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At high strain rates the fragmentation of expanding
structures of ductile materials in general starts by the
localization of plastic deformation in multiple necks.
Two distinct mechanisms have been proposed to
explain multiple necking and fragmentation process
in ductile materials. One view is that the necking
pattern is related to the distribution of material
properties and defects. The second view is that it
is due to the activation of specific instability modes
of the structure. Following this, we investigate the
emergence of necking patterns in porous ductile
bars subjected to dynamic stretching at strain rates
varying from 103 s−1 to 0.5 · 105 s−1 using finite
element calculations and linear stability analysis. In
the calculations the initial porosity (representative of
the material defects) varies randomly along the bar.
The computations revealed that, while the random
distribution of initial porosity triggers the necking
pattern, it barely affects the average neck spacing,
especially, at higher strain rates. The average neck
spacings obtained from the calculations are in close
agreement with the predictions of the linear stability
analysis. Our results also reveal that the necking
pattern does not begin when the Considère condition
is reached but is significantly delayed due to the
stabilizing effect of inertia.
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1. Introduction

The first mechanism behind the fragmentation of expanding structures of ductile materials at
high loading rates was proposed nearly 70 years ago by N. F. Mott. With world war II as backdrop,
Mott theoretically described the process of fragmentation resulting from the explosive rupture of
cylindrical structures. Mott’s ideas on fragmentation were embodied in several classified reports
for the Ministry of Supply of the United Kingdom between January and May of 1943 [1–4]. In
Mott’s words, in this series of works a tentative theory was given to account for the mean fragment
sizes of certain types of bomb and shell, and for the relative numbers of large and small fragments. Between
August of 1943 and December of 1944, Mott issued additional classified reports that provided a re-
examination of the available experimental data on the break-up of shell and bomb casings based
on his proposed mechanism and theory [5,6]. The first open publication which collected the core
of Mott’s theory of fragmentation came to light in 1947 in the Proceedings of the Royal Society [7].

Mott’s theory of fragmentation is essentially a statistical one-dimensional model that considers
the onset of fractures as random processes which respond to the inherent variability in the
strain to fracture of ductile materials. To support this assumption, he relied on experimental
observations of fracture in notched-bar specimens (tested quasi-statically) which showed that
the reduction in the cross-sectional area of different specimens of the same material, varied from
specimen to specimen. In particular, Mott discussed the scatter of ±1% in the reduction in area
of notched steel specimens at fracture. Mott proposed that the statistical nature of the fracture
process, i.e. the scatter in the strain to fracture, determined both the characteristic fragment size,
as well as the distribution in fragment sizes. He postulated that fracture begins, as in brittle materials,
at one of a number of "weak points" distributed throughout the material. While he stated that his theory
was applicable only to casings which expand plastically before rupture, he did not consider
explicitly the plastic localization patterns that usually appear in ductile materials prior to fracture.
He, however, stated that the fracture energy was not significant and fractures were assumed to
occur instantaneously. Following Mott’s theory of fragmentation, when instantaneous fracture
occurs at one point, stress waves (or the Mott’s waves) propagate away from the fracture releasing
the stress in the neighborhood. The unstressed regions spread with a velocity that depends on the
material density, the strain rate and the yield stress at failure. Within the regions of the specimen
subjected to the action of the release waves the material does not continue to stretch and thus
failure is precluded. The size of the fragments is then determined by the distance traveled by the
Mott’s wave. A more complete and detailed chronological description of the work of Mott can be
found in the book by Grady [8].

Over the past three decades, Grady and co-workers further popularized Mott’s theory of
fragmentation. In a series of papers, Grady and collaborators [9–11] modified and enriched the
original theory of Mott to account for the dissipation of energy associated with the fracture
process. Grady argued that some degree of work must be expended, and some fracture energy overcome,
in opening the cracks delineating the fragment boundaries produced in the fragmentation event [8]. This
extended the stress release analysis developed by Mott to calculate the time history of plastic
release waves emanating from sites of fracture, and thus the average fragment size. Nevertheless,
the specific deformation mechanisms (e.g. necking, shear banding etc.) prior to fragmentation
that lead to dissipation and fracture growth were only addressed tangentially. The authors did,
however, acknowledge the influence of such deformation mechanisms on the fragmentation
characteristics. The works [12–14], made apparent that the fragmentation characteristics and the
distribution of fragment size depends on the specific localization mechanism and pattern that
develops before final fracture.

More recently, Zhang and Ravi-Chandar [12–14] performed a series of experiments using
aluminum and copper rings and cylinders expanded radially at strain rates ranging from
5 · 103 s−1 to 1.5 · 104 s−1. The nominal wall thickness of the specimens in these experiments
was 0.5 mm. For all the tests performed, several fractures occurred in the specimens, that
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were preceded by the development of multiple necks. The authors carefully measured the
distance between the necks and the number of fragments. In all the cases, the number of
necks were greater than the number of fracture sites. The experimental results were interpreted
using Mott’s theory, which allowed the authors to conclude that the number of necks are
dictated by statistical distribution of material property and local microstructure. They also stated
that, in all the experiments, the necks nucleated at the Considère strain, independent of the
applied loading rate, at least, for the materials investigated. With the aim of explaining these
experimental observations, Ravi-Chandar and Triantafyllidis [15] developed a 1D numerical
model to analyze the time-dependent response to strain perturbations of ductile bars subjected
to dynamic stretching. The mechanical behavior of the bar was described using a nonlinear
elastic constitutive law. The authors tracked the evolution of the strain perturbations during
the loading process and showed that the perturbations travel along the bar, at a speed that
decreases with strain, until the Considère strain is reached, thereafter the perturbations are
arrested at specific locations in the specimen. These locations were assumed to control the
positions where the necks nucleate, leading to multiple necking and fragmentation observed in
the experiments. Furthermore, Dequiedt [16] suggested that the potential sites of fracture, instead
of being determined by a random distribution of point defects as in the classical fragmentation
analyses, could be linked to zones of strain concentration that develop due to the activation of
specific instability modes (e.g. necking) in the specimen/structure.

The existence of unstable modes that determine the localization patterns preceding the
fragmentation of ductile materials was originally suggested by Molinari and co-workers [17–22]
and Freund and co-workers [23,24], and later by others [25–27]. Using linear stability analysis, in
which a small perturbation is added to the fundamental solution of the problem, previous authors
determined the loading conditions and material behaviors for which a neck-like deformation
field can develop in problems representative of axially-symmetric structures (e.g. rings, tubes,
hemispheres) subjected to dynamic expansion. The existence of growing instability modes was
shown to be a result of the combined effects of inertia, stress state and constitutive behavior of the
material. The mode that grows the fastest, at each time, is referred to as the critical mode, and it is
assumed to dictate the average neck spacing in the multiple localization pattern. In such a sense,
the linear stability analyses approach argues for the inclusion of a deterministic component to the
mechanism behind multiple necking and fragmentation process.

In summary, the past efforts to address multiple necking (or strain localization) and
fragmentation process has led to two proposed mechanisms: (i) The localization and fracture
sites at high strain rates are related to the statistical distribution of material property and
microstructural heterogeneities; (ii) The localization and fracture sites are determined by the
activation of specific instability modes in the structure rather than the random distribution of
defects. Following this, we have carried out 3D finite element calculations of porous ductile
cylindrical bars subjected to dynamic stretching. In the bars the initial porosity (representative of
initial material defects) varies statistically along the bar and the mechanical behavior of the porous
ductile material is described using an elastic-viscoplastic constitutive relation for a progressively
cavitating ductile solid. The numerical calculations mimic the experiments that form the basis
of the first proposed mechanism of multiple necking and fragmentation. In addition, we have
developed linear stability analysis for porous ductile materials following the ideas of Molinari and
co-workers [17–22], and Freund and co-workers [23,24] that form the basis of second proposed
mechanism of multiple necking and fragmentation. To the best of authors’ knowledge, the linear
stability analysis for porous ductile material based on elastic-viscoplastic constitutive relation for
a progressively cavitating solid has not been attempted before.

