO1 UP RIGHT

14: MOVE F0-2F F0-3F RIGHT NAO1

15: TURN NAO1 RIGHT DOWN

16: TURN P3DX1 LEFT RIGHT

17: MOVE F2-1F F2-2F RIGHT P3DX1

18: MOVE F2-2F F2-3F RIGHT P3DX1

19: MOVE F2-3F F2-4F RIGHT P3DX1

20: TURN P3DX1 RIGHT UP

21: MOVE F2-4F F1-4F UP P3DX1

22: TURN P3DX1 UP LEFT

23: GET-COLOUR NAO1 BOX0 F0-3F F1-3F DOWN

24: PUSH-NOT-GOAL F1-4F F1-3F F1-2F LEFT BOX0 P3DX1

25: PUSH-NOT-GOAL F1-3F F1-2F F1-1F LEFT BOX0 P3DX1

26: PUSH-GOAL F1-2F F1-1F F1-0F LEFT BOX0 P3DX1 RED

Figure 4.21: Problem 2 plan.

Solving Multi-agent Planning Tasks by Using Automated Planning 101

Chapter 4. Experiments Sof́ıa Herrero Villarroya

This experiment reported very interesting results. First, the QR detection

improved considerably. It was detected in all the executions. The box size change

was a perfectly reasonable approach since the NAO was prepared for any box size

because it takes 3 pictures, each one at a different height. Figure 4.22 shows a

picture taken from a big box (a) and another one from a small box (b). It can

be seen how the QR is more centered in (a) than in (b) which makes it easier for

the detector. The NAO QR detector is just like phones or other devices detectors

where centering the QR in the image improves the detection performance. For

the small boxes, the second picture that the NAO takes does not always include

the whole QR. In the third picture it is included but it is not in the center or close

to, it is usually at the bottom part of the picture and close to the corner. This

explains why for the small boxes it is usually detected in the third picture but for

the big boxes it is detected in the first or second.

(a) (b)

Figure 4.22: NAO pictures for different size boxes.

The experimentation gave away a limitation of the QR detection system that

must be taken into account for future work. In this case, there was no problem

since big boxes could be used. However, for problems that require just small boxes

this limitation could be a problem. To solve it linear transformation algorithms

could be applied iteratively to the image until the QR is detected.

Finally, another interesting aspect of this experiment is the collaboration

between the robots. As it can be seen in the video, the NAO has to move so that

102 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.3 System experiments

the P3DX can push the box. This shows the successful coordination between the

robots.

The video with the execution can be found in:

https://www.youtube.com/watch?v=_mL77D-2NWs

4.3.3 Experiment 4: Problem 3

The problem proposed in this experimentation was designed to show the coordi-

nation and cooperation between both robots. Since the environment is not too

big the robots have less room to move. Therefore, the NAO robot has to set aside

in order to let the P3DX push the boxes. Then the P3DX waits for the NAO

to finish its task and then moves to the location it needs to push the box. This

fact makes the problem more complex for the planner algorithm. The objective

of the experimentation is to test the system in an environment with this type of

complexity and to show the coordination between the robots. Figure 4.23 shows

the environment.

(0,0)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,3)

(1,3)

(2,3)

(0,1) (0,2)

Figure 4.23: Problem 3 environment diagram.

Solving Multi-agent Planning Tasks by Using Automated Planning 103

https://www.youtube.com/watch?v=_mL77D-2NWs

Chapter 4. Experiments Sof́ıa Herrero Villarroya

Figure 4.24 shows the plan that solves the problem with 21 actions. Action 1

is a dummy action that the planner has included as a result of its search. However,

this action does not provide anything to the plan and is due to the fact that the

actions have no cost and there is no cost optimization.

0: MOVE F2-3F F2-2F LEFT P3DX1

1: TURN NAO1 RIGHT LEFT

2: TURN NAO1 LEFT UP

3: GET-COLOUR NAO1 BOX1 F2-1F F1-1F UP

4: TURN NAO1 UP LEFT

5: MOVE F2-1F F2-0F LEFT NAO1

6: MOVE F2-2F F2-1F LEFT P3DX1

7: TURN P3DX1 LEFT UP

8: PUSH-GOAL F2-1F F1-1F F0-1F UP BOX1 P3DX1 BLUE

9: TURN P3DX1 UP DOWN

10: TURN NAO1 LEFT RIGHT

11: MOVE F2-0F F2-1F RIGHT NAO1

12: MOVE F2-1F F2-2F RIGHT NAO1

13: MOVE F1-1F F2-1F DOWN P3DX1

14: TURN P3DX1 DOWN RIGHT

15: TURN NAO1 RIGHT UP

16: GET-COLOUR NAO1 BOX0 F2-2F F1-2F UP

17: TURN NAO1 UP RIGHT

18: MOVE F2-2F F2-3F RIGHT NAO1

19: MOVE F2-1F F2-2F RIGHT P3DX1

20: TURN P3DX1 RIGHT UP

21: PUSH-GOAL F2-2F F1-2F F0-2F UP BOX0 P3DX1 RED

Figure 4.24: Problem 3 plan.

The result of the experiment was positive because the task was solve. In

some executions the NAO robot greatly deviated while walking but most of them

were performed correctly. Again, in this case it was because of the floor tiles. The

104 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 4.3 System experiments

execution can be seen in this video:

https://www.youtube.com/watch?v=raGdqYsSqRY

As seen in the video, the NAO robot sets aside after detecting the colour

of the first box so that the P3DX can push the blue box. Then, the P3DX stays

in location (1,1) without being in the way of the NAO robot that has to go to

location (2,2). Then, again, once the box colour is discovered the NAO moves so

that the P3DX can push the box.

4.3.4 System experimentation conclusions

After conducting the system experimentation, it can be concluded that the system

is robust and solves problems correctly with some conditions:

• The QR has to be located at the NAO’s height so that it is centered in the

picture. If this is fulfilled the lighting conditions do not affect that much

the detection because once the QR is centered the detection is very easy, as

seen in the experiments.

• The floor tiles should not be slippery for the NAO robot so that it has the

least deviation possible.

