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Introduction 

 

Gene expression databases 

 

What is a gene expression database? 

 

The information that can be extracted from aspects like the location and the expression of 

certain genes is of great interest in many fields. Using this kind of information we can unravel 

the function of the genes in different conditions and diseases, or in embryonic development. 

Gene expression patterns in certain organs and developmental stages have been obtained 

from several species using microarrays or other kinds of sequencing studies. Data can be 

obtained by in situ visualization of the expression levels of different mRNAs, proteins or 

transgenic reporters. 

Nevertheless, obtaining the information from microarray procedures only yields experimental 

data. Enormous quantities of these data are available in the literature, but they are not easily 

accessible, and it is highly problematic to retrieve. In order to put some order in this chaos of 

knowledge from very different sources, gene expression databases are one possible solution. A 

gene expression database can be defined as “a database containing anatomically annotated in 

situ gene expression information”(De Boer, Ruijter, Voorbraak, & Moorman, 2009). In this way, 

a gene expression database links gene expression data with predefined anatomical structures. 

In the past years there have been several initiatives which try to provide a solution to this 

problem, their own expression database. 

 

Existing gene expression databases 

 

Table 1 (below) shows several of the different databases which are currently available. Most of 

them contain the data for gene expression of mice, which are mammals just like Homo 

Sapiens, and which can be used for expression studies to determine the role of genes that 

function in different molecular pathways. In this way, a correlation between the expression of 

genes in mice and in humans can be found in many cases. As it can be observed in table 2 (also 

below), some of them use wild type mice whilst others use transgenic mice. The information 
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which can be extracted from all of them, as it is also observable in the table, is not the same: 

they include the gene expression from different Theiler Stages (Stages of embryonic 

development in mice) where TS1 is the one-cell zygote and TS28 includes the information for 

adult mice. Also, the information is not organized in the same way: some of them use a 

vocabulary annotation, others use an ontology and EMAGE uses a spatial framework. The 

difference between the vocabulary annotation and the ontological annotation is that in 

ontological annotations there is a clearly established hierarchy among the structures, whilst in 

vocabulary annotation, the structures are just a list, without any kind of hierarchy. Among the 

most important gene expression databases we can find for mice are EMAGE, GXD, 

ArrayExpress, GENSAT, Allen Brain Atlas, EUREXPRESS and BioGPS. In the following paragraphs, 

a brief description of all these databases is going to be presenting, highlighting the most 

interesting features of each one. 

 

Table 1: Gene expression databases available, websites and species. Obtained from (De Boer et 

al., 2009) 

 

Table 2: Details available in each of the atlases. Obtained from (De Boer et al., 2009) 
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EMAGE is a project from Heriott-Watt University in Edinburgh (Scotland, UK). It is a gene 

expression database which has been developed together with a mouse anatomical atlas called 

EMAP (Edinburgh Mouse Atlas Project). The two tools used together provide a result similar to 

the one expected from this project; nevertheless, it can only be used with Theiler Stages from 

7 to 23, and only includes the fraction of genetic information which is spatially annotated and 

provided by EMAGE. The database includes more than 10000 genes, but only 2500 are 

spatially annotated (Richardson et al., 2009). 

EUREXPRESS is an integrated project funded by the European Union, proposing an acquisition 

of expression patterns based on in situ hybridization of the whole transcriptome. The project 

comprises expression data of around 20000 genes which can be described in detail in 

developing mouse (Diez-Roux et al., 2011). 

ArrayExpress is a public repository provided by the European Bioinformatics Institute (Hinxton, 

UK) which uses information from microarray experiments that supports the MIAME (Minimum 

Information About a Microarray Experiment) requirements. It integrates up to 12000 genes 

from 35 species, including mice and humans. The data for the integration is submitted online 

or from local databases and then is curated (checked that it fulfils MIAME) (Parkinson et al., 

2005). 

GENSAT (Gene Expression Nervous System Atlas) is a project of the Rockefeller University 

founded by NIH (National Institute of Health). It is a public database including gene expression 

data for two recombinant mouse lines: BAC-EGFP and BAC-Cre. It uses in situ hybridization and 

transgenic mouse techniques to obtain the data. In this database, structures are not annotated 

in an ontology, but in a vocabulary annotation (Wheeler et al., 2003). 

BioGPS is an interface designed by researchers at Genomics Institute of the Novartis Research 

Foundation in San Diego (California, USA). BioGPS is based on a simple, unstructured plugin 

interface which allows integrating data from mice, rats and humans, and from either existing 

resources from papers or own resources from the developers (Wu et al., 2009). 

The Allen Brain Atlas is a project which, as does EMAGE, includes also spatial information, 

together with the gene and the anatomical information. It is a project developed by the Allen 

Institute for Brain Science in Seattle (Washington, USA). It includes information from human, 

mice and non-human primates, obtained by in-situ hybridization of around 20000 genes, as 

well as the histological 3D images of the brain (Sunkin et al., 2013). 
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GXD (Gene eXpression Database) is a project from the Jackson Laboratory in Bar Harbor 

(Maine, USA). It collects data from scientific literature, laboratories and from large-data 

providers, which allows it to capture a broad spectrum of assay types, and covers all 

developmental stages and tissues. GXD is updated daily, providing an immediate response to 

the biomedical research community. It includes data from around 9000 genes, and integrates 

it with other Mouse Genome Informatics (MGI, another project which is taking place in this 

laboratory) resources and many other databases (Finger et al., 2011). 

 

Integrating the gene expression databases: aGEM 

 

Although the great amount of available gene expression databases might be beneficial for 

researchers, obtaining all the information regarding the function of a certain gene may 

constitute a difficulty and inconveniency. It is not only highly inefficient but very user-

unfriendly, since the user will need to deal with several very different interfaces. It is also a 

problem for developers, because the various interfaces which will need to be programmed 

independently from one another. Also, there will be a problem in resolving synonyms, since 

certain anatomical structure or gene might be named in one way in one database and in 

another very distinct one in other databases. 

aGEM stands for “anatomical Gene Expression Mapping” and it is a platform designed by the 

Instituto Nacional de Bioinformática and Unidad de Biocomputación of the Centro Nacional de 

Biotecnología (National Institute for Bioinformatics and the Biocomputing Unit of the National 

Centre for Biotechnology) in Madrid (Spain). The purpose of the platform is to overcome the 

problem which has been mentioned above. aGEM integrates information from EMAGE, GXD, 

GENSAT, Allen Brain Atlas, EUREXPRESS and BioGPS databases for mice, and HUDSEN, Human 

Protein Atlas and BioGPS databases for human information. It also includes OMIM (Online 

Mendelian Inheritance in Man) which is a NCBI tool which allows obtaining a correspondence 

among genes and related diseases in humans. The mapping among the different databases 

needed to be performed in most cases manually, due to the already mentioned problem of 

resolving synonyms. (Jiménez-Lozano, Segura, Macías, Vega, & Carazo, 2009, 2012) 

aGEM allows the user to make queries by anatomical structure, returning all the genes that are 

expressed in the structure; and by gene, providing all the structures in which the gene is 

expressed. It can also find correlations among the findings of the two former query types. 
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Figure 1: aGEM website (“aGEM,” 2014) 

 

Preclinical imaging 

 

The purpose of preclinical imaging 

 

Preclinical imaging is defined as the use of imaging techniques on animals, for research 

purposes (that is, veterinary images are not considered preclinical imaging modalities). The 

aims include testing new imaging techniques which are in development before using them in 

humans, observing the effects of diseases on the physiology of the animals and also the effects 

of new drugs on them. Using these techniques, researchers can monitor changes at body, 

organ, tissue or even cellular and molecular level, and extract conclusions which may be really 

interesting for the field of study.  

