'\ Universidad
: Carlos ITT de Madrid - r C VO

Institutional Repository

This is a postprint version of the following published document:

Gayoso Martinez V., Gonzélez-Manzano L., Martin Muiioz A. (2018)
Secure Elliptic Curves in Cryptography. In: Daimi K. (eds) Computer
and Network Security Essentials. Springer, Cham

Available in https://doi.org/10.1007/978-3-319-58424-9 16

© Springer International Publishing AG 2018


https://doi.org/10.1007/978-3-319-58424-9_16

Secure Elliptic Curves in Cryptography

Victor Gayoso Martinez, Lorena Gonzalez-Manzano,
and Agustin Martin Muiioz

16.1 Introduction

In 1985, Neal Koblitz [24] and Victor Miller [28] independently suggested using
elliptic curves defined over finite fields for implementing different cryptosystems.
This branch of public-key cryptography is typically known as Elliptic Curve
Cryptography (ECC), and its security is based on the difficulty of solving the
Elliptic Curve Discrete Logarithm Problem (ECDLP), which is considered to be
more difficult to solve than the Integer Factorization Problem (IFP) used by RSA or
the Discrete Logarithm Problem (DLP) which is the basis of the ElGamal
encryption scheme [11, 16, 24]. Since the inception of ECC, elliptic curves have
been typically represented in what is called the short Weierstrass form (which is
described in Sect. 16.2).

One of the most important aspects when working with secure elliptic curves is
how they are generated. Even though some standards include several sample curves
or even the description of the procedures for generating them (e.g., X9.63 [2], IEEE
1363 [21], or NIST FIPS 186 [30]), in most cases the information contained in those
standards has important limitations, such as the lack of clarity in the selection
procedure regarding the seeds and prime numbers involved or the insufficient
explanation for some of the requirements specified in the procedure.

V. Gayoso Martinez (<) « A. Martin Mufioz

Institute of Physical and Information Technologies (ITEFI), Spanish National
Research Council (CSIC), Madrid, Spain

e-mail: victor.gayoso@iec.csic.es; agustin@iec.csic.es

L. Gonzilez-Manzano
Computer Security Lab (COSEC), Universidad Carlos III de Madrid, Leganés, Madrid, Spain
e-mail: Igmanzan@inf.uc3m.es



In this scenario, in the early 2000s a working group called ECC Brainpool
focused on this topic and completed a first set of recommendations in 2005 [10] for
elliptic curves in the short Weierstrass form. Five years later, the Brainpool
specification was revised and published as a Request for Comments (RFC) [25].
The Brainpool initiative was considered to be the first international effort with the
goal of producing a truly transparent curve generation scheme, and the curves
suggested in its specification were initially considered to be secure without any hint
of doubt.

Several years later, researchers Daniel Bernstein and Tanja Lange published an
analysis in which they reviewed the existing elliptic curve generation mechanisms,
including the one devised by Brainpool. In their website SafeCurves [6], they
compared not only the strength of the curve parameters and the soundness of what
they called “ECC security” (basically the strength against rho attacks [34] and
transfers of the ECDLP to other fields where the DLP is easier to solve [18-20, 27],
the class number associated with the trace of the curve [12], and the rigidity of the
definition of the curve parameters) but also what they termed “ECDLP security,” a
concept in which they included the resistance to attacks based on the Montgomery
ladder [29], the strength of the associated twisted curves [8], the completeness of
the addition formulas [5], and the indistinguishability of elliptic curve points from
random binary strings [9]. The main result of that analysis was that all the schemes
included in the standards overlooked some aspects of the ECDLP security and, for
that reason, required to increase the complexity of the implementations in such a
way that it opened the door to some types of side channel attacks [6].

As a solution, Bernstein and Lange decided to propose new curves different to
those provided by previous specifications. Going one step further, they evaluated 20
curves obtained from different sources, showing that only a small subset of curves
fulfilled all their security requirements. That subset is composed by elliptic curves
in the Edwards and Montgomery formats (both of them introduced in Sect. 16.2).