The results presented in this paper, show a good agreement between the predictions of
analytical model (linear stability analysis) and 3D finite element calculations for applied strain
rates ranging from 103 s−1 to 0.5 · 105 s−1. The agreement between the predictions of the
analytical model and numerical calculations over two decades of applied strain rate provides
a complete understanding of the multiple necking process. For example, we show that while
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the statistical distribution of initial porosity (statistical distribution of material defects) acts as
a trigger for the localization of plastic deformation, it barely affects the average neck spacing
of the localization pattern that emerges in the bar at large strains, especially, for the higher
strain rates investigated. The results presented here also reveal that the (full) localization pattern
does not begin when the Considère condition is reached. On the contrary, due to the stabilizing
effect of inertia, the formation of the final necking pattern is delayed until the strain level in
the bar reaches values that, for the strain rates considered, can be several times greater than the
Considère strain. We also compare our results (both analytical and numerical) with the numerical
simulations reported by Guduru and Freund [28] for smooth bars of aluminum and copper
with homogeneous distribution of the initial porosity (instead of varying statistically). In [28] the
localization was triggered by the numerical perturbations introduced by the finite element code,
nevertheless, a good qualitative agreement between their results and ours, in terms of localization
strain and average neck spacing, has been found for a wide range of strain rates.

An outline of the paper is as follows. In section 2, we describe the basic equations of the elastic-
viscoplastic constitutive model for progressively cavitating solid used to describe the mechanical
behavior of the porous ductile materials. Sections 3 and 4 show, respectively, the analytical and
numerical models developed to calculate the average neck spacing of the multiple localization
patterns that develop in cylindrical bars subjected to dynamic stretching. Section 5 presents the
numerical results which are then compared with the analytical predictions in section 6. Finally,
section 7 provides a brief summary of the paper and the main conclusions derived from this work.

2. Constitutive framework

The constitutive framework used to model the dynamic response of porous cylindrical bars is
the modified Gurson constitutive relation [29–32] with the flow potential having the form:

Φ
(
Σh, Σe, σ̄, f

∗)=

(
Σe
σ̄

)2

+ 2q1f
∗ cosh

(
3q2Σh

2σ̄

)
− 1−

(
q1f
∗)2 (2.1)

where f∗ is the effective porosity (see Eq. (2.10)), q1 and q2 are material parameters, and σ̄ is
the matrix flow strength given as:

σ̄= Ψ
(
ε̄p, ˙̄εp, T

)
= σ0

(
1 +

ε̄p

ε0

)n( ˙̄εp

ε̇0

)m
G(T ) (2.2)

with, ε̄p =
∫t
0

˙̄εp(τ)dτ , where ˙̄εp is the effective plastic strain rate in the matrix material, σ0 is
the reference yield stress, n is the strain hardening exponent, m is the rate sensitivity exponent,
ε0 is the reference strain, and ε̇0 is the reference strain rate. The temperature-dependence of the
matrix flow strength is given by:

G(T ) = 1 + b exp (−c [T0 − 273]) {exp (−c [T − T0])− 1} (2.3)

where, b and c are material parameters, and T0 is the reference temperature. In Eq. (2.1), Σh
and Σe are the macroscopic hydrostatic and effective stresses given as:

Σh =
1

3
Σ : 1; Σe =

√
3

2
Σ′Σ′; Σ′ = Σ −Σh : 1 (2.4)

In Eq. (2.4), Σ is the macroscopic Cauchy stress tensor and 1 is the unit second order tensor.
The macroscopic rate of deformation tensor Ė is decomposed as the sum of an elastic Ėe and a
plastic part Ėp:
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Ė = Ėe + Ėp (2.5)

The relation between the macroscopic elastic strain rate and the macroscopic stress rate is given
by the following hypo-elastic law:

Σ̂ = C : Ėe (2.6)

where Σ̂ is the Jaumann rate of Cauchy stress and C is the tensor of isotropic elastic moduli
given by:

C = 2GI′ +K1⊗ 1 (2.7)

with G being the elastic shear modulus, K being the bulk modulus and I′ the unit deviatoric
fourth order tensor.

Assuming that the rate of macroscopic plastic work is equal to the rate of equivalent plastic
work in the matrix material, it follows that:

Σ : Ėp = (1− f) σ̄ ˙̄εp (2.8)

where f is the void volume fraction.
The plastic part of the rate of macroscopic deformation follows the direction normal to the flow

potential:

Ėp = λ̇
∂Φ

∂Σ
(2.9)

where λ̇ is the plastic flow proportionality factor. The function f∗ introduced in [32] is given
by:

f∗ =


f if f < fc

fc +
(fu − fc) (f − fc)(

ff − fc
) if fc 6 f 6 ff

fu if f > fu

(2.10)

where fc is the void volume fraction at which voids coalesce, ff is the void volume fraction at
fracture of the material and fu = 1/q1 is the ultimate void volume fraction.

The initial void volume fraction is f0 and, assuming the incompressibility of the matrix
material, the evolution of the void volume fraction is defined as:

ḟ = (1− f) Ėp : 1 (2.11)

Assuming adiabatic conditions of deformation (no heat flux) and considering that plastic work
is the only source of heating, we get:

ρCp
∂T

∂t
= βΣ : Ėp (2.12)

with ρ being the current density, Cp the specific heat and β the Quinney-Taylor coefficient.
According to the principle of mass conservation, the current density is:

ρ=
ρ0

det (F)
(2.13)

where ρ0 is the initial density and F is the deformation gradient tensor.
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The above formulation is complemented with the loading/unloading Kuhn-Tucker conditions:

λ̇> 0; Φ6 0; λ̇Φ= 0 (2.14)

and the consistency condition during plastic loading:

Φ̇= 0 (2.15)

Table 1 shows the parameters used in the stability analysis and the finite element calculations.
Similar set of parameters were used in [33]. Most material parameters, such as elastic constants
and reference yield stress, are representative of aluminum alloys. The initial density, however, is
taken to be greater than that for aluminum to increase the stable time increment in the dynamic
calculations. Nevertheless, we note that the material density is an important parameter since the
inertial resistance to motion, H̃−1 ∝√ρ0 (see the parameter H̃−1 introduced just after Eq. (3.28)).

Symbol Property and units Value
ρ0 Initial density (kg/m3), Eq. (2.13) 7600
Cp Specific heat (J/kgK), Eq. (2.12) 465
G Elastic shear modulus (GPa), Eq. (2.7) 26.9
K Bulk modulus (GPa), Eq. (2.7) 58.3
q1 Material parameter, Eq. (2.1) 1.25
q2 Material parameter, Eq. (2.1) 1.0
σ0 Reference yield stress (MPa), Eq. (2.2) 300
n Strain hardening sensitivity parameter, Eq. (2.2) 0.1
m Strain rate sensitivity parameter, Eq. (2.2) 0.01
b Temperature sensitivity parameter, Eq. (2.3) 0.1406
c Temperature sensitivity parameter (K−1), Eq. (2.3) 0.00793
ε0 Reference strain, Eq. (2.2) 0.00429
ε̇0 Reference strain rate (s−1), Eq. (2.2) 1000
T0 Reference temperature (K), Eq. (2.3) 293
〈f0〉 Average initial void volume fraction 0.01
fc Void volume fraction at which voids coalesce, Eq. (2.10) 0.12
ff Void volume fraction at final fracture, Eq. (2.10) 0.25
fu Ultimate void volume fraction, Eq. (2.10) 0.8
β Taylor-Quinney coefficient, Eq. (2.12) 0.9

Table 1. Parameters used in the finite element calculations and the linear stability analysis.