As happens with clinical imaging, there are several modalities which are of great interest in 

preclinical imaging purposes. The modalities can be discriminated into classes according to 

different features: the type of energy which is used for producing the image (X-ray, nuclear, 

ultrasound, optical, magnetic resonance) or the features we can observe in the images 

(anatomical structures in anatomical imaging modalities versus physiological processes in 

functional imaging modalities). Each of these techniques is useful for a different kind of study, 

depending on which issues we are interested in. 
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Atlases: a brief definition 

 

As far as anatomical images of animals and humans are concerned, it is interesting to merge 

the information obtained from those images in atlases. An atlas is defined as a collection of 

maps. These maps can be related to geography, representing regions on Earth, but also to 

anatomy, representing the structures of the human body (or animals). In an anatomical atlas, a 

visual representation of a structure is tagged with text, in a way that one can observe the 

picture and relate it with some terms. An anatomical atlas can be elaborated using 

illustrations, photos, or medical images. The main methods which can be used to obtain 

images which are suitable for their use in an atlas elaboration will be described below. 

 

Atlases elaboration process and imaging modalities 

 

There are many ways an atlas can be obtained from a sample. They can be done by using ex-

vivo techniques as autoradiography, histological maps, taking photographs of different slices of 

our tissue of interest, or even making a drawing which represents the tissue more or less 

accurately. Nevertheless, the most interesting techniques for elaborating an atlas are medical 

imaging modalities, since they allow in-vivo acquisition of images; and it is also easier, since 

they do not require the work of removing the structure of interest from the rest of the body 

and slicing it. There are many medical imaging modalities which could be considered in order 

to obtain a useful atlas for the brain. In the following paragraphs there shall be considered 

several options, as X-ray computer tomography (CT), ultrasound, nuclear medicine techniques, 

optical imaging or magnetic resonance imaging; considering their pros and cons and justifying 

the final decision. 

X-ray modalities use high energy photons (in the range of energies from 100 eV to 100 keV) to 

produce an image. X-rays are irradiated through the body, interacting with internal structures. 

A portion of the energy in the photons will be deposited in the body as a different energy form 

and the rest will be received by a sensor which will convert it into an electrical signal. In an X-

ray image, the parameter we can distinguish from the tissue is its density, which is directly 

related with the atomic number. The energetic spectrum of X-rays (the amount of photons 

with certain energy) determines the contrast of the image: the less energetic the spectrum is, 

the higher the contrast; but also the higher the dose to the patient. There are many ways to 
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use X-rays to produce an image, and each of them has its applications. The simplest one is 

conventional radiography, in which the body densities are collapsed into one simple image, 

which shows the sum of densities of the tissue in one direction. From several conventional 

radiographies, and after processing, we can obtain other useful images like digital subtraction 

angiography, dual energy subtraction or tomosynthesis, which are of great interest for some 

applications, like blood flow monitorization or the enhancement of certain structures of 

interest. Nevertheless, the most interesting application of X-rays is probably X-ray computed 

tomography (CT). As its own name suggests, we can obtain slices of the sample and observe 

the properties it presents much more accurately than when done with a planar radiography. 

The most important disadvantages of X-ray imaging are fact that X-rays are ionizing radiation 

and produce little contrast among soft tissues due to their almost uniform density; that is why, 

in order to image soft tissues as in mammography, we need to compress it and use a lower 

energetic spectrum. Also, in small animal imaging, due to the smaller amount of tissue to be 

traversed, we need lower energy spectra in order to correctly appreciate differences in tissue. 

For elaborating a structural atlas of the brain, using X-ray images is not a good choice since 

they do not provide enough contrast in the soft tissue structures which are present inside the 

skull. 

 

Figure 2: Third generation (left) and fourth generation (right) computed tomography machines. 

A third generation machine uses a rotating source and detector, while in a fourth generation 

one, the detector array is static and only the source rotates. Image extracted from (“Asian 

Radiology,” 2014) 

Another possibility is to use echography, which uses ultrasound pulses which are irradiated 

into the body, and then the echoes are detected after a certain time has gone on. Since the 

velocity of sound is constant, we can set exactly where the interfaces between the tissues are 

situated. In this way, we can also reconstruct tomographic slices of the body. The most 
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interesting issues about ultrasound imaging are the fact that it is a non-ionizing source of 

energy, and hence it does not produce problems of DNA ionization due to radiation. It is also 

cheap and easy to use. Nevertheless, it is impossible to image through bone or air, and 

therefore it is impossible to image a brain using ultrasound, since it is totally enclosed by the 

skull. This modality also presents a really low signal to noise ratio, the lowest of all image 

modalities. 

 

Figure 3: Ultrasound imaging basics. 

A third possible modality is nuclear medicine, which detects the activity of a certain isotope 

which emits gamma radiation, either directly (SPECT: Single Photon Emission Computed 

Tomography) or by positron annihilation of an electron (PET: Positron Emission Tomography). 

The tracer is normally injected into the body combined with an organic molecule, and it is 

distributed by the bloodstream. Since the molecules present more affinity by some body 

receptors, they will concentrate in those regions and will cause the measured activity to be 

higher than in other areas. This image modality is a functional modality, since it detects a 

certain physiological activity, and it can be really interesting for purposes such as the 

monitorization of the glucose uptake in brain or tumours. However, since it does not 

determine anatomical structures (further away from the ones already mentioned), it is not 

very interesting for the elaboration of an atlas. It could be interesting to use ex-vivo 

autoradiography for this purpose, but needs convenient preparation of the sample. 

 

Figure 4: Mechanism of PET imaging technique (nuclear medicine) Extracted from (“Life 

Extension Magazine (LEF),” 2014) 
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Optical imaging uses photons in the range of visible light in order to produce a signal which can 

be measured and analysed. Most tissues are transparent up to a certain point to visible light, 

and also, we can use fluorescent molecules in order to produce an image, as it is done in SPIM. 

Optical techniques are of great interest since they use non-ionizing radiation, which avoids the 

animal (or the patient, in the case of clinical applications) problems caused by radiation. There 

are some techniques like ultramicroscopy, with which promising results have been obtaining in 

imaging transparent, small animals like Drosophila’s brains. Nevertheless, these techniques for 

mammal imaging are already in development, and neither of them is so advanced to produce 

an atlas which can be used for our purpose. (Menzel, 2011) 

For the acquisition of images in order to produce an atlas, it is also interesting to consider 

using Magnetic Resonance Imaging techniques. These techniques put the animal into a high 

intensity magnetic field, which aligns the spins of all the nuclei within it. Then, a pulse of 

radiofrequency is sent to the sample, and an output signal is produced. The output signals are 

detected by coils and transformed into an electric signal, which fills up the k-space (Fourier) of 

the image. Then, the k-space is processed and the image is obtained. There are several 

possible sequences which can be obtained with these techniques, T1, T2 and proton density 

images, which provide each of them different contrasts among the different tissues. More 

exactly, T1 images provide a great contrast in the soft tissues in the brain, so it would be 

interesting to build an anatomical atlas. Apart from the good levels of contrast resolution 

which can be obtained, it should be also bear in mind that magnetic resonance uses 

radiofrequency pulses, and hence in the range of non-ionizing radiation.  
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 Advantages Disadvantages 

Histological cuts Great resolution (differences 

can be appreciated at cellular 

level). 

Ex-vivo. Need for a technician 

to prepare the sample. 

Autoradiography Shows different slices of the 

tissue of interest. 

Ex-vivo. Need for a technician 

to prepare the sample, who 

will get ionizing radiation. 

Conventional radiography Cheap and fast Planar. Useless for an atlas. 

X-ray computed tomography Cheap, fast and tomographic Low contrast in soft tissue 

structures like brain 

Ultrasound imaging 

(echography) 

Cheap and fast. 

Tomographic. 

Impossible to image through 

bone. Low SNR. 

Nuclear medicine Tomographic. Functional image (no 

anatomy is shown) 

Optical image Cheap. Tomographic. Still under development for 

mammals 

Magnetic resonance Great contrast and spatial 

resolution. Tomographic. 

Slow and expensive. 

 

From images to the atlas: Image registration 

 

The first step in an atlas generation operation is the image acquisition. The images can be 

acquired from a single subject or from several subjects. Acquiring different images from 

several subjects allows the compensation of the variations they might appear among them, 

and hence, a more accurate atlas can be obtained, since it would represent more generally the 

average individual. For this reason, it is necessary that all the images are modified in order to 

overlap as much as possible among all the subjects. This process is called image registration. 

