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Abstract

Sensitivity analysis is a tool for the validation of the quality of computed eigenvalues, having
wide ranges of applications in natural and applied science. For modelling strenght, elasticity, de-
formations, PID controller ( Proportional-Integral-Derivative controller) and many other prob-
lems, there is a need for computing reliably eigenvalues. Componentwise relative perturbation
analysis can provide good estimations of the accuracy of these eigenvalues. In this undergrad-
uate thesis project we provide an expression for the 2-norm of an special vector. This vector is
given by relgrad(λ) =

( pj
λ

∂λ
∂pj

)
where pj are the entries of certain representations of tridiagonal

matrices. It occurs that relgrad(λ) determines the relative componentwise eigenvalue condition
number of a tridiagonal matrix (unsymmetric , unreduced, real tridiagonal) and its factored
forms (with parameters lj , uj , lj , . . . instead of pj). This allows us to derive the expressions of
the eigenvalue condition numbers in the 2-norm, relcond2(λ), and compare the entrywise tridi-
agonal with the factored form eigenvalue condition number . The derivations of the condition
numbers were already shown in the reference [12], in which the authors use only 1-norm for
the computations . We also obtain expressions for relative componentwise eigenvalue condition
numbers of banded matrices.
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Abstract

El análisis de sensibilidad es una herramienta para la validación de la calidad de los au-
tovalores computados. Tiene amplios rangos de aplicación en ciencias naturales y aplicadas.
Para modelar fuerzas, elasticidad, deformaciones, controladores PDI (Proportional-Integral-
Derivative controller) y otros muchos parámetros, hay una necesidad de confiabilidad en el
cómputo de autovalores. El análisis de perturbación por componentes relativo puede proveer
buenas estimaciones de la precisión de esos autovalores. En este proyecto fin de grado apor-
tamos una expresión para la 2-norma de un vector especial. Este vector viene dado por
relgrad(λ) =

( pj
λ

∂λ
∂pj

)
donde pj son las entradas de ciertas representaciones de una matriz

tridiagonal. Ocurre que relgrad(λ) determina el numero de condición relativo , por compo-
nentes, de una matriz tridiagonal (no simétrica , irreducible y real) y sus formas factorizadas
(con parámetros lj , uj , lj , . . . en vez de pj). Esto nos permite derivar la expresión de los números
de condición usando la 2-norma, relcond2(λ), y comparar los numeros de condición de auto-
valores por componentes de las matrices tridiagonales con los de las formas factorizadas. La
obtención de los números de condición se puede ver en la referencia [12], en el cual los autores
usan sólo 1-norma para los cálculos. También hemos obtenido expresiones para el número de
condición relativo por componentes de matrices de banda.
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1 Introduction

Eigenvalues and eigenvectors of matrices arise in many applications. Vibration problems in classical
mechanics, acoustics, computation of energy levels in quantum mechanics, linear stability of flows
in fluid mechanics, and the computation of the Google page-rank vector are just a few among many
applications where eigenvalues and eigenvectors play an essential role [37]. On the other hand, it is
not possible to compute the eigenvalues of an n × n matrix A through simple formulas, since the
eigenvalues are the roots of the characteristic polynomial of A and Abel proved in 1824 that for n ≥ 5
the roots of a polynomial cannot be expressed in terms of additions, subtractions, multiplications,
quotients, and kth roots of the coefficients of the polynomial [38, p. 192]. Therefore, the computation
of eigenvalues of matrices must be performed numerically via iterative methods implemented in a
computer.

The development of numerical algorithms for computing eigenvalues of matrices has been, and
still is, one of the most active areas of research inside Scientific Computing since modern digital
electronic computers were invented in the late 1940s. One of the reasons of this intense activity is
that this problem is extremely difficult, because the naive approach of computing first the charac-
teristic polynomial of the matrix and, then, to compute its roots by using any numerical method for
computing solutions of nonlinear equations is unstable [38, p. 92]. In fact, essentially none of the
numerical algorithms for computing eigenvalues that were used before modern computers appeared
has been implemented in a computer. The reason is simple: those old algorithms are unstable in
floating point arithmetic.

As a consequence of the intense research effort performed during the years 1950-1965 for de-
veloping numerical algorithms for computing eigenvalues of matrices, several reliable methods were
proposed and the best ones are thoroughly analyzed in the monumental treatise published by Wilkin-
son in 1965 [39]. Among all the methods presented in this book one has become the “superstar”
numerical matrix eigenvalue algorithm: the Francis QR eigenvalue algorithm. This is invariably the
method implemented in any professional software for computing all eigenvalues of an n× n matrix
A and it is explained in all books on Numerical Linear Algebra and Matrix Computations (see for
instance [14, 38] and the references therein). The Francis QR eigenvalue algorithm is an extremely
sophisticated method that has been polished and improved over decades for becoming today a fully
reliable a very efficient procedure. In fact, it was selected as one of the top-10 algorithms of the
whole 20th Century [8]. Very recent techniques that have improved considerably the performance
of the Francis QR eigenvalue algorithm can be found in [2, 3, 13] and the references therein.

The two most prominent features of the Francis QR eigenvalue algorithm for computing all the
eigenvalues of an n× n matrix A are [14, Chapter 7]:

(a) It requires a computational cost of O(n3) flops (i.e., floating point operations) and O(n2)
storage.

(b) It is backward stable. This means that the eigenvalues computed by the algorithm are the exact
eigenvalues of a nearby matrix A + E, where in double precision IEEE arithmetic ‖E‖2 =
O(10−16)‖A‖2 and ‖ · ‖2 is the spectral or 2-norm of a matrix [16, Chapter 6].

These two properties imply that, essentially, the Francis QR eigenvalue algorithm reaches the best
limits of any possible eigenvalue algorithm since the cost of multiplying two n×n real matrices is 2n3

flops, to storage a matrix on a computer requires n2 floating point numbers, and backward stability
is the most that can be expected from any computation implemented on a computer subjected to
roundoff errors.

Taking into account the previous discussion, it might seem that the Francis QR eigenvalue
algorithm has solved completely the problem of computing all the eigenvalues of an n × n matrix.
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However, this is not the case, since the computational cost and the storage requirements of the
Francis QR eigenvalue algorithm limit its use to matrices of sizes n ≤ 20000 in modern computers
(approximately, since the exact bound depends on each particular computer) but in many present
applications arise much larger matrices, which in most cases have many of its entries equal to zero,
that is, they are sparse matrices. This has motivated the development of other types of eigenvalue
algorithms for large sparse matrices, which are more efficient from the points of view of number of
operations and storage requirements but are not guaranteed a priori to be backward stable.

Loosely speaking modern methods for computing eigenvalues of large sparse matrices can be
classified into two main classes: (1) projection methods that project the large problem into a much
smaller one whose eigenvalues are approximations of just a few eigenvalues of the original matrix A
[34]; and (2) methods that compute all eigenvalues of matrices that have very particular and simple
structures [14]. This undergraduate thesis project is related with the second type of methods, more
precisely, with the computation of all eigenvalues of an unsymmetric tridiagonal matrix.

An n× n matrix A is said to be tridiagonal if its entries aij satisfy aij = 0 whenever |i− j| > 1.
Therefore among the n2 entries of A at most 3n− 2 are nonzero, so when n is large we can say that
most of the entries of A are zero. This property allows us to expect that all the eigenvalues of A can
be computed with a computational cost of O(n2) flops (instead of O(n3) as in Francis QR algorithm)
and by storing just O(n) floating point numbers (instead of O(n2) as in Francis QR algorithm). If
n is large (n > 104, for instance), these would be impressive improvements with respect to the
computational cost and storage requirements of Francis QR algorithm. In fact, there are at least
two algorithms that reach these goals for unsymmetric tridiagonal matrices by exploiting carefully
this structure. One is based on the Ehrlich-Aberth iteration [1] and the other belongs to the family
of dqds algorithms [11, 29]. However, none of these algorithms is guaranteed a priori to be backward
stable, as neither is any other algorithm for the unsymmetric tridiagonal eigenvalue problem. In
fact, to find a backward stable algorithm for computing all eigenvalues of an unsymmetric n × n
tridiagonal matrix with O(n2) computational cost and O(n) storage is a classical open problem in
Matrix Computations, whose solution seems to be very far from the present state of the art in this
field of research. This open problem is known as the unsymmetric tridiagonal eigenvalue problem.

In this context, since the stability of the currently available algorithms for the unsymmetric
tridiagonal eigenvalue problem [1, 11] is not guaranteed a priori, it is fundamental to provide to-
gether with each computed eigenvalue a bound on its relative forward error that can be efficiently
computed from the data of the problem and from the computed eigenvalues and eigenvectors. This
undergraduate thesis project is a contribution towards solving this challenging long-term project.

Estimation of bounds on the forward errors of any computed magnitude in a reliable and sharp
way is, in general, a very difficult task for any problem in Numerical Analysis. The obvious reason
for this difficulty is that the exact value of the magnitude is not known. In Matrix Computations
the estimation of bounds on the forward errors is traditionally obtained by computing the backward
error from the residual of the computed magnitude and by multiplying this backward error by the
condition number of the problem we want to solve. This is encoded is the famous rule of thumb [14]
[16]:

forward error ≤ condition number × backward error . (1)

The condition number of a certain magnitude is a measure of the maximum variation of that mag-
nitude under perturbations of the input data, i.e., the condition number reflects the sensitivity of
the magnitude under perturbations.

The use of the traditional eigenvalue condition number and the traditional method for computing
eigenvalue backward errors [14] in the expression (1) for the eigenvalues provided by the currently
available algorithms for computing eigenvalues of tridiagonal unsymmetric matrices in O(n2) flops
and with O(n) storage [1, 11] often leads to very pessimistic estimations of the forward errors of
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the computed eigenvalues. This is particularly frequent for computed eigenvalues that are very tiny
with respect the norm of the matrix. The main reason of this pessimistic overestimation is that
the traditional eigenvalue condition number and the traditional method for computing eigenvalue
backward errors do not take into account the tridiagonal structure that is carefully preserved in
the algorithms in [1, 11]. To be more precise, for instance the traditional Wilkinson eigenvalue
condition number presented in [14], and in many other standard books on Matrix Computations,
measures the sensitivity of eigenvalues under general unstructured perturbations that destroy the
tridiagonal structure of the input matrix. Therefore, a sharp estimation of the forward errors for the
eigenvalues computed by the algorithms in [1, 11] (or by any other algorithm that takes advantage of
the tridiagonal structure) requires first to develop formulas for eigenvalue condition numbers under
perturbations that preserve the tridiagonal structure, to compute efficiently such condition numbers,
and, finally, to estimate efficiently structured backward errors.

The study of eigenvalue condition numbers of tridiagonal matrices under perturbations that
preserve this structure has been started very recently in the publication [12]. In this work, the authors
have developed formulas for the structured eigenvalue condition numbers under perturbations of
the parameters defining different representations of tridiagonal matrices that are used in different
algorithms, but only when the size of the perturbations are measured via the infinite norm [16,
Chapter 6] of the vector of relative changes of all parameters. In addition, the authors of [12] have
shown that these eigenvalue condition numbers can be computed in O(n) flops. However, current
ongoing research projects (see [9, 31]) for estimating structured backward errors for eigenvalues of
tridiagonal matrices have shown that it would lead to sharper forward error bounds to measure the
size of the perturbations via the Euclidean 2-norm of the vector of relative changes of all parameters.
Therefore, it is necessary to deduce formulas for the structured eigenvalue condition numbers of
tridiagonal matrices under relative perturbations of the parameters measured via the Euclidean 2-
norm of the vector of relative changes and also to develop efficient ways to compute them in O(n)
flops. This is the main purpose of this undergraduate thesis project. In addition, we will show
that the techniques developed in this work and in [12] can be extended to the study of structured
eigenvalue condition numbers of general low banded matrices.