3. 1D analytical model

In this section we develop a 1D linear perturbation analysis to model necking instabilities in
Gurson-type (porous) metallic bars subjected to dynamic stretching. To the authors’ knowledge,
this is the first analytical model developed to study dynamic necking instabilities in porous
materials. The model includes the effect of inertia and uses the Bridgman’s correction factor to
account for the multiaxial stress state that develops inside the necked region.
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(a) Governing equations

We consider a cylindrical bar with initial length L0 and mechanical behavior described by the
constitutive framework presented in section 2. The specimen is subjected to constant stretching
velocity on both ends and it is assumed that this loading condition is always satisfied. Also the
elastic deformations are neglected so that the macroscopic plastic strain equals the macroscopic
total strain.

The fundamental equations governing the problem are:

• Kinematic relations
The macroscopic axial true (logarithmic) strain E and strain rate Ė are defined as:

E = ln

[(
∂x
∂X

)
t

]
; Ė =

∂E

∂t
(3.1)

where X is the Lagrangian axial coordinate
(
−L0

2 6 X 6 L0
2

)
and x the Eulerian axial

coordinate. These are related as x = X +
∫t
0 v(X, τ)dτ , where the current axial velocity v is

related to E and Ė through the continuity equation:

∂v

∂X
= ĖeE (3.2)

The strain and strain rate in the matrix material, and their relations, were defined in
section 2.

• Momentum balance in the axial direction

ρA0
∂v

∂t
=
∂ (AΣavg)

∂X
(3.3)

where A0 = πR2
0 and A = πR2 are the initial and current cross section areas of the bar, and

R0 and R are the initial and current cross section radii, respectively. In Eq. (3.3), Σavg is
the average axial macroscopic stress defined as:

Σavg =B (θ)Σ (3.4)

where Σ is the uniform axial macroscopic stress and B (θ) is the correction factor
introduced by Bridgman [34] to take into account that, in a necked section, the local axial
stress is enhanced by hydrostatic stresses. The correction factor is defined as:

B (θ) =
(

1 + θ−1
)

ln (1 + θ) (3.5)

with,

θ=
1

2
R
(
∂2R
∂x2

)
(3.6)

While the Bridgman approximation for necking was developed for elastic-perfectly
plastic material response under quasi-static loading conditions, several works [25,35]
have demonstrated the capacity of this approach to model the stress state in a necked
section for strain rate sensitive materials under dynamic conditions. In particular, Vaz-
Romero et al. [35] have recently compared a 1D linear stability analysis of the kind
developed here with the 3D approach developed by Mercier and Molinari [19], and a
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good agreement between the two models was found. The estimation of stress state inside
a necked region by the Bridgman correction in our 1D analytical model precludes the
development of short necks, as demonstrated in [17,26]. The comparison between the
predictions of the linear stability analysis and the finite element results presented in
section 6 of this manuscript further justifies the use of Bridgman correction to describe
the multiaxial stress state that develops inside the necked region of a dynamically loaded
bar.

The integration of Eq. (2.11) allows to obtain the following relation between the current
and the initial cross section areas:

A = A0

(
1− f0
1− f

)
e−E (3.7)

with

Err =Eθθ =−1

2
ln

(
A0

A

)
(3.8)

and

det(F) =
1− f0
1− f (3.9)

where Err and Eθθ are the radial and circumferential true macroscopic strains,
respectively.

• Mass conservation
Under uniaxial stress conditions, using Eq. (3.9), Eq. (2.13) can be rewritten as:

ρ= ρ0

(
1− f
1− f0

)
(3.10)

• Conservation of energy
Under uniaxial stress conditions Eq. (2.12) can be rewritten as:

ρCp
∂T

∂t
= βΣavgĖ (3.11)

• Flow strength of the matrix material
The matrix flow strength according to Eq. (2.2), is rewritten as:

σ̄= Ψ
(
ε̄, ˙̄ε, T

)
(3.12)

where, ε̄p and ˙̄εp are replaced by ε̄ and ˙̄ε, respectively.

• Work-conjugacy relation
Under uniaxial stress conditions Eq. (2.8) can be rewritten as:

ΣavgĖ = (1− f) σ̄ ˙̄ε (3.13)

• Flow potential
Under uniaxial stress conditions Eq. (2.1) can be rewritten as:



9

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Φ
(
Σ,Σavg, σ̄, f∗

)
=

(
Σ

σ̄

)2

+ 2q1f
∗ cosh

(
q2Σ

avg

2σ̄

)
− 1−

(
q1f
∗)2 (3.14)

Note, for the 1D case we take, Σe =Σ, where Σ is the uniform axial macroscopic stress,

and Σh =
Σavg

3
, where Σavg is the average axial macroscopic stress in the neck region

as estimated using the Bridgman’s correction factor, Eq. (3.5).

• Flow rule
Under uniaxial stress conditions Eq. (2.9) can be rewritten as:

Ė = λ̇
∂Φ

∂Σavg
(3.15)

where

∂Φ

∂Σavg
=

1

B (θ)

2Σ

σ̄2
+ q1q2

f∗

σ̄
sinh

(
q2Σ

avg

2σ̄

)
(3.16)

• Evolution of void volume fraction
Using Eq. (2.9), Eq. (2.11) can be rewritten as:

ḟ = (1− f)λ̇
3q1q2f

∗

σ̄
sinh

(
q2Σ

avg

2σ̄

)
(3.17)

Note that, in order to consider the axial, radial and circumferential strains of the bar,
previous expression is derived using the 3D relations presented in section 2.

Considering the domain [−L0/2,L0/2], the above-mentioned set of equations are to be
solved under the following initial and boundary conditions which are formulated in Lagrangian
coordinate system:

• Initial conditions

σ̄(X, 0) = σ0; ε̄(X, 0) = 0; E(X, 0) = 0

v(X, 0) = Ė0X; f(X, 0) = f0; T (X, 0) = T0
(3.18)

where the constant Ė0 is the initial macroscopic strain rate in the bar. To be noted that
the initial values of Σ, ˙̄ε and λ̇ are obtained by solving Eqs. (3.13), (3.14) and (3.15) with
the initial values provided in (3.18). Note also that during the homogeneous deformation,
before necking, B(θ) = 1 and therefore Σavg =Σ.

• Boundary conditions

v(L0/2, t) =−v(−L0/2, t) = Ė0L0/2 (3.19)

(b) Linear stability analysis

The fundamental time-dependent solution S(X, t), at time t, of previous problem is obtained by
integration of Eqs. (3.1)-(3.17) satisfying the initial and boundary conditions given by (3.18)-(3.19).
The solution at t = t1 is:
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S1(X, t1) = (v1, ε̄1, ˙̄ε1, E1, Ė1, σ̄1, Σ1, Σ
avg
1 , θ1,A1,R1, ρ1, T1, λ̇1, f1)T (3.20)

Then, a small perturbation δS given by:

δS(X, t)t1 = δS1eiξX+η(t−t1) (3.21)

is superposed on the fundamental solution, where:

δS1 = (δv, δε̄, δ ˙̄ε, δE, δĖ, δσ̄, δΣ, δΣavg, δθ, δA, δR, δρ, δT, δλ̇, δf)T (3.22)

is the perturbation amplitude, ξ is the wavenumber and η is the growth rate of the perturbation
at time t1. Here ξ and η are considered time independent (frozen coefficients method).