If any of the conditions is not fulfilled then the system performance is reduced

as well as its success ratio. This analysis has outlined some interesting future work

directions that would improve the system and help it evolve. This future work is

described in section 6.3.

Solving Multi-agent Planning Tasks by Using Automated Planning 105

https://www.youtube.com/watch?v=raGdqYsSqRY

Chapter 5

Project management

In this chapter it is described how the project has been organized and planned

with a development model and its phases. These phases are described in section

5.1 and the tasks for each of them with their duration are described in section

5.2. Finally, a list with the resources needed will be provided to calculate the final

budget for this dissertation.

5.1 Phases description

The development process of the project will follow the Waterfall model. This

model was formally described in 1970 by Winston W. Royce [33]. It is a sequential

model where a phase is not started until the previous one has been completed.

This could be adapted very well to this project since it has several components very

differentiated and independent. A Spiral model [34], which was also considered,

would require to have a prototype in the first iteration. However, obtaining a

functional prototype of this system would take 4 to 6, given its size and number

of components. Instead, a Waterfall model organized the project in independent

phases as seen in Figure 5.1.

107

Chapter 5. Project management Sof́ıa Herrero Villarroya

System	
Requirements

Analysis	and	SW	
design

Implementation	
and	unit	testing

Integration	and	
experimentation

Operation	and	
maintenance

Figure 5.1: Waterfall development process.

The phases are here described:

• System requirements. This phase involves analysing the problem statement

to determine the features and characteristics that the system must have.

For that, use cases are defined to obtain specific requirements and function-

ality. In addition, and once the problem demands are clear, the project is

organized, proposing a development process model and designing the tasks

in each phase.

• Analysis and software design. In this stage the software that will be used is

studied to become familiar with it and determine the best options. Then,

using the previous requirements and functionality that the system must have

the components are designed.

• Implementation and unit tests. This is the phase were the code is developed.

Since there are three very differentiated components in the system (NAO

Execution module, P3DX Execution module and planning subsytem) each

of them will be developed independently and tested on its own.

• System integration and experimentation. In this phase the whole system is

108 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 5.2 Planning

built by integrating all the components. Then, experimentation is conducted

to determine the correctness of the product.

• Operation and maintenance. This phase would involve the tasks needed to

install, deploy, support and maintain the system. In this case, the documen-

tation has been finished.

5.2 Planning

The different tasks required for each phase have been broken down in table 5.1.

In addition, the tasks have also been depicted in chronological order with a Gantt

diagram in Figure 5.2.

The project started on the 30th of November of 2015 and was finished the

21st of June of 2016, being in total 6 months. Only week days are counted

excluding weekend days and with an average work of 3 hours a day. All tasks

include in their duration the creation of the corresponding documentation and

follow-up meetings with the tutors.

Task Duration Start date End date

System requirements 12 days 30/11/2015 15/12/2015

Functionality definition 3 days 30/11/2015 02/12/2015

Use Cases definition 5 days 03/12/2015 09/12/2015

Requirements definition 4 days 10/12/2015 15/12/2015

Analysis and software design 37 days 16/12/2015 03/02/2016

Planning techniques and PDDL Analysis 3 days 16/12/2015 18/12/2015

NAO development environment

(JNAOqi,Webots, Choregraph) Anal-

ysis

6 days 21/12/2015 28/12/2015

Computer Vision techniques Analysis 5 days 29/12/2015 04/01/2016

P3DX development environment (ROS)

Analysis

4 days 05/01/2016 08/01/2016

Solving Multi-agent Planning Tasks by Using Automated Planning 109

Chapter 5. Project management Sof́ıa Herrero Villarroya

PELEA Analysis 4 days 11/01/2016 14/01/2016

Domain design 7 days 15/01/2016 25/01/2016

Modules design 8 days 26/01/2016 04/02/2016

Implementation and unit tests 46 days 05/02/2016 08/04/2016

Domain and problems PDDL implemen-

tation

6 days 05/02/2016 12/02/2016

NAOExecution module implementation 31 days 15/02/2016 28/03/2016

NAOExecution module tests 6 days 29/03/2016 05/04/2016

P3DXExecution module experimentation 3 days 06/04/2016 08/04/2016

System integration and experimen-

tation

32 days 11/04/2016 24/05/2016

Integration NAOExec-PELEA 7 days 11/04/2016 19/04/2016

Integration NAOExec-PELEA test 2 days 20/04/2016 21/04/2016

Integration P3DXExec-PELEA 3 days 22/04/2016 26/04/2016

Integration P3DXExec-PELEA test 2 days 27/04/2016 28/04/2016

Integration all components test 5 days 29/04/2016 05/05/2016

System experimentation 13 days 06/05/2016 24/05/2016

Operation and documentation 20 days 25/05/2016 21/06/2016

Use and documentation 16 days 25/05/2016 15/06/2016

Presentation 4 days 16/06/2016 21/06/2016

Table 5.1: Date and task definition of the project devel-

opment.

110 Solving Multi-agent Planning Tasks by Using Automated Planning

S
of́ıa

H
errero

V
illarroya

5.2
P

lan
n

in
g

Figure 5.2: Project Gantt Chart. Dates are in MM/DD/YYYY format.

S
olv

in
g

M
u

lti-a
gen

t
P

lan
n

in
g

T
ask

s
b
y

U
sin

g
A

u
tom

ated
P

lan
n

in
g

111

Chapter 5. Project management Sof́ıa Herrero Villarroya

5.3 Budgeting

In this section, the project costs are broken down into detailed categories to esti-

mate the total budget for it.

In table 5.2 the estimated costs for human resources are presented. It is

added to the base salary the Social Security cost, which is a 30% of the salary 1.

The base salary have been obtained from the Boletin Oficial del Estado from the

22nd of January of 2014, Number 19 2 since it is the last one specified for this

sector.

Position Monthly base salary Number of months Final cost Final cost with SS

Programmer 1000e 1.96 1966e 2585e

Tester 1000e 0.83 833e 1082e

Analyst 1333e 1.33 1777e 2310e

Project Director 2083e 1.3 2708e 3520e

TOTAL 9497e

Table 5.2: Estimated staff direct costs.