However, from the point of view of availability, Montgomery and
Edwards curves have not been popular choices so far, and in that respect traditional
curves in the short Weierstrass form are the dominant option in both hardware and
software implementations. In addition to that, the extra security offered by
Edwards and Montgomery curves could affect the performance of the point
operations which are the core of the scalar-multiplication operation (the product of
a point of the elliptic curve by an integer, an operation needed in any protocol
involving elliptic curves).

Regarding the resistance of elliptic curve cryptosystems to quantum computing,
at the time of writing this contribution the National Security Agency (NSA) has
confirmed the status of transition algorithms to some ECC cryptosystems while new
cryptographic systems that are secure against both quantum and classical computers
are defined [31, 33]. As it is not clear when those new systems will be available, it is
safe to state that ECC will continue to be used at least in the near future.

This chapter presents to the reader the different types of elliptic curves used in
Cryptography as well as the Brainpool procedure. The contribution is completed
with the examination of the proposal regarding secure elliptic curves represented by
the SafeCurves initiative.



16.2 Elliptic Curves

In this section, the reader is presented with the mathematical description of elliptic
curves, as well as the specific details of elliptic curves described in the short
Weierstrass form and the Edwards and Montgomery formats.

16.2.1 Definition

An elliptic curve defined over a field I is a cubic, non-singular curve whose points
(x,y) € F x T verify the following equation, known as the Weierstrass equation:

E:yz + aixy + azy =2 4 apx* + asx + as,

where ay, ay, a3, as, ag € F and A # 0, where A is the discriminant of E that can
be computed as follows [26]:

A = —d2ds — 8d3 — 27d2 + Ydadyds.

dr = Cl% + 4a,,
dy = 2a4 + ayas,
de = a% + 4ag,

dg = a%aﬁ + darag — ajazas + azag — ai.

An elliptic curve point is singular if and only if the partial derivatives of the curve
equation are null at that point. The curve is said to be singular if it possesses at least
a singular point, while it is non-singular if it does not have any such points.

The nonhomogeneous Weierstrass equation can also be expressed in the follow-
ing homogeneous form [12]:

Y’Z + a\XYZ + a3YZ? = X3 + ar,X*Z + asXZ? + asZ’.

This equation defines a curve which includes a special point called the point
at infinity, which is typically represented as ¢ = [0 : 1 : 0] and that has no
correspondence with any point of the nonhomogeneous form. However, this point
is very important as it works as the identity element of the addition operation when
working with Weierstrass and Montgomery elliptic curves.

16.2.2 Elliptic Curves Over Finite Fields

Most cryptosystems defined over elliptic curves use only the following finite fields
F, with ¢ = p™ elements: prime fields IF, (where p is an odd prime number and



m = 1) and binary fields F,» (where m can be any positive integer). However,
due to a combination of license issues and security concerns [4], prime fields have
been favored in the latest specifications at the expense of binary fields (see, for
example, Brainpool [25], NSA Suite B [32], or BSI TR-03111 [11]). Following that
criterion, this chapter focuses on elliptic curves defined over prime fields. In this
type of curves, the term key length must be interpreted as the number of bits needed
to represent the prime number p.

When using prime fields, the order (i.e., the number of points) of any elliptic
curves is finite. In this context, the order of a point P of the elliptic curve is the
minimum nonzero value n such that n-P = &, where n-P is the scalar multiplication
of the point P by the number n (i.e., P 4+ P + --- + P, where P appears n times).

A point G is said to be a generator if it is used to generate either all the points
of the curve or a subset of those points. For security reasons, only generators whose
order is a prime number are used in Cryptography.

Given a curve and a generator, the term cofactor refers to the result of dividing
the number of points of the curve by the order of the generator. Most standards only
allow curves whose cofactor is either 1 or a small number like 2, 3, or 4.

16.2.2.1 Weierstrass Curves

The peculiarities of prime fields allow to simplify the general Weierstrass equation,
obtaining in the process what is called the short Weierstrass form represented as
y?> = x> + ax + b, where 4a® + 27b> # 0 (mod p).