The perturbed solution is given by:

S = S1 + δS (3.23)

and the physical solution is the real part of the perturbed solution with |δS| � |S1|. By
substituting Eq. (3.23) into the governing equations and keeping only the first-order terms,
linearized equations are obtained. In order to scale the problem and bring to light the key
variables which control the loading process, we introduce the following nondimensional groups:

v̂=
v

R0Ė1

; ˆ̄ε= ε̄; ˆ̄̇ε=
˙̄ε

Ė1

; Ê =E; ˆ̇E =
Ė

Ė1

; ˆ̄σ=
σ̄

σ0
; Σ̂ =

Σ

σ0
;

Σ̂avg =
Σavg

σ0
; θ̂= θ; Â =

A
A0

; R̂ =
R
R0

; ρ̂=
ρ

ρ0
; T̂ =

T

T0

ˆ̇
λ=

λ̇

σ0Ė1

; f̂ = f ; Λ= e−E1 ; η̂=
η

Ė1

; ξ̂ =R0ξ

(3.24)

that yield to the following linearized equations.

• Kinematic relations
Linearization of the macroscopic strain rate and the strain rate in the matrix material
yield:

δ ˆ̇E − η̂δÊ = 0 (3.25)

δ ˆ̄̇ε− η̂δ ˆ̄ε= 0 (3.26)

The continuity equation, Eq. (3.2), leads to:

δv̂ + iξ̂−1
1

Λ
δÊ + iξ̂−1

1

Λ
δ ˆ̇E = 0 (3.27)

• Momentum balance in the axial direction
Linearization of Eq. (3.3) yields:

1

H̃2
ρ̂1η̂δv̂ − iξ̂Â1δΣ̂

avg − iξ̂Σ̂avg1 δÂ = 0 (3.28)

The dimensionless parameter H̃−1 =

√
ρ0Ė

2
1R2

0

σ0
is the inertial resistance to motion [25,27,

36] and is the key parameter in the linear stability analysis [25,26]. The linearized average
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macroscopic axial stress, the Bridgman’s correction factor and the current cross section
area, Eqs. (3.4)-(3.6)-(3.7), are as follows:

δΣ̂avg − δΣ̂ − 1

2
Σ̂1δθ̂= 0 (3.29)

δθ̂ +
1

2
ξ̂2Λ2R̂1δR̂ = 0 (3.30)

δÂ− Â1

1− f̂1
δf + Â1δÊ = 0 (3.31)

where the current cross section radius is:

δR̂− 1

2

√
Â1

δÂ = 0 (3.32)

• Mass conservation
Linearization of Eq. (3.10) leads to:

δρ̂+
1

1− f0
δf̂ = 0 (3.33)

• Conservation of energy
Linearization of Eq. (3.11) leads to:

ρ̂1c̃η̂δT̂ − βΣ̂avg1 δ ˆ̇E − βδΣ̂avg = 0 (3.34)

where c̃=
Cpρ0T0
σ0

is the nondimensional specific heat.

• Flow strength of the matrix material
Linearization of Eq. (3.12) leads to:

δ ˆ̄σ − P̂1δ ˆ̄ε− P̂2δ
ˆ̄̇ε− P̂3δT̂ = 0 (3.35)

where P̂1 =
1

σ0

∂Ψ

∂ε̄

∣∣∣∣
t1

, P̂2 =
Ė1

σ0

∂Ψ

∂ ˙̄ε

∣∣∣∣
t1

and P̂3 =
T0
σ0

∂Ψ

∂T

∣∣∣∣
t1

are the dimensionless strain,

strain rate and temperature sensitivities of the matrix material.

• Work-conjugacy relation
Linearization of Eq. (3.13) leads to:

Σ̂avg1 δ ˆ̇E + δΣ̂avg − ˆ̄σ1

(
1− f̂1

)
δ ˆ̄̇ε− ˆ̄̇ε1

(
1− f̂1

)
δ ˆ̄σ + ˆ̄σ1

ˆ̄̇ε1δf̂ = 0 (3.36)

• Flow potential
Linearization of Eq. (3.14) leads to:

Q̂1δΣ̂ + Q̂2δΣ̂
avg + Q̂3δ ˆ̄σ + Q̂4δf̂ = 0 (3.37)

where Q̂1 = σ0
∂Φ

∂Σ

∣∣∣∣
t1

, Q̂2 = σ0
∂Φ

∂Σavg

∣∣∣∣
t1

, Q̂3 = σ0
∂Φ

∂σ̄

∣∣∣∣
t1

and Q̂4 =
∂Φ

∂f

∣∣∣∣
t1

are the

dimensionless derivatives of the flow potential with respect to the uniform macroscopic
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stress, the average macroscopic stress, the flow strength of the matrix material and the
porosity.

• Flow rule
Linearization of Eq. (3.15) leads to:

δ ˆ̇E − M̂1δ
ˆ̇
λ− M̂2δΣ̂ − M̂3δΣ̂

avg − M̂4δ ˆ̄σ − M̂5δf̂ − M̂6δθ̂= 0 (3.38)

where M̂1 = σ0
∂Ė

∂λ̇

∣∣∣∣
t1

, M̂2 =
σ0

Ė1

∂Ė

∂Σ

∣∣∣∣
t1

, M̂3 =
σ0

Ė1

∂Ė

∂Σavg

∣∣∣∣
t1

, M̂4 =
σ0

Ė1

∂Ė

∂σ̄

∣∣∣∣
t1

, M̂5 =

1

Ė1

∂Ė

∂f

∣∣∣∣
t1

and M̂6 =
1

Ė1

∂Ė

∂θ

∣∣∣∣
t1

are the dimensionless derivatives of the macroscopic

axial strain rate with respect to the plastic flow proportionality factor, the uniform
macroscopic axial stress, the average macroscopic axial stress, the flow strength of the
matrix material, the porosity and the temperature.

• Evolution of void volume fraction
Linearization of Eq. (3.17) leads to:

(
η̂ − Ŝ1

)
δf̂ − Ŝ2δ ˆ̇

λ− Ŝ3δΣ̂avg − Ŝ4δ ˆ̄σ= 0 (3.39)

where Ŝ1 =
1

Ė1

∂ḟ

∂f

∣∣∣∣
t1

, Ŝ2 = σ0
∂ḟ

∂λ̇

∣∣∣∣
t1

, Ŝ3 =
σ0

Ė1

∂ḟ

∂Σavg

∣∣∣∣
t1

and Ŝ4 =
σ0

Ė1

∂ḟ

∂σ̄

∣∣∣∣
t1

are the

dimensionless derivatives of the porosity rate with respect to the porosity, the plastic
flow proportionality factor, the average macroscopic axial stress and the flow strength of
the matrix material.

A non-trivial solution for δS1 can only be obtained if the determinant of the system of linear
algebraic equations (3.25)-(3.39) is equal to zero. Application of this condition leads to a fourth-
degree polynomial in η̂ with time dependent coefficients that also depend on the dimensionless
wavenumber ξ̂:

B4(S1, ξ̂)η̂4 +B3(S1, ξ̂)η̂3 +B2(S1, ξ̂)η̂2 +B1(S1, ξ̂)η̂ +B0(S1, ξ̂) = 0 (3.40)

For the sake of brevity, B4(S1, ξ̂), B3(S1, ξ̂), B2(S1, ξ̂), B1(S1, ξ̂) and B0(S1, ξ̂) are not shown
explicitly. Eq. (3.40) has four roots in η̂, two real and two complex conjugates. The requisite for
unstable growth of δS1 is given by Re(η̂)> 0 and hence the root that has the greater positive real
part, η̂+, is considered for the analysis. Note that the perturbation growth represents the first stage
of the necking pattern. The stabilizing effect of inertia and stress multiaxiality on small and large
wavenumbers, respectively, promotes the growth of intermediate modes [18–21]. The mode that
grows the fastest is referred to as the critical wavenumber ξ̂c, and it is assumed to determine the
average distance between the necks in the localization pattern [26,37]. The critical wavenumber
evolves with the strain during the post-uniform deformation regime. Zaera et al. [27] have shown
that, under dynamic tension, the critical wavenumber increases with the strain in the bar. For
dynamic uniaxial tension, the post-uniform regime lies in between the Considère strain, and the
strain at which the full localization process is triggered (see section 6). As further discussed in
section 6, the critical wavenumber at the strain which determines the end of the post-uniform
regime (or prior to full localization) enables us to calculate the average spacing between the necks
in the localization pattern [35].