In table 5.3 there are listed costs related to the equipment used. Each of

them has a unitary cost (C) and depreciation period in months (D) from which

the chargeable cost or amortization (A) will be calculated for the period that has

been used (P):

A = (P/D) * C

1http://www.seg-social.es/Internet_1/Trabajadores/CotizacionRecaudaci10777/

Basesytiposdecotiza36537/index.htm, last visit 26 May 2016.
2https://www.boe.es/boe/dias/2014/01/22/pdfs/BOE-A-2014-639.pdf, last visit 26

May 2016.

112 Solving Multi-agent Planning Tasks by Using Automated Planning

http://www.seg-social.es/Internet_1/Trabajadores/CotizacionRecaudaci10777/Basesytiposdecotiza36537/index.htm
http://www.seg-social.es/Internet_1/Trabajadores/CotizacionRecaudaci10777/Basesytiposdecotiza36537/index.htm
https://www.boe.es/boe/dias/2014/01/22/pdfs/BOE-A-2014-639.pdf

Sof́ıa Herrero Villarroya 5.3 Budgeting

Concept Unitary cost Depreciation period Chargeable cost

Macbook Air 13.1” 1099 e 48 months 137.38 e

Netbook Samsung NC210 349 e 48 months 43.6 e

NAO Robot 12,000 e 72 months 999 e

P3DX Robot 5,777 e 72 months 481 e

Router 20 e 72 months 1.66 e

Wires 20 e 72 months 1.66 e

Fungibles 20 e 48 months 2.5 e

TOTAL 1,666.8 e

Table 5.3: Estimated equipment direct cost for a use of 6 months.

Assuming indirect cost to be a 20% of the direct costs then these are 2,232.76

e. The final budget comprises the staff, the equipment cost and the indirect costs

and results in 13,396.56 e (thirteen thousand three hundred and ninety-six euros

with fifty-six cents).

Solving Multi-agent Planning Tasks by Using Automated Planning 113

Chapter 6

Conclusions

This chapter provides an overview of the conclusions after the completion of this

project. First the general conclusions after the completion of this work are pre-

sented. Second, the conclusions concerning to the objectives proposed in the first

chapter are presented. Finally some future work directions are described.

6.1 General conclusions

The main objective of this dissertation consist on building a multi-agent system

that uses Automated Planning and Computer Vision in warehouse environments

to solve a given task. The task that the system would carry out is warehouse

organization with sensing, control and deliberation involved. The environment

model is similar to a small warehouse.

The work has resulted in a system that integrates Automated Planning and

Computer Vision to solve tasks using autonomous and heterogeneous agents. The

deliberation process for the robots has been implemented with Automated Plan-

ning; for the control part a controller has been developed and for the sensing the

robots were used to obtain the information of the real environment. Later, the

controller process the information. This set of stages accomplishes and verifies

the main objective.

Developing this kind of system faces several challenges. Working with robots

115

Chapter 6. Conclusions Sof́ıa Herrero Villarroya

that interact with the real environment and gather information from it is complex.

The sensing information is not always precise and the error propagates along the

system. Computer vision algorithms are extremely sensitive to the environmental

conditions, such as light, which makes it necessary to often use controlled en-

vironments. Finally, heterogeneous multi-agent system allows collaboration and

therefore solving more complex tasks. However, it also requires the coordination

and control of two different agents, in this case, with their different specifications

and requirements. This has been accomplished by using PELEA. For this system,

the NAO is required to perform very precise movements along the board: walk

straight and turn 90 degrees. It may seem as something very basic but the NAO

robot is not specifically designed for those tasks and the way it is built does not

facilitate it. Consequently, the error correction was one of the main challenges.

A wide variety of techniques have been evaluated and tried during the design

and development phases. Several Computer Vision techniques have been reviewed

and used. From a first proposal where boxes would be coloured to a QR detection

system, histograms and blobs recognition mechanisms have been also considered

and implemented, but discarded. Also, several ideas for the error correction algo-

rithm were proposed and developed until tests demonstrated they were not good

enough. Among them, initially, the NAO error correction was done using the gy-

roscope inside the NAO to measure its velocity at every instant to determine the

real distance travelled. Finally, the internal reference system in angles was used.

This work has required knowledge in Automated Planning, Computer Vi-

sion, object-oriented programming, robotics software and software engineering.

Developing this dissertation has supposed acquiring some of this knowledge that

was new or expand other that had already been acquired during the four years of

degree.

The result has been satisfactory and acceptable, with some future work out-

lined that time did not allow to implement. In addition, I have collaborated with

my advisors in a paper they have published in the International Joint Conference

on Artificial Intelligence (IJCAI) 2016 Workshop on Autonomous Mobile Service

116 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya 6.2 Conclusions concerning the objectives

Robots. This dissertation is based in the work presented in that paper which

proposes a problem that faces more complex challenges in the same environment

with an evolved and more complex solution.

6.2 Conclusions concerning the objectives

In this section, a conclusion for each of the objectives proposed in section 1.3 will

be presented:

• Carry out an initial study of the technologies that will be used

to become familiar with them and learn how to use them. This

objective has been completed and as a result of this, it has been neces-

sary to become familiar and learn new technologies and paradigms such as:

hybrid control systems, NAO software, Computer Vision algorithms and

Automated Planning. This is an always enriching experience that has been

crucial in order to develop the solution.

• Design a model to represent the problems environment based on

the Sokoban and implement it. To reach this objective a study of the

problem and the modifications needed was carried out to modify a previous

domain in order to include new functionality. For the implementation, the

PDDL language was used because is the languange used by the most common

algorithms. Everything was tested with a planner to validate the design.

• Develop the NAO robot functionality that must enable the robot

to: move and turn. This objective was achieved using the NAOqi API and

designing and implementing error correction algorithms. This has shown to

be a tedious task that requires working with the robot while developing it.

It demonstrates that robot interaction with the real world and sensing is

more complex that it seems and it is still not accurate enough.

• Develop a module that uses Computer Vision techniques to iden-

tify the colours of the boxes and integrate it with the NAO func-

Solving Multi-agent Planning Tasks by Using Automated Planning 117

Chapter 6. Conclusions Sof́ıa Herrero Villarroya

tionality. This objective was reached with a QR detector and a QR reader.