As in the case of the general Weierstrass equation, the identity element of the
short Weierstrass form is the point at infinity &, while the opposite element of a
point P = (x,y) is the point —P = (x, —y). Adding two points P; = (x1,y;) and
P, = (x2,y2) such that P; # 4P, produces a point P3 = (x3, y3) whose coordinates
can be computed as follows [7]:

P (2 —y1)? I b = 2x1 + )02 —y) (2 —»)°
=0 — X1 — X2, 3 = - -

(XQ —X1)2 X2 — X1 ()Cz — x1)3
In comparison, when P; = P, it is necessary to use an alternative addition

formula, so in this case the point P3 = 2P; obtained through the doubling operation
has the following coordinates [7]:

(3x? + a)? (Gx1)(3x? +a)  (3x? +a)’
A 2)(1 , y3 = — 3 —
2y (2y1)

Yi-

16.2.2.2 Edwards Curves

Edwards curves were introduced by Harold M. Edwards in [15], though during
the last decade slightly different equations have been given that name. The first



expression related to Edwards curves was its normal form x> + y> = (1 + x*?),
where the neutral element of the addition operation is the point (0, ¢) [15]. Edwards
showed that any elliptic curve could be transformed into its normal form if the finite
field used by the curve is algebraically closed. If that was not the case, then only a
small fraction of elliptic curves could be transformed into the normal form using the
original finite field [, 8].

A few months later, Bernstein and Lange presented a variant using the general-
ized form x> +y?> = c*(1 4+ dx*y?), where cd(1 —dc*) # 0 (mod p) [5]. The goal of
Bernstein and Lange was to increase the number of curves that could be converted
into the Edwards form using the original finite field. In addition to the previous
definition, an Edwards curve is said to be complete if d is not a square in F,, (i.e., if
d is not a quadratic residue in [F,,), which allows to use only one addition operation
for any pair of points, avoiding the case of exceptional points. If ¢ # 0,d # 0, d is
not square, and dc* # 1, then the coordinates of P3 can be computed as follows for
any pair of points P; = (x,y;) and P, = (x2, y7):

= 2 + Yix2 s = Yiy2 — X1x2
3 — ) 3 = .
c(1 + dx1x21y2) c(l — dx1x2y1y2)

Bernstein and Lange also proved in [5] that all curves in the generalized form are
isomorphic to curves defined by means of the equation x> + y> = 1 + dx*y?, which
is the equation typically associated with regular Edwards curves in the literature. If
d € F — {0, 1}, then in this type of curves the point (0, 1) is the identity element
of the addition operation, the point (0, —1) has order 2, and the points (1,0) and
(—1, 0) have order 4.

One year later, Bernstein et al. proposed another generalization, producing as a
result twisted Edwards curves, defined by the equation ax’> +y? = 1+4dx?y? [8]. The
addition formula for twisted Edwards curves is the same as in the case of Edwards
curves in the generalized form, where ¢ = 1 in the case of twisted Edwards curves.

Theoretically, it would be possible to work with a more general model given by
the equation ax®> + y*> = c?(1 + dx*y?). However, as the curves defined according
to that model are always isomorphic to twisted Edwards curves, in practice it is not
used [8].

The most interesting characteristic of complete twisted Edwards curves is that the
equations for both adding two points P and P, such that P; # £ P, and doubling a
point are exactly the same. Moreover, it is not necessary to implement any logic for
detecting if the points to be added are such that P, = —Py, as the Edwards addition
equations also take into account that circumstance. This feature is important when
defining the countermeasures to some type of side channel attacks.

16.2.2.3 Montgomery Curves

Montgomery curves conform to the equation By> = x> +Ax? +x, where B(A%>—4) #
0 (mod p). As in the case of Weierstrass curves, the identity element in Montgomery



curves is the point at infinity &, while the opposite element of P = (x, y) is the point
—P = (x, —y). The addition of two points P; = (x,y;) and P, = (x, y») such that
P, # +P; is the point P3 = (x3, y3) with the following coordinates [7]:
B(y, — y1)* 2x +x+ A —y) Bl—n)?
= —A—Xl—X2, y3 = - 3
(02 —x1) Xy — X1 (02 —x1)

X3 Yi-

Unlike Edwards curves, it is necessary to use different equations for the doubling
operation, so in this case the coordinates of the point P3; = 2P; can be computed as
follows [7]:

. B(3x} + 2ax; + 1)?

