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Abstract The omega ratio is an interesting performance measure because it fo-
cuses on both downside losses and upside gains, and �nancial markets are re�ecting
more and more asymmetry and heavy tails. This paper focuses on the omega ratio
optimization in general Banach spaces, which applies for both in�nite dimensional
approaches related to continuous time stochastic pricing models (Black and Scholes,
stochastic volatility, etc.) and more classical problems in portfolio selection. New
algorithms will be provided, as well as Fritz John-like and Karush-Kuhn-Tucker-like
optimality conditions and duality results, despite the fact that omega is neither di¤er-
entiable nor convex. The optimality conditions will be applied to the most important
pricing models of Financial Mathematics, and it will be shown that the optimal value
of omega only depends on the upper and lower bounds of the pricing model stochastic
discount factor. In particular, if the stochastic discount factor is unbounded (Black
and Scholes, Heston, etc.) then the optimal omega ratio becomes unbounded too (it
may tend to in�nity), and the introduction of several �nancial constraints does not
overcome this caveat. The new algorithms and optimality conditions will also apply
to optimize omega in static frameworks, and it will be illustrated that both in�nite-
and �nite-dimensional approaches may be useful to this purpose.

Key words Omega Ratio, Asset Pricing Model, Stochastic Discount Factor,
Representation Theorem, Optimality Conditions.

A.M.S. Classi�cation. 91G10, 91B82, 90C46, 90C48.
J.E.L. Classi�cation G11, G12, C61, C65.

1 Introduction

Asymmetric returns and heavy tails are provoking a growing interest in risk
and performance measures beyond the classical standard deviation and Sharpe
ratio. In particular, risk measures focusing on the downside risk (Value at
Risk or V aR, Conditional Value at Risk or CV aR, etc.) are very popular
amongst practitioners, regulators and researchers because they properly capture
the potential capital losses of a given strategy within a planning horizon.
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The omega ratio is also deserving a growing attention in �nancial literature
for two main reasons. On the one hand, this ratio focuses on both downside
potential losses and upside potential gains, since it represents the quotient be-
tween the expected payo¤of a call option and the expected payo¤of a put option
with the same strike and on the same underlying portfolio. On the other hand,
omega is becoming very tractable from a mathematical perspective. Indeed,
Mausser et al. (2006) dealt with the Charnes and Cooper (1962) transforma-
tion and proved that the omega ratio optimization may become a simple linear
programming problem if omega reaches values higher than one. Since then, lin-
ear programming linked approaches have been developed in several frameworks.
Among other interesting analyses, Kapsos et al. (2014a) studied the omega
ratio in ambiguous settings, Kapsos et al. (2014b) dealt with operational risk
problems, Guastaroba et al. (2016) gave a novel relationship between omega
and the Enhanced Index Tracking Problem, and Sharma et al. (2017) combined
both omega and the CV aR in portfolio choice.
All the papers above dealt with �nitely many available �nancial assets, and,

consequently, the problem to solve only involved �nite-dimensional variables.
Nevertheless, many classical pricing models of Financial Mathematics (Black
and Scholes (B&S), stochastic volatility models (SVM) such as the Heston
model, etc.) often lead to problems involving in�nite-dimensional spaces of
random variables. This paper will focus on general optimization methods for
the omega ratio applying to both �nite and in�nite dimensions. In particular,
the optimization of omega and a general pricing model (binomial, trinomial,
B&S, SVM , etc.) will be integrated in a single problem.
The paper outline is as follows. Section 2 will summarize the most important

background we will need. Special focus will deserve the representation of many
continuous convex functions as the maximum of a weakly∗−compact (Luen-
berger, 1969) set of continuous linear functions, which will be called the convex
function sub-gradient. Section 3 will study the omega ratio optimization in gen-
eral Banach spaces. Firstly, the role of the Charnes and Cooper (1962) approach
will be replaced by a transformation applying in general problems involving the
optimization of ratios (Section 3.1). If both numerator and denominator of
the ratio are di¤erentiable (respectively, linear) then the resulting transformed
equivalent problem will be di¤erentiable (linear) too. This methodology will
permit us to give new algorithms, optimality conditions, and duality results. In
particular, Theorem 7 and Corollary 9, the most important results of Section
3.2, will provide us with Fritz John-like and Karush-Kuhn-Tucker-like optimal-
ity conditions (Craven, 1975) to optimize omega,1 and, similarly, Theorem 10
and Remark 14 (Section 3.3) will yield duality results and complementary slack-
ness optimality conditions if the optimization of omega can be linearized. Both
the Lagrange multiplier (Fritz John) and the dual variable (linear case) will have
a component belonging to the sub-gradient of both numerator and denominator
of omega (notice that numerator and denominator are convex functions).