This was, in the end, a more reasonable approach since in a warehouse a

QR can contain a lot of information from the box and not just only one

characteristic, such as the colour. Achieving this objective involved testing

several techniques in Computer Vision, getting a general idea of this field,

and demonstrated how light and the environment can affect the robot’s vi-

sion.

• Coordinate the NAO and P3DX robots to solve tasks in the do-

main by using a hybrid control system. To achieve this objective,

PELEA has been used for the control system. This has required to inte-

grate the developed NAO Execution module with the modules in PELEA.

• Evaluate the correctness of the system with experiments. This goal

has been achieved through a planned and extensive experimentation. It has

allowed to not only test the system but also outline future work that could

not be included in this dissertation due to time and workload restrictions.

• Generate the corresponding documentation. To fulfill this objective,

this document has been created with detailed descriptions of every aspect

of the project.

6.3 Future work

On the developed system it can be added various improvements that would make

its operation richer and would add new features to its execution. Some of these

improvements are the following:

• Improve the robot NAO precision when walking. This work would in-

clude modifying the existing correction algorithm to include external guides.

These guides would help the NAO robot determine its final position after

moving with regard to external references rather than its internal reference

118 Solving Multi-agent Planning Tasks by Using Automated Planning

Sof́ıa Herrero Villarroya .0 Future work

system. These guides could be for instance floor tiles lines or calculating tile

centers. The improvement of this would be that these guides are external

from the NAO robot and therefore always fixed and more reliable than its

internal reference system.

• Improve QR detection. This work would be carried out to deal with the

limitations found with QR detectors. First, finding algorithms or image

processing techniques to eliminate the light effects in the image. For in-

stance, highlight the QR black and white areas or modify the colour spaces

and other characteristics of the image. Second, develop mechanisms to avoid

problems with the location of the QR in the image. For example, apply to

the image linear transformation algorithms to improve the detection in spite

of the conditions of the picture.

• Increase the number or robots in the system. This work would involve

adding an Execution module per robot included in the environment. Both

new coordinators and cargo robots can be added.

• Create more complex problems. Experiments can be conducted to test the

performance constraints in the system when the problem complexity is in-

creased. For instance, use bigger environments, environments with obstacles

or more boxes.

• Have the robots execute actions in parallel. This would require to deploy the

PELEA technology that supports parallelization and the use of a planner

that generates parallel plans.

• Include action cost. Modify the domain in PDDL to assign to each action

a cost This way, the planner can plan in terms of cost optimization and

dummy actions are avoided.

Solving Multi-agent Planning Tasks by Using Automated Planning 119

Appendix A

Installation

In this section, it will be explained the installation process for each of the libraries

and dependencies needed for this project. The project has been developed and

tested using two operating systems: OS X EL Capitan 10.11.4 and Ubuntu 12.04

LTS.

A.1 JDK

The Java Development Kit (JDK) last version can be downloaded from this link

http://www.oracle.com/technetwork/es/java/javase/downloads/index.html.

It is better to install the JDK and not only the Java SE because the JDK includes

Java SE and also very useful developing tools. Once installed, the installer will

open a pop-up browser window to check if it has been installed correctly.

For the installation in Ubuntu execute the following commands in the ter-

minal:

$ sudo apt-add-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer

To develop with Java, the Eclipse IDE has been used. The installer with

the Eclipse last version (Mars) can be downloaded in this link https://eclipse.

org/downloads/.

121

http://www.oracle.com/technetwork/es/java/javase/downloads/index.html
https://eclipse.org/downloads/
https://eclipse.org/downloads/

Appendix A. Installation Sof́ıa Herrero Villarroya

A.2 JNAOqi and NAO environment

The Java NAOqi (JNAOqi) library can be downloaded from the Aldebaran Com-

munity website https://community.aldebaran.com/en under Resources/Soft-

ware. However, an account needs to be first created to access this content.

The JNAOqi library is a .jar that can be included in the Eclipse project in

the following way: right-click on the project, then build path, then add external

archive, then select the corresponding JNAOqi jar.

The latest version for Choregraphe and Webots can also be found in the

Aldebaran Community website. Choregraphe can be downloaded if a graphical

interface to control the robot is required. Webots is a robot simulator that can

be used for the NAO robot .

A.3 ZXing

To use the ZXing library in the Java project in Eclipse the javase-x.x.jar and

the zxing-x.x.jar, where the ”x” stands for the version, are needed. They can be

obtained here http://repo1.maven.org/maven2/com/google/zxing/.

To include them in the build path of the project do right-click on the project,

then build path, then add external archive, then select the both .jar.

A.4 ROS

To install ROS Hydro in Ubuntu there are several steps to follow. If any other dis-

tribution is required, it can be selected from http://wiki.ros.org/Distributions

and check the installation instructions provided.

For Hydro, first it is required to setup the source.list with this command:

$ sudo sh -c ’echo

"deb http://packages.ros.org/ros/ubuntu precise main" >

/etc/apt/sources.list.d/ros-latest.list’

122 Solving Multi-agent Planning Tasks by Using Automated Planning

https://community.aldebaran.com/en
http://repo1.maven.org/maven2/com/google/zxing/
http://wiki.ros.org/Distributions

Sof́ıa Herrero Villarroya A.5 PELEA

And set up a key:

$ wget https://raw.githubusercontent.com/ros/rosdistro/master/ros.key

-O - | sudo apt-key add -

For the installation it can be used apt-get. For that, check first that it is up

to date with:

$ sudo apt-get update

Then, install ROS Hydro (a prompt about hddtemp can pop-up to install

it, but is not necessary for this project):

$ sudo apt-get install ros-hydro-desktop-full

After it has finished, initialize rosdep to install dependencies when compiling:

$ sudo rosdep init

$ rosdep update

Configure the ROS environment variables so that they are added automati-

cally every time a terminal is opened:

$ echo "source /opt/ros/hydro/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

All these instructions can be found in the following link as well, http://

wiki.ros.org/hydro/Installation/Ubuntu.