Registration is defined as the process of aligning images so that corresponding features in all of 

them can be easily related (Maintz & Viergever, 1996). There are several registration 
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techniques, which can be classified in two groups: point-based registration (or feature-based 

registration) and volume-based registration (or intensity-based registration). In all the cases, 

the algorithm involves measuring the values of a function (called cost function) which 

expresses numerically how similar or how different two images are. One of the two images will 

undergo some kind of geometrical transformation, and then the value of the function is 

measured. If the cost function measures differences, it will be desirable to minimize it, and on 

the other hand, if it measures similarities, it will be interesting to maximize its value. 

Point-based registration is defined as the selection of a set of points in both of the images 

which are correspondent among themselves. To register two images in this way, first of all, the 

centroids (centres of mass) of the point clouds are needed to be computed and then, they are 

aligned using a translation matrix in one of the images. After that, the analysis of the cost 

function starts. In the case of point-based registration, the cost function will be the sum of 

distances of the points within the two clouds. This cost function needs to be minimized, as it 

expresses the error of the registration process.  

In intensity-based registration, the whole image volume is used for computing the cost 

function which will give us the transformation matrix. Whilst in point-based registration the 

issue is which point selection is optimal, in intensity-based registration the most important 

parameter defined by the cost function which best suits our images. Most common cost 

functions are correlation, sum of squared differences and mutual information (V. Hajnal & L.G. 

Hill, 2001). Correlation is a statistical measure of mutual dependence between two variables, 

which needs to be maximized in order to register the images. The sum of squared differences 

of intensity measures the squared differences in values of intensity between the two images; 

due to this fact, it is desirable to minimize it. Mutual information is a measurement which is 

taken from the entropies of each image individually and the joint entropies of the histogram. 

The larger mutual information is, the more accurate is the registration of the two images. 

Registration techniques can be enhanced by using multi-resolution scheme approaches. For 

this approach, first, the two images reduce their resolution and are registered. Then, bigger 

resolution images are transformed using the matrix which was computed for the low 

resolution images and then a new registration procedure is performed, using the new 

transformed image as the starting point. In this way, registration will be much quicker and will 

avoid getting stuck in local minima. 
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Motivation and objectives 

 

As far as all the background information about atlases and gene expression databases has 

already been analysed, now we need to define further the project, its objectives and facts of 

interest. Gene expression databases, in most cases, do not provide any kind of integration with 

anatomical information of where those genes are expressed. The characterization of the whole 

transcriptome for structures like the brain is of limited utility if we have no anatomical 

information. Combining the databases with the anatomical information provided by an 

anatomical atlas, we can have lots of advantages. First of all, the most immediate advantage 

that such integration would introduce would be user-friendliness. Part of this problem is 

solved with the aGEM tool already developed, that integrates different databases into a single 

user interface.Visual representation of the gene locations would improve user experience if it 

is integrated with aGEM. As a second advantage, this integration could facilitate the 

connection between imaging and gene expression information when defining or analysing 

results from preclinical experiments.  

 The definition of an imaging protocol in order to study the phenotype of a transgenic 

animal model could benefit from the results of this project, since the researcher could 

look for anatomical structures related to the genes that have been manipulated. 

 The results of image quantification are usually an statistical parametric map, that 

presents the statistical significance of a certain analysis for every voxel. Significant 

areas from this image could be related to the underlying genes by means of the 

proposed integration tool. 

So, the main objective of the project is to connect all the information provided by aGEM and 

by the atlas. For the issue, it is needed to find how the information is stored and related in 

aGEM, in order to extract enough information of interest to program a first version of the tool. 

Also, it is required to study which atlases are available and which one is the most suitable for 

our purposes. Once all these steps have been done, the kind of program which is going to be 

developed needs to be analysed. There are several possibilities, like a program in Java, C++, 

Matlab or a plugin for its integration in ImageJ. 
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Once all the necessary information is extracted, an integration step must be done for the 

program to be operative. Then, when the information mapping is ready, the interface of the 

program can be written. The first version of program should be able to perform certain query 

types: 

1. Anatomy query: Given a list of anatomy structures, the user should be able to select 

any of them and the program would launch a query showing the genes and their 

information expressed in the structure, which would be shown in the atlas images. 

2. Gene query: The user selects a gene and the program would detect in which structures 

is the gene expressed and show them in the atlas images. 

The purpose in a first stage is to integrate part of the information contained in aGEM in a beta 

trial version of the interface, in order to check its real utility.  

  

aGEM 
(Genes and 
structures) 

Atlas 
(structures) 

Program 
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Materials and methods 

 

In this section, the steps which have been followed for the development of the project are 

going to be explained in detail, as well as the tools used for the purpose. 

 

ImageJ 

 

Although, as said, there are several possibilities to build such a program, in a final stage the 

chosen option was to build a plugin for ImageJ (http://imagej.nih.gov/ij/). This choice was 

made based on the fact that imageJ is a widely used tool by researchers and relatively easy to 

implement due to its base in Java programming language (which will be described later). 

ImageJ is an image processing program developed by the National Institutes of Health (NIH). It 

is a public domain program which has a wide variety of functionalities, where probably the 

most interesting one for our purposes is its extensibility: it was designed with an open 

architecture, allowing programmers to increase its functionalities by adding plugins 

programmed in the Java programming language or by recording macros. ImageJ is a platform 

available for its use in Windows, Linux and Mac OS and it can be downloaded, used as an 

online applet or installed in any computer with a Java virtual machine 1.5 or later version. 

Since the ImageJ code is fully available online, programmers can develop their own 

distributions of ImageJ. One of the most popular of these distributions is the one called Fiji (Fiji 

Is Just ImageJ) which includes some of the most useful plugins already integrated. 

There are several functionalities which make ImageJ a very versatile and desirable 

environment to work with images. First of all, it is compatible with a large collection of 

different image formats, among which are JPEG, GIF, PNG, TIFF, BMP, DICOM, FITS or even raw 

information images (just an array of numbers which can be ordered to build the matrix which 

will show up the image) notwithstanding the bit depth. Some other formats, as NIFTI or LEI, 

are available in ImageJ by installing the plugin “LOCI Bioformats Importer” (included in the Fiji 

distribution). Some of the basic operations which are available to be done in ImageJ are 

adjusting window and level of the image, applying lookup tables, thresholding, filtering... All 

these operations are performed in one or some regions of interest (ROI) which can be 

designed from scratch by the user (“Image Processing with ImageJ: José María Mateos Perez, 

Javier Pascau: 9781783283958: Amazon.com: Books,” n.d.). 



18 
 

ImageJ functionalities 

 

In the management of medical and microscopy images, one of the most basic and most 

interesting tools is the adjustment of window and level. This is especially important in the case 

of X-ray images, in which the grey level of the image corresponds to certain density of the 

tissue. The densities are mapped into units of image intensity called Hounsfield Units, needed 

to standardize all the images obtained by different X-ray machines of different developers. In 

the Hounsfield Unit scale, air is black and represented with values of -1000, while water 

obtains the grey level 0 and bones present values around 1000. Nevertheless, it could be 

interesting to enhance the contrast of soft tissue (with a density around that of water, that is, 

zero) and reduce the amount of detail in bone. For this purpose, one can select 0 as the central 

value of the scale and map the nearby values into others which are more distanced among 

them. In this way visualization is enhanced. In the lower images it can be appreciated how 

window and level settings can be adjusted in order to distinguish better some of the structures 

of the image. 

 

Figure 5: Automatic Window and Level adjustment using ImageJ. Adjusted image is in the left 

side, the right one is the original. 

Window and level processing does not, however, change the values of the pixels in the image. 