—A-2
” (2By)? o
b (Bxi +A)(3x] +2Ax + 1) BGxi +24x + 1)’ .
} 2By, (2By1)? "

16.2.3 Transforming Formulas

Complete twisted Edwards curves ax? + y> = 1 + dx?y? are birationally equivalent
to Montgomery curves By>? = x* 4+ Ax?> + x, where two curves are birationally
equivalent if their fields of rational functions are isomorphic [15] (when referring
to projective non-singular curves, the term birationally equivalent simply means
that the curves are isomorphic). This means that every Montgomery curve can be
expressed as a twisted Edwards curve, and vice versa [8]. In order to transform
a complete twisted Edwards elliptic curve into a Montgomery elliptic curve as
displayed in the previous section, it is necessary to use the following equivalence
formulas [6]:

a+d 4

A=2 , B = .
a—d a—d

In this way, a curve point (xg,yg) which belongs to an Edwards curve can
be converted to a point (xy, yy) of the associated Montgomery curve, where the
equations for obtaining (xy, yy) are as follows:

1+ XM

Xy = s .
1 —yg XE

Besides, in order to transform a Montgomery elliptic curve into the short
Weierstrass form, it is necessary to use the following equivalences [6]:

3-—A? 243 —9A
T 3R2 2783

’



In this specific case, a curve point (xy, yy) belonging to a Montgomery curve can
be converted to a point (xy, yw) of the associated short Weierstrass curve, where the
transforming equations are the following ones:

XM+§ Ym
Xw = B , yW:E-

It is important to notice that, given the number and nature of the field operations
needed in each case, elliptic curves in the short Weierstrass form have a better
performance than the elliptic curves expressed in the Edwards and Montgomery
forms when computing scalar multiplications, which is the basic operation when
dealing with elliptic curves [14].

16.3 Brainpool

Even though elliptic curve cryptographic protocols are well defined in standards
from ANSI [2, 3], IEEE [21, 22], ISO/IEC [23], NIST [30], and other organizations,
it is usually the case that the elliptic curve parameters that are necessary to operate
those protocols are offered to the reader without a complete and verifiable pseudo-
random generation process. Some of the most important limitations detected across
the main cryptographic standards regarding the processes for generating elliptic
curves suitable for Cryptography are the following [10]:

* The seeds used to generate the curve parameters are typically chosen ad hoc.

* The primes that define the underlying prime fields have a special form aimed at
facilitating efficient implementations.

* The parameters specified do not cover in all the cases key lengths adapted to the
security levels required nowadays.

In this scenario, a European consortium of companies and government agencies
led by the Bundesamt fiir Sicherheit in der Informationstechnik (BSI) was formed in
order to study the aforementioned limitations and produce their recommendations
for a well-defined elliptic curve generation procedure. The group was named ECC
Brainpool (henceforth simply Brainpool), and, apart from the BSI, some of the
most relevant companies and public institutions that took part in the effort were
G&D, Infineon Technologies, Philips Electronics, Gemplus (now part of Gemalto),
Siemens, the Technical University of Darmstadt, T-Systems, Sagem Orga, and the
Graz University of Technology.

In 2005, Brainpool delivered the first version of a document entitled “ECC
Brainpool standard curves and curve generation” [10], which was revised and
published as an RFC memorandum in 2010, the “Elliptic Curve Cryptography
(ECC) Brainpool standard curves and curve generation” [25]. The following
sections present the main characteristics of the Brainpool procedure.



16.3.1 Key Length

As mentioned before, the Brainpool procedure only manages elliptic curves defined
over prime fields expressed in the short Weierstrass form. The key lengths allowed
by Brainpool are 160, 192, 224, 256, 320, 384, and 512 bits [25, p. 6].

16.3.2 Seed Generation

The seeds used in Brainpool are generated in a systematic and comprehensive way.
These seeds have been obtained as the first 7 substrings of 160 bits each of the
number IT - 21120 =Seedp160|| ... ||Seedp512||Remainder, where || denotes the
concatenation operator [25, p. 24].

16.3.3 Seed to Candidate Conversion

Brainpool uses SHA-1 [25, p. 22] during the process of finding candidates for the
parameters p, a, and b, as it can be observed in Fig. 16.1, where L represents the bit
length of p. Even though it is not recommended to use SHA-1 as a hashing function
in security environments (e.g., digital signatures), it is important to note that in this
context it is only used for generating candidate values.

