
1

TRABAJO FIN DE GRADO

Título: Integración de datos de imagen

molecular y expresión génica

Autor: Carlos Porras Rodríguez

Titulación: Grado en Ingeniería Biomédica

Director: Javier Pascau González-Garzón

Co-director: José María Mateos Pérez

Fecha: 4/7/2014

2

3

Index

Introduction .. 4

Gene expression databases ... 4

What is a gene expression database? .. 4

Existing gene expression databases ... 4

Integrating the gene expression databases: aGEM .. 7

Preclinical imaging .. 8

The purpose of preclinical imaging .. 8

Atlases: a brief definition .. 9

Atlases elaboration process and imaging modalities ... 9

From images to the atlas: Image registration ... 13

Motivation and objectives ... 15

Materials and methods .. 17

ImageJ .. 17

ImageJ functionalities .. 18

Macros and plugins in ImageJ ... 20

Java language .. 22

Understanding aGEM: databases ... 23

Atlas ... 24

Available atlases ... 24

Atlas Selection .. 27

Structure mapping.. 28

Atlas parsing ... 28

aGEM parsing ... 30

Mapping of the structures... 33

Plugin development ... 34

Interface .. 34

Classes ... 37

Results.. 43

Discussion and conclusions.. 45

Future lines ... 45

References ... 47

4

Introduction

Gene expression databases

What is a gene expression database?

The information that can be extracted from aspects like the location and the expression of

certain genes is of great interest in many fields. Using this kind of information we can unravel

the function of the genes in different conditions and diseases, or in embryonic development.

Gene expression patterns in certain organs and developmental stages have been obtained

from several species using microarrays or other kinds of sequencing studies. Data can be

obtained by in situ visualization of the expression levels of different mRNAs, proteins or

transgenic reporters.

Nevertheless, obtaining the information from microarray procedures only yields experimental

data. Enormous quantities of these data are available in the literature, but they are not easily

accessible, and it is highly problematic to retrieve. In order to put some order in this chaos of

knowledge from very different sources, gene expression databases are one possible solution. A

gene expression database can be defined as “a database containing anatomically annotated in

situ gene expression information”(De Boer, Ruijter, Voorbraak, & Moorman, 2009). In this way,

a gene expression database links gene expression data with predefined anatomical structures.

In the past years there have been several initiatives which try to provide a solution to this

problem, their own expression database.

Existing gene expression databases

Table 1 (below) shows several of the different databases which are currently available. Most of

them contain the data for gene expression of mice, which are mammals just like Homo

Sapiens, and which can be used for expression studies to determine the role of genes that

function in different molecular pathways. In this way, a correlation between the expression of

genes in mice and in humans can be found in many cases. As it can be observed in table 2 (also

below), some of them use wild type mice whilst others use transgenic mice. The information

5

which can be extracted from all of them, as it is also observable in the table, is not the same:

they include the gene expression from different Theiler Stages (Stages of embryonic

development in mice) where TS1 is the one-cell zygote and TS28 includes the information for

adult mice. Also, the information is not organized in the same way: some of them use a

vocabulary annotation, others use an ontology and EMAGE uses a spatial framework. The

difference between the vocabulary annotation and the ontological annotation is that in

ontological annotations there is a clearly established hierarchy among the structures, whilst in

vocabulary annotation, the structures are just a list, without any kind of hierarchy. Among the

most important gene expression databases we can find for mice are EMAGE, GXD,

ArrayExpress, GENSAT, Allen Brain Atlas, EUREXPRESS and BioGPS. In the following paragraphs,

a brief description of all these databases is going to be presenting, highlighting the most

interesting features of each one.

Table 1: Gene expression databases available, websites and species. Obtained from (De Boer et

al., 2009)

Table 2: Details available in each of the atlases. Obtained from (De Boer et al., 2009)

6

EMAGE is a project from Heriott-Watt University in Edinburgh (Scotland, UK). It is a gene

expression database which has been developed together with a mouse anatomical atlas called

EMAP (Edinburgh Mouse Atlas Project). The two tools used together provide a result similar to

the one expected from this project; nevertheless, it can only be used with Theiler Stages from

7 to 23, and only includes the fraction of genetic information which is spatially annotated and

provided by EMAGE. The database includes more than 10000 genes, but only 2500 are

spatially annotated (Richardson et al., 2009).

EUREXPRESS is an integrated project funded by the European Union, proposing an acquisition

of expression patterns based on in situ hybridization of the whole transcriptome. The project

comprises expression data of around 20000 genes which can be described in detail in

developing mouse (Diez-Roux et al., 2011).

ArrayExpress is a public repository provided by the European Bioinformatics Institute (Hinxton,

UK) which uses information from microarray experiments that supports the MIAME (Minimum

Information About a Microarray Experiment) requirements. It integrates up to 12000 genes

from 35 species, including mice and humans. The data for the integration is submitted online

or from local databases and then is curated (checked that it fulfils MIAME) (Parkinson et al.,

2005).

GENSAT (Gene Expression Nervous System Atlas) is a project of the Rockefeller University

founded by NIH (National Institute of Health). It is a public database including gene expression

data for two recombinant mouse lines: BAC-EGFP and BAC-Cre. It uses in situ hybridization and

transgenic mouse techniques to obtain the data. In this database, structures are not annotated

in an ontology, but in a vocabulary annotation (Wheeler et al., 2003).

BioGPS is an interface designed by researchers at Genomics Institute of the Novartis Research

Foundation in San Diego (California, USA). BioGPS is based on a simple, unstructured plugin

interface which allows integrating data from mice, rats and humans, and from either existing

resources from papers or own resources from the developers (Wu et al., 2009).

The Allen Brain Atlas is a project which, as does EMAGE, includes also spatial information,

together with the gene and the anatomical information. It is a project developed by the Allen

Institute for Brain Science in Seattle (Washington, USA). It includes information from human,

mice and non-human primates, obtained by in-situ hybridization of around 20000 genes, as

well as the histological 3D images of the brain (Sunkin et al., 2013).

7

GXD (Gene eXpression Database) is a project from the Jackson Laboratory in Bar Harbor

(Maine, USA). It collects data from scientific literature, laboratories and from large-data

providers, which allows it to capture a broad spectrum of assay types, and covers all

developmental stages and tissues. GXD is updated daily, providing an immediate response to

the biomedical research community. It includes data from around 9000 genes, and integrates

it with other Mouse Genome Informatics (MGI, another project which is taking place in this

laboratory) resources and many other databases (Finger et al., 2011).

Integrating the gene expression databases: aGEM

Although the great amount of available gene expression databases might be beneficial for

researchers, obtaining all the information regarding the function of a certain gene may

constitute a difficulty and inconveniency. It is not only highly inefficient but very user-

unfriendly, since the user will need to deal with several very different interfaces. It is also a

problem for developers, because the various interfaces which will need to be programmed

independently from one another. Also, there will be a problem in resolving synonyms, since

certain anatomical structure or gene might be named in one way in one database and in

another very distinct one in other databases.

aGEM stands for “anatomical Gene Expression Mapping” and it is a platform designed by the

Instituto Nacional de Bioinformática and Unidad de Biocomputación of the Centro Nacional de

Biotecnología (National Institute for Bioinformatics and the Biocomputing Unit of the National

Centre for Biotechnology) in Madrid (Spain). The purpose of the platform is to overcome the

problem which has been mentioned above. aGEM integrates information from EMAGE, GXD,

GENSAT, Allen Brain Atlas, EUREXPRESS and BioGPS databases for mice, and HUDSEN, Human

Protein Atlas and BioGPS databases for human information. It also includes OMIM (Online

Mendelian Inheritance in Man) which is a NCBI tool which allows obtaining a correspondence

among genes and related diseases in humans. The mapping among the different databases

needed to be performed in most cases manually, due to the already mentioned problem of

resolving synonyms. (Jiménez-Lozano, Segura, Macías, Vega, & Carazo, 2009, 2012)

aGEM allows the user to make queries by anatomical structure, returning all the genes that are

expressed in the structure; and by gene, providing all the structures in which the gene is

expressed. It can also find correlations among the findings of the two former query types.

8

Figure 1: aGEM website (“aGEM,” 2014)

Preclinical imaging

The purpose of preclinical imaging

Preclinical imaging is defined as the use of imaging techniques on animals, for research

purposes (that is, veterinary images are not considered preclinical imaging modalities). The

aims include testing new imaging techniques which are in development before using them in

humans, observing the effects of diseases on the physiology of the animals and also the effects

of new drugs on them. Using these techniques, researchers can monitor changes at body,

organ, tissue or even cellular and molecular level, and extract conclusions which may be really

interesting for the field of study.