To manage the P3DX it is also needed the P2OS Driver. To install it, run

the following command:

$ sudo apt-get install ros-hydro-p2os-driver ros-hydro-p2os-teleop

$ ros- hydro-p2os-launch ros-hydro-p2os-urdf

Solving Multi-agent Planning Tasks by Using Automated Planning 123

http://wiki.ros.org/hydro/Installation/Ubuntu
http://wiki.ros.org/hydro/Installation/Ubuntu

Appendix A. Installation Sof́ıa Herrero Villarroya

A.5 PELEA

To use PELEA it is needed: the PELEA modules, a modified MDPSim to simulate

the environment and check states, the planner, in this case MetricFF and the

domain and problems in PDDL. Everything can be found in http://www.plg.

inf.uc3m.es/pelea/tutorial-installation.php.

Then, PELEA is used in our Java project as any other library in .jar format.

It has to be compiled first to .jar. This can be done in Eclipse following these

steps:

1. Create a new project in Eclipse with all the content downloaded.

2. Add any necessary library in the build path (as explained in previous sections

in this appendix)

3. Set org.pleame.main as the main class in the proejct properties.

4. Compile the project to generate a .jar (Click on Export, then Build runnable

JAR).

For MDPSim go to its directory and execute ./configure and then run the

command make.

For MetricFF go to its directory and run make.

Then, to run PELEA execute the following commands, each one in a different

terminal, to run each module:

$ java -jar ./dist/Warehouse.jar -c ./config/FF-1.xml -n DS1

$ java -jar ./dist/Warehouse.jar -c ./config/FF-1.xml -n M1

$ java -jar ./dist/Warehouse.jar -c ./config/FF-1.xml -n EXE

DS1 is the name of the Decision Support module, M1 is the name of the

Monitoring and EXE the name of the Execution module. An example of a config-

uration file can be found in Appendix C. This file contains parameters to configure

the execution of PELEA.

124 Solving Multi-agent Planning Tasks by Using Automated Planning

http://www.plg.inf.uc3m.es/pelea/tutorial-installation.php
http://www.plg.inf.uc3m.es/pelea/tutorial-installation.php

Appendix B

User guide

In this section is explained how to use the system. First, the problem must be

modelled in PDDL. As an example, the Problem 1 used in the experimentation is

provided in Appendix C.

Then the configuration file has to be created to indicate the number of

modules and their parameters to PELEA. It is composed of terms with a value

and a name. The configuration file for Problem 1 can be found in Appendix C. It

is divided into nodes, one for each module and a generic one at the beginning of

the file. The important terms that must be modified when changing the problem

are explained here:

• IP and PORT in the first group of terms indicates the IP address of the

Monitoring module. It is necessary in order for the other modules to connect.

• DOMAIN and PROBLEM indicate the path to the domain and problem

files.

• The DISTANCE, MOVESPEED, TURNSPEED, PUSHSPEED and BOX-

SIZE are parameters to configure the P3DX robot actions. The DISTANCE

is the cell size and BOXSIZE is the box size. The other ones configure the

speed of the P3DX when doing the actions.

• INITEXECUTION indicates if the node starts the execution, takes value

true, or not, takes value false.

125

Appendix B. User guide Sof́ıa Herrero Villarroya

• IP and PORT in the NAO module indicate the IP address and port of the

NAO in order to connect to it through WiFi.

• Finally, the term NETWORK in the Monitoring module shows the number

of expected modules connected. The value value=”1,2,0,0,0,0,1,0” indicates

thate there is 1 Decisin Support, 2 Execution modules and 1 Monitoring.

After the problem and configuration files are done, the environment can be

prepared (boxes, robots, etc). The Wi-Fi network must work and the robots must

be turned on. Then, the system can be launched from the terminal with a script

start.sh. Indicate the problem number (for Problem 1, use 1)as the command

option:

$./start.sh -p 1

This script starts the execution of the system and the user does not have to

intervene any more.

126 Solving Multi-agent Planning Tasks by Using Automated Planning

Appendix C

PDDL source code and scripts

Domain in PDDL designed and used in this dissertation.

(define (domain sokoban-colours-turn)

(:requirements :typing :fluents)

(:types LOC DIR thing - object

BOX robot - thing

P3DX NAO - robot

colour)

(:predicates

(at ?t - thing ?l - LOC)

(robot-dir ?robot - robot ?d - DIR)

(at-goal ?b - BOX)

(is-goal ?l - LOC)

(adjacent ?l1 - LOC ?l2 - LOC ?d - DIR)

(clear ?l - LOC)

(colour-cell ?l - LOC ?c - colour)

(has-colour ?b - BOX ?c - colour)

(known-colour ?b - BOX)

(unknown-colour ?b - BOX)

(no-storage ?b - BOX))

127

Appendix C. PDDL source code and scripts Sof́ıa Herrero Villarroya

(:action move

:parameters (?from - LOC ?to - LOC ?dir - DIR ?robot - robot)

:precondition (and (clear ?to)

(at ?robot ?from)

(adjacent ?from ?to ?dir)

(robot-dir ?robot ?dir)

)

:effect (and (at ?robot ?to)

(not (at ?robot ?from))

(clear ?from)

(not (clear ?to))

)

)

(:action push-goal

:parameters (?rloc - LOC ?bloc - LOC ?floc - LOC ?dir - DIR

?b - BOX ?robot - P3DX ?c - colour)

:precondition (and (at ?robot ?rloc)

(at ?b ?bloc)

(clear ?floc)

(robot-dir ?robot ?dir)

(adjacent ?rloc ?bloc ?dir)

(adjacent ?bloc ?floc ?dir)

(is-goal ?floc)

(known-colour ?b)

(has-colour ?b ?c)

(colour-cell ?floc ?c)

(no-storage ?b)

)

:effect (and (at ?robot ?bloc)

(at ?b ?floc)

128 Solving Multi-agent Planning Tasks by Using Automated Planning

(clear ?rloc)

(at-goal ?b)

(not (at ?robot ?rloc))

(not (at ?b ?bloc))

(not (clear ?floc))

(not (no-storage ?b))

)

)

(:action push-not-goal

:parameters (?rloc - LOC ?bloc - LOC ?floc - LOC ?dir - DIR

?b - BOX ?robot - P3DX)