In the next section, the structure of this undergraduate thesis project is discussed. The specific
notations we use will be introduced in the places where they are used for first time. Here we only
recall very basic mathematical notations that are employed throughout this thesis: R denotes the
set of real numbers, C denotes the set of complex numbers, Rn denotes the set of column real vectors
with n entries, Cn denotes the set of column complex vectors with n entries, Rm×n denotes the set
of real matrices with m rows and n columns, and Cm×n denotes the set of complex matrices with
m rows and n columns.

2 Structure of the undergraduate thesis

This undergraduate thesis extends in two directions some of the results presented in the paper of C.
Ferreira, B. Parlett and F.M. Dopico cited in the reference [12]. The first extension consists in using
the spectral norm of the vector of relative variations of the input parameters instead of the infinite
norm, while the second extension considers general low-banded matrices instead of just tridiagonal
matrices. The reader can find the main original contributions of this thesis in sections 9 and 10.
In general terms, this document is organized in four parts: preliminaries, original contributions,
general applications, and conclusions. The preliminaries are presented from section 1 to section 8
and include the introduction and a summary of important definitions and standard results that are
needed to understand the original contributions of this work, which are presented in sections 9 and
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10. Some general applications of sensitivity analysis of eigenvalues to Engineering are presented in
Section 3, although we emphasize that, as explained in the introduction, the main applications of
the original results we have developed are found in the estimation of errors of numerical algorithms.
Finally, the conclusions and some lines of future work are presented in Section 11.

This undergraduate thesis has eleven sections, whose contents are now outlined.

1. Introduction. In this section the state of the art, origins, motivations, and applications for the
problems studied in this undergraduate thesis are discussed.

2. Structure of the undergraduate thesis. Here, we explain the organization and structure of
this document.

3. A note on applications of eigenvalue sensitivity analysis: This section discusses some gen-
eral applications of sensitivity analysis of eigenvalues which are interesting in Engineering.

4. Basic definitions . This section is formed by 5 subsections. First, subsection 4.1 introduces
the fundamental concepts, eigenvalues and eigenvectors, analyzed in this work. Subsection 4.2 is
reserved for vector norms, which are fundamental for the definitions of the eigenvalue condition
numbers studied in this undergraduate thesis. Then, we include two subsections for the definitions
of algebraic and geometric multiplicities and similarity transformations. Finally, subsection 4.5 is
devoted to the discussion of the main concepts of floating point arithmetic, rounding errors and their
effect on magnitudes computed in a modern computer, paying special attention to the sensitivity
of a problem and the stability of an algorithm. This section is based on the general references
[4, 16, 17, 21, 26, 38].

5. Notation and additional concepts . In this section we introduce a few more advanced no-
tions that are not usually found in standard textbooks on Matrix Computations. Moreover, we
remind the classical Householder’s notation for matrices and vectors, since it is the one employed in
this work. We also list the principal classes of matrices and vectors appearing in this undergraduate
thesis and the particular notation we use for them.

6. Tridiagonal and banded matrices. Here, we review some definitions and properties about
this class of matrices in order to make easier the understanding of the subsequent sections. An
extra subsection describes balanced tridiagonal matrices and another particular type of tridiagonal
matrices that is useful in numerical computations.

7. Factored forms of tridiagonal matrices: The purpose of this section is to study those fac-
torizations in which it is worth decomposing a tridiagonal matrix before trying to compute its
eigenvalues. One of the factored forms is related to balanced matrices, which are matrices close to
be symmetric in a certain sense. Another factored form is related to tridiagonal matrices that use
the fewer possible parameters, denoted as J .

8 LU factorization of banded matrices. In this section, we present the main features of the
standard LU factorization of banded matrices.

9. Gradients and condition numbers of eigenvalues of tridiagonal matrices. This section
introduces formulas and efficient methods for the computation of the structured eigenvalue condition
numbers of tridiagonal matrices using the spectral or 2-norm to measure the relative entrywise vari-
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ation of the input parameters. This section is divided in three parts: the first one is devoted to the
definition of the ECN (eigenvalue condition number) under perturbations of a set of parameters, the
second one includes the derivation of ECNs for four different representations of tridiagonal matrices,
and in the last part we prove certain equivalence relations between ECNs in different representations.
For convenience, we always denote ECNs as relcond2(λ;T ), where T is one (or two) square matrix
(tridiagonal, banded or factored). It is clarifying to mention that section 9 will exclusively consider
eigenvalue condition numbers for tridiagonal matrices with respect to the 2-norm of the vector of
relative variations of the input parameters, while section 10 will consider general banded matrices
but with respect the∞-norm of the vector of relative variations. We emphasize that general banded
matrices are not studied in [12].

10. Sensitivity analysis for banded matrices: Together with Section 9, this section form the
core of this work. Here, the eigenvalue condition numbers relcond(λ;C) and relcond(λ;L,U) are
computed for banded matrices with respect the ∞-norm of the vector of relative variations of the
input parameters.

11. Conclusions and future work: This section summarizes the main original contributions of
this undergraduate thesis and proposes some lines of future work.

3 A note on applications of eigenvalue sensitivity analysis

There are some problems in engineering that require knowledge of the behaviour of eigenvalues under
perturbation of data or discretization. Two cases are reviewed: application of eigenvalues in control
engineering and eigenpairs in connectomics. In control engineering we may model the behaviour
of a device, with an ODE (Ordinary Differential Equation), and it is important to linearize this
equation. To reduce noise it is added a PID, that are also described by a mathematical model
differential equation with properties to cancell noise errors. The ODE is called Transfer Function and
is converted to the Laplace domain, where s is the unknown, to operate easily. A system, including
more devices, thus, many transfer functions, may be simplified to a single transfer function by block
operations or/and other methods. The transfer function is often a fraction, with polynomials in the
numerator and the denominator,

H(s) =
N(s)

D(s)
= K

(s− z1), (s− z2), . . . , (s− zm)

(s− p1), (s− p2), . . . , (s− pn)

The zi’s are the roots of the polinomial N(s) = 0, and are called zeros of the system.The pi’s are
the roots of the polinomial D(s) = 0, and are called poles of the system.
The transfer function represent a system of differential equations and the homogeneous solution is
defined by the poles.The homogeneous solutions are of the form:

yh =

n∑
i=1

Cie
λit

where the constants Ci are determined by the initial conditions and λi are the poles, that is: λi = pi
or the system eigenvalues (system of differential equations). To converge to a solution, as time
goes to infinity (or before), we need that all λ lie in the negative semi-plane. That is, all λ must be
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negative, so that, for increasing time, t→∞, the solution eλt does not grow to infinity.
Finally, we give the last example on eigenvalue-eigenvectors applications. Connectomics is the science
of analyzing and forming the map of neural connections in the brain. Recently, there has been a
big effort to map the brain and their connections (synapses). Mapping tiny slices of the brain in a
computer is a research area of connectommics. A tool for connectomics research is diffusion MRI
(magnetic resonance imaging). ”It allows the mapping of the difussion process of molecules, mainly
water, in biological tissues” [40]. For example, if we want to estimate the axonal fiber orientation
and in what proportions are each of the particular orientations in a volume element, we can modelize
it by a problability function called fODF (fiber orientation density function). This fODF function
may be approximated by a 3 × 3 matrix called Diffusion Tensor Imaging (DTI). DTI provides an
”ellipsoid representation of the water-diffusion profile for a given voxel” [4] (voxel: volume element
used in computer imaging - like pixel, voxel). Eigenvectors of matrix DTI ”determine the direction of
maximum and minimum water motion .The direction of the maximal diffusion is the best estimate
of fiber orientation. Similarly, eigenvalues determine the amount of diffusion produced in each
direction. Estimation of fODF at each voxel is the first step in estimating structural connectivity”
(extracted from [4]).

4 Basic definitions

We set up standard notation and basic terminology. Bibliographic research has been done on [4],
[16],[17], [21],[26], [38], to elaborate the text.

4.1 Eigenvalues, eigenvectors

Any linear transformation maps x → λx for a finite set of vectors x called eigenvectors . This has
a meaning : eigenvectors stay in the same line (direction) once the linear transformation is applied
on them.
The following definitions are adapted to the conditions of this work : real matrices and eigenvalues
of algebraic multiplicity one .

Definition 4.1. In Cn, two vectors x 6= 0 and y 6= 0 are said to be a right eigenvector and a
left eigenvector of a matrix C ∈ Rn×n, respectively, if there exists an scalar λ , called eigenvalue of
C, such that

Cx = λx and y∗C = λy∗

where y∗ = ȳT , or the transpose of the conjugate of y. The pair (λ,x) is called a right eigenpair
and, in the same line, (λ,x,y∗) is known as an eigentriple of C.

For us, C and any other matrix that appear in this text, is a real matrix. However, in other contexts
complex matrices may appear. A real matrix can have eigenpairs and eigenvectors that appear in
conjugate pairs. One further definitions are useful,

Definition 4.2. The spectrum of C ∈ Rn×n is the set of all eigenvalues of C, i.e. the set of all the
roots of the characteristic polynomial P (λ) = det(C − λI). The spectrum of C is denoted by Λ(C).
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Spectrums of C and CT should be the same in exact arithmetic but in floating point it turns out
that they are distinct, due to machine arithmetic errors.

4.2 Vector and matrix norms

Vector norms are measurements of the length of a vector. We use them in perturbation theory for
measuring perturbations’ magnitudes and producing perturbation bounds (local bounds). However,
by using normwise analysis we do not appreciate how sparse is a matrix or how large turn out
to be part of its entries with respect to the others. This is the negative aspect of norms. This
means that to have a more rigorous exam of the behaviour of eigenvalues we need to search for
more detailed expressions, which include more information. These expressions are measurements in
the components of the matrix, rather than a value that comprises all the elements of the matrix
in one value, as the matrix and vector norm does. This is called componentwise analysis. For the
purpose of rigurosity and to preserve the structure of tridiagonal matrices and banded matrices, in
this project we work in componentwise analysis. In addition, we measure the relative perturbation
vector of the input entries through a vector norm. In other traditional condition numbers, as
Wilkinson condition number, matrix norms are key operators applied widely in normwise analysis for
unstructured matrices. Loosely speaking, componentwise analysis is open to be more rigorous than
absolute and to give another more detailed perspective. Usually, vectors and matrices are measured
componentwise when the matrix is sparse. This affect directly to our work with tridiagonal matrices
that, as we mentioned in the introduction, are sparse matrices. In this section vector and matrix
norms are defined conveniently. In addition important bounds are described as well as some of the
better advantages of the 2-norm.

Definition 4.3. A matrix Q ∈ Cn×n is said to be unitary if Q ∗Q = I. If, in addition, Q ∈ Rn×n,
Q is said to be real orthogonal.

Definition 4.4. A vector norm is a function ‖.‖ : Cm → R that satisfy three properties, for all
vectors x and y ∈ Cm and for all scalars α ∈ C,

1.‖x‖ ≥ 0, and ‖x‖ = 0 only if x = 0

2.‖x + y‖ ≤ ‖x‖+ ‖y‖,
3.‖αx‖ = |α|‖x‖.

A general vector norm which includes other norms as special cases is the p-norm,

‖y‖p =

(
m∑
i=1

|yi|p
) 1

p

(1 ≤ p ≤ ∞)

where yi is the i-th entry of y. For instance, we often use 2-norm or Euclidean lenght,

‖y‖2 =

(
m∑
i=1

|yi|2
) 1

2

=
√
y∗y

because it is invariant under unitary and orthogonal transformations, that is ,

‖Qx‖22 = x∗Q∗Qx = x∗x = ‖x‖22
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where Q is unitary and/or othogonal matrix, so that Q ∗Q = I. In banded matrices, for norms to
be consistent , we will use,

‖y‖∞ = max
i
|yi| but ‖y∗‖∞ = ‖yT ‖∞ = ‖y‖1 =

∑
i

|yi|.

which do not give problems in the sense that it is straightforward calculated. Inner products can be
bounded using p-norms by means of Hölder inequality.