As happens with clinical imaging, there are several modalities which are of great interest in

preclinical imaging purposes. The modalities can be discriminated into classes according to

different features: the type of energy which is used for producing the image (X-ray, nuclear,

ultrasound, optical, magnetic resonance) or the features we can observe in the images

(anatomical structures in anatomical imaging modalities versus physiological processes in

functional imaging modalities). Each of these techniques is useful for a different kind of study,

depending on which issues we are interested in.

9

Atlases: a brief definition

As far as anatomical images of animals and humans are concerned, it is interesting to merge

the information obtained from those images in atlases. An atlas is defined as a collection of

maps. These maps can be related to geography, representing regions on Earth, but also to

anatomy, representing the structures of the human body (or animals). In an anatomical atlas, a

visual representation of a structure is tagged with text, in a way that one can observe the

picture and relate it with some terms. An anatomical atlas can be elaborated using

illustrations, photos, or medical images. The main methods which can be used to obtain

images which are suitable for their use in an atlas elaboration will be described below.

Atlases elaboration process and imaging modalities

There are many ways an atlas can be obtained from a sample. They can be done by using ex-

vivo techniques as autoradiography, histological maps, taking photographs of different slices of

our tissue of interest, or even making a drawing which represents the tissue more or less

accurately. Nevertheless, the most interesting techniques for elaborating an atlas are medical

imaging modalities, since they allow in-vivo acquisition of images; and it is also easier, since

they do not require the work of removing the structure of interest from the rest of the body

and slicing it. There are many medical imaging modalities which could be considered in order

to obtain a useful atlas for the brain. In the following paragraphs there shall be considered

several options, as X-ray computer tomography (CT), ultrasound, nuclear medicine techniques,

optical imaging or magnetic resonance imaging; considering their pros and cons and justifying

the final decision.

X-ray modalities use high energy photons (in the range of energies from 100 eV to 100 keV) to

produce an image. X-rays are irradiated through the body, interacting with internal structures.

A portion of the energy in the photons will be deposited in the body as a different energy form

and the rest will be received by a sensor which will convert it into an electrical signal. In an X-

ray image, the parameter we can distinguish from the tissue is its density, which is directly

related with the atomic number. The energetic spectrum of X-rays (the amount of photons

with certain energy) determines the contrast of the image: the less energetic the spectrum is,

the higher the contrast; but also the higher the dose to the patient. There are many ways to

10

use X-rays to produce an image, and each of them has its applications. The simplest one is

conventional radiography, in which the body densities are collapsed into one simple image,

which shows the sum of densities of the tissue in one direction. From several conventional

radiographies, and after processing, we can obtain other useful images like digital subtraction

angiography, dual energy subtraction or tomosynthesis, which are of great interest for some

applications, like blood flow monitorization or the enhancement of certain structures of

interest. Nevertheless, the most interesting application of X-rays is probably X-ray computed

tomography (CT). As its own name suggests, we can obtain slices of the sample and observe

the properties it presents much more accurately than when done with a planar radiography.

The most important disadvantages of X-ray imaging are fact that X-rays are ionizing radiation

and produce little contrast among soft tissues due to their almost uniform density; that is why,

in order to image soft tissues as in mammography, we need to compress it and use a lower

energetic spectrum. Also, in small animal imaging, due to the smaller amount of tissue to be

traversed, we need lower energy spectra in order to correctly appreciate differences in tissue.

For elaborating a structural atlas of the brain, using X-ray images is not a good choice since

they do not provide enough contrast in the soft tissue structures which are present inside the

skull.

Figure 2: Third generation (left) and fourth generation (right) computed tomography machines.

A third generation machine uses a rotating source and detector, while in a fourth generation

one, the detector array is static and only the source rotates. Image extracted from (“Asian

Radiology,” 2014)

Another possibility is to use echography, which uses ultrasound pulses which are irradiated

into the body, and then the echoes are detected after a certain time has gone on. Since the

velocity of sound is constant, we can set exactly where the interfaces between the tissues are

situated. In this way, we can also reconstruct tomographic slices of the body. The most

11

interesting issues about ultrasound imaging are the fact that it is a non-ionizing source of

energy, and hence it does not produce problems of DNA ionization due to radiation. It is also

cheap and easy to use. Nevertheless, it is impossible to image through bone or air, and

therefore it is impossible to image a brain using ultrasound, since it is totally enclosed by the

skull. This modality also presents a really low signal to noise ratio, the lowest of all image

modalities.

Figure 3: Ultrasound imaging basics.

A third possible modality is nuclear medicine, which detects the activity of a certain isotope

which emits gamma radiation, either directly (SPECT: Single Photon Emission Computed

Tomography) or by positron annihilation of an electron (PET: Positron Emission Tomography).

The tracer is normally injected into the body combined with an organic molecule, and it is

distributed by the bloodstream. Since the molecules present more affinity by some body

receptors, they will concentrate in those regions and will cause the measured activity to be

higher than in other areas. This image modality is a functional modality, since it detects a

certain physiological activity, and it can be really interesting for purposes such as the

monitorization of the glucose uptake in brain or tumours. However, since it does not

determine anatomical structures (further away from the ones already mentioned), it is not

very interesting for the elaboration of an atlas. It could be interesting to use ex-vivo

autoradiography for this purpose, but needs convenient preparation of the sample.

Figure 4: Mechanism of PET imaging technique (nuclear medicine) Extracted from (“Life

Extension Magazine (LEF),” 2014)

12

Optical imaging uses photons in the range of visible light in order to produce a signal which can

be measured and analysed. Most tissues are transparent up to a certain point to visible light,

and also, we can use fluorescent molecules in order to produce an image, as it is done in SPIM.

Optical techniques are of great interest since they use non-ionizing radiation, which avoids the

animal (or the patient, in the case of clinical applications) problems caused by radiation. There

are some techniques like ultramicroscopy, with which promising results have been obtaining in

imaging transparent, small animals like Drosophila’s brains. Nevertheless, these techniques for

mammal imaging are already in development, and neither of them is so advanced to produce

an atlas which can be used for our purpose. (Menzel, 2011)

For the acquisition of images in order to produce an atlas, it is also interesting to consider

using Magnetic Resonance Imaging techniques. These techniques put the animal into a high

intensity magnetic field, which aligns the spins of all the nuclei within it. Then, a pulse of

radiofrequency is sent to the sample, and an output signal is produced. The output signals are

detected by coils and transformed into an electric signal, which fills up the k-space (Fourier) of

the image. Then, the k-space is processed and the image is obtained. There are several

possible sequences which can be obtained with these techniques, T1, T2 and proton density

images, which provide each of them different contrasts among the different tissues. More

exactly, T1 images provide a great contrast in the soft tissues in the brain, so it would be

interesting to build an anatomical atlas. Apart from the good levels of contrast resolution

which can be obtained, it should be also bear in mind that magnetic resonance uses

radiofrequency pulses, and hence in the range of non-ionizing radiation.

13

 Advantages Disadvantages

Histological cuts Great resolution (differences

can be appreciated at cellular

level).

Ex-vivo. Need for a technician

to prepare the sample.

Autoradiography Shows different slices of the

tissue of interest.

Ex-vivo. Need for a technician

to prepare the sample, who

will get ionizing radiation.

Conventional radiography Cheap and fast Planar. Useless for an atlas.

X-ray computed tomography Cheap, fast and tomographic Low contrast in soft tissue

structures like brain

Ultrasound imaging

(echography)

Cheap and fast.

Tomographic.

Impossible to image through

bone. Low SNR.

Nuclear medicine Tomographic. Functional image (no

anatomy is shown)

Optical image Cheap. Tomographic. Still under development for

mammals

Magnetic resonance Great contrast and spatial

resolution. Tomographic.

Slow and expensive.

From images to the atlas: Image registration

The first step in an atlas generation operation is the image acquisition. The images can be

acquired from a single subject or from several subjects. Acquiring different images from

several subjects allows the compensation of the variations they might appear among them,

and hence, a more accurate atlas can be obtained, since it would represent more generally the

average individual. For this reason, it is necessary that all the images are modified in order to

overlap as much as possible among all the subjects. This process is called image registration.

Registration is defined as the process of aligning images so that corresponding features in all of

them can be easily related (Maintz & Viergever, 1996). There are several registration

14

techniques, which can be classified in two groups: point-based registration (or feature-based

registration) and volume-based registration (or intensity-based registration). In all the cases,

the algorithm involves measuring the values of a function (called cost function) which

expresses numerically how similar or how different two images are. One of the two images will

undergo some kind of geometrical transformation, and then the value of the function is

measured. If the cost function measures differences, it will be desirable to minimize it, and on

the other hand, if it measures similarities, it will be interesting to maximize its value.