4. 3D finite element model
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Figure 1. Sketch of the cylindrical bar and zoomed view of the finite element mesh. (Bottom-right) The variation in the

initial porosity, f0, in the zoomed region of the bar. The average porosity in the bar is favg = 0.01 and the amplitude of

the perturbation in the initial porosity is Apert = 5%, see Eq. (4.1).

Three dimensional (3D) finite element calculations are carried out to model the response of
porous cylindrical bars subjected to initial and boundary conditions given in Eqs. (3.18) and (3.19),
respectively. The initial aspect ratio of the cylindrical bars analyzed, Fig. 1, is, L0/D0 = 20, where
D0 = 2R0 = 2 mm is the initial cross section diameter of the bar. The finite element mesh of the
cylindrical bar consists of 161,600 twenty node brick elements with initial element dimensions
along the axis of the bar being equal to L0/400. The 3D finite element calculations are based
on: the dynamic principle of virtual work using a finite deformation Lagrangian convected
coordinate formulation, the constitutive framework detailed in section 2, and the constitutive
parameters listed in Table 1. A more detailed description of the finite element formulation and
implementation of the same with additional references is given in [33,38–40].

Recall from the introduction that, in the classical statistical theories used to approach the
multiple necking problem, distribution of material defects are assumed to be responsible for the
distributions of neck sizes in the localization pattern. In the calculations here, the initial porosity
or the void volume fraction, f0, is randomly perturbed in the bar following,

f0 = favg (1 +Apert ×Rrand) (4.1)

where, favg = 〈f0〉 is the average initial void volume fraction, Apert is the amplitude of the
perturbation, and −1.0≤Rrand ≤ 1.0 is random number. The value of Rrand is generated for
each finite element in the bar, thus the porosity in the bar varies at the length scale of the finite
element that is more than two orders less than the overall initial length of the bar. The variation in
the initial porosity, f0, in a zoomed region of the bar for one representative case is shown in Fig.
1. The variation of f0 throughout the bar can be changed by simply generating new set of random
numbers for each element for a fixed Apert. Note that seven different distributions of porosity,
denoted as Case I, II, ..., VII along the manuscript, for three values of Apert = 2%, 5% and 10%

have been investigated in this work.
The variation in porosity at such a small length scale i.e. more than two orders less than

the overall initial length of the bar is an attempt to describe the characteristic microstructural
heterogeneity (inherent distribution of defects) of metallic materials. Following this later in the
manuscript, the distribution of porosity will be denoted indistinctly as distribution of defects.
Note that, for the initial and boundary conditions, Eqs. (3.18) and (3.19), applied in the finite
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element calculations, if the porosity throughout the bar is homogeneous, the specimen stretches
uniformly during loading, according to the fundamental solution of the problem, and localization
never occurs. This is not the case with commercial finite element codes such as ABAQUS/Explicit
that introduce numerical perturbations that are sufficient to break the fundamental solution and
trigger localization [26,28,35,41].

5. Key results of the finite element calculations

In this section we present the key results obtained from the finite element calculations. Fig. 2
shows the number of necks, N, incepted in the bar as a function of the macroscopic strain rate,
Ė0, imposed on the specimen. For applied macroscopic strain rates Ė0 = 1000 s−1, 10000 s−1

and 50000 s−1, results are presented for seven distributions of initial porosity whereas for other
values of Ė0 results are presented for a single distribution of initial porosity. For all the cases in
Fig. 2, the amplitude of the perturbation in the initial porosity is Apert = 5%, see Eq. (4.1). In the
calculations, the formation of a neck is considered when, for a given excursion of strain, the ratio
between the peak and the neighboring valleys is ≈ 1.1. The total number of necks in a calculation
are determined once the localization pattern is fully developed i.e. further increase in strain does
not lead to the formation of new necks. As seen in the figure, the number of necks increases
nonlinearly with the applied macroscopic strain rate, featuring a concave-downward shape, as in
the experiments and numerical simulations reported for various ductile materials in [25,26,42–44].
The numerical results have been fitted with the power law N = 0.455(Ė0)0.365.
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Figure 2. Finite element results. Number of necks N versus applied macroscopic strain rate Ė0. For Ė0 = 1000 s−1,

10000 s−1 and 50000 s−1 results are presented for seven distributions of initial porosity whereas for other values of Ė0

results are presented for a single distribution of initial porosity. For all the cases, the amplitude of the perturbation in the

initial porosity isApert = 5%, see Eq. (4.1). The numerical results have been fitted with the curve N = 0.455(Ė0)0.365.

The influence of the initial porosity distribution on the number of necks is further investigated
in Fig. 3 which shows the normalized number of necks N/Navg for seven distributions of initial
porosity (denoted as I, II, ..., VII) for three applied macroscopic strain rates (1000 s−1, 10000 s−1

and 50000 s−1). Here, Navg is the average number of necks incepted in the bar considering the
seven porosity distributions. For all the porosity distributions, the amplitude of the perturbation
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in the initial porosity is Apert = 5%, see Eq. (4.1). As seen in the figure, for Ė0 = 1000 s−1 there
is a variation in the number of necks incepted, for example, N/Navg is 1.2 for the porosity
distribution III and 0.85 for the porosity distribution VII. For Ė0 = 10000 s−1, the variation in the
number of necks for the various initial porosity distributions decreases and N/Navg lies within
the range 0.9≤N/Navg ≤ 1.1 for all seven distributions considered. At even higher loading rate,
Ė0 = 50000 s−1, the maximum variation in the N/Navg is ≈ 5%. On one hand, the fact that the
number of necks in the bar increases with increasing applied strain rate contributes to decrease
in the variation of N/Navg ratio with increasing Ė0. On the other hand, the results in Fig. 3
also suggest that the increase in the applied strain rate reduces the influence of the porosity
distribution (i.e. statistical variation in the material defect) on the number of necks that develop
in the bar. This can be attributed to the increasing role of inertia at high strain rates as in [26],
which promotes the development of some specific wavelengths that play an important role in
controlling the neck spacing.
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Figure 3. Finite element results. Normalized number of necks N/N avg for three applied macroscopic strain rates Ė0 =

1000 s−1, 10000 s−1 and 50000 s−1, and seven distributions of initial porosity. For all the cases, the amplitude of the

perturbation in the initial porosity is Apert = 5%, see Eq. (4.1).