1 It is worth remarking that the methodology of Theorem 7 also applies to potential inter-
esting extensions of omega such that numerator and denominator do not have the same strike,
though we will not address this topic for the sake of brevity.
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Section 4 will apply the �ndings of Section 3 in problems optimizing omega
under the assumptions of a general arbitrage free pricing model. Four cases will
be distinguished, according to the imposed constraints: Price constraints, price
and return constraints, price and risk constraints involving a general risk mea-
sure (downside risk) or a deviation measure, and price-return-risk constraints.
As will be seen, risk constraints also enable us to deal with uncertainty and am-
biguous settings. As will be also proved, Lagrange multipliers and dual variables
will be composed of elements belonging to the sub-gradients of the involved con-
vex measures. In particular, they will contain an element in the sub-gradient of
the risk measure and another one belonging to the sub-gradient of both omega
numerator and denominator. They will also have to be closely related to the
Stochastic Discount Factor (SDF ) of the pricing model (Du¢ e, 1996), in order
to guarantee feasibility.
The most important results of Section 4 are Theorems 23 and 29. They show

that the optimal value of omega only depends on the essential supremum and
the essential in�mum of the SDF . Furthermore, if the SDF essential supremum
equals in�nity (B&S and most of the continuous time stochastic pricing models)
or its essential in�mum equals zero (or both) then omega is unbounded, i.e., its
optimal value becomes in�nity, and the sequence of investment strategies whose
omega tends to in�nity can be explicitly constructed (Remark 24). Hence, the
investor may reach an omega ratio as large as desired with only one dollar (or one
cent), an additional return and/or risk constraints do not modify this �nding.
The omega ratio may become as close to∞ as desired, regardless of the amount
to invest. This �surprising�property seems to be related to some �pathologies�
pointed out in Balbás et al. (2010), and later extended in Balbás et al. (2016) for
ambiguous investors. For many downside risk measures all the pricing models
above imply the existence of a sequence of investment strategies whose couple
(risk, return) tends to (−∞,+∞) or (0,+∞). Perhaps some modi�cations of
these pricing models and their SDF could overcome this caveat, but this is
obviously beyond our scope.
Section 5 will illustrate how the results of Section 3 also apply in more classi-

cal portfolio choice problems only involving buy and hold (or static) strategies.
Two numerical examples will be presented. The �rst example will deal with
with in�nite-dimensional spaces in order to optimize omega in an option mar-
ket, while the second one will deal with �nite-dimensional spaces in order to
optimize omega in a portfolio selection problem involving two international in-
dices (SP_500 and DAX_30) and two commodities (gold and Brent). Section
6 will present some concluding remarks.

2 Background and notation

Consider the probability space (Ξ,F , IP) composed of the set Ξ, the σ−algebra F
and the probability measure IP. For 1 ≤ p <∞ the Banach space Lp is composed
of the real-valued random variables y such that IE (|y|p) <∞, IE () representing
mathematical expectation. If p =∞ then L∞ is the Banach space of essentially
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Lp y p := (IE (|y|
p
))
1/p

1 ≤ p < ∞ y
∞
:= Ess Sup {|y|} p = ∞ Ess Sup

Lp ⊃ LP 1 ≤ p ≤ P ≤ ∞
1 ≤ p <∞ 1 < q ≤ ∞ 1/p+1/q = 1 Lq Lp

S ⊂ Lp

S⊥ = {z ∈ Lq; IE (yz) = 0 ∀y ∈ S}
Lq Lq ∗ σ (Lq, Lp)

σ (Lq, Lp)−
Lq σ (Lq, Lp)−

B(∞,+) := {z ∈ L
∞; 0 ≤ z ≤ 1}

B(∞,+) ⊂ Lq 1 < q ≤ ∞ B(∞,+)

σ (Lq, Lp)−

IE y+ =Max IE (yz) ; z ∈ B(∞,+)

y ∈ L1

E+ E x ≤ y
y − x ∈ E+ E E+ E+ ∩ (−E+) = {0}

x ≤ y y ≤ x =⇒ x = y E
E E+ = {e ∈ E ; e (e) ≥ 0, ∀e ∈ E+}

E

E1 E2 L (E1, E2)
E1 E2 A ⊂ E1

f : A→ E2 f
a ∈ A o : A → E2

f (a, .) ∈ L (E1, E2)

f (x) = f (a) + f (a, x− a) + x− a o (x) , ∀x ∈ A
limx→a o (x) = 0

f (a, .) f a
f A f

A A
E1 ⊃ A a→ f (a, .) ∈ L (E1, E2) A = E1 f ∈ L (E1, E2)

f (a, .) = f a ∈ A

K C (K)
K C (K)

f = Max {|f (x)| ; x ∈ K} C (K)
σ−

σ− K

a Max {a, } a Max {−a, } a ∈ IR



If 1 ≤ p < ∞, 1 < q ≤ ∞, 1/p + 1/q = 1, K ⊂ Lq is convex and
σ (Lq, Lp)−compact, and µ ∈ C′ (K) is a probability measure (i.e., µ ≥ 0 and
µ (K) = 1), then there exists a unique zµ ∈ K such that∫

K

IE (yz)µ (dz) = IE (zµy) (3)

holds for every y ∈ Lp. A complete proof of (3) may be found, among others,
in Phelps (2001).3

Consider k ∈ IR, p ∈ [1,∞) and y ∈ Lp. Obviously, (k − y)
+ ∈ Lp.