:precondition (and (at ?robot ?rloc)

(at ?b ?bloc)

(clear ?floc)

(robot-dir ?robot ?dir)

(adjacent ?rloc ?bloc ?dir)

(adjacent ?bloc ?floc ?dir)

(known-colour ?b) (no-storage ?b)

)

:effect (and (at ?robot ?bloc)

(at ?b ?floc)

(clear ?rloc)

(not (at ?robot ?rloc))

(not (at ?b ?bloc))

(not (clear ?floc))

)

)

(:action get-colour

:parameters (?robot - NAO ?b - BOX ?rloc - LOC ?bloc - LOC ?dir - DIR

:precondition (and (at ?robot ?rloc)

Solving Multi-agent Planning Tasks by Using Automated Planning 129

Appendix C. PDDL source code and scripts Sof́ıa Herrero Villarroya

(at ?b ?bloc)

(adjacent ?rloc ?bloc ?dir)

(robot-dir ?robot ?dir)

(unknown-colour ?b)

)

:effect (and (known-colour ?b)

(not (unknown-colour ?b))

)

)

(:action turn

:parameters (?robot - robot ?dr - DIR ?db - DIR)

:precondition (and (robot-dir ?robot ?dr))

:effect (and (robot-dir ?robot ?db)

(not (robot-dir ?robot ?dr))

)

)

)

PDDL file for Problem 1 used in the experimentation:

(define (problem sokoban1)

(:domain sokoban-colours-turn)

(:objects

P3DX1 - P3DX

NAO1 - NAO

box1 - BOX

up down left right - DIR

f0-0f f0-1f f0-2f f0-3f

f1-0f f1-1f f1-2f f1-3f

f2-0f f2-1f f2-2f f2-3f - LOC

red blue grey - colour

130 Solving Multi-agent Planning Tasks by Using Automated Planning

)

(:init

(adjacent f0-0f f0-1f right)

(adjacent f0-0f f1-0f down)

(adjacent f0-1f f0-0f left)

(adjacent f0-1f f0-2f right)

(adjacent f0-1f f1-1f down)

(adjacent f0-2f f0-1f left)

(adjacent f0-2f f0-3f right)

(adjacent f0-2f f1-2f down)

(adjacent f0-3f f0-2f left)

(adjacent f0-3f f1-3f down)

(adjacent f1-0f f1-1f right)

(adjacent f1-0f f0-0f up)

(adjacent f1-0f f2-0f down)

(adjacent f1-1f f1-0f left)

(adjacent f1-1f f1-2f right)

(adjacent f1-1f f0-1f up)

(adjacent f1-1f f2-1f down)

(adjacent f1-2f f1-1f left)

(adjacent f1-2f f1-3f right)

(adjacent f1-2f f0-2f up)

(adjacent f1-2f f2-2f down)

(adjacent f1-3f f1-2f left)

(adjacent f1-3f f2-3f down)

(adjacent f1-3f f0-3f up)

(adjacent f2-0f f2-1f right)

(adjacent f2-0f f1-0f up)

(adjacent f2-1f f2-0f left)

(adjacent f2-1f f2-2f right)

Solving Multi-agent Planning Tasks by Using Automated Planning 131

Appendix C. PDDL source code and scripts Sof́ıa Herrero Villarroya

(adjacent f2-1f f1-1f up)

(adjacent f2-2f f2-1f left)

(adjacent f2-2f f2-3f right)

(adjacent f2-2f f1-2f up)

(adjacent f2-3f f2-2f left)

(adjacent f2-3f f1-3f up)

(at box1 f1-3f)

(no-storage box1)

(at P3DX1 f2-0f)

(at NAO1 f0-0f)

(robot-dir P3DX1 right)

(robot-dir NAO1 right)

(clear f0-1f)

(clear f0-2f)

(clear f0-3f)

(clear f1-0f)

(clear f1-1f)

(clear f1-2f)

(clear f2-1f)

(clear f2-2f)

(clear f2-3f)

(is-goal f2-3f)

(colour-cell f0-0f grey)

(colour-cell f0-1f grey)

(colour-cell f0-2f grey)

(colour-cell f0-3f grey)

(colour-cell f1-0f grey)

(colour-cell f1-1f grey)

(colour-cell f1-2f grey)

(colour-cell f1-3f grey)

132 Solving Multi-agent Planning Tasks by Using Automated Planning

(colour-cell f2-0f grey)

(colour-cell f2-1f grey)

(colour-cell f2-2f grey)

(colour-cell f2-3f blue)

(has-colour box1 blue)

(unknown-colour box1)

)

(:goal

(and

(at-goal box0)

(at-goal box1)

)

)

)

Solving Multi-agent Planning Tasks by Using Automated Planning 133

Appendix C. PDDL source code and scripts Sof́ıa Herrero Villarroya

Configuration file for Problem 1 used in the experimentation:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<configuration>