Next, histograms of number of necks, N, as a function of the normalized Lagrangian neck
spacing, Lneck/D0, for three applied strain rates investigated in Fig. 3 are presented in Fig. 4. The
Lagrangian neck spacing, Lneck, is the distance between the central sections of two consecutive
necks. For all the cases, the amplitude of the perturbation in the initial porosity is Apert = 5%.
The results corresponding to seven distributions of initial porosity are included in each histogram
and each porosity distribution is plotted with a different color (black, red, dark blue...). As shown
in Fig. 4(a), for Ė0 = 1000 s−1 the distribution of neck spacings is very heterogeneous and the
normalized Lagrangian spacing varies in the range 1.9≤ Lneck/D0 ≤ 5.7, with an average value
of 3.4. Hence, the neck spacings for Ė0 = 1000 s−1 are sensitive to the initial porosity distribution.
For instance, for the porosity distribution III (dark blue) the neck spacings vary in the range
1.9 to 3.7, while for the porosity distribution VI (light blue) they vary from 4.2 to 5.5. For
Ė0 = 10000 s−1, Fig. 4(b), the distribution of neck spacings becomes less heterogeneous and the
normalized Lagrangian spacings vary from 0.8 to 2.3, with an average value of 1.7. Note that
68% of neck spacings lie within the interval 1.5≤ Lneck/D0 ≤ 2. For Ė0 = 50000 s−1, Fig. 4(c), the
normalized Lagrangian neck spacings vary in the range 0.4 to 1.1, with an average value of 0.8.
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Note that the neck spacings are smaller than those obtained in the simulations presented in [26]
for the same strain rate using an ideal incompressible perfectly plastic material model. While
the difference is, most likely, due to the plastic compressibility of the material considered in this
paper, further research is still needed to clarify this point. Note that for Ė0 = 50000 s−1, 88%

of the neck spacings lie within a narrow interval of 0.75≤ Lneck/D0 ≤ 1. Hence the distribution
of necks spacings for Ė0 = 50000 s−1 is nearly insensitive to the initial distribution of the
porosity considered. In other words, at sufficiently high strain rates, the statistical variation in
the material properties or defects seems to have a smaller effect on the multiple necking pattern.
The narrowing of the distribution of neck spacing and shifting to smaller lengths with increasing
loading rate is in agreement with the experimental observations of Zhang and Ravi-Chandar [12].

The fact that the increase in the applied strain rate reduces the influence of the statistical
variation in the material defect on the number and pattern of necks that develop in the bar seems
to be reinforced by the results presented in Fig. 5. This graph shows the time evolution of the
ratio of the current and the background circumferential logarithmic strain Eθθ/E

b
θθ along the

normalized axial coordinate X̄ = X/L0 of the bar for the three applied strain rates investigated in

Figs. 3 and 4. The background strain, Ebθθ =− 1
2 ln

(
A0
A

)
, is the homogeneous strain, Eq. (3.8).

For Ė0 = 1000 s−1, Fig. 5(a), four different loading times are included in the graph to show the
onset and development of the necking pattern in the bar with the initial porosity distribution
V. At t = 199 µs, which corresponds to an axial background strain E ≈ 0.18, Eq. (3.1), the
circumferential strain through out the bar is very similar to the fundamental solution. At this

point the Considère strain
(
Econsidère = 0.08

)
has been exceeded but the fluctuations in the

circumferential strain field are almost negligible and cannot be observed in the plot. As further
discussed in section 6, and anticipated in section 3, inertia (and material viscosity to a lesser
extent) delays flow localization and gives rise to a post-uniform deformation regime in which the
bar undergoes quasi-stable deformation. At t = 265 µs, E ≈ 0.23 which is roughly three times the
Considère strain, but only slight fluctuations in the circumferential strain field can be observed. At
t = 299 µs, which corresponds toE ≈ 0.26, the necking pattern becomes apparent. Each excursion
of circumferential strain at t = 299 µs represents a neck. At t = 332 µs, which corresponds to
E ≈ 0.28, the necking pattern is fully developed with heterogeneous spacing between the necks.
The width of the excursions of strain, which represents the size of the necks, varies from one neck
to another. The height of the excursions, which represents the depth (growth rate) of the necks,
also varies from one neck to another.

Similarly for Ė0 = 10000 s−1, Fig. 5(b), four different loading times are considered to illustrate
the inception and development of the necking pattern. Here the initial porosity distribution
IV is considered. At t = 53 µs and t = 60 µs, background axial strains are ≈ 0.43 and ≈ 0.47,
respectively, and the strain field in the bar exhibits a wavy profile with peaks as precursors for the
necks that develop at larger strains. At t = 66 µs and t = 73 µs, corresponding background axial
strains are≈ 0.51 and≈ 0.55, the necking pattern is quite evident. The pattern is an array of necks,
suggesting that there are finite wavelengths that determine the neck spacing. In comparison with
the results presented for Ė0 = 1000 s−1 in Fig. 5(a), the spacing between necks is significantly
more homogeneous, as also shown in Fig. 4(b). The height of the strain excursions, which
characterizes the depth (growth rate) of the necks, is also more uniform.

For Ė0 = 50000 s−1, Fig. 5(c), time evolution of Eθθ/E
b
θθ along X̄ = X/L0 is shown at three

loading times: t = 26 µs, t = 33 µs and t = 40 µs. The results correspond to the initial porosity
distribution I. At t = 26 µs, E ≈ 0.84 and the onset of a neck-like instability is apparent. Note that
the background axial strain is almost 10 times greater than the Considère strain at this point. At
t = 33 µs, E ≈ 0.98 and the excursions in the circumferential strain profile are clearly identifiable.
At t = 40 µs, E ≈ 1.10, and the necking pattern has fully developed. Note that a couple of wide
necks split up into two narrow necks with progressive deformation giving rise to a regular pattern
with almost constant spacing between the consecutive necks. It is assumed that the splitting of
wider necks is due to the activation of smaller and more unstable wavelengths with progressive
straining, this is further discussed in section 6.
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Figure 4. Finite element results. Histograms showing the number of necks N as a function of the normalized Lagrangian

neck spacing Lneck/D0 for three applied macroscopic strain rates: (a) Ė0 = 1000 s−1, (b) Ė0 = 10000 s−1 and (c)

Ė0 = 50000 s−1. The results corresponding to seven distributions of initial porosity (seven cases) are included in each

histogram. The height of a colored block within a bar of the histogram marks the number of necks with fixed Lneck/D0 for

a given case. For all the cases, the amplitude of the perturbation in the initial porosity is Apert = 5%, see Eq. (4.1). For

interpretation of the references to color in the text, the reader is referred to the web version of this article.
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Figure 5. Finite element results. Time evolution of the ratio of the current and the background circumferential logarithmic

strain Eθθ/Ebθθ along the normalized axial coordinate X̄ = X/L0 for three applied macroscopic strain rates: (a) Ė0 =

1000 s−1, (b) Ė0 = 10000 s−1 and (c) Ė0 = 50000 s−1. For all the cases, the amplitude of the perturbation in the

initial porosity is Apert = 5%, see Eq. (4.1).
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It is difficult, if not impossible, to experimentally obtain two specimens with exactly the same
distribution of defects in order to solely capture the effect of the applied strain rate. However, the
finite element calculations allows us to do so. Fig. 6 shows the ratio between the current and the
background circumferential logarithmic strain Eθθ/E

b
θθ versus the normalized axial coordinate X̄

for two different initial macroscopic strain rates: Ė0 = 1000 s−1 and Ė0 = 10000 s−1. The results
correspond to two initial distributions of porosity, Case I (Fig. 6(a)) and Case VI (Fig. 6(b)). The
loading times considered (332 µs and 66 µs, respectively) are such that the necking pattern is
fully developed. There are several locations in the bar which develop a neck for Ė0 = 1000 s−1

but they do not develop a neck for Ė0 = 10000 s−1 and vice versa. The calculations do not reveal
the existence of dominant material heterogeneities that predominantly activate localizations
irrespective of the applied strain rate, as sometimes suggested by the classical statistical theories
of multiple necking and fragmentation. Nevertheless, more efforts can be made to clarify this
point.