(k − y)
+ ≥ 0 trivially implies that IE

(
(k − y)

+
)
≥ 0, and IE

(
(k − y)

+
)

= 0

if and only if (k − y)
+

= 0 almost surely (or IP (y ≥ k) = 1). If

IP (y ≥ k) < 1 (4)

or, equivalently, IE
(

(k − y)
+
)
> 0, then the omega ratio Ωk (y) of y with thresh-

old k is de�ned by

Ωk (y) :=
IE
(

(y − k)
+
)

IE
(

(k − y)
+
) ≥ 0, (5)

and it has been considered a good performance measure because it depends on
both downside potential capital losses (denominator) and upside potential capi-
tal gains (numerator, see Bernardo and Ledoit, 2000, or Shadwick and Keating,
2002, for further discussions about the advantages of risk/performance measures
involving both losses and gains). Bearing in mind the chain of trivial equalities

(y − k)
+

+ k = Max {k, y} = (k − y)
+

+ y, (6)

for y ∈ L1 satisfying (4) we have that

Ωk (y) =
IE
(

(k − y)
+
)

+ IE (y)− k

IE
(

(k − y)
+
) =

IE (y)− k
IE
(

(k − y)
+
) + 1.

Asset Pricing Theory usually deals with a planning period [0, T ], a set T of
trading dates satisfying {0, T} ⊂ T ⊂ [0, T ], a �ltration (Fτ )τ∈T re�ecting the
arrival of information and such that F0 = {�,Ξ} and FT = F , and stochastic
processes (yτ )τ∈T adapted to (Fτ )τ∈T and re�ecting the price evolution of self-
�nancing investment strategies (Du¢ e, 1996). We will consider some p ∈ [1,∞),
and a non-trivial closed subspace S ⊂ Lp such that every y ∈ S is the price
at T of some self-�nancing portfolio. In other words, if y ∈ S then there is a

3 In other words, the probability measure µ may be often replaced by a Dirac Delta δzµ , in
the sense that ∫

K
IE (yz)µ (dz) =

∫
K
IE (yz) δzµ (dz)

holds for every y ∈ Lp.
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self-�nancing price process (yτ )τ∈T such that yT = y. In general, S is said to
be a subspace of marketed claims. We will only deal with closed subspaces S of
marketed claims containing the riskless asset (1 ∈ S).
The pricing rule associates the �nal (at T ) random price y = yT ∈ S with

the initial (at 0) numerical one y0 ∈ IR. In one simpli�es notations and omits
subscripts, the pricing rule becomes a linear and continuous function Π ∈ S′, S′
being the dual space of S. The Hahn Banach Theorem (Zeidler, 1995) implies
the existence of an extension of this pricing rule to the whole space Lp. Since
the dual of Lp is Lq, if the pricing rule extension is still denoted by Π, the Riesz
Theorem implies the existence of zΠ ∈ Lq such that

Π (y) = e−rT IE (zΠy) (7)

holds for every y ∈ S, r denoting the (continuously compounded) riskless rate.
Henceforth zΠ will be called stochastic discount factor (SDF ) of Π. Obviously,
1 ∈ S and (7) lead to

IE (zΠ) = 1. (8)

If
IP (zΠ = 1) = 1 (9)

then (7) becomes Π (y) = e−rT IE (y), and the market is said to be risk-neutral.
The price of every marketed claim equals its discounted expectation and, con-
sequently, every expected return equals the riskless rate. Since Financial Eco-
nomics usually considers risk averse agents, (9) will not hold when dealing with
the standard pricing models. If the market is complete (S = Lp), then zΠ is
unique, and

IP (zΠ > 0) = 1 (10)

must hold in order to prevent the existence of arbitrage. If p = 2 (and therefore
q = 2) then zΠ also becomes unique if one replaces �completeness� by the
condition zΠ ∈ S. Further details may be found in Du¢ e (1996).
Next let us introduce some downside risk measures, since they are becoming

more and more important in many classical problems of Financial Mathematics
(see, among many others, Gilli et al., 2006, Zakamouline and Koekebbaker, 2009,
or Zhao and Xiao, 2016). Consider some p ∈ [1,∞). Throughout this paper a
risk measure on Lp will be a function ρ : Lp −→ IR satisfying the existence of a
convex and σ (Lq, Lp)−compact set ∆ρ ⊂ Lq such that

ρ (y) = Max {−IE (yz) ; z ∈ ∆ρ} (11)

for every y ∈ Lp, and the existence of the zero-variance random variable z =
Ẽ ≥ 0 such that

Ẽ ∈ ∆ρ, (12)

and
IE (z) = Ẽ (13)
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z ∈ Δρ Ẽ = 1 ρ

IP (z ≥ 0) = 1

z ∈ Δρ ρ
p = 1
1− α ∈ [0, 1)

CV aR1−α (y) :=
1

α

α

0

V aR1−t (y) dt,

V aR1−t (y) y 1− t

ΔCV aR1−α = {z ∈ L
∞; IE (z) = 1 and 0 ≤ z ≤ 1/α} .

p = 1
W1,W2, ...,Wm

m
j=1Wj = 1 1 − α1

1− α2 ... 1− αm ∈ [0, 1)

WCV aR(W1,W2,...,Wm,1−α1,1−α2,...,1−αm) (y) :=

m

j=1

WjCV aR1−αj (y)

ΔWCV aR =
m

j=1

WjΔCV aR1−αj
.

p = 2

[R,S]1 = {f ∈ L
p; R ≤ f ≤ S and IE (z) = 1} .

IP−
IPf

d (IPf )

d (IP)
∈ [R,S]1 .