As the output of the hashing function SHA-1 is 160 bits, and for different curves
the length of the resulting parameters must be necessarily different, Brainpool
performs a loop concatenating several SHA-1 outputs until the concatenated number
has the proper bit length [25, pp. 22 and 24].

In addition to that, Brainpool uses two functions to generate the candidates, one
for p and another for a and b. Those functions are very similar; in fact, the only
difference is that the most significant bit of a and b is forced to be 0 [25, p. 24].
Given that another requirement states that the most significant bit of p must be 1
[25, p. 23], this implies that the values a and b generated are such that a, b < p.

16.3.4 Validation of Parameters a and b

In Brainpool, once the algorithm has determined the value of p, it starts searching the
proper values for the elliptic curve parameters a and b, as it can be seen in Fig. 16.2.
When a candidate pair is found, the resulting curve is tested against the security
requirements. In case the curve is rejected, both a and b are discarded, starting a
new search for a proper pair [25, p. 25].



Fig. 16.1 Generation of

candidates for parameters p, Start

a, and b in Brainpool

\ 4

v = floor((L-1)/160)
w =L -160-v (parameter p)
w =L -160-v -1 (parameters a & b)
k=0

Y

h_0 = w rightmost bits
of SHA-1(seed)
h=h_0

Y

k=k+1
seed = seed + 1

Y

h_k = SHA-1(seed)
h=hllh_k

Return h
Finish

16.3.5 Cofactors

In order to generate cryptographically strong elliptic curves, it is necessary to
compute the number of points of the elliptic curve and to determine if that value
is a prime number or if it has a small cofactor. In this regard, the Brainpool
specifications only accept curves whose number of points is a prime number [25,
p. 6]. This means that the Brainpool curves cannot be transformed into the twisted
Edwards or Montgomery forms, as in those types of curves the number of points is
always divisible by 4.



Fig. 16.2 Validation of
candidates for parameters a@
and b in Brainpool

Update seed

Load

h 4

Find candidate for
parameter a

———>»  Update seed

y

y

Find candidate for
parameter b

Is b square
modulo p?

Does it fulfill all additional
requirements?

10



16.3.6 Factorizations

Two of the security requirements defined by Brainpool imply the factorization of
integers. In one case, it is necessary to factorize the value |E| — 1, where ¢ is the
order of the elliptic curve, in order to avoid attacks using the Weil or Tate pairings.
Those attacks allow the embedding of the cyclic subgroup of the elliptic curve into
the group of units of a degree-/ extension field of FF,,, where subexponential attacks
on the DLP exist [10, p. 5].

In the other case, the specification requests to factorize the value d, which is the
square-free factor of 4p — u?, where u = |E| — p — 1, so it can be checked that the
class number of the maximal order of the endomorphism ring of the elliptic curve is
larger than 107 [10, p. 5].

16.4 SafeCurves

Researchers Daniel Bernstein and Tanja Lange explain in their website SafeCurves
[6] how all the standards that include recommended elliptic curves have addressed
ECDLP security but not ECC security. The standards and official documents
analyzed by SafeCurves are ANSI X9.62 [3], IEEE P1363 [21], SEC 2 [35], NIST
FIPS 186 [30], ANSI X9.63 [2], Brainpool [10, 25], NSA Suite B [32], and ANSSI
FRP256V1 [1].

Bernstein and Lange state that elliptic curves designed to be ECDLP secure
may be attacked if they are not implemented properly, which would allow, for
example, to produce incorrect results for some rare curve points, leak secret data
when the input is not a curve point, or provide secret data through branch or cache
timing attacks. The authors believe that secure implementation of the previously
mentioned standard curves is theoretically possible but very hard. In order to avoid
those implementation problems, the authors propose to use new curves which allow
simple and secure implementations.

SafeCurves includes an evaluation of 20 curves taken from several sources (one
SEC 2 curve, one ANSSI curve, two curves provided as examples of bad design, two
Brainpool curves, three NIST curves, 5 Montgomery curves, and 6 Edwards curves)
showing that some of them do not pass all their security requirements, which are
divided into 3 main groups: curve parameters, ECDLP security, and ECC security.