It is only a change which is performed for visualization. There are other possible changes 

similar to the one performed by window/level adjustment, which are called lookup tables 

(LUTs). LUTs change the way different pixel values are displayed, and they do not need to be 

linear, or to conserve greyscale (they can change greyscale values into RGB colour values) 
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Figure 6: Application of a fake colour LUT to an image 

Thresholding is an operation used to segment an image. Segmentation can be defined as the 

extraction of a portion of an image, which is of our interest. It takes into account also the grey 

level of the pixels, and establishes that pixels above (or below) a certain level of intensity are 

of interest for us and we want to extract them. ImageJ can perform single thresholding, by 

selecting only one intensity level, or multi-level thresholding, if there is an interesting band of 

intensities which is wanted to be segmented. In any case, thresholding produces a binary 

image which will have pixels with a value of 255 in the places in which those pixels of interest 

could be found in the original image, and pixels with value 0 in the places in which the value of 

the pixel in the original image was out of the range of interest. 

 

Figure 7: Double thresholding (left) of an image with ImageJ. 

Filtering an image allows to reduce noise, or to enhance edges in an image, among other 

possible modifications. ImageJ allows the user to filter the images with Gaussian filters (low 
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pass isotropic non-adaptive filters) which will blur the image causing a net noise reduction, but 

also causing edges to be lost. It has also implemented the median filter (which substitutes the 

value of the pixel by the median of the values of the neighbourhood), and it allows to use 

personalized filters. 

 

Figure 8: Application of a Gaussian Low Pass Filter to an image with noise. 

 

Macros and plugins in ImageJ 

 

A macro is a set of instructions which are stored in order to be executed sequentially using a 

single call or instruction. ImageJ has several implemented functions, but in many cases, 

performing a certain task in image processing does not only require one instruction, but 

several, one after the other. By storing them in a macro, one can repeat them all the times 

they are desired without need of going one by one. ImageJ has enclosed a macro recorder 

which records all the instructions the user has performed in the program and saves them in a 

macro. In this way, then the macro can be executed and ImageJ will be able to repeat exactly 

the same process which was executed, step by step. For example, the operation of edge 

enhancement that was performed for the image below can be stored in a macro in this way: 
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Figure 9: Application of an edge enhancement macro (upper image) to a sample image 

Nevertheless, the weak points of macros are that they do not really add any new functionality 

to ImageJ, but use functionalities which are already implemented. Also, they are quite slow 

compared to plugins.  

A plugin is defined as an application which is implemented to add new functionalities to 

another which already exists. They are not needed for the overall workflow of the main 

application, but the new functionalities they add to it may be vital to perform certain tasks. 

Plugins are a way to allow programmers to collaborate with the development of an application 

and to split certain functions from the main code which would increase too much the size of 

the application. In some cases, they are also used to restrict the access to the root code of an 

application to avoid software licensing conflicts. Plugins, as macros, can use the functionalities 

which are already present in ImageJ to perform some of their functions, but they do not limit 

to these functionalities exclusively. Plugins in ImageJ are programmed in the Java 

programming language. 
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Integrating the tool planned in this project into ImageJ as a plugin seems natural since all of 

the image processing tasks which need to be used for the project are already integrated into 

ImageJ, so there is no need to program them again. Also, programming a plugin is of great 

interest in case of possible future distributions of the tool or its expansions, since it will be 

then fully compatible with any terminal in which ImageJ is installed. The source code for the 

application which was worked out in this project is fully available in a public GitHub repository 

(Porras Rodriguez, 2014). 

 

Java language 

 

Java is a computer programming language which was originally developed by Sun 

Microsystems (later, this company would be acquired by Oracle) from 1991 to 1995, when its 

first version was released to the public. It is a concurrent and object-oriented programming 

language. This means that Java allows the execution of several computations at the same time, 

and these computations operate in objects which are distributed into classes. A class in Java is 

a set of objects which share certain defining parameters. Objects in classes are encapsulated, 

which means that they cannot go away the invariants of the class; in other words, if an object 

belongs to certain class it cannot acquire parameters which are out of the definition of the 

class. In this way, errors are avoided in computation, and objects are coherent among them. 

Java is a compiled language, meaning that the code needs to be translated first into machine 

language by means of a compiler before executing. Classes include certain predefined methods 

which can be used to make modifications in some objects of the class. The methods and 

definitions of each class can be found in its corresponding Javadoc document. 

Java programs can be written in several ways: in bare text processors, or in more sophisticated 

programs like Integrated Development Environments (IDEs). IDEs are software applications 

which provide comprehensive facilities to computer software development. IDEs integrate 

source code editors, build automatizators and debuggers. In the case of Java, among the most 

widely spread IDEs are BlueJ, NetBeans and Eclipse. The use of Eclipse IDE was straightforward 

because it is the one most used at the Laboratorio de Imagen Médica (Laboratory of Medical 

Imaging) at Hospital Gregorio Marañón. It is highly convenient also since it can debug and try 

directly the plugin code in ImageJ. All the processes of programming in Java that are 

performed in this project use the Eclipse IDE. 
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Java allows the programming of interfaces using Swing, which is also compatible with ImageJ. 

Swing is the main Java graphical user interface (GUI) toolkit, and uses separated classes for 

each of the windows which are generated by the program. Since it is extensible, Swing permits 

the possibility to custom all of its implementations using Java inheritance mechanisms. 

 

Understanding aGEM: databases 

 

aGEM is a platform which integrates lots of information from many different sources. This 

information should be stored in a database to allow interactions as accession, modification and 

update. There are several standards of databases which can be used. In the case of aGEM, the 

information is stored in a MySQL database, which contains multiple tables.  

MySQL is a relational database management system (RDBMS) which is based on the SQL 

language. This is a programming language specifically designed to manage data in a database 

in a comprehensive way (SQL stands for Structured Query Language). MySQL organizes 

information in tables, to which the user can access using the queries. In any database in 

MySQL, the user may retrieve information (SELECT queries), delete information (DELETE 

queries), modify the information in a given field (UPDATE queries) or introduce new 

information (INSERT queries).  

In aGEM, the information is contained in 112 tables, each one storing information of a 

different database, or different datasets involving the same database. For this very first version 

of the program, the only tables which are going to be used are the tables of the database GXD, 

since they provide the most complete information of the genes and structures. The 

information on structures was obtained from the table tbvg_mgi_gxd_structure, extracting all 

the structures which are enclosed in the brain and discarding the others. Genes, on the other 

hand, are contained in the table tbvg_mgi_gxd_full. The other tables for GXD contain either 

repeated information or information which is not of interest for the application like the 

method used to determine the gene presence or absence in a certain structure. 
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Atlas 

 

As explained before, it is necessary an atlas which represents the mouse brain in a way that 

many structures can be recognised and mapped into it. It has to be an atlas which includes an 

image obtained by magnetic resonance imaging techniques in order to be able to differentiate 

the structures. The atlas has also to contain comprehensive tags which are easily extracted by 

means of simple image processing techniques such as thresholding or window and level 

adjustment. The number of tags has to be average: a very big number of tags would make the 

mapping of the atlas with the structures of aGEM unbearable, whilst a low one would limit the 

usefulness of the project. Also, the information of the tags must stand on a format such as 

XML, which is compatible with an ontological distribution of the tags and also parseable with 

Java. 

 

Available atlases 

 

6 atlases were under consideration for this project. Some of them are found in the supporting 

bibliography, whilst others required more in-depth investigation. 

  

Name of 

the atlas 

Number of 

tags 

Dimensions MR Image 

available 

Tag format Other information 

Toronto 43/62 210x274x141 Yes .txt Information 

unavailable in 

documentation 

Ma 20 192x96x256 Yes (8 bits) Unavailable Only atlas image 

available 

LONI MRM 799 256x256x256 Yes .xml  

Duke 38 1024x512x512 Yes .xml RGB tag image 

Allen 1205  No (only 

histological) 

.xml Highest number of tags 

and resolution 

LONI MDA 53 346x346x346 Yes .xml Final choice 

 

Table 3: Summary of the different atlases considered in the project. 
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Toronto Atlas is a project of the Clinical Integrative Biology department of the Sunnybrook 

Health Sciences Centre in cooperation with the Mouse Imaging Centre at the Hospital for Sick 

Children of the Toronto Centre for Phenogenomics. The atlas which was of interest was the so-

called Variational Mouse Brain Atlas, which is defined as “a three-dimensional atlas of the 

mouse brain, manually segmented into 62 structures based on an average of 32 μm isotropic 

resolution T2-weighted, within skull images of forty 12 week old C57Bl/6J mice, scanned on a 

7T scanner”(Dorr, Lerch, Spring, Kabani, & Henkelman, 2008). Nevertheless, the atlas which is 

available for downloading and free use is not this one, since it presents only 43 tags instead of 

62. When information on the atlas of 43 tags was looked for, the paper is unavailable for the 

public. 