Point-based registration is defined as the selection of a set of points in both of the images

which are correspondent among themselves. To register two images in this way, first of all, the

centroids (centres of mass) of the point clouds are needed to be computed and then, they are

aligned using a translation matrix in one of the images. After that, the analysis of the cost

function starts. In the case of point-based registration, the cost function will be the sum of

distances of the points within the two clouds. This cost function needs to be minimized, as it

expresses the error of the registration process.

In intensity-based registration, the whole image volume is used for computing the cost

function which will give us the transformation matrix. Whilst in point-based registration the

issue is which point selection is optimal, in intensity-based registration the most important

parameter defined by the cost function which best suits our images. Most common cost

functions are correlation, sum of squared differences and mutual information (V. Hajnal & L.G.

Hill, 2001). Correlation is a statistical measure of mutual dependence between two variables,

which needs to be maximized in order to register the images. The sum of squared differences

of intensity measures the squared differences in values of intensity between the two images;

due to this fact, it is desirable to minimize it. Mutual information is a measurement which is

taken from the entropies of each image individually and the joint entropies of the histogram.

The larger mutual information is, the more accurate is the registration of the two images.

Registration techniques can be enhanced by using multi-resolution scheme approaches. For

this approach, first, the two images reduce their resolution and are registered. Then, bigger

resolution images are transformed using the matrix which was computed for the low

resolution images and then a new registration procedure is performed, using the new

transformed image as the starting point. In this way, registration will be much quicker and will

avoid getting stuck in local minima.

15

Motivation and objectives

As far as all the background information about atlases and gene expression databases has

already been analysed, now we need to define further the project, its objectives and facts of

interest. Gene expression databases, in most cases, do not provide any kind of integration with

anatomical information of where those genes are expressed. The characterization of the whole

transcriptome for structures like the brain is of limited utility if we have no anatomical

information. Combining the databases with the anatomical information provided by an

anatomical atlas, we can have lots of advantages. First of all, the most immediate advantage

that such integration would introduce would be user-friendliness. Part of this problem is

solved with the aGEM tool already developed, that integrates different databases into a single

user interface.Visual representation of the gene locations would improve user experience if it

is integrated with aGEM. As a second advantage, this integration could facilitate the

connection between imaging and gene expression information when defining or analysing

results from preclinical experiments.

 The definition of an imaging protocol in order to study the phenotype of a transgenic

animal model could benefit from the results of this project, since the researcher could

look for anatomical structures related to the genes that have been manipulated.

 The results of image quantification are usually an statistical parametric map, that

presents the statistical significance of a certain analysis for every voxel. Significant

areas from this image could be related to the underlying genes by means of the

proposed integration tool.

So, the main objective of the project is to connect all the information provided by aGEM and

by the atlas. For the issue, it is needed to find how the information is stored and related in

aGEM, in order to extract enough information of interest to program a first version of the tool.

Also, it is required to study which atlases are available and which one is the most suitable for

our purposes. Once all these steps have been done, the kind of program which is going to be

developed needs to be analysed. There are several possibilities, like a program in Java, C++,

Matlab or a plugin for its integration in ImageJ.

16

Once all the necessary information is extracted, an integration step must be done for the

program to be operative. Then, when the information mapping is ready, the interface of the

program can be written. The first version of program should be able to perform certain query

types:

1. Anatomy query: Given a list of anatomy structures, the user should be able to select

any of them and the program would launch a query showing the genes and their

information expressed in the structure, which would be shown in the atlas images.

2. Gene query: The user selects a gene and the program would detect in which structures

is the gene expressed and show them in the atlas images.

The purpose in a first stage is to integrate part of the information contained in aGEM in a beta

trial version of the interface, in order to check its real utility.

aGEM
(Genes and
structures)

Atlas
(structures)

Program

17

Materials and methods

In this section, the steps which have been followed for the development of the project are

going to be explained in detail, as well as the tools used for the purpose.

ImageJ

Although, as said, there are several possibilities to build such a program, in a final stage the

chosen option was to build a plugin for ImageJ (http://imagej.nih.gov/ij/). This choice was

made based on the fact that imageJ is a widely used tool by researchers and relatively easy to

implement due to its base in Java programming language (which will be described later).

ImageJ is an image processing program developed by the National Institutes of Health (NIH). It

is a public domain program which has a wide variety of functionalities, where probably the

most interesting one for our purposes is its extensibility: it was designed with an open

architecture, allowing programmers to increase its functionalities by adding plugins

programmed in the Java programming language or by recording macros. ImageJ is a platform

available for its use in Windows, Linux and Mac OS and it can be downloaded, used as an

online applet or installed in any computer with a Java virtual machine 1.5 or later version.

Since the ImageJ code is fully available online, programmers can develop their own

distributions of ImageJ. One of the most popular of these distributions is the one called Fiji (Fiji

Is Just ImageJ) which includes some of the most useful plugins already integrated.

There are several functionalities which make ImageJ a very versatile and desirable

environment to work with images. First of all, it is compatible with a large collection of

different image formats, among which are JPEG, GIF, PNG, TIFF, BMP, DICOM, FITS or even raw

information images (just an array of numbers which can be ordered to build the matrix which

will show up the image) notwithstanding the bit depth. Some other formats, as NIFTI or LEI,

are available in ImageJ by installing the plugin “LOCI Bioformats Importer” (included in the Fiji

distribution). Some of the basic operations which are available to be done in ImageJ are

adjusting window and level of the image, applying lookup tables, thresholding, filtering... All

these operations are performed in one or some regions of interest (ROI) which can be

designed from scratch by the user (“Image Processing with ImageJ: José María Mateos Perez,

Javier Pascau: 9781783283958: Amazon.com: Books,” n.d.).

18

ImageJ functionalities

In the management of medical and microscopy images, one of the most basic and most

interesting tools is the adjustment of window and level. This is especially important in the case

of X-ray images, in which the grey level of the image corresponds to certain density of the

tissue. The densities are mapped into units of image intensity called Hounsfield Units, needed

to standardize all the images obtained by different X-ray machines of different developers. In

the Hounsfield Unit scale, air is black and represented with values of -1000, while water

obtains the grey level 0 and bones present values around 1000. Nevertheless, it could be

interesting to enhance the contrast of soft tissue (with a density around that of water, that is,

zero) and reduce the amount of detail in bone. For this purpose, one can select 0 as the central

value of the scale and map the nearby values into others which are more distanced among

them. In this way visualization is enhanced. In the lower images it can be appreciated how

window and level settings can be adjusted in order to distinguish better some of the structures

of the image.

Figure 5: Automatic Window and Level adjustment using ImageJ. Adjusted image is in the left

side, the right one is the original.

Window and level processing does not, however, change the values of the pixels in the image.

It is only a change which is performed for visualization. There are other possible changes

similar to the one performed by window/level adjustment, which are called lookup tables

(LUTs). LUTs change the way different pixel values are displayed, and they do not need to be

linear, or to conserve greyscale (they can change greyscale values into RGB colour values)

19

Figure 6: Application of a fake colour LUT to an image

Thresholding is an operation used to segment an image. Segmentation can be defined as the

extraction of a portion of an image, which is of our interest. It takes into account also the grey

level of the pixels, and establishes that pixels above (or below) a certain level of intensity are

of interest for us and we want to extract them. ImageJ can perform single thresholding, by

selecting only one intensity level, or multi-level thresholding, if there is an interesting band of

intensities which is wanted to be segmented. In any case, thresholding produces a binary

image which will have pixels with a value of 255 in the places in which those pixels of interest

could be found in the original image, and pixels with value 0 in the places in which the value of

the pixel in the original image was out of the range of interest.

Figure 7: Double thresholding (left) of an image with ImageJ.

Filtering an image allows to reduce noise, or to enhance edges in an image, among other

possible modifications. ImageJ allows the user to filter the images with Gaussian filters (low

20

pass isotropic non-adaptive filters) which will blur the image causing a net noise reduction, but

also causing edges to be lost. It has also implemented the median filter (which substitutes the

value of the pixel by the median of the values of the neighbourhood), and it allows to use

personalized filters.

Figure 8: Application of a Gaussian Low Pass Filter to an image with noise.