16.4.1 Curve Parameters

In 2006, Bernstein stated that prime fields “have the virtue of minimizing the
number of security concerns for elliptic-curve cryptography” [4], citing as two
examples [13] and [17]. Later, he affirmed that “there is general agreement that

11



prime fields are the safe, conservative choice for ECC” [6]. Sharing that point of
view, other standards and recommendations like Brainpool [25], NSA Suite B [32],
or BSITR-03111 [11] consider only prime fields for all type of applications.

While in all the Brainpool curves the order of the generator G equals the number
of points of the curve (i.e., the cofactor is 1), the Montgomery and Edwards
examples from SafeCurves have cofactors whose value is either 4 or 8. Small
subgroups attacks, which could take advantage of curves with a cofactor greater than
1, are easily deactivated either by implementing the appropriate software checks or
by the inherent characteristics of the Montgomery and Edwards curves described
in [6].

Regarding the key length, the curves analyzed by SafeCurves have one of the
following lengths: 221, 222, 251, 255, 382, 383, 414, 448, 511, and 521 bits.

16.4.2 ECDLP Security

Bernstein and Lange analyzed how resistant are the curves against some well-known
attacks to the ECDLP. More specifically, they studied the following characteris-
tics:

* Rho method: Bernstein and Lange stated that the rho method [34] breaks ECDLP
using, on average, approximately +/I7|G|/4 additions, where |G| represents the
order of the generator of the set of elliptic curve points used in the computations.
SafeCurves requires curves such that that value is over 2!,

e Transfers: In the authors’ language, a “transfer” converts the ECDLP into the
DLP using linear algebraic groups. Multiplicative transfers were introduced in
1993 and are often referred to as “the MOV attack” [19, 27]. Additive transfers
were introduced in 1998 and are sometimes called “the Smart attack™ [18, 20].
SafeCurves checks if the elliptic curve is safe against additive and multiplicative
transfers by computing a value associated to the parameters of the curve and
checking if it is higher than a certain threshold.

o Complex-multiplication field discriminant: The number of rational points on an
elliptic curve over I, is p + 1 — ¢, where ¢ is the trace of the curve, while the
order of the generator G is a prime divisor of that value [12]. If s? is the largest
square dividing > — 4p, then it can be affirmed that (1> — 4p)/s” is a square-free
negative integer. If (> — 4p)/s> = 1(mod 4), then D is defined as (1> — 4p)/s*;
otherwise, D is 4(> — 4p)/s>. SafeCurves requires the absolute value of this
complex-multiplication field discriminant D to be larger than 2!%.

* Rigidity: SafeCurves checks the degree to which the elliptic curve generation pro-
cess is explained (e.g., the choice for the seed values, the operations performed
on them to derive the parameters, etc.).

12



16.4.3 ECC Security

In this aspect of their study, Bernstein and Lange analyzed the following list of
features:

* Ladders: The authors consider that the most important computation in ECC is the
single-scalar multiplication. Montgomery curves support a very simple scalar-
multiplication method, the Montgomery ladder [29], which is simpler than the
standard short Weierstrass scalar-multiplication methods. The Montgomery lad-
der uses a single standard addition—subtraction—doubling chain, always
following a simple, highly efficient double-add pattern.

SafeCurves requires curves to support simple and constant-time multiplica-tions,
avoiding conflicts between efficiency and security. Both the Montgomery and
Edwards curves included in the study satisfy this requirement.

» Twist security: If the original curve has p 4 1 — ¢ points, then any nontrivial
quadratic twist has in turn p + 1 + ¢ points. In a generic implementation,
programmers have to be careful enough to include different checks (e.g., that the
point sent by the other party effectively belongs to the elliptic curve, that the
order of the point multiplied by the cofactor is not equal to &, etc.) [8]. This
requirement checks if the elliptic curve under analysis is protected against
attacks derived from those situations without forcing the programmer to include
specific code to handle those situations. In the scope of their contribution, the
authors define such a curve as a “twist-secure” curve.

* Completeness: This requirement checks if the curve equations allow to use
complete single-scalar and multi-scalar multiplications, in the sense that the same
single point addition formula must return valid values in all the cases (i.e., when
one of the input points is P and the other is —P, P, O, or any other point) [5].