Regarding the Ma Atlas, it is a project of the Mount Sinai School of Medicine in New York, the 

University of Florida, the Stony Brook University (New York), Brookhaven National Laboratory, 

and The National High Magnetic Field Laboratory. The project described by the paper consists 

in the development of “A comprehensive three-dimensional digital atlas database of the 

C57BL/6J mouse brain was developed based on magnetic resonance microscopy images 

acquired on a 17.6-T superconducting magnet. By using both manual tracing and an atlas-

based semi-automatic segmentation approach, T2*-weighted magnetic resonance microscopy 

images of 10 adult male formalin-fixed, excised C57BL/6J mouse brains were segmented into 

20 anatomical structures.” In order to access to the information, registration was needed in 

the website of the project.(Y Ma et al., 2005; Yu Ma et al., 2008) 

 

Figure 10: Ma atlas. It can be observed the magnetic resonance image (A) and the structures 

tag image (F). In F, each colour represents one structure in the list. The two images can be 

overlapped (B) 
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The third atlas which was considered was the atlas developed in at the Center for In Vivo 

Microscopy of Duke University, in collaboration with the Laboratory for Bioimaging and 

Anatomical Informatics of Drexel University. This atlas is developed in Waxholm Space, which 

is defined as the standardized coordinate system defined for rodent brain atlases (mice and 

rats). Waxholm space was promoted by the Digital Atlasing Task Force committee in May 2008. 

It is a high resolution atlas which contains images not only of magnetic resonance, but also 

histological images of the brains. It is defined as “multi-specimen, multi-spectral space: 3 

different MR acquisitions, delineations of 37 structures, and a Nissl volume for each of 7 male 

adult C57BL/6J mice.” (Johnson et al., 2009) 

 

Figure 11: Duke University atlas. It can be appreciated the three magnetic resonance images 

(T1, T2 and T2*) and the labels overlapped with them. 

Finally, the two atlases developed by the Laboratory of Neuro Imaging (LONI) of the University 

of California in Los Angeles (UCLA) were also examined. These two atlases are the Magnetic 

Resonance Microscopy atlas (MRM) and the Minimum Deformation Atlas (MDA). Both atlases 

are built during the evolution of a project committed “to determine whether brain atrophy 

occurs in the mouse model, experimental autoimmune encephalomyelitis”. For the purpose, 

the atlases were necessary to evaluate changes in the brains of the mice affected by the 

induced disease. To build up the MRM atlas, “magnetic resonance imaging was performed 

using an 89 mm vertical bore 11.7 T Bruker Avance imaging spectrometer with a micro-imaging 

gradient insert with a maximum gradient strength of 100 G/cm and 30 mm birdcage RF coil 

(Bruker Instruments).” Then, after semiautomatic segmentation (automatic, but manually 

corrected for inaccuracies) the MRM atlas was obtained. Using image processing techniques 

on MRM atlas (mainly several constrained affine transformations) the developers obtained the 

MDA atlas.(MacKenzie-Graham et al., 2004, 2006) 
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Figure 12: Magnetic resonance image of the LONI MDA atlas. 

 

Atlas Selection 

 

In order to select the atlas, several features were considered. First of all, the number of tags 

should not be too small or too large. Ma atlas was supposed to contain only 20 tags (according 

to the bibliography) which are too few, and  it did not even have a separate file containing 

tags, so it was discarded because of this at first. LONI MRM atlas contained 799 tags, a number 

which was too large for the pretensions of the beta version. Also, the number of tags available 

in the Allen Brain Atlas is huge. Atlases like Toronto, Duke or LONI MDA were found to be an 

interesting choice regarding this particular aspect.  

The second requirement was that the atlas should contain a magnetic resonance image of the 

brain of the mouse, for the reasons detailed above. Only the Allen Brain Atlas included an 

image which was not a magnetic resonance, but histological images of different cuts of the 

brain. Nevertheless, this atlas had already been discarded because of the huge number of tags 

it presents. 

Another requirement is that the atlas images should present appropriate dimensions. If the 

dimensions of the image are too small, then it means that the pixel size is too big, and hence, 

less spatial resolution. But, on the other hand, if the image size is too big, the program will be 

delayed in its execution because of that. Duke Atlas presents a huge image, so although its tag 

image was a user-friendly RGB image, the execution using this atlas would have been too slow. 

Also, the number of tags it contains (38) is too low for the great spatial resolution which is 

achieved in the atlas. For this number of tags, it is not needed such a big image to show them 

correctly. 
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It is also essential that the atlas has a tag list which can easily be recognized and parsed using a 

Java program. Among these atlases, only Ma atlas did not present such a file. All the 

information of the tags of this atlas is fully available online upon registration in the webpage of 

the institute which developed the atlas, but this is not enough for the purposes of the 

application: it is a highly inconvenient issue for the user, and also for the programmer. All the 

rest of the atlases include attached a file with the information about their tags, either in .txt 

format or in .xml format. Text files can be easily read by simple Java programs. XML files 

require more advanced techniques as the use of parsers like DOM, SAX or JAXB, but are 

relatively easy to handle. 

Last, but not least, it is necessary that all the documentation regarding the atlas and its 

development should be public, fully accessible, and clear enough. All the atlases have this 

information available; it was only in the case of the Toronto atlas where the information was 

obscure. The team which developed the Toronto atlas had several atlas projects published, 

and it was not really clear to which one of the atlases belonged each piece of documentation. 

So, it was finally discarded too. 

All these steps leaded the programmer to choose the LONI MDA atlas, since it was the one 

which best fulfilled all the requirements of the project, which have been described above: It 

provides a magnetic resonance image which is neither too big nor to small, a number of tags 

which is also adequate, and all the process which lead to its development can be found clearly 

in the bibliography. 

 

Structure mapping 

 

Atlas parsing 

 

The mapping of the structures is probably the most important step of the whole project. As 

already said, it cannot be performed by any automatic algorithm due to the different number 

and level of detail of structures which is present in aGEM and in the atlas. aGEM contains 276 

different structures which need to be mapped into the 38 tags which are defined in the atlas 

and are related to brain (the other 15 tags represent the spinal cord and other structures of 

the Central Nervous System which are not related to brain). 
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The first step to perform the structure mapping was to download the atlases and obtain the 

structures contained in them. For this purpose the files including the tags were to be parsed. 

For parsing, two options were considered: DOM and JAXB. JAXB seems immediate since it 

allows automatic extraction of the information contained in the .xml file. It generates 

automatically a class in Java which encloses the values that are extracted from the .xml file as 

internal parameters. In this way, an object of the new class will be created for each object that 

the parser reads from the .xml file. 

Although the use of JAXB might seem quite straightforward, it was not the option finally 

chosen. Due to irregularities in some of the .xml files, the JAXB parser did not work properly. 

After several trials with the different tag files from the different atlases, finally, DOM was the 

parser of choice. Unlike JAXB, DOM needs to be programmed manually and in a different way 

for each case. Although the programmer would normally need also to create a class for the 

objects contained in the .xml files, in this case the class which was automatically generated by 

JAXB for the .xml file containing information from the Allen Brain Atlas was to be used, with 

some modifications, in order to include the fields that appear in the other atlases and did not 

in Allen’s. This class was named “Structure” and is one of the main pillars on top of which the 

whole application stands. 