CV aR

RCV aR([R,S]1,1−α) (y) :=Max {CV aR1−α (y) ; f ∈ [R,S]1}

y

V aR α y −Inf {x ∈ IR IP y ≤ x > α} ,

− α ∈ ,

ρ V aR α

ρ V aR α



exists for every y ∈ L2, and RCV aR([R,S]1,α) is a coherent and expectation

bounded risk measure.5 Furthermore,

∆RCV aR = {z ∈ L∞; IE (z) = 1 and ∃f ∈ [R,S]1 with 0 ≤ z ≤ f/α} . (21)

If Ẽ = 0 then ρ is called deviation measure (Rockafellar et al., 2006). Well-
known examples are the absolute deviation σ1 (y) := IE (|y − IE (y)|) for p = 1,

and the standard deviation σ2 (y) :=

√
IE
(
|y − IE (y)|2

)
for p = 2. For them

one has (Rockafellar et al., 2006),6{
∆σ1 = {z ∈ L∞; z = w − IE (w) and 0 ≤ w ≤ 2}
∆σ2 =

{
z ∈ L2; IE (z) = 0 and σ2 (z) ≤ 1

}
.

(22)

3 Optimizing omega

Let us focus on the optimization of the omega ratio. Fix k ∈ IR, p ∈ [1,∞),
q ∈ (1,∞] such that 1/p + 1/q = 1, a closed subspace S ⊂ Lp containing the
riskless asset, a non-void Y0 ⊂ S ⊂ Lp, and Problem{

Max Ωk (y)
y ∈ Y0.

(23)

Assumption 1. Throughout the rest of the paper we will suppose that (4)
holds for every y ∈ Y0. �

3.1 Optimizing general ratios

This sub-section will be devoted to dealing with the optimization of general
ratios. Its main results, along with (2) and (3), will provide us with new methods
to optimize omega. It is remarkable that this methodology to optimize general
ratios will only involve linear programming problems if one deals with ratios of
two linear functions.
Throughout this sub-section we will �x is an arbitrary set U0, and two arbi-

trary functions N : U0 → IR and D : U0 → IR such that N (u) ≥ 0 and D (u) > 0
hold for every u ∈ U0. Let us denote

0 ≤ β∗ = Sup

{
N (u)

D (u)
; u ∈ U0

}
≤ ∞. (24)

5Many alternative approaches about the set of priors and the robust CV aR may be found
in the literature about ambiguity. We have chosen the one by Balbás et al. (2016) because it
nicely �ts in the framework of this paper, since (11) holds for the representation set (21).

6 It is easy to prove that �σ1 may be also given by

�σ1 = {z ∈ L1; z = w − IE (w) and M − 1 ≤ w ≤M + 1}
for every M ∈ IR. In particular, if one takes M = 0 one has

�σ1 = {z ∈ L1; z = w − IE (w) and − 1 ≤ w ≤ 1} ,
and (22) arises for M = 1.
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Lemma 1 Suppose that u∗ ∈ U0. u∗ solves

Max

{
N (u)

D (u)
; u ∈ U0

}
(25)

if and only if u∗ solves

Min

{
N (u∗)

D (u∗)
D (u)−N (u) ; u ∈ U0

}
. (26)

Proof. Suppose that u∗ ∈ U0 solves (25). Then

N (u∗)

D (u∗)
≥ N (u)

D (u)
(27)

holds for every u ∈ U0, and consequently,

N (u∗)

D (u∗)
D (u)−N (u) ≥ 0

holds for every u ∈ U0. Hence u∗ solves (26) because

N (u∗)

D (u∗)
D (u∗)−N (u∗) = 0. (28)

Conversely, suppose that u∗ solves (26). The equality (28) implies that
N (u∗)

D (u∗)
D (u)−N (u) ≥ 0 for every u ∈ U0, i.e., (27) holds for every u ∈ U0, and

u∗ solves (25). �

Lemma 2 β ≥ 0 is an upper bound of (25) if and only if βD (u) −N (u) ≥ 0
holds for every u ∈ U0. If so, Problem

Min {βD (u)−N (u) ; u ∈ U0} (29)

is bounded.

Proof. Obviously, β ≥ N (u)

D (u)
for every u ∈ U0 if and only if βD (u)−N (u) ≥ 0

for every u ∈ U0. �

Lemma 3 Suppose that β ≥ 0 and uβ ∈ U0 solves (29). Consider β
∗ given in

(24).
a) If βD (uβ)−N (uβ) = 0 then β = β∗ and uβ solves (25).
b) If βD (uβ)−N (uβ) < 0 then β < β∗.
c) If βD (uβ)−N (uβ) > 0 then β ≥ β∗. Moreover, if (25) is solvable (i.e.,

β∗ in (24) is attainable) then β > β∗.

9



Proof. a) βD (uβ) − N (uβ) = 0 implies that β =
N (uβ)

D (uβ)
, and therefore uβ

solves Min

{
N (uβ)

D (uβ)
D (u)−N (u) ; u ∈ U0

}
. Lemma 1 implies that uβ solves

(25), and therefore (24) leads to

β∗ =
N (uβ)

D (uβ)
= β.

b) βD (uβ)−N (uβ) < 0 leads to β <
N (uβ)

D (uβ)
≤ β∗.

c) If u ∈ U0 then β ≤
N (u)

D (u)
would lead to βD (u)−N (u) ≤ 0, in contradic-

tion with βD (uβ)−N (uβ) > 0. Thus, β >
N (u)

D (u)
and therefore β ≥ β∗. More-

over, if u∗ ∈ U0 and β
∗ =

N (u∗)

D (u∗)
then β = β∗ would imply βD (u∗)−N (u∗) = 0,

in contradiction with βD (uβ)−N (uβ) > 0. �
Next, let us show that Lemmas 1, 2 and 3 yield simple algorithms solving

Problem (25).