Macros and plugins in ImageJ

A macro is a set of instructions which are stored in order to be executed sequentially using a

single call or instruction. ImageJ has several implemented functions, but in many cases,

performing a certain task in image processing does not only require one instruction, but

several, one after the other. By storing them in a macro, one can repeat them all the times

they are desired without need of going one by one. ImageJ has enclosed a macro recorder

which records all the instructions the user has performed in the program and saves them in a

macro. In this way, then the macro can be executed and ImageJ will be able to repeat exactly

the same process which was executed, step by step. For example, the operation of edge

enhancement that was performed for the image below can be stored in a macro in this way:

21

Figure 9: Application of an edge enhancement macro (upper image) to a sample image

Nevertheless, the weak points of macros are that they do not really add any new functionality

to ImageJ, but use functionalities which are already implemented. Also, they are quite slow

compared to plugins.

A plugin is defined as an application which is implemented to add new functionalities to

another which already exists. They are not needed for the overall workflow of the main

application, but the new functionalities they add to it may be vital to perform certain tasks.

Plugins are a way to allow programmers to collaborate with the development of an application

and to split certain functions from the main code which would increase too much the size of

the application. In some cases, they are also used to restrict the access to the root code of an

application to avoid software licensing conflicts. Plugins, as macros, can use the functionalities

which are already present in ImageJ to perform some of their functions, but they do not limit

to these functionalities exclusively. Plugins in ImageJ are programmed in the Java

programming language.

22

Integrating the tool planned in this project into ImageJ as a plugin seems natural since all of

the image processing tasks which need to be used for the project are already integrated into

ImageJ, so there is no need to program them again. Also, programming a plugin is of great

interest in case of possible future distributions of the tool or its expansions, since it will be

then fully compatible with any terminal in which ImageJ is installed. The source code for the

application which was worked out in this project is fully available in a public GitHub repository

(Porras Rodriguez, 2014).

Java language

Java is a computer programming language which was originally developed by Sun

Microsystems (later, this company would be acquired by Oracle) from 1991 to 1995, when its

first version was released to the public. It is a concurrent and object-oriented programming

language. This means that Java allows the execution of several computations at the same time,

and these computations operate in objects which are distributed into classes. A class in Java is

a set of objects which share certain defining parameters. Objects in classes are encapsulated,

which means that they cannot go away the invariants of the class; in other words, if an object

belongs to certain class it cannot acquire parameters which are out of the definition of the

class. In this way, errors are avoided in computation, and objects are coherent among them.

Java is a compiled language, meaning that the code needs to be translated first into machine

language by means of a compiler before executing. Classes include certain predefined methods

which can be used to make modifications in some objects of the class. The methods and

definitions of each class can be found in its corresponding Javadoc document.

Java programs can be written in several ways: in bare text processors, or in more sophisticated

programs like Integrated Development Environments (IDEs). IDEs are software applications

which provide comprehensive facilities to computer software development. IDEs integrate

source code editors, build automatizators and debuggers. In the case of Java, among the most

widely spread IDEs are BlueJ, NetBeans and Eclipse. The use of Eclipse IDE was straightforward

because it is the one most used at the Laboratorio de Imagen Médica (Laboratory of Medical

Imaging) at Hospital Gregorio Marañón. It is highly convenient also since it can debug and try

directly the plugin code in ImageJ. All the processes of programming in Java that are

performed in this project use the Eclipse IDE.

23

Java allows the programming of interfaces using Swing, which is also compatible with ImageJ.

Swing is the main Java graphical user interface (GUI) toolkit, and uses separated classes for

each of the windows which are generated by the program. Since it is extensible, Swing permits

the possibility to custom all of its implementations using Java inheritance mechanisms.

Understanding aGEM: databases

aGEM is a platform which integrates lots of information from many different sources. This

information should be stored in a database to allow interactions as accession, modification and

update. There are several standards of databases which can be used. In the case of aGEM, the

information is stored in a MySQL database, which contains multiple tables.

MySQL is a relational database management system (RDBMS) which is based on the SQL

language. This is a programming language specifically designed to manage data in a database

in a comprehensive way (SQL stands for Structured Query Language). MySQL organizes

information in tables, to which the user can access using the queries. In any database in

MySQL, the user may retrieve information (SELECT queries), delete information (DELETE

queries), modify the information in a given field (UPDATE queries) or introduce new

information (INSERT queries).

In aGEM, the information is contained in 112 tables, each one storing information of a

different database, or different datasets involving the same database. For this very first version

of the program, the only tables which are going to be used are the tables of the database GXD,

since they provide the most complete information of the genes and structures. The

information on structures was obtained from the table tbvg_mgi_gxd_structure, extracting all

the structures which are enclosed in the brain and discarding the others. Genes, on the other

hand, are contained in the table tbvg_mgi_gxd_full. The other tables for GXD contain either

repeated information or information which is not of interest for the application like the

method used to determine the gene presence or absence in a certain structure.

24

Atlas

As explained before, it is necessary an atlas which represents the mouse brain in a way that

many structures can be recognised and mapped into it. It has to be an atlas which includes an

image obtained by magnetic resonance imaging techniques in order to be able to differentiate

the structures. The atlas has also to contain comprehensive tags which are easily extracted by

means of simple image processing techniques such as thresholding or window and level

adjustment. The number of tags has to be average: a very big number of tags would make the

mapping of the atlas with the structures of aGEM unbearable, whilst a low one would limit the

usefulness of the project. Also, the information of the tags must stand on a format such as

XML, which is compatible with an ontological distribution of the tags and also parseable with

Java.

Available atlases

6 atlases were under consideration for this project. Some of them are found in the supporting

bibliography, whilst others required more in-depth investigation.

Name of

the atlas

Number of

tags

Dimensions MR Image

available

Tag format Other information

Toronto 43/62 210x274x141 Yes .txt Information

unavailable in

documentation

Ma 20 192x96x256 Yes (8 bits) Unavailable Only atlas image

available

LONI MRM 799 256x256x256 Yes .xml

Duke 38 1024x512x512 Yes .xml RGB tag image

Allen 1205 No (only

histological)

.xml Highest number of tags

and resolution

LONI MDA 53 346x346x346 Yes .xml Final choice

Table 3: Summary of the different atlases considered in the project.

25

Toronto Atlas is a project of the Clinical Integrative Biology department of the Sunnybrook

Health Sciences Centre in cooperation with the Mouse Imaging Centre at the Hospital for Sick

Children of the Toronto Centre for Phenogenomics. The atlas which was of interest was the so-

called Variational Mouse Brain Atlas, which is defined as “a three-dimensional atlas of the

mouse brain, manually segmented into 62 structures based on an average of 32 μm isotropic

resolution T2-weighted, within skull images of forty 12 week old C57Bl/6J mice, scanned on a

7T scanner”(Dorr, Lerch, Spring, Kabani, & Henkelman, 2008). Nevertheless, the atlas which is

available for downloading and free use is not this one, since it presents only 43 tags instead of

62. When information on the atlas of 43 tags was looked for, the paper is unavailable for the

public.

Regarding the Ma Atlas, it is a project of the Mount Sinai School of Medicine in New York, the

University of Florida, the Stony Brook University (New York), Brookhaven National Laboratory,

and The National High Magnetic Field Laboratory. The project described by the paper consists

in the development of “A comprehensive three-dimensional digital atlas database of the

C57BL/6J mouse brain was developed based on magnetic resonance microscopy images

acquired on a 17.6-T superconducting magnet. By using both manual tracing and an atlas-

based semi-automatic segmentation approach, T2*-weighted magnetic resonance microscopy

images of 10 adult male formalin-fixed, excised C57BL/6J mouse brains were segmented into

20 anatomical structures.” In order to access to the information, registration was needed in

the website of the project.(Y Ma et al., 2005; Yu Ma et al., 2008)

Figure 10: Ma atlas. It can be observed the magnetic resonance image (A) and the structures

tag image (F). In F, each colour represents one structure in the list. The two images can be

overlapped (B)

26

The third atlas which was considered was the atlas developed in at the Center for In Vivo

Microscopy of Duke University, in collaboration with the Laboratory for Bioimaging and

Anatomical Informatics of Drexel University. This atlas is developed in Waxholm Space, which

is defined as the standardized coordinate system defined for rodent brain atlases (mice and

rats). Waxholm space was promoted by the Digital Atlasing Task Force committee in May 2008.

It is a high resolution atlas which contains images not only of magnetic resonance, but also

histological images of the brains. It is defined as “multi-specimen, multi-spectral space: 3

different MR acquisitions, delineations of 37 structures, and a Nissl volume for each of 7 male

adult C57BL/6J mice.” (Johnson et al., 2009)

Figure 11: Duke University atlas. It can be appreciated the three magnetic resonance images

(T1, T2 and T2*) and the labels overlapped with them.