<term value="127.0.0.1" name="IP"/>

<term value="30520" name="PORT"/>

<term value="NOT" name="TEMPORAL"/>

<term value=";" name="SEPARATOR"/>

<term value="./problems/warehouse/domain.pddl" name="DOMAIN"/>

<term value="./problems/warehouse/p11.pddl" name="PROBLEM"/>

<term value="./experiment/" name="OUTPUT_DIR"/>

<term value="./temp/" name="TEMP_DIR"/>

<term value="FF" name="NAME"/>

<term value="1" name="ROUNDS"/>

<term value="PARTIAL" name="STATE"/>

<term value="ON" name="DEBUG"/>

<nodes>

<node type="planner" id="FD">

<term value="FD" name="PLANNER_NAME"/>

<term value="./planners/ff/" name="PLANNER_DIR"/>

<term value="org.pelea.planners.MetricFF" name="PLANNER_CLASS"/>

<term value="0" name="PLANNER_MODE"/>

<term value="1000" name="MAX_PLANNING_TIME"/>

</node>

<node type="planner" id="RFD">

<term value="FDR" name="PLANNER_NAME"/>

<term value="./planners/ff/" name="PLANNER_DIR"/>

<term value="org.pelea.planners.MetricFF" name="PLANNER_CLASS"/>

<term value="1" name="PLANNER_MODE"/>

<term value="1000" name="MAX_PLANNING_TIME"/>

</node>

134 Solving Multi-agent Planning Tasks by Using Automated Planning

<node type="decisionSupport" id="DS1">

<term value="1" name="type"/>

<term value="2" name="mode"/>

<term value=

"org.pelea.core.module.basic.DecissionSupportBasic" name="CLASS"/>

<term value="FD,RFD" name="PLANNERS"/>

<term value="false" name="DS_ALLWAYS_REPLANN"/>

<term value="true" name="DELETE_TEMP_FILES" />

</node>

<node type="execution" id="P3DX1">

<term value="2" name="type"/>

<term value="2" name="mode"/>

<term value="org.pelea.core.module.robotics.P3DX" name="CLASS"/>

<term value="127.0.0.1" name="IP"/>

<term value="11311" name="PORT"/>

<term value="false" name="INITEXECUTION"/>

<term value="0.9" name="DISTANCE"/>

<term value="0.3" name="MOVESPEED"/>

<term value="0.15" name="TURNSPEED"/>

<term value="0.3" name="PUSHSPEED"/>

<term value="0.225" name="BOXSIZE"/>

</node>

<node type="execution" id="NAO1">

<term value="2" name="type"/>

<term value="2" name="mode"/>

<term value="org.pelea.module.robotics.NAOExecution" name="CLASS"/>

<term value="192.168.1.179" name="IP"/>

<term value="9559" name="PORT"/>

<term value="true" name="INITEXECUTION"/>

</node>

Solving Multi-agent Planning Tasks by Using Automated Planning 135

Appendix C. PDDL source code and scripts Sof́ıa Herrero Villarroya

<node type="monitoring" id="M1">

<term value="7" name="type"/>

<term value="1" name="mode"/>

<term value="org.pelea.core.module.basic.MonitoringBasic"

name="CLASS"/>

<term value="false" name="VALIDATE_STATE"/>

<term value="true" name="EXECUTION_MODE"/>

<term value="1,2,0,0,0,0,1,0" name="NETWORK"/>

<term value="false" name="INITEXECUTION"/>

<term value="robot,nao,p3dx" name="EXECUTION_CODE"/>

<term value="true" name="PDDL_IDENTIFICATION"/>

<term value=

"org.pelea.languages.pddl.comparison.EffectsPDDLComparison"

name="COMPARISON_CLASS"/>

</node>

</nodes>

</configuration>

136 Solving Multi-agent Planning Tasks by Using Automated Planning

Script start.sh to start the execution of the system:

#!/bin/bash

sudo chmod 777 /dev/ttyUSB0

roslaunch ../../p2os/p2os_driver/launch/p2os_driver.launch &

while getopts ":p:" opt; do

case $opt in

p)

PROBLEM_NUMBER=$OPTARG

;;

esac

done

gnome-terminal \

--tab -e "bash -c \"java -jar ./dist/Warehouse.jar -c

./config/FF-$PROBLEM_NUMBER.xml -n M1; exec bash\""

--title "Monitoring - Pelea" \

--tab -e "bash -c \"java -jar ./dist/Warehouse.jar -c

./config/FF-$PROBLEM_NUMBER.xml -n DS1; exec bash\""

--title "Decision support - Pelea" \

--tab -e "bash -c \"java -jar ./dist/Warehouse.jar -c

./config/FF-$PROBLEM_NUMBER.xml -n P3DX1; exec bash\""

--title "Execution P3DX - Pelea" \

--tab -e "bash -c \"java -jar ./dist/Warehouse.jar -c

./config/FF-$PROBLEM_NUMBER.xml -n NAO1; exec bash\""

--title "Execution NAO - Pelea" \

&>/dev/null

Solving Multi-agent Planning Tasks by Using Automated Planning 137

Bibliography

[1] T. Fukuda, Y. Hasegawa, K. Kosuge, K. Komoriya, F. Kitagawa, and

T. Ikegami, “Environment-adaptive antipersonnel mine detection system-

advanced mine sweeper,” in Intelligent Robots and Systems, 2006 IEEE/RSJ

International Conference on, pp. 3618–3623, IEEE, 2006.

[2] I. W. Hunter, T. D. Doukoglou, S. R. Lafontaine, P. G. Charette, L. A. Jones,

M. A. Sagar, G. D. Mallinson, and P. J. Hunter, “A teleoperated microsur-

gical robot and associated virtual environment for eye surgery,” Presence:

Teleoperators & Virtual Environments, vol. 2, no. 4, pp. 265–280, 1993.

[3] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of

cooperative, autonomous vehicles in warehouses,” AI magazine, vol. 29, no. 1,

p. 9, 2008.

[4] M. Ai-Chang, J. L. Bresina, L. Charest, A. Chase, J. C. jung Hsu, A. K.

Jónsson, B. Kanefsky, P. H. Morris, K. Rajan, J. Yglesias, B. G. Chafin,

W. C. Dias, and P. F. Maldague, “Mapgen: Mixed-initiative planning and

scheduling for the mars exploration rover mission.,” IEEE Intelligent Systems,

vol. 19, no. 1, pp. 8–12, 2004.

[5] K. Rajan, C. McGann, F. Py, and H. Thomas, “Robust mission planning

using deliberative autonomy for autonomous underwater vehicles,” in Pro-

ceedings of the Workshop on Robotics in Challenging and Hazardous Envi-

ronments, ICRA, (Rome, Italy), 2007.

139

Appendix C. PDDL source code and scripts Sof́ıa Herrero Villarroya

[6] R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in color

images,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 24, no. 5, pp. 696–706, 2002.

[7] H. S. Nwana, “Software agents: An overview,” The knowledge engineering

review, vol. 11, no. 03, pp. 205–244, 1996.

[8] C. Sierra, M. Wooldridge, and N. Sadeh, “Agent research and development

in europe,” Internet Computing, IEEE, vol. 4, no. 5, pp. 81–83, 2000.

[9] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism

for artificial intelligence,” in Proceedings of the 3rd international joint con-

ference on Artificial intelligence, pp. 235–245, Morgan Kaufmann Publishers

Inc., 1973.