Algorithm 4 (Exact solution) In order to simplify the exposition, let us assume
that (29) is solvable for every β ≥ 0.

Step_1. Solve (29) as a parametric problem depending on the parameter
β ≥ 0. Denote by f (β) ∈ U0 a solution of (29).

Step_2. Solve the equation

βD (f (β))−N (f (β)) = 0. (30)

Lemmas 1 and 3 show that the solution of (25) is also a solution of Equation
(30). �

Algorithm 5 (Approximation of an exact solution) In order to simplify the
exposition, let us assume that (29) is solvable for every β ≥ 0.

Step_1. Choose an �small enough�admissible error ε > 0.
Step_2. Consider the sequence (un)n ⊂ U0 such that every un solves (29)

if β = nε, n = 0, 1, 2, 3, ...
Step_3. Compute the sequence (|nεD (un)−N (un)|)n and choose its min-

imum value |n0εD (un0)−N (un0)|. According to Lemma 3, un0 could be an
approximation of the solution of (25), and n0ε could be an approximation for
the optimal ratio. �

Remark 6 (Other approximations) Lemmas 1, 2 and 3 above may generate
more algorithms approximating a solution of (25). In order to shorten the ex-
position, we will just summarize without technical detail one more general pro-
cedure.
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Step_1. Choose β0 = 0 and u0 ∈ U0 solving (29) for β = 0. Obviously,
β0D (u0)−N (u0) = −N (u0) ≤ 0. If N (u0) = 0 then Lemma 3 shows that u∗ =
u0 solves (25) and the algorithm ends. Otherwise we have β0D (u0)−N (u0) < 0.

Step_2. Choose β1 > 0 �big enough�so as to guarantee that (29) is bounded
from below by zero for β = β1. If β1 cannot be found then Lemma 2 implies
that (25) is unbounded. If β1 can be found then solve (29) and let u1 be its
solution. Obviously, β1D (u1) − N (u1) ≥ 0. If β1D (u1) − N (u1) = 0 then
Lemma 3 shows that u∗ = u1 solves (25) and the algorithm ends. Otherwise we
have β1D (u1)−N (u1) > 0.

Step_3. Take β2 = (β0 + β1) /2, and u2 solving (29) for β = β2. If
β2D (u2) − N (u2) = 0 then Lemma 3 shows that u∗ = u2 solves (25) and
the algorithm ends. Otherwise go to Step 4.

Step_4. If β2D (u2) − N (u2) > 0 (respectively, < 0) then take β3 =
(β0 + β2) /2 (respectively, β3 = (β1 + β2) /2), and u3 solving (29) for β = β3.
If β3D (u3)−N (u3) = 0 then Lemma 1 shows that u∗ = u3 solves (25) and the
algorithm ends. Otherwise go to Step 5.

Step_5. Induction. Suppose that the solution u∗ of (25) does exist. If
the algorithm does not end in �nitely many steps, then construct (βn)

∞
n=0 and

(un)
∞
n=0 in the obvious manner. It is easy to see that

∣∣βn+1 − βn
∣∣ =
|β1 − β0|

2n
holds for every n ∈ IN, which easily implies that β = limn→∞ βn exists and
equals the supremum of (25). �

3.2 Optimizing omega: General approach

Lemmas 1, 2 and 3 show that one can optimize omega by solving{
Min βIE

(
(k − y)

+
)
− IE

(
(y − k)

+
)

y ∈ Y0

(31)

According to (6),

βIE
(

(k − y)
+
)
− IE

(
(y − k)

+
)

= β
(
IE
(

(y − k)
+
)

+ k − y
)
− IE

(
(y − k)

+
)

= (β − 1) IE
(

(y − k)
+
)
− βIE(y) + βk.

Thus, (31) is equivalent to{
Min (β − 1) IE

(
(y − k)

+
)
− βIE(y) + βk

y ∈ Y0

(32)

Let us deal with (31) and give necessary optimality conditions for Problem (23).
Recall that (4) holds for every y ∈ Y0 (Assumption 1).

Theorem 7 Consider Problem (23).
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a) β ≥ 0 yβ ∈ Y0 yβ
(θ∗1, θ

∗
2, z

∗
2) ∈ IR× IR× L

∞ (θ∗1, θ
∗
2, yβ , z

∗
2)

Min βθ1 + θ2

⎧⎨
⎩

θ1 − IE (z1 (k − y)) ≥ 0, ∀z1 ∈ B(∞,+)

θ2 + IE (z2 (y − k)) ≥ 0
(θ1, θ2, y, z2) ∈ IR× IR×Y0×B(∞,+)

(θ1, θ2, y, z2) ∈ IR× IR×L
p × L∞

b) y∗ ∈ Y0 y∗ (θ∗1, θ
∗
2, z

∗
2) ∈

IR× IR× L∞ (θ∗1, θ
∗
2, y

∗, z∗2) β = Ωk (y
∗)

c) S ⊂ Lp

Y ⊂ S
S E

E+ E◦+
g : Y → E Y0

Y0 = {y ∈ Y ; g (y) ≤ g0}

g0 ∈ E E E β ≥ 0 yβ ∈ Y0
τ ∈ IR z∗1 , z

∗
2 ∈ L

∞ eβ ∈ E⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eβ ◦ g (yβ , .)− τ (βz∗1 + z
∗
2) ∈ S