Lemma 4.1. (Hölder inequality) Let p and q satisfy 1
p + 1

q = 1, with 1 < p, q ≤ ∞. Then it is
satisfied, for any vectors x and y,

|x∗y| ≤ ‖x‖p‖y‖q

The special case for p = q = 2 is the Cauchy- Schwarz inequality:

|x∗y| ≤ ‖x‖2‖y‖2

Matrix norms are functions ‖·‖ : Cm×n that satisfy the three properties defined for vector norms but
substituting the vector by the matrix. The important subordinate norm (matrix norms subordinate
to vector norms) is defined as follows:

‖A‖ = maxx 6=0
‖Ax‖
‖x‖

= max‖x‖=1‖Ax‖.

One case of subordinate matrix is the spectral norm, which is the only one used in this work (used
to define Wilkinson condition number):

‖A‖2 = (ρ(A ∗A))1/2 = σmax(A)

where ρ is the spectral radius, defined as

ρ(B) = max{|λ| : det(B − λI) = 0}

4.3 Algebraic and geometric multiplicities

Definition 4.5. Let {λ1, . . . , λn} be the eigenvalues of a matrix A ∈ Rn×n. For each i, we call
Algebraic multiplicity of the eigenvalue λi, to the higher exponent αi, for which the factor (λi−λ)αi

appear in the factorization of the characteristic polynomial p(λ).

Definition 4.6. Let {λ1, . . . , λn} be the eigenvalues of a matrix A ∈ Rn×n.We call Geometric multiplicity
of λi to the dimension di of the eigenspace Vλi

of A ∈ Rn×n, that is,

di = Vλi
= n− rg(A− λiI)
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4.4 Similarity transformations

The key tool to transform a matrix into another and to preserve all eigenvalue information is the
so-called Similarity transformation.

Definition 4.7. Two matrices A ∈ Rm×m and B ∈ Rm×m are similar if there exists a regular
(nonsingular) matrix P ∈ Rm×m, such that B = P−1AP . The transformation B = P−1AP is said
to be a similarity transformation.

Theorem 4.1. (from [38]) If P is non singular, then A and P−1AP have the same characteristic
polynomial, eigenvalues, and algebraic and geometric multiplicities.

Proof. That both matrices have the same characteristic polynomials is shown by,

pP−1AP (λ) = det(P−1AP − λI) = det(P−1(A− λI)P ) =

= det(P−1)det(A− λI)det(P ) = det(A− λI) = pA(λ)

Since the polinomials are equal , their factorizations are the same, thus , the algebraic multiplicity
is the same. In the same line, we have proved in theorem 4.2, the relation between eigenvectors, this
means that, if Vλi is the eigenspace of A, then P−1Vλi is an eigenspace of P−1AP .

Theorem 4.2. Let B = P−1AP be a similarity transformation. If x is an eigenvector of B, then
Px is an eigenvector of A.

Proof. The proof is straightforward. Let us call xA to the eigenvector of A and xB to the eigenvector
of B corresponding to the eigenvector λ, being B = P−1AP , then,

AxA = λxA and BxB = λxB

Substituting B by P−1AP ,
P−1APxB = λxB

Therefore,
xA = PxB

4.5 Accuracy analysis: Floating point arithmetic, Sensitivity and Stabil-
ity

4.5.1 Floating point arithmetic

Computers store a finite set of real numbers and operate on them. This limitation leads to a
model of representation that consist of a discrete subset of R, which is called F, the system of
floating point numbers. Let F ⊂ R be the set of machine numbers, considering 0 ∈ F. Numbers of
F are normalize so that, all floating point numbers follow this expression:

x = ±m× βe−t

14



Figure 1: Floating point arithmetic representation with t = 3, emax = 3, emin = −4, from the
programm floatgui of [26].

where m is the mantissa of x, for e to be the exponent, β the radix or base, and t the precision.
If t is the precision , m is an integer within 1 ≤ m ≤ βt. Similarly, since e is on the range,
emin ≤ e ≤ emax , the range of floating point numbers is βemin−1 ≤ |x| ≤ βemax(1 − βt). In
double-precision IEEE arithmetic: β = 2, t = 52, emin = −1022 and emax = +1023.
There are two restrictions to representation of real numbers in this arithmetic: Boundness and
discretization. Boundness means that there is one largest and one smallest number. The largest
number, L ∈ F, such that |x| ≤ L, with |x| ∈ F, is L = 1.79× 10308. Similarly, the smallest number,
l ∈ F, that for |x| ∈ F, satisfies |x| ≥ l , is l = 2.23 × 10−308. If, for example, we simply need to
compute ap with p >> 1 the power of a >> 1, even if a can be represented, we may be given a
huge number that fall out of the range, it means, such that |x| > L. In such case, operations will
break down, that is, it leads to overflow. If |x| < l, is called underflow. The second restriction is the
discrete condition of F. There appear gaps among numbers and these gaps do not posses the same
width. Usually, books show a very illustrative distribution of the gaps with figures. As an example
look at Figure 1 extracted from [26], where it is represented the output of Matlab program floatgui
, with t = 3, emax = 3, emin = −4. [Figure 1]. In [38], the exact position of each floating point
number mapped into the real line is explained in a very clear form. It shows the general case of
IEEE double precision arithmetic. That is, the interval [1,2] is represented by the discrete subset,

1, 1 + 2−52, 1 + 2× 2−52, 1 + 3× 2−52, . . . , 2. (2)

In general, the entries of F in the interval [2j , 2j+1] is represented by (2) times 2j . For j=1, we have
the interval [2,4],

2, 2 + 2−51, 2 + 2× 2−51, 2 + 3× 2−51, . . . , 4.

Note that within an interval, the size of the gaps is constant. Consecutive intervall gaps are different
by a factor of 2. If a real number not in F lies within one of the gaps of one of the interval, it can
be approximated by two nearby numbers and the standard choice is to select the closest one. The
worst case is that the number would lie in the middle of the gap. This is the main reason to define
the accuracy of F in terms:

u =
1

2
β1−t that in double precision is u ≈ 1

2
× 2−52 = 1.11× 10−16

This is the so-called roundoff unit and is ”half the distance between 1 and the next larger floating
point number” ( [38]). In double precision arithmetic is half the distance between 1 and 1 + 2−52.
Approximations have an error of less than u except for the number in the middle of the gap, in
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which case there is a rule to break ties.
The quantity u has the following property:

For all x ∈ R, inside the range of F, there exists x′ ∈ F such that |x− x′| ≤ u|x|. (3)

(from [38]). It is interesting to express 3 in floating point terms (fl). That is ,

For all x ∈ R, inside the range of F, there exists ε with |ε| ≤ u such that fl(x) = x(1 + ε).
(4)

4.5.2 Floating point operations

Elementary arithmetic operations are denoted by +,−,×, /. In the same line, floating point opera-
tions are denoted by ⊕,	,⊗,�.
The Fundamental axiom of Floating point arithmetic states,
Let ∗ be one of the operations +,−,×, / and let ~ be its floating point analogue, i.e.,

x~ y = fl(x ∗ y).

Then for all x, y ∈ F, there exist ε with |ε| ≤ εmachine such that,

x~ y = (x ∗ y)(1 + ε),

whenever underflow and overflow do not occur.

To end up, we briefly comment that sensitivity analysis works as a model of the behaviour of a
problem under three factors that can perturb a matrix in a digital computer: truncation, rounding
errors , data errors. The first two can be understood as discretization errors. Usually, computers
may work with discrete tiny perturbations of the order of u = 10−16 or higher in the entries of a
matrix. The challenge of numerical analysts is to design stable numerical algorithm that converge
to a solution with a tiny error of the order of the roundoff unit.

5 Notation and additional concepts

We would like to bring here, the notation used in this work, which is the same in [12]. We have
taken as starting point based our computations in the results of that paper, so we follow a common
notation in order to compare with the results in [12]. Therefore, we find that capital Roman letters
A,B, . . . represent matrices, bolfaced lower case Roman letters x,y, . . . are used for vectors and
lower case Greek letters α, β, . . ., for scalars. This is Householder’s notation [18]. Among these
vectors, letters y and x are reserved for left and right eigenvectors of matrices and , among scalars,
λ for eigenvalues, to be applied in equations:

Mx = xλ, y∗M = λy∗.

In that sense, eigenvectors can be complex although only real matrices are presented . So, we use
yT ( transpose of the eigenvector) and y∗ := ȳT , where ᾱ is the conjugate of α.

For norms, in order to be consistent, we use the definitions

‖y‖2 =
√
y∗y
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‖y‖∞ = max
i
|yi| but ‖y∗‖∞ = ‖yT ‖∞ = ‖y‖1 =

∑
i

|yi|.

Now, we move to the concept of condition number. Conditioning estimates the changes in the out-
comes in response to data perturbation. Our work is based in eigenvalues as outcomes. Formulation
of eigenvalue condition numbers contains as a principal concept the notion of Wilkinson condition
number. The definition connects the spectral projector onto λ ’s eigenspace with the condition
number for λ. For simple eigenvalues, λ, it is satisfied y∗x 6= 0 . Assuming simple eigenvalues, we
arrive to the conclusion that the spectral projector onto λ’s eigenspace is

Pλ = x(y∗x)−1y∗ (5)

as it is described in [12]. Then the spectral norm of Pλ is the Wilkinson condition number for λ, so

κλ := ‖Pλ‖2 =
‖x‖2‖y‖2
|y∗x|

=
1

| cos∠(x, y)|
. (6)

Moreover, by applying to the general notion of condition number of any mathematical problem , the
absolute (not relative) Wilkinson condition number can be defined also as:

κλ = lim
η→0

sup

{
|δλ|
η

: (λ+ δλ) is an eigenvalue of (M + δM), ‖δM‖2 ≤ η
}
. (7)

(see proof in [15]). So, the corresponding relative Wilkinson condition number, named BGT (λ;M),
(used by Bini, Gemignani and Tisseur in [1]) is :

BGT (λ;M) := κλ
‖M‖2
|λ|

, λ 6= 0. (8)

Note that κλ is invariant under translation M →M −σI, while BGT is not. BGT is interesting for
comparing it to our relative condition number (relcond). Altough BGT is studied from the nomwise
point of view, relcond is a componentwise analysis.

5.1 Summary of notation
1 We will use the following letters:
B,C,G, J,M, T (Capital Roman letters) denote real tridiagonal n×n matrices.
A (Capital Roman letters) denotes a real banded n×n matrix.
D,F, S, R̊ (Capital Roman letters) denote real diagonal n×n matrices.
L, L̄,U (Caligraphic and bar Roman letters) denote real bidiagonal n×n matrices.
L,U (Capital Roman letters) denote real bidiagonal n×n matrices.
∆,Ω (Capital Greek letters) denote real sign diagonal n×n matrices.
H,N (Capital Roman letters) denote real 1’s n×n matrices.
x,y, (boldfaced lower case Roman letters) denote column eigenvectors.
v,w,h, q (boldfaced lower case Roman letters) denote column vectors.
β, δ, η, λ (lower case Greek letters) denote scalars.
q denotes the upper bandwith of an n×n banded matrix.
p denotes the lower bandwith of an n×n banded matrix.

1Terminology is inherited from article [12], since the present document extends many of its results to a more general
setting.
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6 Tridiagonal and banded matrices

The most important description, at a glance, of tridiagonal and/or banded matrices, could be that
their definition is an identification of which entries are zero. Most of them belong to the category
of sparse matrices and we can use sparse properties. We start with the definition and the main
characteristics of tridiagonal matrices and then, continue with banded matrices. Let A be a square
matrix, then A is tridiagonal if aij = 0 whenever |i − j| > 1. That means that if |i − j| = 1, it is
permitted that some, aij are zero. If we want to avoid zeroes in the entries with |i − j| = 1 , we
should use another word to underline that all aij 6= 0 whenever |i − j| = 1 , so that, the matrix is
said to be tridiagonal unreduced. Tridiagonal unreduced matrices have the following structure:

C =


x x
x x x

. . .
. . .