* Indistinguishability from uniform random strings: Standard representations of
elliptic-curve points are easily distinguishable from uniform random strings.
This poses a problem for many cryptographic protocols using elliptic curves
(e.g., censorship-circumvention protocols, password-authenticated key-exchange
protocols, etc.). One of the workarounds for this problem is for the protocol to
bounce randomly between a curve and its twist, but according to the authors this
is a complicated and error-prone approach [9].

In 2013, a team of researchers led by Bernstein and Lange proposed a
solution to this problem using bijective maps. Hence, this requirement checks
the availability of those bijective maps for the curves under analysis.

16.4.4 Results

Using the previously described criteria, the authors of SafeCurves evaluated the
aforementioned 20 curves. As it was expected given the content of the requirements,
all the curves originally described using the short Weierstrass form do not satisfy

13



at least three of the four ECC security requirements. Apart from that, the SEC 2
curve does not pass the complex-multiplication field discriminant test, while the
NIST and the ANSSI curves are considered to be manipulable. Regarding the two
Brainpool curves considered in the comparison, they pass all the parameter and
ECDLP security requirements.

16.5 Conclusions

Selecting a secure elliptic curve is one of the most important steps when using an
ECC algorithm. The Brainpool specification has been analyzed by the scientific
community since its first appearance in 2005 and includes clear instructions
that allow any interested researcher to replicate the curve generation procedure.
However, when it was designed there were requirements that were not taken into
account and that are important when deploying an ECC solution.

Compared to the Edwards and Montgomery curves analyzed in SafeCurves,
the Brainpool curves do not fulfill some security requirements, though it could be
argued that a careful implementation of the curves should avoid the attacks related
to those requirements.

In addition to that, it is also important to note that, using standard coordinates,
short Weierstrass curves outperform Edwards and Montgomery curves when com-
puting scalar-multiplication operations. As it is usually the case, having a higher
level of security by default comes at a cost.

Most software libraries and hardware devices (e.g., smart cards) released during
the last years support curves using the short Weierstrass form, so the installed base of
those curves is quite large. The implementation pace of Edwards and Montgomery
curves is still slow, but it will definitely increase in the new years as new ECC
protocols and applications are made public.

Acknowledgements This work has been partly supported by Ministerio de Economia y Com-
petitividad (Spain) under the project TIN2014-55325-C2-1-R (ProCriCiS), and by Comunidad
de Madrid (Spain) under the project S2013/ICE-3095-CM (CIBERDINE), cofinanced with the
European Union FEDER funds.

References

1. Agence Nationale de la Sécurité des Systemes d’Information. (2011). Avis relatif aux
parametres de courbes elliptiques définis par I’Etat francais. http://www.legifrance.gouv.fr/
affichTexte.do?cidTexte=JORFTEXT000024668816.

2. American National Standards Institute. (2001). Public Key Cryptography for the Financial
Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography.
ANSI X9.63.

3. American National Standards Institute. (2005). Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). ANSI X9.62.

14



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Bernstein, D. J., & Lange, T. (2007). Curve25519: New Diffie-Hellman speed records. In

Proceedings of the 9th International Conference on Theory and Practice in Public-Key
Cryptography (PKC 2006) (pp. 207-228).

. Bernstein, D. J., & Lange, T. (2007). Faster addition and doubling on elliptic curves

(pp- 29-50). Berlin/Heidelberg: Springer.

. Bernstein, D. J., & Lange, T. (2014). SafeCurves. http://safecurves.cr.yp.to/.
. Bernstein, D. J., & Lange, T. (2016). Explicit-Formulas Database. https://hyperelliptic.org/

EFD/.

. Bernstein, D. J., Birkner, P., Joye, M., Lange, T., & Peters, C. (2008). Twisted Edwards curves.

Cryptology ePrint Archive, Report 2008/013. http://eprint.iacr.org/2008/013.

. Bernstein, D. J., Hamburg, M., Krasnova, A., & Lange, T. (2013). Elligator: Elliptic-curve

points indistinguishable from uniform random strings. In Proceedings of the 2013 Conference
on Computer & Communications Security (pp. 967-980).