Finally, the two atlases developed by the Laboratory of Neuro Imaging (LONI) of the University

of California in Los Angeles (UCLA) were also examined. These two atlases are the Magnetic

Resonance Microscopy atlas (MRM) and the Minimum Deformation Atlas (MDA). Both atlases

are built during the evolution of a project committed “to determine whether brain atrophy

occurs in the mouse model, experimental autoimmune encephalomyelitis”. For the purpose,

the atlases were necessary to evaluate changes in the brains of the mice affected by the

induced disease. To build up the MRM atlas, “magnetic resonance imaging was performed

using an 89 mm vertical bore 11.7 T Bruker Avance imaging spectrometer with a micro-imaging

gradient insert with a maximum gradient strength of 100 G/cm and 30 mm birdcage RF coil

(Bruker Instruments).” Then, after semiautomatic segmentation (automatic, but manually

corrected for inaccuracies) the MRM atlas was obtained. Using image processing techniques

on MRM atlas (mainly several constrained affine transformations) the developers obtained the

MDA atlas.(MacKenzie-Graham et al., 2004, 2006)

27

Figure 12: Magnetic resonance image of the LONI MDA atlas.

Atlas Selection

In order to select the atlas, several features were considered. First of all, the number of tags

should not be too small or too large. Ma atlas was supposed to contain only 20 tags (according

to the bibliography) which are too few, and it did not even have a separate file containing

tags, so it was discarded because of this at first. LONI MRM atlas contained 799 tags, a number

which was too large for the pretensions of the beta version. Also, the number of tags available

in the Allen Brain Atlas is huge. Atlases like Toronto, Duke or LONI MDA were found to be an

interesting choice regarding this particular aspect.

The second requirement was that the atlas should contain a magnetic resonance image of the

brain of the mouse, for the reasons detailed above. Only the Allen Brain Atlas included an

image which was not a magnetic resonance, but histological images of different cuts of the

brain. Nevertheless, this atlas had already been discarded because of the huge number of tags

it presents.

Another requirement is that the atlas images should present appropriate dimensions. If the

dimensions of the image are too small, then it means that the pixel size is too big, and hence,

less spatial resolution. But, on the other hand, if the image size is too big, the program will be

delayed in its execution because of that. Duke Atlas presents a huge image, so although its tag

image was a user-friendly RGB image, the execution using this atlas would have been too slow.

Also, the number of tags it contains (38) is too low for the great spatial resolution which is

achieved in the atlas. For this number of tags, it is not needed such a big image to show them

correctly.

28

It is also essential that the atlas has a tag list which can easily be recognized and parsed using a

Java program. Among these atlases, only Ma atlas did not present such a file. All the

information of the tags of this atlas is fully available online upon registration in the webpage of

the institute which developed the atlas, but this is not enough for the purposes of the

application: it is a highly inconvenient issue for the user, and also for the programmer. All the

rest of the atlases include attached a file with the information about their tags, either in .txt

format or in .xml format. Text files can be easily read by simple Java programs. XML files

require more advanced techniques as the use of parsers like DOM, SAX or JAXB, but are

relatively easy to handle.

Last, but not least, it is necessary that all the documentation regarding the atlas and its

development should be public, fully accessible, and clear enough. All the atlases have this

information available; it was only in the case of the Toronto atlas where the information was

obscure. The team which developed the Toronto atlas had several atlas projects published,

and it was not really clear to which one of the atlases belonged each piece of documentation.

So, it was finally discarded too.

All these steps leaded the programmer to choose the LONI MDA atlas, since it was the one

which best fulfilled all the requirements of the project, which have been described above: It

provides a magnetic resonance image which is neither too big nor to small, a number of tags

which is also adequate, and all the process which lead to its development can be found clearly

in the bibliography.

Structure mapping

Atlas parsing

The mapping of the structures is probably the most important step of the whole project. As

already said, it cannot be performed by any automatic algorithm due to the different number

and level of detail of structures which is present in aGEM and in the atlas. aGEM contains 276

different structures which need to be mapped into the 38 tags which are defined in the atlas

and are related to brain (the other 15 tags represent the spinal cord and other structures of

the Central Nervous System which are not related to brain).

29

The first step to perform the structure mapping was to download the atlases and obtain the

structures contained in them. For this purpose the files including the tags were to be parsed.

For parsing, two options were considered: DOM and JAXB. JAXB seems immediate since it

allows automatic extraction of the information contained in the .xml file. It generates

automatically a class in Java which encloses the values that are extracted from the .xml file as

internal parameters. In this way, an object of the new class will be created for each object that

the parser reads from the .xml file.

Although the use of JAXB might seem quite straightforward, it was not the option finally

chosen. Due to irregularities in some of the .xml files, the JAXB parser did not work properly.

After several trials with the different tag files from the different atlases, finally, DOM was the

parser of choice. Unlike JAXB, DOM needs to be programmed manually and in a different way

for each case. Although the programmer would normally need also to create a class for the

objects contained in the .xml files, in this case the class which was automatically generated by

JAXB for the .xml file containing information from the Allen Brain Atlas was to be used, with

some modifications, in order to include the fields that appear in the other atlases and did not

in Allen’s. This class was named “Structure” and is one of the main pillars on top of which the

whole application stands.

After all the atlases were parsed, then the number of tags could be quantized and the

importance of the different fields could be contrasted. In this way, it could be observed that

apart from the advantages already described for the use of the LONI MDA atlas, it could be

found that the correspondence between the structures and the tag image was immediately

implementable: one of the fields in the .xml file included the grey level of the structure in the

image containing the volume information of the tags. So, the use of this atlas was even more

encouraging, since the programming is simpler and less prone to errors.

The class which reads the atlas and stores the list of structures in it, including all the

information which would be enclosed in them, is called “MDAtoSTR” class. When an object of

the MDAtoSTR class is generated, the information of the .xml file containing the tags is read

and stored in a list in the variable MDATags.

30

aGEM parsing

As already mentioned, information in aGEM was not contained in an .xml file, but in a MySQL

database. Nevertheless, this was not in any case an obstacle for the integration of the

information into the application. Since the database containing aGEM is stored in the server of

the National Centre for Biotechnology, and for the execution of the project, the information

was needed both there and at Gregorio Marañón Hospital, the database was dumped into a

file. Then, the file was loaded in the server of the hospital in order to rebuild the database.

The second step was to determine which tables contained all the information which was

needed to be read by the plugin. For that purpose, the tables were examined one by one using

queries which extracted all the fields contained in all of them. The queries were launched by

means of MySQL Workbench 6.0 for Windows 7. In this way, it was determined that the

information which was of interest was contained in the tables tbvg_mgi_gxd_structure and

tbvg_mgi_gxd_full.

The information in the table tbvg_mgi_gxd_structure contains, among others, the following

fields of interest, which were added to the original “Structure” class that had already been

defined:

1. _Structure_key: It contains a number which is used as a unique identifier for each

structure. It contains a different key number not only for each structure but for each

Theiler Stage (homologous structures in different Theiler Stages are treated as

different)

2. _Parent_key: It stores the number corresponding to the identifier of the structure in

the immediate upper level.

3. _Stage_key: It is the number of the Theiler Stage to which the information regarding

the structure is related.

4. printName: It describes the name of the structure.

5. treeDepth: It is a number containing the number of levels of depth of the tree needed

to go down in order to get to the structure.

To extract the brain structure, a query was launched. The constraints were that the value of

the field _Stage_key should be 28, since in the atlas, the samples were adult mice in that stage;

and also a constraint in printName, which should be similar to “brain”. After the query was

launched, the result found was that the _Structure_key for the structure representing the

whole brain in the 28th Theiler Stage was 7005.

31

Figure 13: MySQL workbench. Query example and results.

Then, after knowing the root structure (brain), it was needed to extract all the structures

below it in the structures tree. For that purpose, it was highly unpractical to use MySQL

Workbench, since many queries would have been necessary. The procedure that was followed

was to extract directly the list into the program using Java code that can automatically

generate each query and would also be generating the list. For this issue, it was needed to add

to Eclipse an external jar library: MySQL Java Connector 5.1.29.

The program follows a recursive readout method: It first reads the structure “brain” and adds

it to the result set. Then, the result set is iterated by going one by one, getting the field

_Structure_key of each of the elements in the result set and adding to it all the structures

found in the table which contain the very same number in the _Parent_key field. In this way,

the total amount of structures is increased in each iteration due to the addition of more

children. When the structures of the last level are reached, the set of structures containing as

_Parent_key the _Structure_key of any of them is empty, so nothing else is added and the

program finishes its execution. In this way, a plain list of all the structures is built

independently of the level of the tree of structures that can be found. Each of the structures in

the aGEM table generates an object of the Structure class in Java.