. . .

x x x
x x

 (9)

following the notation used in [14], where x’s are arbitrary nonzero entries. One outstanding property
of simple eigenvalues λ is that if Ei(λ) = Ker(C − λI)i; i = 1, 2, . . ., is the generalized subspace
of λ, it turns out that dim(E1(λ)) = 1 (geometric multiplicity of λ is 1), so there is only one
independent eigenvector associated to each eigenvalue λ and only one Jordan block per eigenvalue
with size 1 × 1. In fact, for simple eigenvalues dim(Ei(λ)) = 1 ∀i = 1, 2, . . .. Another interesting
property is that, in unreduced tridiagonals , the entries of their eigenvectors are dependent among
them by the recurrence relation,

Ci,i−1xi−1 + (Ci,i − λ)xi + Ci,i+1xi+1 = 0, i = 2, . . . , n− 1.

so, first and last entries are non-zero because otherwise the whole eigenvector would be zero. The
category of tridiagonal matrices is, indeed, a specific case of banded matrix with q = p = 1, being
q, p, the number of possibly nonzero diagonals above and under the main diagonal respectively. If
A is a (p, q) banded matrix, then, for a number of diagonals q above the main diagonal, it will be
satisfied aij = 0 whenever j − i > q and for a number of diagonals p under the main diagonal, it
will be satisfied aij = 0 whenever i − j > p. The parameter q is called upper bandwidth and the
parameter p is said to be the lower bandwidth. The structure of a (p, q) banded matrix is

A =



a11 a12 · · · a1,q+1 0
a21 a2,q+2

...
. . .

ap+1,1
. . . an−q,n

ap+2,2

...
. . .

0 an,n−p · · · ann


(10)

where the entries and the dots delimit an hexagonal structure, with band form, which is thicker
when p and q grow, being q , the upper bandwith and p, the lower bandwith. So A it is (p,q)-
banded, with q, p ≥ 0. As an advantage, this structure enables to reduce the cost of problems of
the form of Ax = b or Ax = λx. Usually the cost is reduced from O(n3) flops to O((p + q)n2) or
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O((p+ q)n) flops ( see [6], [7]). Tridiagonal and small width banded matrices belong to the category
of sparse matrices, hence, sparse properties can be used. We shall use less space to store matrices,
for example.

6.1 Balancing

Balancing is a method for making the ith row and ith column norms of a matrix equal, for all i, for
norms ‖ · ‖1, ‖ · ‖2, or ‖ · ‖∞, by means of diagonal similarity transformations. For general matrices
is an iterative process. For unreduced tridiagonal matrices it is possible to find explicitly a diagonal
matrix D, such that B = DCD−1 is balanced (to find the structures of C and B see below, in
(12)). To avoid rounding errors, balancing, is often done by changes in the exponents (See [30]).
In some rare cases balancing can spread this errors and make them more significant, but usually is
a method that helps, for example, it helps to make unsymmetric matrices closer to symmetric. In
addition, for unreduced tridiagonal matrices there are other similarity transformations that allow
to reduce the number of parameters of the problem J = D̃JD̃−1, but this is not balancing. This
facts are summed up by saying that equivalent tridiagonal matrices which are linked by similarity
transformations that were proposed in article [12] are now also useful for us,

C =


a1 c1
b1 a2 c2

. . .
. . .

. . .

bn−2 an−1 cn−1

bn−1 an

 , J =


a1 1
b1c1 a2 1

. . .
. . .

. . .

bn−2cn−2 an−1 1
bn−1cn−1 an

 (11)

and

B =



a1

√
|b1c1|

γ1

√
|b1c1| a2

√
|b2c2|

. . .
. . .

. . .

γn−2

√
|bn−2cn−2| an−1

√
|bn−1cn−1|

γn−1

√
|bn−1cn−1| an


(12)

where γi = sign(bici), i = 1, . . . , n− 1. Although appear exceptions, matrices B are not symmetric.
In some cases, the best we can achieve when balancing is approximately equal row and column
norms. ”For general applications, C is the input matrix and J uses the fewest parameters” [12].

7 Factored forms of tridiagonal matrices

Factored forms of tridiagonal matrices of [12] play an important role to analyse whether eigenvalues
are more sensitive to the entries of tridiagonal matrices perturbations than to perturbations in its
factored forms, a phenomenon that has been observed in practice. For that purpose, we present
herein two special factored forms of tridiagonal matrices, extracted from the mentioned document
[12] : B = ∆LDLT and J = LU , for B and J being those matrices introduced in section 6.1, it is
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meant balanced and fewer parameter matrices. Tridiagonal matrices are very easy to balance (see
(12) ) and even easier to make them real symmetric. The trick consist of changing sings on strategic
rows. This can be achieved using a special diagonal matrix, called signature matrix ∆,

∆ = diag(δ1, δ2, . . . , δn), δi = ±1.

So, from B (12) and ∆, we obtain a real symmetric tridiagonal matrix T ,

∆B = T,

Note that this transformation does not conserve eigenvalues of C since the eigenvalues of B and T
are different. So, if (B − λI)x = 0 we need to premultiply by ∆ to find

(T − λ∆)x = 0. (13)

Observe that T admits, in general, triangular factorization that are symmetric as

T = LDLT (14)

with L, a lower bidiagonal matrix of the form,

L =


1
l1 1

. . .
. . .

ln−2 1
ln−1 1

 ,

and D = diag(d1, d2, . . . , dn) (matrix of pivots). Then, we can express B in the following form,

B = ∆T = ∆LDLT , (15)

BT = T∆ = LDLT∆. (16)

As it is discussed in [12], elements of L are not necessary of the same order of D in factorization
T = LDLT , so, and may also happen that there can be large element growth, i.e.,

‖D‖2 � ‖T‖2, ‖L‖2 � ‖T‖2.

In another line of explanation, recall that tridiagonal matrices B and C have common eigenvalues
since they are related by a diagonal similarity transformation,

B = FCF−1

Considering,
BxB = xBλ and CxC = xCλ

we have,
C
(
F−1xB

)
= F−1BxB =

(
F−1xB

)
λ, F is diagonal.

hence, the relation between eigenvectors is given by

xC = F−1xB
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This factorization allows the comparison of the factored form ∆T = ∆LDLT with B, itself, to find
out if eigenvalues are more sensitive to componentwise perturbations in B entries or if it is more
sensitive to perturbations in L and D. Another factorization appear for the J-form of C (see (11)).
Suppose that J admits triangular factorization

J = LU

where L ( 6= L above) and U are lower and upper bidiagonals, respectively, of the form

L =


1
l1 1

. . .
. . .

ln−2 1
ln−1 1

 , U =


u1 1

u2 1
. . .

. . .

un−1 1
un

 . (17)

For the J = L U factorization it is also reasonable to find out if the eigenvalues in LU are more
sensitive to perturbations in L and U entries than the eigenvalues of J to perturbations in J . We
wait to find that the relative condition numbers of C, J and B turn out to be equal (see Lemma
9.1). It also turns out that the relative eigenvalue condition numbers for the various factored forms
(J = LU , B = ∆T = ∆LDLT ) are equivalent (see Section (9.5)). So, as in [12], we only present
detailed derivations of relative eigenvalue condition numbers for C and for the factors L, U and
present just the formulae for the other factored forms.

8 LU factorization of banded matrices

Sensitivity analysis for banded matrices only accept standard LU factorization, being L a lower
triangular matrix with 1′s in its main diagonal and U an upper triangular matrix. For this special
matrices the factorization LU without pivoting conserves the band structure. So L and U have this
aspect.

L =



1
l21

...

lp+1,1
. . .

lp+2,2

. . .

ln,n−p · · · 1


and U =



u11 u12 · · · u1,q+1

u22

. . .

. . . un−q,n
...

unn


.

(18)
for a band matrix with upper bandwidth q and lower bandwidth p. Note that neither U , nor L are
supposed to be singular. If they were, the form of the factorization LU might be very different.

9 Gradients and condition numbers of eigenvalues of tridi-
agonal matrices

This section is divided in three parts: the first is devoted to the definition of the ECN (eigenvalue
condition number) under perturbations with respect parameters , the second includes the derivation
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of the ECN and in the third one we set a proof of the equivalence between different ECNs. For con-
venience, we set the name of the ECNs to relcond2(λ, T ), where T is an square matrix (tridiagonal,
banded or factored) instead of the 1-norm used in [12]. The ECN, relcond2(λ, T ), will indicate that
we have used 2-norm for relcond(λ, T ) computation. It is important, to underline that Wilkinson
condition number defined in (7), κλ , is a measurement of the absolute sensitivity i.e., quotation of
[12] :” a measure of the absolute variation of an eigenvalue with respect to the norm of the matrix ”.
Whereas, the strategy of the reference work, [12] , was to consider relative variations of the eigenval-
ues in response to the largest relative perturbations of each of the entries of the associated matrix
of factored forms. 2 The new results extending those in to paper [12] are in sections from 9.2 to 9.5,
and 10.1. We start from the concepts in paper [12], but we continue by calculating the eigenvalue
condition numbers in the 2-norm (of relgrad(λ)) and we analyse the results for such norm. In addi-
tion, it is clearifying to mention that, on the one hand, section 9 will exclusively consider tridiagonal
matrices. The difference with the eigenvalue sensitivity analysis of tridiagonal matrices of [12] is that
whereas the authors of that work measure the eigenvalue sensitivity by using 1-norm, here we use
2 norm, which can have some advantages (invariant under unitary and orthogonal transformations
and derivable). On the other hand, section 10 will consider only general banded matrices, which are
not included in [12].

9.1 Sensitivity analysis

According to [36], simple eigenvalues of C, defined in (11), are continuous functions of the entries
of C in all its domain and differentiable (C1 type). So that, we can obtain their gradients. Taking
this into account, if we consider that diagonals of C are in arrays a, b and c (see 11), then, for
infinitesimal absolute changes,

(δa1, . . . , δan, δb1, . . . , δbn−1, δc1, . . . , δcn−1)
T

=: δC

we define,

relδC =

(
δa1

a1
, . . . ,

δcn−1

cn−1

)T
(19)

which is the relative perturbation vector of C entries, where zero entries are supposed to remain as
zero.
We can upper bound perturbations size such that the relative condition number of the simple
eigenvalue λ is defined as

relcond2(λ;C) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (C + δC), ‖relδC‖2 ≤ η
}
. (20)

This is a general definition, so we need to assign the supremum to an specific value that should be
computable and this should be a low cost computation.
The principal procedure to make the above definition (20), more practical is shown next.
For arrays a, b and c of C diagonals and for simple eigenvalues λ, we gather all the partial derivatives{
∂λ

∂ai
,
∂λ

∂bi
,
∂λ

∂ci

}
and form the absolute gradient

gradC(λ) =

(
∂λ

∂a1
, . . . ,

∂λ

∂an
,
∂λ

∂b1
, . . . ,

∂λ

∂bn−1
,
∂λ

∂c1
, . . . ,

∂λ

∂cn−1

)T
. (21)

2Recall that the main concepts of this document are based on the article [12]. This means that some expressions
are obtained from that article in order to lighten the main conclusions of this work.
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Then, we relate it to the perturbation vector of C entries, δC, to have,

δλ = gradC(λ)T · δC + higher order terms (h.o.t.). (22)

This is not relative yet, so we need to relate |δλ/λ| to |δpj/pj |, j = 1, . . . , 3n − 2,
p =

(
a1, . . . , an, b1, . . . , bn−1, c1, . . . , cn−1

)
. For no zeros, we can express the relative form of (22) as

δλ

λ
=

(
a1

λ

∂λ

∂a1
, . . . ,

cn−1

λ

∂λ

∂cn−1

)
·
(
δa1

a1
, . . . ,

δcn−1

cn−1

)T
+ h.o.t.