After all the atlases were parsed, then the number of tags could be quantized and the 

importance of the different fields could be contrasted. In this way, it could be observed that 

apart from the advantages already described for the use of the LONI MDA atlas, it could be 

found that the correspondence between the structures and the tag image was immediately 

implementable: one of the fields in the .xml file included the grey level of the structure in the 

image containing the volume information of the tags. So, the use of this atlas was even more 

encouraging, since the programming is simpler and less prone to errors. 

The class which reads the atlas and stores the list of structures in it, including all the 

information which would be enclosed in them, is called “MDAtoSTR” class. When an object of 

the MDAtoSTR class is generated, the information of the .xml file containing the tags is read 

and stored in a list in the variable MDATags. 
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aGEM parsing 

 

As already mentioned, information in aGEM was not contained in an .xml file, but in a MySQL 

database. Nevertheless, this was not in any case an obstacle for the integration of the 

information into the application. Since the database containing aGEM is stored in the server of 

the National Centre for Biotechnology, and for the execution of the project, the information 

was needed both there and at Gregorio Marañón Hospital, the database was dumped into a 

file. Then, the file was loaded in the server of the hospital in order to rebuild the database. 

The second step was to determine which tables contained all the information which was 

needed to be read by the plugin. For that purpose, the tables were examined one by one using 

queries which extracted all the fields contained in all of them. The queries were launched by 

means of MySQL Workbench 6.0 for Windows 7. In this way, it was determined that the 

information which was of interest was contained in the tables tbvg_mgi_gxd_structure and 

tbvg_mgi_gxd_full.  

The information in the table tbvg_mgi_gxd_structure contains, among others, the following 

fields of interest, which were added to the original “Structure” class that had already been 

defined: 

1. _Structure_key: It contains a number which is used as a unique identifier for each 

structure. It contains a different key number not only for each structure but for each 

Theiler Stage (homologous structures in different Theiler Stages are treated as 

different) 

2. _Parent_key: It stores the number corresponding to the identifier of the structure in 

the immediate upper level. 

3. _Stage_key: It is the number of the Theiler Stage to which the information regarding 

the structure is related. 

4. printName: It describes the name of the structure. 

5. treeDepth: It is a number containing the number of levels of depth of the tree needed 

to go down in order to get to the structure.  

To extract the brain structure, a query was launched. The constraints were that the value of 

the field _Stage_key should be 28, since in the atlas, the samples were adult mice in that stage; 

and also a constraint in printName, which should be similar to “brain”. After the query was 

launched, the result found was that the _Structure_key for the structure representing the 

whole brain in the 28th Theiler Stage was 7005. 
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Figure 13: MySQL workbench. Query example and results. 

Then, after knowing the root structure (brain), it was needed to extract all the structures 

below it in the structures tree. For that purpose, it was highly unpractical to use MySQL 

Workbench, since many queries would have been necessary. The procedure that was followed 

was to extract directly the list into the program using Java code that can automatically 

generate each query and would also be generating the list. For this issue, it was needed to add 

to Eclipse an external jar library: MySQL Java Connector 5.1.29. 

The program follows a recursive readout method: It first reads the structure “brain” and adds 

it to the result set. Then, the result set is iterated by going one by one, getting the field 

_Structure_key of each of the elements in the result set and adding to it all the structures 

found in the table which contain the very same number in the _Parent_key field. In this way, 

the total amount of structures is increased in each iteration due to the addition of more 

children. When the structures of the last level are reached, the set of structures containing as 

_Parent_key the _Structure_key of any of them is empty, so nothing else is added and the 

program finishes its execution. In this way, a plain list of all the structures is built 

independently of the level of the tree of structures that can be found. Each of the structures in 

the aGEM table generates an object of the Structure class in Java. 
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Figure 14: Workflow of the readout of structures from aGEM. 

It was also observed that the gene information which was needed should be extracted in a 

very similar way. The information regarding the genes is found in the table tbvg_mgi_gxd_full. 

This table contains, among others, the following interesting fields: 

1. index: It includes a single gene identifier in an analogous way as the field 

_Structure_key did in tbvg_mgi_gxd_structure 

2. symbol: A short code of letters that can also be used to identify uniquely each gene. 

3. name: The name of the gene. 

4. printName: The name of the structure which contains the gene. There is one entry per 

gene and per structure. 

5. _Structure_key: It contains the field _Structure_key from the table 

tbvg_mgi_gxd_structure corresponding to the structure which contains the gene. 

6. _Stage_key: Theiler Stage. 

7. _Strength_key: Strength of the gene expression. It adopts a numerical integer value 

between -2 and 8 (not including the value 0). The meaning of the value can be found 

by performing a query in the table tbvg_mgi_gxd_strength, and corresponds to: 

 -2: Not Applicable 

 -1: Not Specified 

 1: Absent 

 2: Present 

 3: Ambiguous 

 4: Trace 
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 5: Weak 

 6: Moderate 

 7: Strong 

 8: Very strong 

 

Another class was programmed for the acquisition of the gene list, analogous to the 

“Structure” class, which was called “Gene” class. It includes a field for each of the fields of 

interest given by the table.  In order to extract only the genes of interest, the gene extraction 

needs to be performed after the structure extraction. The list of structures which was 

extracted from aGEM is iterated again, and all the genes regarding each of the structures in 

the list are added to another list. As in the aGEM table, the layout which was chosen to store 

the information regarding genes was to store each gene expressed in each different structure 

in a different object of the “Gene” class, which means that there can be several objects for the 

very same gene. This fact will be of great relevance later, since it makes the programming of 

the interface more complex. 

All the methods which are used to read the information from aGEM (both from structures and 

from genes) and the lists which contain the information which has been already read are 

enclosed in the class “aGEMtaglist”. When initialized, the class aGEMtaglist generates both 

lists storing them in its variables tagidentifiers for structures and allgenes for genes. 

 

Mapping of the structures 

 

When the lists of structures contained in both aGEM and the atlas were already extracted, 

then the correspondences among them were established. There are two main problems which 

must be solved during the mapping process. The first one is the already mentioned problem of 

resolving synonyms: in anatomical terms, there are structures which can be named in different 

ways depending on the reference which is quoted. For example, in some anatomy textbook 

the same structure can be referred as “brain” or “encephalon”. Since this kind of differences 

can be given also in the tags from the atlas and the aGEM database, it must be taken into 

account when doing the mapping. This is in part the reason why the mapping has to be done 

manually and not automatically. The second main problem in the mapping process is the 

difference between the number of tags in one and in the other list. aGEM has 276 tags versus 

the 38 tags which are available for the atlas; this means that more than one structure in aGEM 
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will point to the one single structure in the atlas. These relationships among tags should be 

determined in order to achieve a convenient mapping. 

The mapping was performed manually in an .xls file. In one column, the file contains the name 

of the aGEM tag and in the right one it contains the name of the corresponding tag in the atlas. 

For using the file within the program, it was needed to add a new external jar for Eclipse, to 

allow it to read and interpret the file: jxl jar (Java Excel Api). The methods required for reading 

the file and importing the results to the program are contained in a new class called “mapeo”. 

Objects of this class contain as subsidiary objects an object of the class aGEMtaglist and 

another of the class MDAtoSTR, and the methods that relate them. 

 

Plugin development 

 

Interface 

 

The next step is the programming of the interface. Inside the interface there are two steps 

which should be clearly differentiated. The first step is the programming of the different 

menus which should lead the user to the different types of queries that can be performed. 

These menus should be clear enough to avoid confusion. The second step is the programming 

of the image processing part: what should be done with the atlas image and the tags image in 

order to show the user the result required by the query. 

The layout chosen for the menus was the following one: 
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Figure 15: General workflow of the plugin. 

For the first decision (Query Type) a generic ImageJ dialog was used. This dialog included two 

Radio Buttons, to be checked whether the query wants to be performed anatomically or by 

gene. This kind of menu was chosen due to its simplicity to implement and to be used by the 

user. 