The finite element calculation results presented in this section show that the influence of
the statistical distribution of material defects (distribution of initial porosity) on the inception
and development of necking pattern depends on the applied strain rate. As the strain rate
increases, the necking pattern becomes more regular, and seems to be (more) controlled by the
development of some specific wavelengths that define the distance between consecutive necks.
Further substantiation of this conclusion is pursued in section 6 of the paper. Note, that same
conclusions were drawn with the amplitude of the perturbation, see Eq. (4.1), in the initial
porosity, Apert = 2% or 10%, instead of 5% (results for which are presented in this paper). The
only difference between the results obtained using Apert = 5% versus 2% or 10% is that, as the
percentage of variation increases (decreases), localization is triggered earlier (later).

6. Comparison between linear stability analysis and finite
element results

The axial force F versus the macroscopic true strain averaged over the entire specimen Eavg ,
for the three strain rates considered in Figs. 3, 4 and 5, and three initial porosity distributions are
compared with the fundamental solution, Eq. (3.20), in Fig. 7. The amplitude of the perturbation
in the initial porosity for the finite element calculations is Apert = 5% . As seen in Fig. 7, for all
the applied strain rates, the force obtained from the finite element calculations compares well
with the fundamental solution until the end of the post-critical regime. This suggests that the
unloading waves emanating from the necks only influence the axial force after the post-critical
regime (full localization). The noticeable oscillations in the axial force obtained from the finite
element calculations in Figs. 7(b) and 7(c) around the maximum force are primarily due to the fact
that the initial values of the field variables, Eq. (3.18), are not the exact fundamental solution of the
problem. Therefore, the imposed velocity boundary condition generate stress waves resulting in
the oscillations in the axial force. Nevertheless, these oscillations do not affect the onset of the full
localization because in our finite element calculations necking does not occur in the absence of
heterogeneous distribution of the initial porosity, section 4. Also the oscillations vanish within the
post critical regime as seen in Fig. 7. The extent of the post-critical regime is strongly dependent
on the applied strain rate but is unaffected by the initial distribution of the porosity. For Ė0 =

1000 s−1 the post-critical regime ranges from the Considère strain (strain at maximum force) to
the macroscopic strain level, E ≈ 0.26, at which the force decreases rapidly. For Ė0 = 10000 s−1

and Ė0 = 50000 s−1 the extent of the post-critical deformation regime is significantly greater,
≈ 0.39 (Fig. 7(b)) and ≈ 0.90 (Fig. 7(c)), respectively. The current and the background strains are
virtually coincident in all sections of the bar during the post critical regime (see Fig. 5) because
full localization has not occurred yet.

Next, we compare the localization strain and average neck spacing obtained from the finite
element calculations and the predictions of the linear stability analysis. To this end, following
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Figure 6. Finite element results. Variation in the ratio of the current and the background circumferential logarithmic strain

Eθθ/E
b
θθ along the normalized axial coordinate X̄ = X/L0 for two applied macroscopic strain rates: Ė0 = 1000 s−1

at the loading time t = 332 µs, and Ė0 = 10000 s−1 at the loading time t = 66 µs. Two initial distributions of porosity

(a) Case I and (b) Case VI are considered. For all the cases, the amplitude of the perturbation in the initial porosity is

Apert = 5%, see Eq. (4.1).

[18,22,45], we introduce the concept of cumulative instability index defined as I =
∫t

tconsidère η
+dt,

where tconsidère corresponds to the time at maximum force (onset of post-critical regime).
Unlike the instantaneous perturbation growth η̂+, the cumulative index – which integrates the
dimensional growth rate of the perturbation– tracks the history of the growth rate of all the
growing modes during the post-critical deformation process and, as such, provides a more
accurate description of the dominant necking modes which determine the localization pattern
for each level of strain [22,35]. The reader is referred to the paper of Vaz-Romero et al. [35] to
see a comparison between the results obtained with the instantaneous perturbation growth and
the cumulative instability index for the problem of a nonlinear elastic bar subjected to dynamic
stretching. The key point is the calibration of the cumulative index in such a manner that the
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Figure 7. Finite element results. Axial force F versus average macroscopic true strain Eavg for three applied

macroscopic strain rates: (a) Ė0 = 1000 s−1, (b) Ė0 = 10000 s−1 and (c) Ė0 = 50000 s−1. For each applied strain

rate, finite element results are shown for three initial distribution of porosity. The amplitude of the perturbation in the initial

porosity is Apert = 5%, see Eq. (4.1). The fundamental solution given by Eq. (3.20) is represented by the solid lines.
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predictive capabilities of the stability analysis can be exploited. For this we rely on the finite
element calculations corresponding to the lowest strain rate investigated Ė0 = 1000 s−1. Recall
that the linear stability analysis is only valid to describe the first stages of the necking pattern
development (as anticipated in section 3). In other words, it is only valid when the neck-like
deformation field shows only a small deviation from the background strain (see Fig. 5). In that
case the force exerted on the bar is close to the fundamental solution (see Fig. 7). The calculation
for Ė0 = 1000 s−1 predicts that the drop of the force, i.e. the end of the post-critical regime and
thus the upper bound of strain at which the stability analysis can be applied, occurs at t = 299 µs

(which corresponds to macroscopic axial strain E = 0.26). Inserting this value in the upper limit
of the integral which defines the cumulative index we obtain I as a function of the normalized
Lagrangian necking wavelength Lneck/D0, calculated as Lneck/D0 = π/ξ̂ (see [26]).

The I− Lneck/D0 curve for E = 0.26 is shown in Fig. 8(a). Short wavelengths are damped
due to stress multiaxiality effects and long wavelengths due to inertia, such that the curve
I− Lneck/D0 shows a maximum for a given necking wavelength, called the critical necking

wavelength, denoted as
(

Lneck/D0

)c
. The corresponding value of the cumulative index, called

the critical cumulative index, is denoted as Ic. For Ė0 = 1000 s−1 we have that
(

Lneck/D0

)c
=

3.89 and Ic = 6.72. The critical wavelength determines the necking mode that grows the fastest
and defines the average neck spacing in the localization pattern. Next, we consider cases with
applied macroscopic strain rates varying from 2500 s−1 to 50000 s−1. This range of strain rates
corresponds to values of the inertia parameter within the range 0.0126 6 H̃−1 6 0.251. For each
strain rate, the critical wavenumber and the strain for which the maximum of the I− Lneck/D0

curve meets the condition I = Ic, are determined. This process is exemplified in Figs. 8(b) and
8(c) which show the cumulative instability index I versus the normalized Lagrangian wavelength
Lneck/D0 for Ė0 = 10000 s−1 and Ė0 = 50000 s−1. The greater the strain rate, the greater the strain
required to meet the criterion I = Ic. Note that the increase in the applied strain rate has a strong
damping effect on long wavelengths due to the increase in inertial effects and the maximum of
the I− Lneck/D0 curve moves to shorter wavelengths. Using a critical value for the cumulative
index is based on the idea that there exists a certain level of material instability that triggers the
localization process. We acknowledge that this is a rather crude idea but it allows us to calibrate
the linear stability analysis in a simple manner, and check its predictive capabilities.