32

Figure 14: Workflow of the readout of structures from aGEM.

It was also observed that the gene information which was needed should be extracted in a

very similar way. The information regarding the genes is found in the table tbvg_mgi_gxd_full.

This table contains, among others, the following interesting fields:

1. index: It includes a single gene identifier in an analogous way as the field

_Structure_key did in tbvg_mgi_gxd_structure

2. symbol: A short code of letters that can also be used to identify uniquely each gene.

3. name: The name of the gene.

4. printName: The name of the structure which contains the gene. There is one entry per

gene and per structure.

5. _Structure_key: It contains the field _Structure_key from the table

tbvg_mgi_gxd_structure corresponding to the structure which contains the gene.

6. _Stage_key: Theiler Stage.

7. _Strength_key: Strength of the gene expression. It adopts a numerical integer value

between -2 and 8 (not including the value 0). The meaning of the value can be found

by performing a query in the table tbvg_mgi_gxd_strength, and corresponds to:

 -2: Not Applicable

 -1: Not Specified

 1: Absent

 2: Present

 3: Ambiguous

 4: Trace

33

 5: Weak

 6: Moderate

 7: Strong

 8: Very strong

Another class was programmed for the acquisition of the gene list, analogous to the

“Structure” class, which was called “Gene” class. It includes a field for each of the fields of

interest given by the table. In order to extract only the genes of interest, the gene extraction

needs to be performed after the structure extraction. The list of structures which was

extracted from aGEM is iterated again, and all the genes regarding each of the structures in

the list are added to another list. As in the aGEM table, the layout which was chosen to store

the information regarding genes was to store each gene expressed in each different structure

in a different object of the “Gene” class, which means that there can be several objects for the

very same gene. This fact will be of great relevance later, since it makes the programming of

the interface more complex.

All the methods which are used to read the information from aGEM (both from structures and

from genes) and the lists which contain the information which has been already read are

enclosed in the class “aGEMtaglist”. When initialized, the class aGEMtaglist generates both

lists storing them in its variables tagidentifiers for structures and allgenes for genes.

Mapping of the structures

When the lists of structures contained in both aGEM and the atlas were already extracted,

then the correspondences among them were established. There are two main problems which

must be solved during the mapping process. The first one is the already mentioned problem of

resolving synonyms: in anatomical terms, there are structures which can be named in different

ways depending on the reference which is quoted. For example, in some anatomy textbook

the same structure can be referred as “brain” or “encephalon”. Since this kind of differences

can be given also in the tags from the atlas and the aGEM database, it must be taken into

account when doing the mapping. This is in part the reason why the mapping has to be done

manually and not automatically. The second main problem in the mapping process is the

difference between the number of tags in one and in the other list. aGEM has 276 tags versus

the 38 tags which are available for the atlas; this means that more than one structure in aGEM

34

will point to the one single structure in the atlas. These relationships among tags should be

determined in order to achieve a convenient mapping.

The mapping was performed manually in an .xls file. In one column, the file contains the name

of the aGEM tag and in the right one it contains the name of the corresponding tag in the atlas.

For using the file within the program, it was needed to add a new external jar for Eclipse, to

allow it to read and interpret the file: jxl jar (Java Excel Api). The methods required for reading

the file and importing the results to the program are contained in a new class called “mapeo”.

Objects of this class contain as subsidiary objects an object of the class aGEMtaglist and

another of the class MDAtoSTR, and the methods that relate them.

Plugin development

Interface

The next step is the programming of the interface. Inside the interface there are two steps

which should be clearly differentiated. The first step is the programming of the different

menus which should lead the user to the different types of queries that can be performed.

These menus should be clear enough to avoid confusion. The second step is the programming

of the image processing part: what should be done with the atlas image and the tags image in

order to show the user the result required by the query.

The layout chosen for the menus was the following one:

35

Figure 15: General workflow of the plugin.

For the first decision (Query Type) a generic ImageJ dialog was used. This dialog included two

Radio Buttons, to be checked whether the query wants to be performed anatomically or by

gene. This kind of menu was chosen due to its simplicity to implement and to be used by the

user.

When the user selects any of the options and presses OK, another window pops up. The

window should include either the list of available anatomical structures, or the list of genes

which are present in the brain according to the GXD database. Nevertheless, some conflicts in

the information appeared, both in the anatomical list for the menu and in the gene list. In the

case of the anatomical list, there is a conflict in the fact that either the list from the atlas could

be used or also the list from aGEM, or both combined. Due to the fact that the structures

which will be shown in the images are those in the atlas, it would be nonsense to use the

structure tag list provided by aGEM, since it could not be shown up to that level of detail. In

the case of the gene list, the problem is given by the fact that the genes in the list contained in

the aGEMtaglist object are namely repeated (recall: each gene in each structure generates a

different object of the Gene class and hence will be repeated in the list). Because it is not

desirable that the genes in the menu are shown repeatedly, in order to be shown, the gene

names should be extracted in parallel to a set instead of a list, since a set in Java does not

allow repetitions. In this way, the new set would contain the names of all the genes only once,

so that it can be used for the menu generation.

Once the conflicts are solved, it is needed to choose a window layout for the generation of the

menus. The ImageJ interface dialogs are too simple for this purpose, so they were performed

Query type

Anatomy
query

Structure
selected

Gene 1

Gene 2

Gene 3

Gene query
Gene

selected

Structure 1

Structure 2

Structure 3

36

in Swing. The layout chosen in both cases was a plain scrollable window containing all the

genes or all the structures the user can query about. The user selects one element and then

clicks in “Proceed” button.

To continue with the process, a binary image should be obtained, using it as a mask to overlap

with the atlas image. To identify which are the pixels of the image of tags that should be

segmented, first we need to extract the list of structures of interest. In the case of an anatomy

query, it is straightforward since there will only be a structure of interest, but in the case of a

gene query, a list of structures where the gene is expressed is elaborated. The objects of class

Structure which are selected contain a field, called ID, which is just the value of the grey level

that each structure have in the atlas image.

Once the wanted grey levels are known, binary masks are produced for each one by double

thresholding around the value of interest. If there is only one structure of interest, then

performing the double thresholding once is enough, but on the other hand, when several

binary masks are produced, they need to be combined. They are combined using the ImageJ

image calculator, using a logical OR operator.

After the binary mask containing all the pixels of interest is computed, it should be merged

with the atlas image. It is an operation which is performed by means of the ImageJ image

compositor. The atlas is set to the greyscale channel of the image, while the binary mask is set

as the input in the green channel. The result is an image of the magnetic resonance of the atlas

in which the regions of interest are shaded green.

Together with the composite, a window containing the information pops up. It is just a plain

text, scrollable window which shows the information regarding the query performed. In the

case of an anatomical query, the window will show all the genes expressed in the structure

queried, and their strength; while in the case of a gene query, it will show all the occurrences

of the queried gene in the main gene list, with the information regarding location and

strength.

37

Classes

Figure 20: Class diagram of the plugin.

For the correct working of the application, there are 9 core classes. These classes have been

already mentioned, and are included in the diagram above. In any case, it is interesting to

perform an individual analysis of all of them in order to understand better the workflow of the

program.

Class Structure

It is a class which works as a container to include all the data of the structures which are read

in the atlases and in the database. The class Structure contains all the variables necessary to

import information for the fields of the structures of all the atlases which were used, and the

information present in the aGEM table. That is the reason why some of the variables it

contains are unused in the program: they are not needed for this version, but are ready to be

used in following versions the can potentially include more atlases. It also contains the getter

methods (which retrieve the value in the field) and setter methods (which modify the value in

the field) for all of the variables. The variables, unless otherwise said, are all of the String class:

 id: It contains the value extracted from the ID field in the MDA atlas .xml file. This id

field, as already said, includes the grey level of the structure in the tags image.

38

 acronym: It includes the abbreviation of the name of the structure. It is used both for

the MDA structures and the aGEM structures.

 name: It includes the name of the structure. It is also used in both MDA and aGEM

structures.

 children: It is an ArrayList of objects of the class Structure, which contain as objects

inside the list, the substructures of the immediate lower level. It is also used in MDA

and in aGEM, although the procedure to fill the list is not the same in both cases.

Class Gene

It is a class analogous to the Structure class in the sense that it also works as a container for

the data read from the genes in the database. It contains all the variables needed to read the

data from aGEM, even though they might not be used for the actual version of the program. It

also includes all the getter and setter methods for all of them. The following variables are the

ones which are of major importance, and, unless otherwise said, are all of the String class:

 id: It stores the identifier of the gene

 symbol: It includes an abbreviated name for the gene.

 name: It includes the name of the gene

 structureName: It is the name of the structure to which the gene belongs.

 structureKey: It is the key of the structure to which the gene belongs

 strength: It is a string which expresses the value of the strength the gene presents for

the given structure.