=: relgradC(λ)T · rel δC + h.o.t., (23)

defining the relative gradient and the relative perturbation. Based on the following quotation of [12]
: ”When a parameter vanishes we should omit the corresponding term in the inner product”, we
follow the same convention here. Taking into account rounding errors, it is natural to have bounded
perturbations of the form ,

‖ rel δC‖2 ≤ η for 0 < η � 1, (24)

Then, using |uTv| ≤ ‖u‖2‖v‖2 (Cauchy-Schwarz inequality), write ,∣∣∣∣δλλ
∣∣∣∣ ≤ ‖ relgradC(λ)‖2‖ rel δC‖2 + h.o.t. ≤ η‖ relgradC(λ)‖2 + h.o.t. (25)

where h.o.t are higher order terms, and we show that ‖relgradC(λ)‖2 coincides with the structured
relative condition number for λ as a function of C, defined in (20), in the next theorem:

Theorem 9.1. For any unreduced real tridiagonal matrix C and any structured componentwise
perturbation of it, δC, whose relative perturbation vector, rel δC, defined in (19), satisfy ‖ rel δC‖2 ≤
η, if we define a relative condition number for a simple eigenvalue λ of C as in (20), then

relcond2(λ;C) := ‖ relgradC(λ)‖2, λ 6= 0.

Proof. We know that∣∣∣∣δλλ
∣∣∣∣ ≤ ‖ relgradC(λ)‖2‖ rel δC‖2 + h.o.t.,≤ η‖ relgradC(λ)‖2 + h.o.t. (26)

with equality attained only if there exist a constant β such that,

rel δC = β relgradC(λ) (27)

by the properties of inner product (parallel vectors). Therefore, always exists a vector rel δC, such
that verifies (27), and satisfies perturbations of the size ‖ rel δC‖2 ≤ η. Taking the 2-norm of (27)
yields,

β =
η

‖ relgradC(λ)‖2
That is:

rel δC =
η

‖ relgradC(λ)‖2
relgradC(λ)T

and , since we can always find that particular vector, the equality

relcond(λ;C) := ‖ relgradC(λ)‖2, λ 6= 0.

can always be achieved.
Observe that we take the largest perturbation attained for ‖relδC‖2 , which is η.

23



Singularity is one aspect of conditioning preferably avoided. Consider that C 6= O is singular,
fortunately, turns out that relative changes done to the entries almost always destroy singularity.
Therefore, the only problem is with λ = 0 , in which case we set relcond(0;C) = ∞. So we ask for
high relative accuracy for all the eigenvalue condition number and it can be reached it in certain
occasions, for quite small eigenvalues, except for λ = 0.
Again we quote from [12]: ”We do not know in advance when η is small enough to warrant the

neglect of h.o.t.. Our numerical examples shed light on this topic. We know of no other study that
addresses it”. So the allowed values of η in numerical practice may be not easy to be determined.

9.2 Representation 1 - entries of C

In this section we derive the relative condition number for C (11) with respect to the 2-norm
according to definition (20) . We treat each entry of C as an independent variable. Thus, with
I =

(
e1, . . . , en

)
which will act as a column vector,

∂C

∂aj
= eje

T
j ,

∂C

∂bj
= ej+1e

T
j and

∂C

∂cj
= eje

T
j+1.

Consider λ 6= 0 as a simple eigenvalue of C,

Cx = xλ, y∗C = λy∗.

Then, for pj = aj , bj , cj , we differentiate Cx = xλ to get

∂C

∂pj
x + C

∂x

∂pj
=

∂x

∂pj
λ+ x

∂λ

∂pj
.

Multiply by y∗ and cancel equal terms to find

∂λ

∂pj
y∗x = y∗

∂C

∂pj
x, pj = aj , bj , cj .

Thus,
∂λ

∂aj
=
yjxj
y∗x

,
∂λ

∂bj
=
yj+1xj
y∗x

,
∂λ

∂cj
=
yjxj+1

y∗x

and

relgradC(λ) =
1

λy∗x

(
a1y1x1, . . . , anynxn, b1y2x1, . . . , bn−1ynxn−1, c1y1x2, . . . , cn−1yn−1xn

)T
.

consequently, if C ◦ C is the Hadamard product of C by itself, i.e., (C ◦ C)ij = c2ij , and we define

y′ = y ◦ y =
(
y2

1 , . . . , y2
n

)T
, x′ = x ◦ x =

(
x2

1, . . . , x2
n

)T
(28)

we obtain,

‖ relgradC(λ)‖2 =
1

|λ||y∗x|

 n∑
j=1

|a2
jy

2
jx

2
j |+

n−1∑
j=1

(
|b2jy2

j+1x
2
j |+ |c2jy2

jx
2
j+1|

)1/2

=

[
|y′|T |C ◦ C||x′|

]1/2
|λ||y∗x|

.

We can summarize the results above in a compact form in Theorem 9.2.
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Theorem 9.2. Let λ 6= 0 be a simple eigenvalue of an unreduced real tridiagonal matrix C with left
eigenvector y and right eigenvector x. Denote by C ◦C, the Hadamard product of C and denote by
x′,y′ the modified left and right eigenvectors with each of its entries squared as defined in (28) . Let
relδC be the relative perturbation vector (19). Then relcond2(λ;C) := ‖ relgradC(λ)‖2 is equal to

relcond2(λ;C) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (C + δC), ‖relδC‖2 ≤ η
}

=

[
|y′|T |C ◦ C||x′|

]1/2
|λ||y∗x|

.

The form of relcond2(λ;C) yields the following result.

Lemma 9.1. For any scaling matrix S invertible and diagonal,

relcond2(λ;SCS−1) = relcond2(λ;C).

Proof. For any matrix G such that G = SCS−1 we can define a matrix G ◦ G that satisfies
G ◦G = (S)2(C ◦ C)(S−1)2. The proof of this fact is given by

(G ◦G)ij = [gij ]
2 = [siicijs

−1
jj ]2 = [sii]

2[cij ]
2[s−1

jj ]2 = ((S)2(C ◦ C)(S−1)2)ij

Also, the following relationship exists between the eigenvectors of G and C ,

y∗ = y∗GS and x = S−1xG.

Consequently, its corresponding y′G,x
′
G, y′,x′ are related in an analogous form,

y′
∗

= y′
∗
G(S)2 and x′ = (S−1)2x′G.

where y′,x′ are defined in (28) and y′G,x
′
G, are the vectors whose entries are the squares of the

entries of the eigenvector of G.
Thus, |y∗x| = |y∗GxG| and

|y′∗||C ◦ C||x′| = |y′∗GS2||C ◦ C||(S−1)2x′G| = |y′
∗
G||S2||C ◦ C||(S−1)2||x′G|

= |y′∗G||G ◦G||x′G| = |y′G|T |G ◦G||x′G|,

because S is diagonal and no additions occur in S2(C ◦ C)(S−1)2.

This lemma indicates that relcond2(λ,C) is invariant under diagonal similarity transformations.
Recall that J and B (see section 6.1 ) were obtained by similarity transformations in C and so

relcond2(λ;C) = relcond2(λ; J) = relcond2(λ;B)

Thus, from the point of view of entrywise sensitivity, we do not need to balance the matrix C ,
neither to construct J , because there will not be improvement in λ sensitivity since the condition
numbers are the same. Nevertheless, there is a need to obtain J and B to compute the factorizations
∆B = LDLT and J = LU .
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9.3 Representation 2 - L, U representation of J

We start by defining some matrices to avoid confusions and to let posterior calculation be more
fluent. After that, we derive the relative gradient for LU as it is done in [12] and we derive a 2-norm
for that vector, following the structure of the previous section. Finally we derive the eigenvalue
condition number in the 2- norm for this representation. Recall that LU is the factorization of
matrix J (11), that is J = LU and the definitions of L and U were shown in (17). Consider L as an
addition of matrices, L = I + L̊, and consider U , expressed as U = diag(u) +N ,where L̊ and N are,

L̊ =


0
l1 0

. . .
. . .

ln−2 0
ln−1 0

 and N =


0 1

0 1
. . .

. . .

0 1
0

 . (29)

Consider also the permutation matrix H,

H =


0 · · · 1
1 0

. . .
. . .

...
1 0

1 0

 (30)

Consider the perturbations vector,

relδ(L,U) =

(
δl1
l1
, . . . ,

δln−1
ln−1

, . . . ,
δu1
u1

, . . . ,
δun
un

)
(31)

And to end up, define the eigenvector diagonal matrices as,

diag(x) = diag(x1, · · · , xn), diag(y) = diag(y1, · · · , yn) (32)

Thus, as we did in previous section for the eigenvalue condition number with respect the entries of
C, we derive a relative gradient for J = LU assuming that J admits triangular factorization LU :
For uj we find

∂λ

∂uj
y∗x = y∗L ∂U

∂uj
x = y∗LejeTj x = (y∗L)jxj , j = 1, . . . , n,

and for lj ,
∂λ

∂lj
y∗x = y∗

∂L
∂lj
Ux = y∗ej+1e

T
j Ux = yj+1(Ux)j , j = 1, . . . , n− 1.

Then

gradL,U (λ) =

(
∂λ

∂u1
, . . . ,

∂λ

∂un
,
∂λ

∂l1
, . . . ,

∂λ

∂ln−1

)T
(33)

and, including the parameters lj and uj appropriately,

λ(y∗x) relgradLU (λ) =
(
(y∗L)1u1x1, . . . , (y

∗L)nunxn, y2l1(Ux)1, . . . , ynln−1(Ux)n−1

)T
(34)

=
(
(y∗L)1u1x1, . . . , (y

∗L)nunxn, (y
∗L̊)1(Ux)1, . . . , (y

∗L̊)n−1(Ux)n−1

)T
.
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So, expressing (34) in a vector-matrix product form, we obtain the 2-norm of this gradient using the
above definitions of H, diag(u), diag(x) and diag(y) ,

|λ||y∗x|‖ relgradL,U (λ)‖2 =

 n∑
j=1

∣∣(y∗L)2
ju

2
jx

2
j

∣∣+

n−1∑
j=1

|(y∗L̊)2
j (Ux)2

j |

1/2

= [|y∗L||diag(u)||diag(x)||diag(x)||diag(u)||(y∗L)T |
+ |Ux|T |H|T |diag(y)||L̊||L̊T ||diag(y)||H||Ux|]1/2 (35)

= [|(y∗L)diag(u)diag(x)||diag(x)diag(u)(y∗L)T |
+ |(Ux)THTdiag(y)L̊||L̊Tdiag(y)H(Ux)|]1/2

where we have used that no addition occur inside the absolute values. Note that the two terms of
the sum contain a product of a vector by its transpose. Then, ‖ relgradL,U (λ)‖2 can be written in a
more elegant form. This can be seen in next theorem, Theorem 9.3.

Theorem 9.3. Let J be an unreduced real tridiagonal matrix with 1’s in the first upper diagonal
that permits a triangular factorization J = LU with factors as in (17). Denote L̊ = L−I, diag(u) =
diag(u1, . . . , un), and let diag(x),diag(y), H be as defined in (32) and (30). Let relδ(L,U) be defined
in (31). Let λ 6= 0 be a simple eigenvalue of J with left eigenvector y and right eigenvector x.
And finally , denote vTLU = (y∗L)diag(u)diag(x) and denote wT

LU = (Ux)THTdiag(y)L̊ . Then
relcond2(λ;L,U) := ‖ relgradL,U (λ)‖2 is equal to

relcond2(λ;L,U) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (L+ δL)(U + δU),

‖ rel δ(L,U)‖ 2 ≤ η
}

=
[|vTLU ||vLU |+ |wT

LU ||wLU |]1/2

|λ| |y∗x|
.

Observe that we set 1’s and 0’s perturbations equal to zero.

Next, we derive an expression of relcond(λ;L,U) that is more convenient for numerical computations.
So, consider,

U = diag(u)
(
I + Ů

)
(36)

where

Ů =


0 u−1

1

0 u−1
2

. . .
. . .