When the user selects any of the options and presses OK, another window pops up. The 

window should include either the list of available anatomical structures, or the list of genes 

which are present in the brain according to the GXD database. Nevertheless, some conflicts in 

the information appeared, both in the anatomical list for the menu and in the gene list. In the 

case of the anatomical list, there is a conflict in the fact that either the list from the atlas could 

be used or also the list from aGEM, or both combined. Due to the fact that the structures 

which will be shown in the images are those in the atlas, it would be nonsense to use the 

structure tag list provided by aGEM, since it could not be shown up to that level of detail. In 

the case of the gene list, the problem is given by the fact that the genes in the list contained in 

the aGEMtaglist object are namely repeated (recall: each gene in each structure generates a 

different object of the Gene class and hence will be repeated in the list). Because it is not 

desirable that the genes in the menu are shown repeatedly, in order to be shown, the gene 

names should be extracted in parallel to a set instead of a list, since a set in Java does not 

allow repetitions. In this way, the new set would contain the names of all the genes only once, 

so that it can be used for the menu generation. 

Once the conflicts are solved, it is needed to choose a window layout for the generation of the 

menus. The ImageJ interface dialogs are too simple for this purpose, so they were performed 

Query type 

Anatomy 
query 

Structure 
selected 

Gene 1 

Gene 2 

Gene 3 

Gene query 
Gene 

selected 

Structure 1 

Structure 2 

Structure 3 
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in Swing. The layout chosen in both cases was a plain scrollable window containing all the 

genes or all the structures the user can query about. The user selects one element and then 

clicks in “Proceed” button. 

To continue with the process, a binary image should be obtained, using it as a mask to overlap 

with the atlas image. To identify which are the pixels of the image of tags that should be 

segmented, first we need to extract the list of structures of interest. In the case of an anatomy 

query, it is straightforward since there will only be a structure of interest, but in the case of a 

gene query, a list of structures where the gene is expressed is elaborated. The objects of class 

Structure which are selected contain a field, called ID, which is just the value of the grey level 

that each structure have in the atlas image.  

Once the wanted grey levels are known, binary masks are produced for each one by double 

thresholding around the value of interest. If there is only one structure of interest, then 

performing the double thresholding once is enough, but on the other hand, when several 

binary masks are produced, they need to be combined. They are combined using the ImageJ 

image calculator, using a logical OR operator.  

After the binary mask containing all the pixels of interest is computed, it should be merged 

with the atlas image. It is an operation which is performed by means of the ImageJ image 

compositor. The atlas is set to the greyscale channel of the image, while the binary mask is set 

as the input in the green channel. The result is an image of the magnetic resonance of the atlas 

in which the regions of interest are shaded green. 

Together with the composite, a window containing the information pops up. It is just a plain 

text, scrollable window which shows the information regarding the query performed. In the 

case of an anatomical query, the window will show all the genes expressed in the structure 

queried, and their strength; while in the case of a gene query, it will show all the occurrences 

of the queried gene in the main gene list, with the information regarding location and 

strength. 
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Classes 

 

Figure 20: Class diagram of the plugin. 

For the correct working of the application, there are 9 core classes. These classes have been 

already mentioned, and are included in the diagram above. In any case, it is interesting to 

perform an individual analysis of all of them in order to understand better the workflow of the 

program. 

Class Structure 

It is a class which works as a container to include all the data of the structures which are read 

in the atlases and in the database. The class Structure contains all the variables necessary to 

import information for the fields of the structures of all the atlases which were used, and the 

information present in the aGEM table. That is the reason why some of the variables it 

contains are unused in the program: they are not needed for this version, but are ready to be 

used in following versions the can potentially include more atlases. It also contains the getter 

methods (which retrieve the value in the field) and setter methods (which modify the value in 

the field) for all of the variables. The variables, unless otherwise said, are all of the String class: 

 id: It contains the value extracted from the ID field in the MDA atlas .xml file. This id 

field, as already said, includes the grey level of the structure in the tags image. 
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 acronym: It includes the abbreviation of the name of the structure. It is used both for 

the MDA structures and the aGEM structures. 

 name: It includes the name of the structure. It is also used in both MDA and aGEM 

structures. 

 children: It is an ArrayList of objects of the class Structure, which contain as objects 

inside the list, the substructures of the immediate lower level. It is also used in MDA 

and in aGEM, although the procedure to fill the list is not the same in both cases. 

Class Gene 

It is a class analogous to the Structure class in the sense that it also works as a container for 

the data read from the genes in the database. It contains all the variables needed to read the 

data from aGEM, even though they might not be used for the actual version of the program. It 

also includes all the getter and setter methods for all of them. The following variables are the 

ones which are of major importance, and, unless otherwise said, are all of the String class: 

 id: It stores the identifier of the gene 

 symbol: It includes an abbreviated name for the gene. 

 name: It includes the name of the gene 

 structureName: It is the name of the structure to which the gene belongs. 

 structureKey: It is the key of the structure to which the gene belongs 

 strength: It is a string which expresses the value of the strength the gene presents for 

the given structure. 

Class MDAtoSTR 

This class includes the variables and methods used for extracting the information from the 

atlas and storing them. It includes as a variable the ArrayList MDAtags, which will store all the 

information regarding the structures in the atlas. The class contains a constructor, which 

includes the steps of connecting to the .xml file, reading it and storing the data read in 

MDAtags. Apart from the constructor, it includes the methods necessary to retrieve 

information from the list. The methods which are enclosed in the class are: 

 FillFields: This is a private method which is called in the constructor. It builds an object 

of class Structure and fills all the variables in it with the fields included in the atlas .xml 

file. This method works in a recursive way: this is required in order to field the 

ArrayList of the variable “children”. 

 strtoString: It converts the list MDAtags into an array of strings containing the names 

of all the structures. This method is needed to build the list to be included in the menu 
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of the interface, since Swing is compatible with arrays of strings but not with 

ArrayLists. It returns the list ordered alphabetically. 

 PrintNames: Shows in screen the names of all the structures contained in MDAtags. 

 getList: Returns the list MDAtags, acting as a getter. 

 printChildren: It prints the children (substructures) which are enclosed in the children 

ArrayList of each structure of the list MDAtags, in order of occurrence. It does not 

permit to determine to which structure belongs each substructure. 

 getTags: Similar to strtoString, but the list is not returned alphabetically. 

 showKinder: It prints in screen the children (substructures) of the first level of the k-th 

structure in MDAtags. 

 searchTag: It takes an string as an input and returns the Structure object which 

contains such a string in the field “name” 

 getChildTags: Analogous to showKinder, but uses the method searchTag to allow to 

return the substructures of a given name. 

 getAllDescendants: Analogous to getChildTags, but it uses a recursive method in order 

to return all the descendants of the queried tag, not only the first level ones. 

 showAllDescendants: Prints in screen the result of a getAllDescendants query. 

 getSize: Returns the number of tags in MDATags. 

The most important methods are searchTag and getAllDescendants, since they will be used in 

further operations in the program. 

Class aGEMtaglist 

This class performs all the operations of interaction with the aGEM database. It includes two 

lists, one regarding structures (“tagidentifiers”) and another one regarding genes (“genelist”). 