Class MDAtoSTR

This class includes the variables and methods used for extracting the information from the

atlas and storing them. It includes as a variable the ArrayList MDAtags, which will store all the

information regarding the structures in the atlas. The class contains a constructor, which

includes the steps of connecting to the .xml file, reading it and storing the data read in

MDAtags. Apart from the constructor, it includes the methods necessary to retrieve

information from the list. The methods which are enclosed in the class are:

 FillFields: This is a private method which is called in the constructor. It builds an object

of class Structure and fills all the variables in it with the fields included in the atlas .xml

file. This method works in a recursive way: this is required in order to field the

ArrayList of the variable “children”.

 strtoString: It converts the list MDAtags into an array of strings containing the names

of all the structures. This method is needed to build the list to be included in the menu

39

of the interface, since Swing is compatible with arrays of strings but not with

ArrayLists. It returns the list ordered alphabetically.

 PrintNames: Shows in screen the names of all the structures contained in MDAtags.

 getList: Returns the list MDAtags, acting as a getter.

 printChildren: It prints the children (substructures) which are enclosed in the children

ArrayList of each structure of the list MDAtags, in order of occurrence. It does not

permit to determine to which structure belongs each substructure.

 getTags: Similar to strtoString, but the list is not returned alphabetically.

 showKinder: It prints in screen the children (substructures) of the first level of the k-th

structure in MDAtags.

 searchTag: It takes an string as an input and returns the Structure object which

contains such a string in the field “name”

 getChildTags: Analogous to showKinder, but uses the method searchTag to allow to

return the substructures of a given name.

 getAllDescendants: Analogous to getChildTags, but it uses a recursive method in order

to return all the descendants of the queried tag, not only the first level ones.

 showAllDescendants: Prints in screen the result of a getAllDescendants query.

 getSize: Returns the number of tags in MDATags.

The most important methods are searchTag and getAllDescendants, since they will be used in

further operations in the program.

Class aGEMtaglist

This class performs all the operations of interaction with the aGEM database. It includes two

lists, one regarding structures (“tagidentifiers”) and another one regarding genes (“genelist”).

Inside it there can be found all the methods needed to query both lists, and the constructor,

which is used to build up the lists using the connection to the MySQL database. The methods

which are defined in the class are:

 FillFields: It is a private method (it is only called by the constructor or other classes, it

cannot be called by the user) analogous to the method FillFields of the class

MDAtoSTR. This means that this method is used to read the structures from the aGEM

database and stores them in the “tagidentifiers” list. Nevertheless, in this case, this

method is not recursive by itself since the children (substructures) are extracted by

another method.

40

 extractChildren: It is another private method which is used to fill in the list “children”

contained in each Structure before adding it to the list (it is called by the FillFields

method) by comparing the ParentStructureKey variable of the new structure with the

ID of the former ones. Since it also calls FillFields, between both methods, a recursive

loop is established.

 setGenes: It is another private method, called by the constructor after the recursive

loop of FillFields and extractChildren is finished. It iterates the list “tagidentifiers” and

looks in the database for the genes contained in those structures, adding them to the

list “genelist”.

 geneToString: It returns an array of strings containing the names of the different genes

which are in “genelist”. As said before, this step must be performed in order to obtain

a list usable by Swing for the interface.

 strToString: It returns an array of strings containing the names of the different

structures which are in “tagidentifiers”, for the same purpose as the former method.

 getGXDtags: It is the getter for the list “tagidentifiers”.

 getGenes: It is the getter for the list “allgenes”.

 printer: It prints in screen all the names of the structures in “tagidentifiers”, as well as

the total number of structures at the end of the list.

 geneprinter: Homologous to printer method, but for the list “allgenes”.

 search: It obtains an string containing the name of a structure as an input and returns

the object of class Structure which corresponds to such name.

 searchbyID: It obtains an string containing the ID of a structure as an input and returns

the object of class Structure which corresponds to such name.

 findstructuresbygene: It obtains a list of structures where a given gene is expressed.

 searchgene: Homologous to search, but works for genes instead of structures.

 searchgenesbystructure: It obtains a list of genes expressed in a given structure.

 showstructurequeryresult: It prints in screen the result of a searchgenesbystructure

query.

 getChildren: It returns all the children (substructures) of the first level of a given

structure.

 showChildren: It shows the results of a getChildren query in screen.

 getAllDescendants: It returns all the children (substructures) of a given structure,

notwithstanding the level they are. It is a recursive method.

 showAllDescendants: It prints in screen the result of a getAllDescendants query.

41

 getFather: It returns the structure of the immediate upper level which contains

another one.

 getAllAncestors: It returns all the structures which contain the queried one

notwithstanding the level they are found.

 showAllAncestors: It shows in screen the result of a getAllAncestors query.

Class mapeo

This class builds an object of both aGEMtaglist class and MDAtoSTR class as a variable in its

constructor. It contains methods to query the .xls file containing the mapping of the structures,

retrieving the correspondences among the lists of structures within them and with the gene

list. These correspondences are stored in two hashtables which are the ones which are queried

by the user and the other classes of the program. It is the core class of this project, since it

performs all the operations of mapping. The class contains the following methods:

 FindCorrespondences: It receives as an input the name of the structure in the atlas,

and returns the list of structures of aGEM to which the structure of the atlas maps.

 ShowCorrespondences: It prints in screen the result of one “FindCorrespondences”

query.

 FindAllDownstreamCorrespondences: It receives as an input the name of the structure

in the atlas, and returns the list of structures of aGEM to which the structure of the

atlas maps, and also all their substructures (children)

 showDownstreamCorrespondences: It prints in screen the result of one

“FindAllDownstreamCorrespondences” query.

 FindInverseCorrespondence: It receives as an input the name of a structure in aGEM

and returns the atlas structure to which it maps.

 ShowInverseCorrespondence: It shows up the result of a FindInverseCorrespondence

query.

 FindInverseDownstreamCorrespondences: It receives as an input the name of a

structure in aGEM and returns the atlas structures to which it and its substructures

map.

 ShowInverseDownstreamCorrespondences: It shows the result of a

FindInverseDownstreamCorrespondences query.

42

Class aGEM_atlas_plugin

This is the executable class which will be run by ImageJ. It includes three methods, all of them

private (which means that a user cannot perform the operations contained in the methods by

writing commands in the console):

 run: It contains the sequences which will be performed by ImageJ when the plugin is

executed. It shows sequentially the different menus and stores the user’s choices.

 IllegalQuery: It includes the commands to be executed when there is an error in some

step of the class execution.

 makeMask: It is the method which is used to compute the mask which is to be

overlapped with the atlas image. As said before, this method uses double thresholding

to perform such a task.

Classes windowAnatomy, windowGene and windowInformation

These are Swing window classes, used in order to generate the different menus and pop-ups

with the information queried by the user. They are called in the run method of the class

aGEM_atlas_plugin.

43

Results

At first, when the plugin is executed, the query selection dialog appears. The program was

tested with all the possibilities. Anatomy queries are faster in execution then gene queries,

because they do not require any mask merging, while the gene queries require merging all the

masks containing the structures where those genes are expressed. In any case, the execution is

fluent, and the average query takes about 90 seconds to be solved.

 As said, when execution is started, this dialog appears, which allows the user to choose

between the two query types:

Figure 16: Query type selection window.

Then, when the user selects which query type is wanted, the second window pops up,

requiring the user to select a gene or a structure of interest:

Figure 17: Structure selection window. The gene selection window is similar to this one.

44

After all the choices are made, then the program should process the images in order to show

the user a visual result. The image containing the anatomical data is shown, and then, the

information regarding the genes and structures queried should be popped up in another

window. The window contains the information on the gene name, the name of the structure

where it is expressed, and the strength.

Figure 18: The result image. It can be appreciated in green the queried structure.

Figure 19: Gene information window. It contains information for the genes present in the

queried region, or for the genes queried in the case of a gene query.

45

Discussion and conclusions

As demonstrated, a functional plugin for ImageJ was developed, which is able to merge the

information provided in one of the tables of aGEM with one atlas. It is a tool which can be used

by any ImageJ user and it is open-source, which means that anyone can place modifications

and improvements. It allows the projected queries (anatomical and gene queries) to be

performed in a clear and user-friendly way.