⊥

z∗2 (ξ) = 0 =⇒ τ (yβ (ξ)− k) ≤ 0, ξ ∈ Ξ
z∗2 (ξ) = 1 =⇒ τ (yβ (ξ)− k) ≥ 0, ξ ∈ Ξ
0 < z∗2 (ξ) < 1 =⇒ τ (yβ (ξ)− k) = 0, ξ ∈ Ξ
τβIE (z∗1 (yβ − k)) ≤ τβIE (z1 (yβ − k)) , ∀z1 ∈ B(∞,+)

eβ (g (yβ)− g0) = 0

τ , eβ = (0, 0)

τ ≥ 0, z∗1 , z
∗
2 ∈ B(∞,+), eβ ≥ 0

y∗ ∈ Y0 τ ∈ IR z∗1 , z
∗
2 ∈ L

∞ eβ ∈ E

β = Ωk (y
∗)

Proof. a)

Min βθ1 + θ2

⎧⎪⎪⎨
⎪⎪⎩

θ1 ≥ IE (k − y)
+

θ2 ≥ −IE (y − k)
+

(θ1, θ2, y) ∈ IR× IR× Y0

Y S

e
β
◦ g yβ , . − τ βz z

S Lp i.e.

n
i IE y − ki

m
j IE kj − y

.

k



(θ1, θ2, y) ∈ IR×IR×Lp being the decision variable, and this problem is equivalent
to (33) due to (2).

b) According to Lemma 1, y∗ solves (23) if and only if y∗ solves (33) for
β = Ωk (y∗), so the result trivially follows from a).

c) Suppose that there exists (θ∗1, θ
∗
2, z
∗
2) ∈ IR× IR×L∞ such that (θ∗1, θ

∗
2, yβ , z

∗
2)

solves (33). Problem (33) also incorporates the constraints z ≤ 0 and −z ≤ −1
(which are equivalent to z ∈ B(∞,+), see (1)). Thus, the constraints of (33)
are valued on C

(
B(∞,+)

)
, IR, E, L∞ and L∞, respectively. Since all of these

spaces have a non-negative cone with non-void interior, the Fritz John Theorem
(Craven, 1975) implies the existence of τ ≥ 0 and(
µ ≥ 0, λ ≥ 0, e′β ≥ 0, α0 ≥ 0, α1 ≥ 0

)
∈ C′

(
B(∞,+)

)
× IR×E′ × (L∞)

′ × (L∞)
′

such that
(
τ , µ, λ, e′β , α0, α1

)
6= (0, 0, 0, 0, 0, 0) , the Lagrangian



Lag
(
τ , θ1, θ2, y, z2, µ, λ, e

′
β , α0, α1

)
=

τ (βθ1 + θ2)−
∫
B(∞,+)

(θ1 − IE (z1 (k − y)))µ (dz1)

−λ (θ2 + IE (z2 (y − k)))−
∫

Ξ
z2 (ξ)α0 (dξ) +

∫
Ξ

(z2 (ξ)− 1)α1 (dξ)

+e′β (g (y)− g0)

(36)

has null partial Fréchet di¤erentials with respect to (θ1, θ2, y, z2), and the com-
plementary slackness conditions hold. Computing derivatives in (36) with re-
spect to (θ1, θ2), we get the system{

τβ = µ
(
B(∞,+)

)
τ = λ

(37)

Computing derivatives with respect to z2, and bearing in mind that

IE (z2 (y − k))−
∫

Ξ

z2 (ξ)α0 (dξ) +

∫
Ξ

z2 (ξ)α1 (dξ)

is a linear expression in the z2−variable, we get

α1 − α0 = τ (yβ − k) (38)

because λ = τ must hold. Lastly, computing derivatives with respect to y,
bearing in mind that τ IE (z2y)+

∫
B(∞,+)

IE (z1y)µ (dz1) is linear in the y−variable,
bearing in mind (37), and applying (3), we get the existence of z∗1 , z

∗
2 ∈ B(∞,+)

such that
e′β ◦ g′ (yβ , y) = τ IE ((βz∗1 + z∗2) y) , ∀y ∈ S.

The �rst condition in (35) was just proved. The second, third and fourth
ones trivially follow from the complementary slackness conditions α1 (z∗2 − 1) =

13



α0z
∗
2 = 0 along with α0 ≥ 0, α1 ≥ 0 and (38). The �fth condition in (35) follows

from the complementary slackness condition∫
B(∞,+)

(θ1 − IE (z1 (k − yβ)))µ (dz1) = 0

along with the �rst constraint of (33), (37), and µ = µ
(
B(∞,+)

)
δz∗1 (recall (3)).