The comparison between the localization strains obtained from the finite element calculations
–corresponding to the drop in the force– and the predictions of the linear stability analysis –strain
at which the criterion Ic = 6.72 is fulfilled– is shown in Fig. 9(a). Good agreement between the
finite element results and the analytical predictions is noted. The maximum difference between
finite element predictions and analytical predictions is within 15%. As shown in the figure, the
localization strain increases nonlinearly with the parameter H̃−1 due to the stabilizing effect of
inertia on the material flow stress. In these plots we use the inertia parameter, H̃−1, instead of
the strain rate, Ė0, in order to better compare our results with the numerical and experimental
data available in the literature for different materials (or constitutive model/parameters) and
specimens. The variation of localization strain with the parameter H̃−1 for porous aluminum
and copper bars obtained from the finite element calculations of Guduru and Freund [28] are
also shown in Fig. 9(a). Despite the differences in the constitutive model parameters used, and
the fact that the numerical perturbations triggered localization in the calculations of [28], a good
qualitative agreement between their and our results is noted from Fig. 9(a). The comparison
between the average neck spacing obtained from the finite element calculations and the critical
wavelength predicted by the linear stability analysis –necking wavelength for which the criterion
Ic = 6.72 is fulfilled– is shown in Fig. 9(b). The agreement between the numerical predictions and
the analytical predictions is excellent. It shows that the linear stability analysis, calibrated using a
reference value for the cumulative index, can be used to predict the average necks spacing in the
bar for a wide range of values of H̃−1 (i.e. a wide range of applied strain rates). This is remarkable,
especially taking into account the simplicity of the analytical model which includes a series of
hypotheses (waves effects neglected, 1D character, linear nature, frozen perturbation coefficients,
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Figure 8. Linear stability analysis. Cumulative instability index I =
∫t

tconsidère η
+dt versus normalized Lagrangian necking

wavelength Lneck/D0 for three applied macroscopic strain rates. (a) Ė0 = 1000 s−1, E = 0.26 and t = 299 µs. (b)

Ė0 = 10000 s−1, E = 0.43 and t = 54 µs. (c) Ė0 = 50000 s−1, E = 0.89 and t = 29 µs. The strains considered in

each case are such that the maximum of the I − Lneck/D0 curve is Ic = 6.72.
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Bridgman correction...) to make it mathematically tractable. In Fig. 9(b), we also compare the
variation of average neck spacing with H̃−1 for aluminum and copper bars obtained from the
finite element calculations of Guduru and Freund [28] and experiments of Grady and Benson [46]
with our results. A good qualitative agreement between our results and that of Guduru and
Freund [28] is noted. In the experiments of [46] only a limited range of values of H̃−1 was
covered, nevertheless, the experimental data show a decrease in Lneck/D0 with increasing H̃−1,
in line with our results. The quantitative differences in Fig. 9(b) is likely due to the differences in
the constitutive model parameters considered here and in [28], and the fact that the constitutive
parameters used here were not calibrated to describe the mechanical response of the materials
tested in [46].

Furthermore, the linear stability analysis allows us to explain the increasing (decreasing)
scatter in the necks sizes obtained from the calculations as the applied strain rate decreases
(increases), Fig. 4. Fig. 8 shows that the maximum of the I− Lneck/D0 curve becomes weaker
(stronger) as the strain rate decreases (increases). In other words, the prevalence of the critical
necking wavelength over the other wavelengths is weaker (stronger) as the strain rate decreases
(increases). For the lower strain rates considered, the distribution of defects/porosities included
in the model can easily favor necking wavelengths different from the critical one that could grow
faster, leading to the distribution of neck sizes reported in Fig. 4(a). For the higher strain rates
considered, the necking wavelengths close to the dominant one show a clear prevalence over
other wavelengths, and the distribution of defects do not seem to promote the development of any
necking wavelength which is not near the critical one, as shown in Fig. 4(c). These results show
that, as the strain rate increases, the spacing between necks in the localization pattern becomes
more deterministic as they are more controlled by the inertial effects than the random distribution
of the material defects, (at least) for a given constitutive behavior of the material. Recall that the
linear stability results are obtained for strains for which, based on the finite element calculations,
the field variables in the bar remain close to the fundamental solution.

7. Summary and conclusions

This paper examines the inception and development of multiple necking patterns in porous
metallic bars subjected to dynamic tensile stretching at strain rates varying from 103 s−1 to
0.5 · 105 s−1 using finite element calculations and linear stability analysis. In the finite element
calculations the initial porosity (representative of material defects) is varied randomly along the
bar. The constitutive framework employed in the finite element calculations includes many of the
hardening and softening mechanisms that are characteristics of ductile metallic materials, such
as, strain hardening, strain rate hardening, thermal softening and damage-induced softening. The
linear stability analysis developed here, to the best of our knowledge, is the first of its kind for
progressively cavitating elastic-viscoplastic materials. The linear stability analysis also takes into
account the effects of inertia and stress multiaxiality. The key findings of this work are as follows:

• For the lower strain rates considered, the numerical results show that the distribution of
neck spacings is heterogeneous and is sensitive to the initial distribution of the porosity.
In addition, different necks in the bar have markedly different sizes and growth rates. A
rational explanation to these results stems from the linear stability analysis which shows
that, due to the limited contribution of inertia to the loading process, the critical necking
wavelength has a weak prevalence over other growing modes. This seems to be exploited
by the defect included in the calculations to favor necking wavelengths different from the
critical one that could grow faster.

• For the higher strain rates considered, the numerical results show that the distribution
of necks spacings is homogeneous and largely independent of the initial distribution of
the porosity. In addition, different necks in the bar have similar growth rates and sizes.
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Figure 9. Comparison between finite element calculations performed here (current work), finite element calculations

reported in Guduru and Freund [28], experiments reported in Grady and Benson [46] for aluminum and copper, and linear

stability analysis. In our finite element calculations the amplitude of the perturbation in the initial porosity is Apert = 5%,

see Eq. (4.1). (a) Localization strain Eneck versus inertia parameter H̃−1. The linear stability results have been fitted

with the curve Eneck = 0.2145 + 1.8001(H̃−1)0.014678. (b) Average normalized Lagrangian neck spacing Lneck/D0

versus H̃−1. The linear stability results have been fitted with the curve Lneck/D0 = 0.57425(H̃−1)−0.356.

The linear stability analysis shows that, at high strain rates, with the increase in inertia
effects, the critical necking wavelength has a strong prevalence over the other growing
modes. Hence, the heterogeneous distribution of the porosity do not promote necking
wavelengths which are not close to the critical one.

• The linear stability analysis, despite several simplifying assumptions, shows remarkable
capacity to predict the localization strain and the average neck spacings in the porous
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bar for the range of applied strain rates considered. To this end, the calibration of the
linear stability analysis using the cumulative instability index is the key, which we
carried out using the numerical results for the lowest applied strain rate. The qualitative
and quantitative agreement between linear stability analysis and finite element results
suggest that the analytical model captures many of the relevant mechanisms that control
the emergence of the multiple necking patterns in the specimens.

In summary, the most important message of this paper is that the random distribution of
material porosity triggers regular necking patterns at high strain rates. At high strain rates, inertia
effects become very important and the necking pattern seems not to be determined by the initial
distribution of the porosity. Here we also show that at high applied strain rates, necking is not
incepted at the maximum load (or Considère strain) but is followed by an extended post-critical
regime due to the stabilizing effects of inertia. The end of the post-critical regime corresponds to
full localization and at this point the load decreases rapidly. The extent of the post-critical regime
is found to increase with increasing applied strain rate. The extent of the post-critical regime is
also affected by the amplitude of the perturbation in the initial porosity. An increase (decrease)
in the amplitude of the perturbation results in slight decrease (increase) in the extent of the post-
critical regime but does not affect significantly the necking pattern for a given distribution and
loading rate. The post-critical regime will most likely be also affected by, the constitutive behavior
of the material as suggested for fully dense materials in [19,20,26,47] and micro-inertia effects
for porous materials [48–50]. The concerted numerical and analytical tool developed here can
now be used for future research needed to analyze the role of individual hardening/softening
mechanisms on the inception and development of multiple necking patterns in porous metallic
bars subjected to dynamic tensile stretching. In addition, we note that with the advent of new
additive manufacturing techniques for metals, it will soon be possible to manufacture specimens
with controlled levels of porosity to fully validate our numerical and analytical results.
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