0 u−1
n−1

0

 .

and use,
y∗LU = λy∗, Ux = L−1xλ, λ 6= 0, (37)

to cancel the factor |λ| in the denominator of relcond2(λ;L,U) . Substitute (36) in the first equation
in (37), multiply both sides by diag(x) and take absolute values,

|(y∗L)diag(u)diag(x)| = |λ||y∗
(
I + Ů

)−1

diag(x)|, λ 6= 0 (38)
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Multiply both sides of the second equation of (37) by L̊Tdiag(y)H, then obtain its absolute value,

|L̊Tdiag(y)H(Ux)| = |λ||L̊Tdiag(y)HL−1x|, λ 6= 0. (39)

If LU exists, is unique and is J is singular, only un, may be zero. But, consider that un does not
appear in Ů . Substitute the expressions in (38,39) into (35) and cancel |λ| (6= 0) to find

|y∗x|‖ relgradLU (λ)‖2 =
[
|y∗
(
I + Ů

)−1

diag(x)||y∗
(
I + Ů

)−1

diag(x)|T+

+ |L̊Tdiag(y)HL−1x||L̊Tdiag(y)HL−1x|T
]1/2

. (40)

For the cost of solving two bidiagonal linear systems

z∗
(
I + Ů

)
= y∗ for z∗ and x = LHTs for s

and for the cost of multiplying by two diagonal and one bidiagonal matrices,

v∗ = z∗diag(x) and w = L̊Tdiag(y)s

We end up by obtaining an expression of the relative condition number for J = LU , more convenient
for computations

relcond2(λ;L,U) :=

[
|v|T |v|+ |w|T |w|

]1/2
|y∗x|

. (41)

9.4 Other representations

Section 7 of this work was devoted to two factorizations J = LU and ∆T = ∆LDLT . Now, we
present a close factorization, T = L̄ΩL̄T , which was also used in [12], that attemps to be as similar
as possible to the widely known Cholesky factorization of symmetric positive definite matrices. We
define Ω as a signature matrix.

9.4.1 Representation 3 - L, D (∆) representation of ∆T

So, we show first the ”relcond” case for T = LDLT . Assume that the symmetric matrix T permit
triangular factorization T = LDLT and recall that in the section ”Factored forms of tridiagonal
matrices” 7 we fixed T to be T = ∆B, with B, the balanced matrix, defined in (12). Then, by
taking the inverse of ∆ ( ∆, itself, i.e. I = ∆2), we have,

B = ∆T = ∆LDLT

and this leads to obtain the eigenvalues and eigenvectos throughout the following traditional equa-
tions,

∆LDLTx = xλ, y∗∆LDLT = λy∗, where λ 6= 0 is simple .

Further developments in this section concern the study of the sensitivity of simple eigenvalues of B
under perturbations of the type ‖relδ(L,D)‖2 ≤ η , where

relδ(L,D) =
(δl1
l1
, . . . ,

δln−1

ln−1
,
δd1

d1
, . . . ,

δdn
dn

)
(42)
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where l1, . . . , ln−1 are the subdiagonal entries of L and d1, . . . , dn−1 are the diagonal entries of D.
These developments run in parallel to those in section 9.2 for perturbations in the entries of the
matrix and to those in section 9.3 for perturbations of the nontrivial entries of the factors L and U .
So, many details are omitted, since they are very similar to those in sections 9.2 and 9.3.
Some more ingredients for developing an expression of relcond2(λ;L,D) are still missed. Recall,
from section 7, the definition D = diag(d1, d2, . . . , dn), and let us introduce the sum L = I + L̊
where,

L̊ =


0
l1 0

. . .
. . .

ln−2 0
ln−1 0

 . (43)

Regarding the eigenvectors, x and y∗ of balanced matrices of section 6.1 (B-form), we present now
their relation (x determine y∗) . Hence, transposing ∆LDLTx = xλ and inserting I = ∆2 yields(

xT∆
) (

∆LDLT
)

= λ
(
xT∆

)
so, equivalently,

y∗∆LDLT = λy∗

and get a relation between left and right eigenvectors for a balanced, unreduced, tridiagonal matrix
of the form of B,

y∗ = xT∆

So, for λ simple, we have 0 6= y∗x = xT∆x.
Following the analysis of (35) but using partial derivatives of λ with respect to d1, . . . , dn and
l1, . . . , ln−1 for this case, we find

|λ||xT∆x|‖ relgradL,D(λ)‖2 =

 n∑
j=1

∣∣d2
j [(L

Tx)j ]
4
∣∣+ 4

n−1∑
j=1

|(xT L̊)2
j (DL

Tx)2
j |

1/2

=
[
|(DLTx)T R̊||R̊T (DLTx)|+ 4|(DLTx)THTdiag(x)L̊||L̊Tdiag(x)H(DLTx)|

]1/2
=
[
|DLTx|T

(
|R̊R̊T |+ 4|HTdiag(x)L̊L̊Tdiag(x)H|

)
|DLTx|

]1/2
. (44)

where ,

R̊ =


x1 + l1x2

. . .

xn−1 + ln−1xn
xn

 = diag(LTx) and HTdiag(x)L̊ = diag(xT L̊) (45)

So, we can summarize this result in Theorem 9.4.

Theorem 9.4. Let B be a balanced unreduced real tridiagonal matrix that permits triangular factor-
ization B = ∆LDLT with factors as in (15) . Moreover, let L̊ = L−I, R̊,H and diag(x) be matrices
defined as in (43),(45), (30) and (32). Also denote by relδ(L,D) the variation vector in (42). In
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addition, let λ 6= 0 be a simple eigenvalue of B with right eigenvector x. And let vTLD = (DLTx)T R̊,

and wT
LD = (DLTx)THT diag(x)L̊ . Then relcond(λ;L,D) := ‖ relgradL,D(λ)‖2 is equal to

relcond2(λ;L,D) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of ∆(L+ δL)(D + δD)(L+ δL)T ,

||relδ(L,D)||2 ≤ η
}

=

[
|vTLD||vLD|+ 4|wT

LD||wLD|
]1/2

|λ| |xT∆x|
.

Observe that we set to zero 1’s and 0’s perturbations of L and D .

Now, we express relcond(λ;L,D) in a more adequate form for computations. To this purpose,
we can remove a factor |λ| on the right side of (44) by means of,

DLTx = L−1∆xλ. (46)

Equation (46) is derive from the eigenequation ∆LDLTx = xλ. Then, the resultant equations that
act replacing (46) in vLD and wLD are,

|R̊T (DLTx)| = |λ||R̊TL−1∆x| = |λ||R̊L−1∆x|, |L̊Tdiag(x)H(DLTx)| = |λ||L̊Tdiag(x)HL−1∆x|.
(47)

Note that R̊T = R̊ because both matrices are diagonal. Substitute (46) in (44) and cancel |λ| (6= 0)
to obtain

|xT∆x|‖ relgradL,D(λ)‖2 =
[
|L−1∆x|T

(
|R̊R̊T |+ 4|HTdiag(x)L̊(L̊Tdiag(x)H)|

)
|L−1∆x|

] 1
2 .

Once λ is cancelled, the resultant expression may be reduced to the computations of a few systems.
So , we obtain relcond2(λ;L,D) for the cost of solving one bidiagonal linear system (L is unit
bidiagonal),

x = ∆Lh for h,

and for the cost of 3 products: two diagonal-vector products and one bidiagonal-vector product,

v = R̊h, w = L̊T diag(x)Hh

we obtain the following expression of the relative condition number for ∆T = ∆LDLT .

relcond2(λ;L,D) :=

[
|vT ||v|+ 4|wT ||w|

] 1
2

|xT∆x|
. (48)

9.4.2 Representation 4 - L̄,Ω representation of T

The second representation we consider in this section is the factorization T = L̄ΩL̄T where L̄ =
L|D|1/2 is lower bidiagonal, D = |D|1/2Ω|D|1/2, Ω = diag(sign(di)) with sign(dn) = 1 if dn = 0. A
potential advantage of this factorization is the closest to the Cholesky factorization that we can get
[12] . Thus,

∆L̄ΩL̄Tx = xλ. (49)

According to [12],there is a related eigenproblem dual to (49):

ΩL̄T∆L̄z = zλ (50)
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obtained by taking a LU transform of (49) by taking one step of the LΩ algorithm, which preserves
the eigenvalues but changes the eigenvectors. This gives, for us, the most elegant (symmetric) form
of our problem as

L̄ΩL̄Tx = ∆xλ, L̄T∆L̄z = Ωzλ,

with just a single bidiagonal matrix L̄”. We give, as in previous sections, some relevant definitions,

relδL̄ =
(δl11

l11
, . . . ,

δlnn
lnn

,
δl21

l21
, . . . ,

δlnn−1

lnn−1

)
, (51)

˚̄L =


0
l21 0

l32 0
. . .

. . .

lnn−10

 , L̄ =


l11

l21 l22

l32 l33

. . .
. . .

lnn−1lnn

 (52)

and
diag(L̄) = diag(l11, . . . , ljj , . . . , lnn) (53)

If in a similar way, as in previous sections, we differentiate λ with respect to the entries (1, 1), . . . , (n, n)
and (2, 1), . . . , (n, n− 1) of L̄, this lead to the relative condition number for ∆T = ∆L̄ΩL̄T .

Theorem 9.5. Let B be a balanced unreduced real tridiagonal matrix that permits a triangular
factorization B = ∆L̄ΩL̄T , where ∆ and Ω are diagonal signature matrices and L̄ is a lower

bidiagonal matrix. Denote L̄ = diag(L̄) + ˚̄L,where diag(L̄) and ˚̄L are matrices defined in (52)
and (53), and let diag(x) and H be matrices defined in (32) and (30). In addition, consider the
relative perturbation vector relδL̄ defined in (51). Let λ 6= 0 be a simple eigenvalue of B with

right eigenvector x. And let vTΩ = (L̄Tx)Tdiag(x)diag(L̄), and wT
Ω = (L̄Tx)THTdiag(x)˚̄L . Then

relcond(λ; L̄) := ‖ relgradL̄(λ)‖2 is equal to

relcond2(λ; L̄) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of ∆(L̄+ δL̄)Ω(L̄+ δL̄)T , ||relδL̄||2 ≤ η
}

=
2
[
|vTΩ| |vΩ|+ |wT

Ω||wΩ|
]1/2

|λ| |xT∆x|
.

Observe that we set to zero perturbations of the 1’s and the 0’s of L̄ .

For computational purposes, it is more convenient to express relcond(λ; L̄) as follows:

relcond2(λ; L̄) :=
2(|vT ||v|+ |wT ||w|)

|xT∆x|
,

where
x = ∆L̄Ωq for q.

v = diag(L̄)diag(x)q w = ˚̄L
T
diag(x)Hq
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9.5 Equivalence of relcond2(λ;L,U), relcond2(λ;L,D), relcond2(λ; L̄)

We show in the following lemma that the three condition numbers of the factored forms we have
considered before are equivalent .

Lemma 9.2.

1√
2

relcond2(λ;L,U) ≤ relcond2(λ;L,D) ≤
√

6 relcond2(λ;L,U)

and
1

2
√

2
relcond2(λ; L̄) ≤ relcond2(λ;L,D) ≤

√
6

2
relcond2(λ; L̄).

Proof. For S invertible and diagonal, let J = SBS−1 = S∆TS−1 and consider the triangular
factorizations J = LU and B = ∆T = ∆LDLT . Then we have

LU = S∆LDLTS−1.