The rest of conditions in (35) are clear consequences of the general Fritz John
Theorem (Craven, 1975). �

Remark 8 Under the assumptions and notation of Theorem 7c, suppose that
τβ 6= 0 in (35). The �fth condition becomes IE (z∗1 (yβ − k)) ≤ IE (z1 (yβ − k))
for every z1 ∈ B(∞,+), which trivially leads to{

yβ (ξ)− k < 0 =⇒ z∗1 (ξ) = 1, ξ ∈ Ξ
yβ (ξ)− k > 0 =⇒ z∗1 (ξ) = 0, ξ ∈ Ξ

Consequently, bearing in mind the second and third conditions in (35), we have{
yβ (ξ)− k < 0 =⇒ z∗1 (ξ) = 1 and z∗2 (ξ) = 0, ξ ∈ Ξ
yβ (ξ)− k > 0 =⇒ z∗1 (ξ) = 0 and z∗2 (ξ) = 1, ξ ∈ Ξ

�

Corollary 9 (Necessary Karush Kuhn Tucker-like optimality conditions) Con-
sider the notations of Theorem 7c. If there exists y1 ∈ S such that g′ (y∗, y1) ∈
E◦+, or g

′ (y∗, .) : S → E is onto, then one can take τ = 1 in (35).

Proof. It is su¢ cient to see that τ > 0, since in such a case the result becomes
trivial if one replaces τ with 1 and e′β with e

′
β/τ . Suppose that τ = 0. The

�rst condition in (35) implies that e′β ◦ g′ (y∗, .) ∈ S⊥. If g′ (y∗, .) is onto then
e′β = 0, contradicting Theorem 7. If the existence of y1 ∈ S holds and e′β 6= 0
then e′β ◦ g′ (y∗, y1) > 0 (Luenberger, 1969), so once again we are facing a
contradiction. �

3.3 Optimizing omega: Linear approach

Fix a Banach space E ordered by the convex cone E+ with non-void interior E◦+,
a linear and continuous function g : S → E, and an element g0 ∈ E. Suppose
that Y0 is given by (34) (with Y = S). If β > 1 then (32) becomes a convex
problem, and the Lagrangian duality of Luenberger (1969) applies. Moreover,
bearing in mind (2), and proceeding as in the proof of Theorem 7, Problems
(31) and (32) are equivalent to the linear problem

Min (β − 1)θ − βIE(y) + βk

 θ − IE (z (y − k)) ≥ 0, ∀z ∈ B(∞,+)

g (y) ≤ g0

(θ, y) ∈ IR×S
(39)

14



(θ, y) ∈ IR×S being the decision variable. The Lagrangian function becomes
(Luenberger, 1969)

Lag (θ, y, µ, e′) = (β − 1)θ − βIE(y) + βk

−
∫
B(∞,+)

(θ − IE (z (y − k)))µ (dz) + e′ (g (y)− g0)

for (θ, y, µ, e′) ∈ IR×S×C′
(
B(∞,+)

)
×E′, µ ≥ 0 and e′ ≥ 0. Manipulating,

Lag (θ, y, µ, e′) = (β − 1− µ
(
B(∞,+)

)
)θ − βIE(y) + βk

+
∫
B(∞,+)

IE (zy)µ (dz)− k
∫
B(∞,+)

IE (z)µ (dz) + e′ (g (y)− g0)

Bearing in mind (3), and proceeding as in the proof of Theorem 7, the La-
grangian above may simplify to{

Lag (θ, y, z, e′) = (β − 1− µ
(
B(∞,+)

)
)θ − βIE(y) + βk

+µ
(
B(∞,+)

)
IE (zy)− kµ

(
B(∞,+)

)
IE(z) + e′ (g (y)− g0) .

According to Luenberger (1969), (z, e′) ∈ B(∞,+)×E′ will be dual-feasible if
e′ ≥ 0 and Lag (θ, y, z, e′) is bounded from below for (θ, y) ∈ IR×Y . Hence,
µ
(
B(∞,+)

)
= β − 1 must hold, and the Lagrangian becomes{

Lag (y, z, e′) =
IE(y ((β − 1) z − β)) + e′ ◦ g (y) + βk − k (β − 1) IE(z)− e′ (g0) .

(40)

According to Luenberger (1969), (z, e′) ∈ B(∞,+)×E′+ will be dual feasible if
and only if the in�mum of (40) in y ∈ S is strictly higher than −∞, which is
obviously equivalent to the equality (β − 1) z − β + e′ ◦ g ∈ S⊥. Moreover, the
dual of (31), (32) and (39) becomes

Max βk − k (β − 1) IE(z)− e′ (g0)

{
(β − 1) z − β + e′ ◦ g ∈ S⊥
(z, e′) ∈ B(∞,+)×E′+

(41)

Theorem 10 Suppose that β > 1. Fix a Banach space E ordered by the convex
cone E+ with non-void interior E◦+, a linear and continuous function g : S → E,
and an element g0 ∈ E. Suppose Y0 is given by (34) (with Y = S). Suppose
lastly that there exists ỹ ∈ Y0 such that g (ỹ) − g0 ∈ E◦+ (Slater quali�cation).
Then;

a) Problem (31) (or (32)) is bounded if and only if Problem (41) is feasible.
If so, the in�mum of (31) (or (32)) equals the maximum of (41) (i.e., (41)
achieves its supremum and therefore it is solvable).

b) Suppose that (31) is bounded. Consider yβ ∈ Y0 and
(
zβ , e

′
β

)
∈ B(∞,+)×E′+.