Inside it there can be found all the methods needed to query both lists, and the constructor, 

which is used to build up the lists using the connection to the MySQL database. The methods 

which are defined in the class are: 

 FillFields: It is a private method (it is only called by the constructor or other classes, it 

cannot be called by the user) analogous to the method FillFields of the class 

MDAtoSTR. This means that this method is used to read the structures from the aGEM 

database and stores them in the “tagidentifiers” list. Nevertheless, in this case, this 

method is not recursive by itself since the children (substructures) are extracted by 

another method. 
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 extractChildren: It is another private method which is used to fill in the list “children” 

contained in each Structure before adding it to the list (it is called by the FillFields 

method) by comparing the ParentStructureKey variable of the new structure with the 

ID of the former ones. Since it also calls FillFields, between both methods, a recursive 

loop is established. 

 setGenes: It is another private method, called by the constructor after the recursive 

loop of FillFields and extractChildren is finished. It iterates the list “tagidentifiers” and 

looks in the database for the genes contained in those structures, adding them to the 

list “genelist”. 

 geneToString: It returns an array of strings containing the names of the different genes 

which are in “genelist”. As said before, this step must be performed in order to obtain 

a list usable by Swing for the interface. 

 strToString: It returns an array of strings containing the names of the different 

structures which are in “tagidentifiers”, for the same purpose as the former method. 

 getGXDtags: It is the getter for the list “tagidentifiers”. 

 getGenes: It is the getter for the list “allgenes”. 

 printer: It prints in screen all the names of the structures in “tagidentifiers”, as well as 

the total number of structures at the end of the list. 

 geneprinter: Homologous to printer method, but for the list “allgenes”. 

 search: It obtains an string containing the name of a structure as an input and returns 

the object of class Structure which corresponds to such name. 

 searchbyID: It obtains an string containing the ID of a structure as an input and returns 

the object of class Structure which corresponds to such name. 

 findstructuresbygene: It obtains a list of structures where a given gene is expressed. 

 searchgene: Homologous to search, but works for genes instead of structures. 

 searchgenesbystructure: It obtains a list of genes expressed in a given structure. 

 showstructurequeryresult: It prints in screen the result of a searchgenesbystructure 

query. 

 getChildren: It returns all the children (substructures) of the first level of a given 

structure. 

 showChildren: It shows the results of a getChildren query in screen. 

 getAllDescendants: It returns all the children (substructures) of a given structure, 

notwithstanding the level they are. It is a recursive method. 

 showAllDescendants: It prints in screen the result of a getAllDescendants query. 
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 getFather: It returns the structure of the immediate upper level which contains 

another one. 

 getAllAncestors: It returns all the structures which contain the queried one 

notwithstanding the level they are found. 

 showAllAncestors: It shows in screen the result of a getAllAncestors query. 

Class mapeo 

This class builds an object of both aGEMtaglist class and MDAtoSTR class as a variable in its 

constructor. It contains methods to query the .xls file containing the mapping of the structures, 

retrieving the correspondences among the lists of structures within them and with the gene 

list. These correspondences are stored in two hashtables which are the ones which are queried 

by the user and the other classes of the program. It is the core class of this project, since it 

performs all the operations of mapping. The class contains the following methods: 

 FindCorrespondences: It receives as an input the name of the structure in the atlas, 

and returns the list of structures of aGEM to which the structure of the atlas maps. 

 ShowCorrespondences: It prints in screen the result of one “FindCorrespondences” 

query. 

 FindAllDownstreamCorrespondences: It receives as an input the name of the structure 

in the atlas, and returns the list of structures of aGEM to which the structure of the 

atlas maps, and also all their substructures (children) 

 showDownstreamCorrespondences: It prints in screen the result of one 

“FindAllDownstreamCorrespondences” query. 

 FindInverseCorrespondence: It receives as an input the name of a structure in aGEM 

and returns the atlas structure to which it maps. 

 ShowInverseCorrespondence: It shows up the result of a FindInverseCorrespondence 

query. 

 FindInverseDownstreamCorrespondences: It receives as an input the name of a 

structure in aGEM and returns the atlas structures to which it and its substructures 

map. 

 ShowInverseDownstreamCorrespondences: It shows the result of a 

FindInverseDownstreamCorrespondences query. 
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Class aGEM_atlas_plugin 

This is the executable class which will be run by ImageJ. It includes three methods, all of them 

private (which means that a user cannot perform the operations contained in the methods by 

writing commands in the console): 

 run: It contains the sequences which will be performed by ImageJ when the plugin is 

executed. It shows sequentially the different menus and stores the user’s choices. 

 IllegalQuery: It includes the commands to be executed when there is an error in some 

step of the class execution. 

 makeMask: It is the method which is used to compute the mask which is to be 

overlapped with the atlas image. As said before, this method uses double thresholding 

to perform such a task. 

Classes windowAnatomy, windowGene and windowInformation 

These are Swing window classes, used in order to generate the different menus and pop-ups 

with the information queried by the user. They are called in the run method of the class 

aGEM_atlas_plugin. 
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Results 
 

At first, when the plugin is executed, the query selection dialog appears. The program was 

tested with all the possibilities. Anatomy queries are faster in execution then gene queries, 

because they do not require any mask merging, while the gene queries require merging all the 

masks containing the structures where those genes are expressed. In any case, the execution is 

fluent, and the average query takes about 90 seconds to be solved. 

 As said, when execution is started, this dialog appears, which allows the user to choose 

between the two query types: 

 

Figure 16: Query type selection window. 

Then, when the user selects which query type is wanted, the second window pops up, 

requiring the user to select a gene or a structure of interest: 

 

Figure 17: Structure selection window. The gene selection window is similar to this one. 
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After all the choices are made, then the program should process the images in order to show 

the user a visual result. The image containing the anatomical data is shown, and then, the 

information regarding the genes and structures queried should be popped up in another 

window. The window contains the information on the gene name, the name of the structure 

where it is expressed, and the strength. 

 

 

Figure 18: The result image. It can be appreciated in green the queried structure. 

 

Figure 19: Gene information window. It contains information for the genes present in the 

queried region, or for the genes queried in the case of a gene query. 
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Discussion and conclusions 

 

As demonstrated, a functional plugin for ImageJ was developed, which is able to merge the 

information provided in one of the tables of aGEM with one atlas. It is a tool which can be used 

by any ImageJ user and it is open-source, which means that anyone can place modifications 

and improvements. It allows the projected queries (anatomical and gene queries) to be 

performed in a clear and user-friendly way. 

The results of this project show that the programming of such a tool integrating data from 

genes and from anatomical atlas is feasible, and can be done by simple procedures. Although it 

is a initial version which has a lot of features to be further developed, it can be a good starting 

point for future developments. 

To extend further this tool, it could be a good idea to change the format of the aGEM 

databases from MySQL to SQLite format. This could not be done due to difficulties when 

converting the tables from one format to another one. Also, it might be interesting to save the 

information in an easier accessible way, so that the only time it needs to go to the database or 

to the .xml or .xls files would be the first one. This would make the program much quicker, 

which is one of the main problems of the current implementation. A complete execution of a 

simple anatomical query might last for more than a minute, while the execution of gene 

queries is much longer. Furthermore, in this way, the plugin would work properly even though 

the required files of the databases, atlas and mapping are moved or deleted. 

 

Future lines 

 

The potential of the tool is quite high; however, it admits further improvement and added 

functionalities which would make it much more interesting than the beta version that was 

proposed by this project. Some of these possible improvements are the addition of maps for 

different atlases, in order to see the structures in different levels of detail, because different 

atlases might show more accuracy in different areas of the brain, or they might show more 

tags which indeed increase the resolution of the queries. As far as this possibility is concerned, 

the tool is implemented in a way that it allows to add up new atlases in an easy way. 
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One of the main issues which should be covered in further versions is the use of data from 

other databases contained in aGEM, different from GXD. aGEM is, as said, a novel idea which is 

really useful, since it allows the user to not having to query each one of the databases one by 

one, but to query them at the same time. The tool developed in the project was not included 

at first by aGEM, due to the fact that the developers did not have the knowledge in medical 

imaging processing which was required to build up the tool. Nevertheless, in this initial version, 

it does not take advantage of all the potential of aGEM. In future developments, it would be 

necessary to include more data from aGEM in order to increase the interest of the project. 

Also, it would be quite interesting to include more analysis tools apart from a simple list of 

expressed genes. It would be really interesting to include as a query type or as a result the 

statistical data of expression of the different genes. In such way, patterns of expression might 

be identified, or the correlation among several genes. The result of such an statistical analysis 

could be thresholded, discarding the structures which are not relevant or do not correlate 

properly with the statistical parameter of interest and taking only those which provide 

significative results. Another possibility could be multi-gene query, which would allow the user 

to identify related structures in which the same set of genes is expressed. 

Another improvement which the tool requires is to be made quicker, since it is now quite 

inefficient in some of its processes. The menus for the queries could be modified to allow 

multiple selection, in order to query multiple structures (which should be represented in 

different colours) and also multiple genes. 
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