Uniqueness of LU factorization guarantees that

L = S∆LS−1∆ and U = ∆SDLTS−1

and
L̊ = S∆L̊S−1∆ and diag(u) = ∆D.

with L̊ defined in 43 and L̊,diag(u) defined in section 9.3. .
Let xB and xJ be the right eigenvectors of the matrices B and J respectively, corresponding to the
simple eigenvalue λ. Since they are related by doing similarity transformations, it is satisfied,

xB = S−1xJ and xTB∆ = y∗B = y∗JS. (54)

then, since S is diagonal, it is also satisfied

diag(xB) = S−1diag(xJ) and diag(xTB)∆ = diag(y∗B) = diag(y∗J)S. (55)

Consequently, |y∗JxJ | = |y∗BxB | = |xTB∆xB | and, from (35),

|λ||y∗JxJ | relcond2(λ;L,U) =

=
[
|(y∗JL)diag(u)diag(xJ)||diag(xJ)diag(u)(y∗JL)T |+ |(UxJ)THTdiag(yJ)L̊||L̊Tdiag(yJ)H(UxJ)|

]1/2
,

This expression is the expanded version of Theorem 9.3 . It is convenient to focus first at |(y∗JL)diag(u)diag(xJ)|
and notice that the other factor in the first term is its transpose. So, substituting xJ , yJ , diag(xJ)
and diag(yJ) from (54) and (55) in the expresion above, we obtain,

|λ||xTB∆xB | relcond2(λ;L,U) =

=
[
|(DLTxB)Tdiag(xB)||diag(xB)(DLTxB)|+ |(DLTxB)THTdiag(xB)L̊||L̊Tdiag(xB)H(DLTxB)|

]1/2
=

=
[
|(DLTxB)T |(|(diag2(xB)|+ |HTdiag(xB)L̊||L̊Tdiag(xB)H|)|DLTxB)|

]1/2
.
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We compare the expression above with (44) and (45) in the derivation of relcond2(λ;L,D),which we
express as follows:

|λ||xTB∆xB | relcond2(λ;L,D) =

=
[
|(DLTxB)Tdiag(LTxB)||diag(LTxB)(DLTxB)|+

+ 4|(DLTxB)THTdiag(xB)L̊||L̊Tdiag(xB)H(DLTxB)|
]1/2

=

=
[
|(DLTxB)T |

(
|diag2(LTxB)|+ 4|HTdiag(xB)L̊||L̊Tdiag(xB)H)|

)
|(DLTxB)|

]1/2
.

The first difference from the comparison of the two condition numbers above is that diag2(xB) of
relcond2(λ;L,U) is distinct from diag2(LTxB) of relcond2(λ;L,D). And the second difference found
is that diag2(xTBL̊) (use (45)) is multiplied by one in relcond2(λ;L,U), whereas in relcond2(λ;L,D)
is multiplied by four. We can obtain an equivalence between both condition numbers as follows.
First, we transform diag2(LTxB), so we have,

|diag2(xTBL)| = |diag2(xTB(I + L̊))| = |diag(xTB) + diag(xTBL̊)|2, (56)

then we include this result in the expression that affect relcond2(λ;L,D),

|diag(xB) + diag(xTBL̊)|2 + 4|diag(xTBL̊)|2 ≤
(
|diag(xB)|+ |diag(xTBL̊)|

)2

+ 4|diag(xTBL̊)|2 ≤

≤ |diag(xB)|2 + |diag(xTBL̊)|2 + 2|diag(xB)||diag(xTBL̊)|+ 4|diag(xTBL̊)|2 ≤

≤ |diag(xB)|2 + 5|diag(xTBL̊)|2 + 2|diag(xB)||diag(xTBL̊)| ≤

≤ |diag(xB)|2 + 5|diag(xTBL̊)|2 + |diag(xB)|2 + |diag(xTBL̊)|2 ≤

≤ 6
(
|diag(xB)|2 + |diag(xTBL̊)|2

)
using the inequality 2ab ≤ a2 + b2 for a, b ∈ R . Therefore,

relcond2(λ;L,D) ≤
√

6 relcond2(λ;L,U).

Also, since
|diag(xB)|2 + |diag(xTBL̊)|2 = |diag(xTB(L− L̊))|2 + |diag(xTBL̊)|2 ≤

≤
(
|diag(xTBL)|+ |diag(xTBL̊)|

)2

+ |diag(xTBL̊)|2 ≤

≤ |diag(xTBL)|2 + |diag(xTBL̊)|2 + 2|diag(xTBL)||diag(xTBL̊)|+ |diag(xTBL̊)|2 ≤

≤ |diag(xTBL)|2 + 2|diag(xTBL)||diag(xTBL̊)|+ 2|diag(xTBL̊)|2 ≤

≤ 2|diag(xTBL)|2 + 3|diag(xTBL̊)|2

which is less than 2
(
|diag(xTBL)|2 + 4|diag(xTBL̊)|2

)
. So, the equivalence can be expressed as:

1√
2

relcond2(λ;L,U) ≤ relcond2(λ;L,D).
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The second part of the lemma is derived next. Recall,

L̄ = L|D|1/2 D = |D|1/2Ω|D|1/2 (57)

and consider the right eigenvectors, x, of B = ∆LDLT = ∆L̄ΩL̄T . Recall that, acording to
Theorem ,

|λ| |xT∆x| relcond2(λ; L̄) = (58)

= 2
[
|(L̄Tx)T diag(x)diag(L̄)| |diag(L̄)diag(x)(L̄Tx)|+

+ |(L̄Tx)THT diag(x)˚̄L||˚̄L
T
diag(x)H(L̄Tx)|

]1/2
.

So , consider

diag(L̄) = |D|1/2 and ˚̄L = L̊|D|1/2 (59)

and recall (45), substituting (57) in (58) and applying 59, we have

|λ| |xT∆x| relcond(λ; L̄) = (60)

= 2
[
|(DLTx)Tdiag(x)||diag(x)T (DLTx)|+

+ |(DLTx)THT diag(x)L̊||L̊T diag(x)H(DLTx)|
]1/2

. (61)

Compared with,

|λ||xT∆x| relcond(λ;L,D) = (62)

=
[
|(DLTx)Tdiag(LTx)||diag(LTx)T (DLTx)|+

+ 4|(DLTx)THT diag(x)L̊||L̊T diag(x)H(DLTx)|
]1/2

. (63)

to conclude that,

|diag(xTL)|2 = |diag(xT (I + L̊))|2 = |diag(x) + diag(xT L̊)|2 (64)

so, as in the first part of the proof, we have,

|diag(x) + diag(xT L̊)|2 + 4|diag(xT L̊)|2 ≤

≤
(
|diag(x)|+ |diag(xT L̊)|

)2

+ 4|diag(xT L̊)|2

≤ |diag(x)|2 + |diag(xT L̊)|2 + 2|diag(x)||diag(xT L̊)|+ 4|diag(xT L̊)|2 ≤
≤ |diag(x)|2 + 5|diag(xT L̊)|2 + 2|diag(x)||diag(xT L̊)| ≤
≤ |diag(x)|2 + 5|diag(xT L̊)|2 + |diag(x)|2 + |diag(xT L̊)|2 ≤

≤ 6
(
|diag(x)|2 + |diag(xT L̊)|2

)
and

relcond(λ;L,D) ≤
√

6

2
relcond(λ; L̄).

We ommit the last proof of equivalence given that the expression we computed in the case of LU
factorization is equally valid for the case of L̄ factorization. We invite the reader to do the calculations
by himself.

1

2
√

2
relcond(λ; L̄) ≤ relcond(λ;L,D).
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Important note: This lemma is based on lemma 6.6 of [12] , in which the equivalence bound for
1-norm were,

relcond(λ;L,U) ≤ relcond(λ;L,D) ≤ 3 relcond(λ;L,U)

and
1

2
relcond(λ; L̄) ≤ relcond(λ;L,D) ≤ 3

2
relcond(λ; L̄).

The difference between the two lemmas is not very notable, since non of them depend on the
size of the matrix, n. Althoug it seems 2-norm is more precise.

10 Sensitivity analysis for banded matrices

It is well known [36] that simple eigenvalues of any matrix A are differentiable functions of the
entries of A. In particular this is true for banded matrices. This assertion implies that all the partial
derivatives of eigenvalues with respect to the matrix entries exist. We will use the 1-norm defining
eigenvalue condition numbers of banded matrices, but we will show in this section that the condition
number for band matrices can be extended to tridiagonal. There is no specific definition for banded
and another for tridiagonal as the title of this section suggests. For simplicity we have used the
1-norm in the definition of eigenvalue condition number for banded matrices , and the 2-norm in the
definition for tridiagonal matrices since the 1-norm was already used in [12].
To obtain a condition number using 1-norm, define perturbations of the form :

|δaij | ≤ η|aij |

where aij are the entries of A, so,

|δA| ≤ η|A|, 0 < η � 1, (65)

and
| rel δA| ≤ η (1, 1, . . . 1)

T
. (66)

which is the relative perturbation column vector. Then, the condition number with respect to
perturbations of the entries is defined as :

relcond(λ;A) := ‖ relgradA(λ)‖1

= lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (A+ δA), |δA| ≤ η|A|
}
. (67)

Moreover, if diagonals of (p,q) banded matrix A defined in (10) are in arrays ( p+q+1 arrays).
And we identify entries by subindices k = 1, . . . , p; j = 1, . . . , n for the lower diagonal arrays and
s = 1, . . . , q; j = 1, . . . , n, for the upper diagonal arrays. We can assert that matrix A is formed by
a diagonal array ajj , q upper diagonal arrays aj,j+s and p lower diagonal arrays aj+k,j for j+ s ≤ n
and j + k ≤ n, which is used to say that no entries fall out of the matrix size. So that one can

obtain, for simple eigenvalue λ, the set of partial derivatives

{
∂λ

∂ajj
,

∂λ

∂aj+k,j
,

∂λ

∂aj,j+s

}
and obtain

the absolute gradient vector over diagonals:

gradA(λ) = (
∂λ

∂a11
, . . . ,

∂λ

∂ann
,
∂λ

∂a21
, . . . ,

∂λ

∂an,n−1
, . . . ,

∂λ

∂ap+1,1
, . . . ,

∂λ

∂an,n−p
, (68)

∂λ

∂a12
, . . . ,

∂λ

∂an−1,n
, . . . ,

∂λ

∂a1,q+1
, . . . ,

∂λ

∂an−q,n
)T .
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Multiply this vector by infinitesimal absolute changes vector
(δa11, . . . , δann, δa21, . . . , δan,n−1, δap+1,1, . . . , δan,n−p, δa12, . . . , δan−1,n, . . . , δa1,q+1, . . . , δan−q,n)

T
=:

=: δA, so we have
δλ = gradA(λ)T · δA+ higher order terms (h.o.t.). (69)

To turn (69) into relative terms, relate |δλ/λ| to |δaij/aij |, with

aij = (a11, . . . , ann, a12, . . . , an−1,n, . . . , a1,q+1, . . . , an−q,n, . . . , a21, . . . , an,n−1, . . . , ap+1,1, . . . , an,n−p)

For nonzeros terms, rewrite (69) as

δλ

λ
=

(
a11

λ

∂λ

∂a11
, . . . ,

an−q,n
λ

∂λ

∂an−q,n

)
·
(
δa11

a11
, . . . ,

δan−q,n
an−q,n

)T
+ h.o.t.

=: relgradA(λ)T · rel δA+ h.o.t., (70)

”defining the relative gradient and the relative perturbation. When a parameter vanishes we should
omit the corresponding term in the inner product.” [12]. Now, obtain the∞-norm of the perturbation
vector,

‖ rel δA‖∞ ≤ η.

and, since |uTv| ≤ ‖u‖1‖v‖∞ (Hölder inequality),∣∣∣∣δλλ
∣∣∣∣ ≤ ‖ relgradA(λ)‖1‖ rel δA‖∞ + h.o.t. ≤ η‖ relgradA(λ)‖1 + h.o.t. (71)

So, the relative condition number can be defined as in Theorem 10.1.

Theorem 10.1. For any unreduced real (p,q) band matrix A of the form of (10), with perturbations
of the form of (65), whose relative perturbation vector, rel δA, defined in (66), satisfy ‖ rel δA‖∞ ≤ η,
we can define a relative condition number as in (67) and attain the supremum upper bound for
‖relgradA(λ)‖, where relgradA(λ) is defined in (70) . So, formally , we can express the relative
condition number of A using 1-norms as,

relcond(λ;A) := ‖ relgradA(λ)‖1, λ 6= 0.