Brainpool. (2005). ECC Brainpool Standard Curves and Curve Generation. Version 1.0. http://
www.ecc-brainpool.org/download/Domain-parameters.pdf.

Bundesamt fiir Sicherheit in der Informationstechnik. (2012). Elliptic Curve Cryptogra-
phy. BSI TR-03111 version 2.0. https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
Publications/TechGuidelines/TR03111/BSI-TR-03111_pdf.pdf?__blob=publicationFile.
Cohen, H., & Frey, G. (2006). Handbook of elliptic and hyperelliptic curve cryptography. Boca
Raton, FL: Chapman & Hall/CRC.

Diem, C. (2003). The GHS attack in odd characteristic. Journal of the Ramanujan Mathemati-
cal Society, 18, 1-32.

Duran Diaz, R., Gayoso Martinez, V., Hernandez Encinas, L., & Martin Muiloz, A. (2016). A
study on the performance of secure elliptic curves for cryptographic purposes. In Proceedings
of the International Joint Conference SOCO’16-CISIS’16-ICEUTE’ 16 (pp. 658-667).
Edwards, H. M. (2007). A normal form for elliptic curves. Bulletin of the American Mathemat-
ical Society, 44, 393-422.

ElGamal, T. (1985). A public-key cryptosystem and a signature scheme based on discrete
logarithm. IEEE Transactions on Information Theory, 31, 469-472.

Frey, G. (1998). How to Disguise an Elliptic Curve (Weil Descent). http://www.cacr.math.
uwaterloo.ca/conferences/1998/ecc98/slides.html.

Frey, G. (2001). Applications of arithmetical geometry to cryptographic constructions. In Pro-
ceedings of the 5th International Conference on Finite Fields and Applications (pp. 128-161).
Heidelberg: Springer.

Frey, G., & Ruck, H. (1994). A remark concerning m-divisibility and the discrete logarithm in
the divisor class group of curves. Mathematics of Computation, 62, 865-874.

Gaudry, P, Hess, F., & Smart, N. P. (2002). Constructive and destructive facets of Weil descent
on elliptic curves. Journal of Cryptology, 15, 19—46.

Institute of Electrical and Electronics Engineers: Standard Specifications for Public Key
Cryptography. IEEE 1363 (2000).

Institute of Electrical and Electronics Engineers: Standard Specifications for Public Key
Cryptography - Amendment 1: Additional Techniques. IEEE 1363a (2004).

International Organization for Standardization/International Electrotechnical Commission:
Information Technology-Security Techniques-Encryption Algorithms—Part 2: Asymmetric
Ciphers. ISO/IEC 18033-2 (2006).

Koblitz, N. (1987). Elliptic curve cryptosytems. Mathematics of Computation, 48(177),
203-209.

Lochter, M., & Merkle, J. (2010). Elliptic curve cryptography (ECC) Brainpool standard curves
and curve generation. Request for Comments (RFC 5639), Internet Engineering Task Force.
Menezes, A. J. (1993). Elliptic curve public key cryptosystems. Boston, MA: Kluwer Academic
Publishers.

Menezes, A., Okamoto, W., & Vanstone, S. (1993). Reducing elliptic curve logarithms to
logarithms in a finite field. I[EEE Transactions on Information Theory, 39, 1639-1646.

15



28.

29.

30.

31.

32.

33.

34.

35.

Miller, V. S. (1986). Use of elliptic curves in cryptography. In Lecture Notes in Computer
Science (Vol. 218, pp. 417-426). Berlin: Springer.

Montgomery, P. L. (1987). Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48, 243-264.

National Institute of Standards and Technology: Digital Signature Standard (DSS). NIST FIPS
186-4 (2009).

National Institute of Standards and Technology: Report on Post-quantum Cryptography (2016).
http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf.

National Security Agency: NSA Suite B Cryptography (2009). http://www.nsa.gov/ia/
programs/suiteb_cryptography/index.shtml.

National Security Agency: Commercial National Security Algorithm Suite (2015). https://
www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm.

Pollard, J. (1978). Monte Carlo methods for index computation mod p. Mathematics of
Computation, 32, 918-924.

Standards for Efficient Cryptography Group: Recommended Elliptic Curve Domain Parame-
ters. SECG SEC 2 version 2.0 (2010).

16