The results of this project show that the programming of such a tool integrating data from

genes and from anatomical atlas is feasible, and can be done by simple procedures. Although it

is a initial version which has a lot of features to be further developed, it can be a good starting

point for future developments.

To extend further this tool, it could be a good idea to change the format of the aGEM

databases from MySQL to SQLite format. This could not be done due to difficulties when

converting the tables from one format to another one. Also, it might be interesting to save the

information in an easier accessible way, so that the only time it needs to go to the database or

to the .xml or .xls files would be the first one. This would make the program much quicker,

which is one of the main problems of the current implementation. A complete execution of a

simple anatomical query might last for more than a minute, while the execution of gene

queries is much longer. Furthermore, in this way, the plugin would work properly even though

the required files of the databases, atlas and mapping are moved or deleted.

Future lines

The potential of the tool is quite high; however, it admits further improvement and added

functionalities which would make it much more interesting than the beta version that was

proposed by this project. Some of these possible improvements are the addition of maps for

different atlases, in order to see the structures in different levels of detail, because different

atlases might show more accuracy in different areas of the brain, or they might show more

tags which indeed increase the resolution of the queries. As far as this possibility is concerned,

the tool is implemented in a way that it allows to add up new atlases in an easy way.

46

One of the main issues which should be covered in further versions is the use of data from

other databases contained in aGEM, different from GXD. aGEM is, as said, a novel idea which is

really useful, since it allows the user to not having to query each one of the databases one by

one, but to query them at the same time. The tool developed in the project was not included

at first by aGEM, due to the fact that the developers did not have the knowledge in medical

imaging processing which was required to build up the tool. Nevertheless, in this initial version,

it does not take advantage of all the potential of aGEM. In future developments, it would be

necessary to include more data from aGEM in order to increase the interest of the project.

Also, it would be quite interesting to include more analysis tools apart from a simple list of

expressed genes. It would be really interesting to include as a query type or as a result the

statistical data of expression of the different genes. In such way, patterns of expression might

be identified, or the correlation among several genes. The result of such an statistical analysis

could be thresholded, discarding the structures which are not relevant or do not correlate

properly with the statistical parameter of interest and taking only those which provide

significative results. Another possibility could be multi-gene query, which would allow the user

to identify related structures in which the same set of genes is expressed.

Another improvement which the tool requires is to be made quicker, since it is now quite

inefficient in some of its processes. The menus for the queries could be modified to allow

multiple selection, in order to query multiple structures (which should be represented in

different colours) and also multiple genes.

47

References

aGEM. (2014). Retrieved from http://agem.cnb.csic.es/VisualOmics/aGEM/

Asian Radiology. (2014). Retrieved from http://asian.radiology.web.id/wp-

content/uploads/2013/03/image41.png http://asian.radiology.web.id/wp-

content/uploads/2013/03/image41.png

De Boer, B. a., Ruijter, J. M., Voorbraak, F. P. J. M., & Moorman, A. F. M. (2009). More than a

decade of developmental gene expression atlases: Where are we now? Nucleic Acids

Research, 37(22), 7349–7359. doi:10.1093/nar/gkp819

Diez-Roux, G., Banfi, S., Sultan, M., Geffers, L., Anand, S., Rozado, D., … Ballabio, A. (2011). A

high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biology,

9(1), e1000582. doi:10.1371/journal.pbio.1000582

Dorr, a E., Lerch, J. P., Spring, S., Kabani, N., & Henkelman, R. M. (2008). High resolution three-

dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J

mice. NeuroImage, 42(1), 60–9. doi:10.1016/j.neuroimage.2008.03.037

Finger, J. H., Smith, C. M., Hayamizu, T. F., McCright, I. J., Eppig, J. T., Kadin, J. a., … Ringwald,

M. (2011). The mouse Gene Expression Database (GXD): 2011 update. Nucleic Acids

Research, 39(SUPPL. 1), D835–41. doi:10.1093/nar/gkq1132

Image Processing with ImageJ: José María Mateos Perez, Javier Pascau: 9781783283958:

Amazon.com: Books. (n.d.). Retrieved June 18, 2014, from

http://www.amazon.com/Image-Processing-ImageJ-María-Mateos/dp/1783283955

Jiménez-Lozano, N., Segura, J., Macías, J. R., Vega, J., & Carazo, J. M. (2009). aGEM: An

integrative system for analyzing spatial-temporal gene-expression information.

Bioinformatics, 25(19), 2566–2572. doi:10.1093/bioinformatics/btp422

Jiménez-Lozano, N., Segura, J., Macías, J. R., Vega, J., & Carazo, J. M. (2012). Integrating human

and murine anatomical gene expression data for improved comparisons. Bioinformatics

(Oxford, England), 28(3), 397–402. doi:10.1093/bioinformatics/btr639

48

Johnson, A. G., Badea, A., Burstein, P., Nissanov, J., Gustafson, C., Brandenberg, J., & Liu, S.

(2009). Waxholm Space: Target Volumes for a Standard Coordinate System for the Mouse

Brain. Frontiers in Neuroinformatics. doi:10.3389/conf.neuro.11.2009.08.004

Life Extension Magazine (LEF). (2014). Retrieved from

http://www.lef.org/magazine/mag2012/images/jul2012_Value-Of-PET_03.jpg

Ma, Y., Hof, P. R., Grant, S. C., Blackband, S. J., Bennett, R., Slatest, L., … Benveniste, H. (2005).

A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by

magnetic resonance microscopy. Neuroscience, 135(4), 1203–15.

doi:10.1016/j.neuroscience.2005.07.014

Ma, Y., Smith, D., Hof, P. R., Foerster, B., Hamilton, S., Blackband, S. J., … Benveniste, H. (2008).

In Vivo 3D Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic

Resonance Microscopy. Frontiers in Neuroanatomy, 2(April), 1.

doi:10.3389/neuro.05.001.2008

MacKenzie-Graham, A., Lee, E.-F., Dinov, I. D., Bota, M., Shattuck, D. W., Ruffins, S., … Toga, A.

W. (2004). A multimodal, multidimensional atlas of the C57BL/6J mouse brain. Journal of

Anatomy, 204(2), 93–102. doi:10.1111/j.1469-7580.2004.00264.x

MacKenzie-Graham, A., Tinsley, M. R., Shah, K. P., Aguilar, C., Strickland, L. V., Boline, J., …

Toga, A. W. (2006). Cerebellar cortical atrophy in experimental autoimmune

encephalomyelitis. NeuroImage, 32, 1016–1023. doi:10.1016/j.neuroimage.2006.05.006

Maintz, J. B. A., & Viergever, M. A. (1996). An Overview of Medical Image Registration

Methods. Nature, 12, 1–22. doi:10.1.1.39.4417

Menzel, R. (2011). Ultramicroscopy - imaging a whole animal or a whole brain with micron

resolution. Frontiers in Neuroscience, 5, 11. doi:10.3389/fnins.2011.00011

Parkinson, H., Sarkans, U., Shojatalab, M., Abeygunawardena, N., Contrino, S., Coulson, R., …

Brazma, a. (2005). ArrayExpress--a public repository for microarray gene expression data

at the EBI. Nucleic Acids Research, 33(Database issue), D553–D555.

doi:10.1093/nar/gki056

Porras Rodriguez, C. (2014). TheProject, GitHub repository. Retrieved from

https://github.com/cpr16992/ThePlugin

49

Richardson, L., Venkataraman, S., Stevenson, P., Yang, Y., Moss, J., Graham, L., … Armit, C.

(2009). EMAGE mouse embryo spatial gene expression database: 2014 update. Nucleic

Acids Research, 42(D1), D703–9. doi:10.1093/nar/gkp763

Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C. L., … Dang, C. (2013).

Allen Brain Atlas: An integrated spatio-temporal portal for exploring the central nervous

system. Nucleic Acids Research, 41(D1), D996–D1008. doi:10.1093/nar/gks1042

V. Hajnal, J., & L.G. Hill, D. (2001). Medical Image Registration. CRC Press Book. Retrieved June

21, 2014, from http://www.crcpress.com/product/isbn/9780849300646

Wheeler, D. L., Church, D. M., Federhen, S., Lash, A. E., Madden, T. L., Pontius, J. U., … Wagner,

L. (2003). Database resources of the national center for biotechnology. Nucleic Acids

Research, 31(1), 28–33. doi:10.1093/nar/gkq1172

Wu, C., Orozco, C., Boyer, J., Leglise, M., Goodale, J., Batalov, S., … Su, A. I. (2009). BioGPS: an

extensible and customizable portal for querying and organizing gene annotation

resources. Genome Biology, 10(11), R130. doi:10.1186/gb-2009-10-11-r130