The proof of this theorem is very similar to the proof of theorem 9.1 and we omit it.We bring here
some convenient comments of paper [12]. ”There is no reason to expect relcond(λ;A) > 1; any value
in [0,+∞[ could occur. Should A 6= O be singular then appropriate independent relative changes
to the entries will destroy singularity. So we set relcond(0;A) = ∞. Our other representations will
have finite values for ‖ relgrad(λ)‖1 and thus may define tiny eigenvalues to high relative accuracy
in certain cases, a very desirable property”.
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10.1 Condition numbers for banded matrices

The case of banded matrices is similar to the tridiagonal case. We begin with the explicit expression
of a banded matrix as,

A =



a11 a12 · · · a1,q+1 0
a21 a2,q+2

...
. . .

ap+1,1
. . . an−q,n

ap+2,2

...
. . .

0 an,n−p · · · ann


(72)

We say that A ∈ Rn×n has upper bandwith q and lower bandwith p. Now, we infer an explicit
expression for relcond(λ;A) with respect relative perturbations of the entries. Thus, we consider
the entries of A as independent variables. This is the challenge of measuring each variation of
the eigenvalues with respect each perturbation of each entry of the matrix. This is done in the
reference article [12] for the eigenvalue condition numbers of tridiagonal matrices. In addition, we
can separate the upper from the lower part, being the upper part an analogue of Ci entries and
the lower bandwith an analogue of bi entries, in the tridiagonal matrix C appearing in equation
(11).Thus, with I =

(
e1, . . . , en

)
,

∂A

∂ajj
= eje

T
j ,

∂A

∂aj+k,j
= ej+ke

T
j with k = 1, . . . , p for the lower part

and
∂A

∂aj,j+s
= eje

T
j+s. with s = 1, . . . , q for the upper part

Consider λ to be a simple nonzero eigenvalue of A and

Ax = xλ, y∗A = λy∗.

Then, for pij = ajj , aj+k,j , aj,j+s , with j = 1, . . . , n; k = 1, . . . , p ; s = 1, . . . , q , we differentiate
Ax = xλ to get

∂A

∂pij
x +A

∂x

∂pij
=

∂x

∂pij
λ+ x

∂λ

∂pij
.

Multiply by y∗ and cancel equal terms to find

∂λ

∂pij
y∗x = y∗

∂A

∂pij
x, pij = aj,j , aj+k,j , aj,j+s, for k = 1, . . . , p , s = 1, . . . , q and j = 1, . . . , n

Thus,
∂λ

∂ajj
=
yjxj
y∗x

,
∂λ

∂aj+k,j
=
yj+kxj
y∗x

,
∂λ

∂aj,j+s
=
yjxj+s
y∗x

and

relgradA(λ) =
1

λy∗x

(
a11y1x1, . . . , annynxn, a1+k,1y1+kx1, . . . , an,n−kynxn−k, a1,s+1y1xs+1, . . . , an−s,nyn−sxn

)T
.
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Finally, we get

‖ relgradA(λ)‖1 =
1

|λ||y∗x|

 p∑
k=0

n−k∑
j=1

|aj+k,j ||yj+k||xj |+
q∑
s=1

n∑
j=s+1

|aj−s,j ||yj−s||xj |

 =
|y|T |A||x|
|λ||y∗x|

.

We can summarize this result in Theorem 10.2.

Theorem 10.2. Let λ 6= 0 be a simple eigenvalue of a (p,q) banded matrix A with left eigenvector
y and right eigenvector x. Then relcond(λ;A) := ‖ relgradA(λ)‖1 is equal to

relcond(λ;A) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (A+ δA), |δA| ≤ η|A|
}

=
|y|T |A||x|
|λ||y∗x|

.

Note that the expression of the relative condition number relcond(λ;A) does not depend on the
size of the matrix, neither on p or q in the sense that, the expression for relcond is the same in
tridiagonals and banded matrices. If λ = 0, we set relcond(λ;A) =∞.

10.1.1 Representation 2 - LU factorization

A (p, q) banded matrix A ∈ Rn×n that permits triangular factorization A = LU pass its structure
to its factored matrices L and U . This is the main reason for which U has upper bandwidth q, and
L has lower bandwidth p (see [14]). We use this inheritance to compute an eigenvalue condition
number for matrix A.
Assume that A permits a triangular factorization A = LU and λ is a simple eigenvalue,

LUx = xλ, y∗LU = λy∗, λ 6= 0.

We introduce a notation similar to the one we used in tridiagonal matrices. So, L = I + L̊ with

L̊ =



0
l21 0
...

lp+1,1
. . .

lp+2,2

. . .

ln,n−p · · · 0
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and

L =



1
l21 1
...

lp+1,1
. . .

0 lp+2,2

. . .

0 ln,n−p · · · 1


and U =



u11 u12 · · · u1,q+1 0
u22

. . . 0
. . . un−q,n

...
unn


.

The perturbations we consider at level η are given by

|δlij | ≤ η|lij |, 0 < η � 1,
|δuij | ≤ η|uij |, 0 < η � 1.

Observe that these perturbations do not change either the 0’s or the 1’s on the diagonal of L .

Next we derive an explicit expression for the relative condition number for A = LU ,

relcond(λ;L,U) := ‖ relgradL,U (λ)‖1.

For uj,j+s we find

∂λ

∂uj,j+s
y∗x = y∗L

∂U

∂uj,j+s
x = y∗Leje

T
j+sx = (y∗L)jxj+s, s = 0, . . . , q, j = 1, . . . , n,

and for lj+k,j we find,

∂λ

∂lj+k,j
y∗x = y∗

∂L

∂lj+k,j
Ux = y∗ej+ke

T
j Ux = yj+k(Ux)j , k = 1, . . . , p, j = 1, . . . , n.

Then,

gradL,U (λ) =
( ∂λ
∂u11

, . . . ,
∂λ

∂u1,1+q
, . . . ,

∂λ

∂un−1,n−1
,

∂λ

∂un−1,n
,
∂λ

∂un,n
, (73)

∂λ

∂l21
, . . . ,

∂λ

∂lp+1,1
, . . . ,

∂λ

∂ln−1,n−2
,

∂λ

∂un,n−2
,

∂λ

∂un,n−1

)T
Observe that U entries in gradL,U (λ) are set in rows and L components by columns.

We finally introduce the parameters lj+k,j and uj,j+s appropriately,

λ(y∗x) relgradLU (λ) =((y∗L)1u11x1, . . . , (y
∗L)1u1,1+qx1+q, . . . , (y

∗L)n−1un−1,n−1xn−1, (y
∗L)n−1un−1,nxn,

(y∗L)nun,nxn, (y
∗L)n−1un−1,nxn, y2l21(Ux)1, . . . , yp+1lp+1,1(Ux)1, . . . , yn−1ln−1,n−2

(Ux)n−2, ynln,n−2(Ux)n−2, ynln,n−1(Ux)n−1))T .

If we we set the limits of the summatory to be s = 0, . . . ,min(q, n− j); k = 0, . . . ,min(p, n− j).
Or this consideration expressed in another form: do not consider the entries that fall out of the size
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of the matrix, we finally obtain the following equation,

|λ||y∗x|‖ relgradL,U (λ)‖1 =

n∑
j=1

q∑
s=0

|(y∗L)juj,j+sxj+s|+
n∑
j=1

p∑
k=1

|yj+klj+k,j(Ux)j | (74)

= |(y∗L)||U ||x|+ |y∗||L̊||(Ux)|

As we did in Theorem 10.2, we can summarize the arguments above in Theorem 10.3.

Theorem 10.3. Suppose (p,q) banded matrix A ∈ Rn×n permits a triangular factorization A = LU
with factors as in 18, let L̊ = L − I.Let λ 6= 0 be a simple eigenvalue of A with left eigenvector y
and right eigenvector x. Then relcond(λ;L,U) := ‖ relgradL,U (λ)‖1 is equal to

relcond(λ;L,U) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (L+ δL)(U + δU),

|δL| ≤ η|L̊|, |δU | ≤ η|U |
}

=
|y∗L||U ||x|+ |y∗||L̊||Ux|

|λ| |y∗x|
.

Observe that the 1’s and the 0’s perturbations of L and U are set to zero.

Note that the factored form has a condition number that does not dependent on the size of the
matrix neither p, q. There is a reason by which the resultant expressions for band and tridiagonals
are not the same and is that we have used different LU factorizations for band (LU) and tridiagonals
( LU). Nevertheless, diag(u) , can be derived from U of the band matrix. It admitt the ”fusion”
of absolute values, so the expression are rather very similar. Next, we express relcond(λ;L,U) in a
form that is more appropiate for computations. In order to extract a factor of |λ| on the right in
(74), use

y∗LU = λy∗, Ux = L−1xλ, λ 6= 0,

to find
|y∗L| = |λ||y∗U−1|, |y∗||L̊||Ux| = |y∗||L̊||L−1x||λ|, |λ| 6= 0. (75)

Substitute the expressions in (75) into (74) and cancel |λ| ( 6= 0) to find

|y∗x|‖ relgradLU (λ)‖1 = |y∗U−1||U ||x|+ |y∗||L̊||L−1x|.

For the cost of solving the following
|y∗U−1||U | = w∗

x = Lg for g

|y∗||L̊||g| = v

we obtain the following expression of the relative condition number for A = LU

relcond(λ;L,U) :=
|wT ||x|+ v

|y∗x|
. (76)

Therefore, it seems appropriate to set relcond(0;L,U) = 0.
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11 Conclusions and future work

In this undergraduate thesis, we have deduced for first time formulas for the eigenvalue condition
numbers of n × n tridiagonal matrices with respect to perturbations of four different parametriza-
tions or representations of tridiagonal matrices that are important in numerical computations. These
representations are: the entries of the matrix; the bidiagonal L and U factors of the J-form of tridi-
agonal matrices; the signed symmetric bidiagonal-diagonal factorization, ∆LDLT , of the balanced
form of tridiagonal matrices; and the double signed bidiagonal factorization ∆L̄ΩL̄T of the balanced
form of tridiagonal matrices.

In all the cases we have considered, the perturbations of the parameters preserve the tridiagonal
structure of the unperturbed matrix.

The new contribution with respect to previous references available in the scientific literature is
that we have measured the sizes of the perturbations of the four different sets of parameters we have
analyzed via the 2-norm of the vector of relative variations of the parameters.

It has been shown in very recent ongoing research works [9, 31] that the use of the 2-norm
may have relevant advantages for estimating the errors committed by fast modern algorithms for
computing the eigenvalues of unsymmetric tridiagonal matrices [1, 11].

Moreover, we have presented numerical procedures for computing the new eigenvalue condition
numbers in O(n) flops by solving some very simple linear systems. This makes possible to apply our
results in the future for estimating the errors committed by the algorithms presented in [1, 11].

We have also deduced for first time formulas for the eigenvalue condition numbers of n × n
general low-banded matrices with respect to perturbations of the triangular L and U factors of these
matrices and we have presented numerical methods for computing these new formulas in O(n) flops.

The most relevant future research work directly related to the original results obtained in this
undergraduate thesis would be to combine the new eigenvalue condition numbers we have developed
with some efficient algorithms for computing structured eigenvalue backward errors of tridiagonal
matrices, which are currently under development [9] [31]. In this way, we would provide a reli-
able procedure to estimate a posteriori, but very efficiently, the errors committed by fast modern
algorithms for computing the eigenvalues of unsymmetric tridiagonal matrices [1, 11]. Since these
algorithms are not guaranteed to be backward stable, these error estimations would make possible to
include fast algorithms for the unsymmetric tridiagonal eigenvalue problem in high quality software
professional libraries of Scientific Computing.
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