[10] M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons,

2009.

[11] S. Russell, P. Norvig, and A. Intelligence, “A modern approach,” Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs, vol. 25, p. 27, 1995.

[12] J. Ferber, Multi-agent systems: an introduction to distributed artificial intel-

ligence, vol. 1. Addison-Wesley Reading, 1999.

[13] Y. Kubera, P. Mathieu, and S. Picault, “Everything can be agent!,” in Pro-

ceedings of the 9th International Conference on Autonomous Agents and Mul-

tiagent Systems: volume 1-Volume 1, pp. 1547–1548, International Founda-

tion for Autonomous Agents and Multiagent Systems, 2010.

[14] K. Capek, Rossum’s Universal Robots. Science-fiction story, 1921.

[15] D. R. Yates, C. Vaessen, and M. Roupret, “From leonardo to da vinci: the

history of robot-assisted surgery in urology,” BJU international, vol. 108,

no. 11, pp. 1708–1713, 2011.

140 Solving Multi-agent Planning Tasks by Using Automated Planning

[16] J. C. González, J. C. Pulido, F. Fernández, and C. Suárez-Mej́ıas, “Plan-

ning, execution and monitoring of physical rehabilitation therapies with a

robotic architecture,” in Proceedings of the 26th Medical Informatics Europe

conference (MIE). Studies in Health Technology and Informatics, vol. 210,

pp. 339–343, 2015.

[17] D. Nakhaeinia, S. H. Tang, S. M. Noor, and O. Motlagh, “A review of con-

trol architectures for autonomous navigation of mobile robots,” International

Journal of the Physical Sciences, vol. 6, no. 2, pp. 169–174, 2011.

[18] R. A. Brooks, “A robust layered control system for a mobile robot,” Robotics

and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23, 1986.

[19] A. A. Medeiros, “A survey of control architectures for autonomous mobile

robots,” Journal of the Brazilian Computer Society, vol. 4, no. 3, 1998.

[20] C. Guzmán, V. Alcázar, D. Prior, E. Onaindia, D. Borrajo, J. Fdez-Olivares,

and E. Quintero, “Pelea: a domain-independent architecture for planning,

execution and learning,” in Proc. ICAPS, vol. 12, pp. 38–45, 2012.

[21] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of

theorem proving to problem solving,” Artificial intelligence, vol. 2, no. 3-4,

pp. 189–208, 1971.

[22] A. Gerevini and D. Long, “Plan constraints and preferences in pddl3,” in

Proceedings of ICAPS’06 Workshop on Soft Constraints and Preferences in

Planning, (The English Lake Districk, Cumbria, UK), 2006.

[23] D. V. McDermott, “A heuristic estimator for means-ends analysis in plan-

ning.,” in AIPS, vol. 96, pp. 142–149, 1996.

[24] B. Bonnet and H. Geffner, “Hsp: Heuristic search planner,” 1998.

[25] J. Hoffmann and B. Nebel, “The ff planning system: Fast plan generation

through heuristic search,” Journal of Artificial Intelligence Research, pp. 253–

302, 2001.

Solving Multi-agent Planning Tasks by Using Automated Planning 141

Appendix C. PDDL source code and scripts Sof́ıa Herrero Villarroya

[26] S. Richter and M. Westphal, “The lama planner: Guiding cost-based anytime

planning with landmarks,” Journal of Artificial Intelligence Research, vol. 39,

no. 1, pp. 127–177, 2010.

[27] M. Helmert, “The fast downward planning system.,” J. Artif. Intell.

Res.(JAIR), vol. 26, pp. 191–246, 2006.

[28] T. B. Moeslund and E. Granum, “A survey of computer vision-based human

motion capture,” Computer vision and image understanding, vol. 81, no. 3,

pp. 231–268, 2001.

[29] M. Tkalcic, J. F. Tasic, et al., “Colour spaces: perceptual, historical and

applicational background,” in Eurocon, 2003.

[30] M. Mason and Z. Duric, “Using histograms to detect and track objects in

color video,” in Applied Imagery Pattern Recognition Workshop, AIPR 2001

30th, pp. 154–159, IEEE, 2001.

[31] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach to

connected-component labeling for arbitrary image representations,” Journal

of the ACM (JACM), vol. 39, no. 2, pp. 253–280, 1992.

[32] L. Mihaylova, P. Brasnett, N. Canagarajah, and D. Bull, “Object tracking

by particle filtering techniques in video sequences,” Advances and Challenges

in Multisensor Data and Information Processing, vol. 8, pp. 260–268, 2007.

[33] W. W. Royce, “Managing the development of large software systems,” in

proceedings of IEEE WESCON, vol. 26, pp. 1–9, Los Angeles, 1970.

[34] B. Boehm, “A spiral model of software development and enhancement,” ACM

SIGSOFT Software Engineering Notes, vol. 11, no. 4, pp. 14–24, 1986.

142 Solving Multi-agent Planning Tasks by Using Automated Planning

	Introduction
	Problem description
	Motivation
	Objectives
	Document structure

	State of the art
	Software Agents
	Types of agents
	Robots

	Control systems for autonomous agents
	Deliberative Control Systems
	Reactive Control Systems
	Hybrid Control Systems
	PELEA

	Automated Planning
	Conceptual model
	Modelling language
	Algorithms

	Computer Vision
	Colour spaces
	Histograms
	Blobs
	QR

	System description
	Introduction
	System analysis
	Functional characteristics description
	System restrictions
	Operating environment
	Use case specification
	Requirements specification

	System design
	Problem design
	Computer Vision module
	System architecture
	Components description
	System operation

	Experiments
	Experimentation environment
	NAO unitary experiments
	Vision experiments
	Movement skills experiments

	System experiments
	Experiment 1: Problem 1
	Experiment 3: Problem 2
	Experiment 4: Problem 3
	System experimentation conclusions

	Project management
	Phases description
	Planning
	Budgeting

	Conclusions
	General conclusions
	Conclusions concerning the objectives
	Future work

	Installation
	JDK
	JNAOqi and NAO environment
	ZXing
	ROS
	PELEA

	User guide
	PDDL source code and scripts