Then, yβ ∈ Y0 solves (31) (or (32)) and
(
zβ , e

′
β

)
solves (41) if and only if the

complementary slackness conditions
IE (zβ (yβ − k)) ≥ IE (z (yβ − k)) , ∀z ∈ B(∞,+)

(β − 1) zβ − β + e′β ◦ g ∈ S⊥
e′β (g (yβ)− g0) = 0

(42)
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hold.
c) Consider Problem (23) and y∗ ∈ Y0. y∗ solves (23) if and only if y∗ solves

(31) for β = Ωk (y∗).
d) Consider Problem (23) and y∗ ∈ Y0 such that Ωk (y∗) > 1. y∗ solves

(23) if and only there exists (z∗, e′∗) ∈ B(∞,+)×E′+ such that (42) holds for(
zβ , e

′
β

)
= (z∗, e′∗), yβ = y∗ and β = Ωk (y∗).

Proof. a) It trivially follows from the duality theory for convex problems of
Luenberger (1969).

b) Take θβ = IE
(

(yβ − k)
+
)
. Obviously, yβ ∈ Y0 solves (31) if and only if

(θβ , yβ) solves (39). According to Anderson and Nash (1987), and bearing that

(39) and (41) are linear, (θβ , yβ) solves (39) and
(
zβ , e

′
β

)
solves (41) if and only

if they are feasible and the complementary slackness conditions
θβ = IE (zβ (yβ − k))
(β − 1) zβ − β + e′β ◦ g = 0

e′β (g (yβ)− g0) = 0

hold. Obviously, (2) implies the equivalence between θβ = IE (zβ (yβ − k)), and
the �rst condition in (42).

c) It is an obvious consequence of Lemma 1.
d) It is an obvious consequence of c) and b). �

Remark 11 According to the duality theory presented in Luenberger (1969),
there is a natural extension of Theorem 10 also applying if g is a convex function.
We have decided to omit it in order to shorten the exposition. �

Remark 12 Bearing in mind (1), the �rst condition in (42) is obviously equiv-
alent to {

yβ (ξ)− k < 0 =⇒ zβ (ξ) = 0, ξ ∈ Ξ
yβ (ξ)− k > 0 =⇒ zβ (ξ) = 1, ξ ∈ Ξ

(43)

�

Theorems 7 and Theorem 10 provide us with optimality conditions for Prob-
lem (23). Theorem 7 applies in a much more general setting, since g does
not have to be linear, the Slater quali�cation is not imposed, and constraint
Ωk (y∗) > 1 does not have to hold. Nevertheless, when Theorem 10 applies (42)
is necessary and su¢ cient, and much more tractable than (35), which is only
necessary.10 It is also natural to analyze the relationship between (35) and (42)
when Theorem 10 applies. Let us show that they become identical.

10Constraint 
k (y�) > 1 often holds in practice (Sharma and Mehra, 2017, or Sharma et
al., 2017), but its ful�lment is not always guaranteed (see Theorem 29 below).
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Proposition 13 Under the notations and assumptions of Theorem 10, if(
yβ , zβ , e

′
β

)
∈ Y0×B(∞,+)×E′+

satis�es (42), τ = 1, z∗1 = 1 − zβ, and z∗2 = zβ then
(
yβ , τ , z

∗
1 , z
∗
2 , e
′
β

)
satis�es

(35).

Proof. It is obviously su¢ cient to see that βz∗1 + z∗2 = β − (β − 1) zβ , which
trivially follows from z∗1 = 1− zβ , and z∗2 = zβ . �

Remark 14 Consider the same assumptions as in Theorem 10, but suppose
that β = 1. (31) is still equivalent to (32), which becomes

Min k − IE(y)

{
g (y) ≤ g0

y ∈ S (44)

and is a linear problem. According to Anderson and Nash (1987), the dual of
(44) is

Max k − e′ (g0)

{
e′ ◦ g − IE(.) ∈ S⊥
e′ ∈ E′+

(45)

Let us assume the existence of ỹ ∈ Y0 such that g (ỹ) − g0 ∈ E◦+ (Slater qual-
i�cation). Problem (45) is feasible and solvable if and only if (44) is feasible
and bounded, in which case there is no duality gap between both problems. The
complementary slackness conditions become e′1 ◦ g − IE(.) ∈ S⊥

g (y1) ≤ g0

e′1 (g (y1)− g0) = 0

and they are necessary and su¢ cient to guarantee that y1 ∈ S solves (44) and
e′1 ∈ E′+ solves (45) (Anderson and Nash, 1987). �

4 Pricing models and optimal omega

Throughout Section 4 we will �x k, C0, C̃0 = C0e
rT , E0, ρ0 ∈ IR, p ∈ [1,∞),

q ∈ (1,∞] such that 1/p+1/q = 1, a closed subspace S ⊂ Lp of marketed claims
containing the riskless asset, a non-void Y0 ⊂ S, a pricing rule Π ∈ S′, a SDF
zΠ ∈ Lq satisfying (7) and (10),11 and such that (9) does not hold.12 Constraint
y ∈ Y0 in Problem (23) admits many particular cases. Special examples are

Y0,1 :=
{
y ∈ S; IE (zΠy) ≤ C̃0

}
, (46)

11Actually, (10) is equivalent to the absence of arbitrage in a complete market (S = Lp).
In an incomplete market (10) implies the absence of arbitrage, and the converse also holds
under quite general assumptions. For instance, it holds in the Heston model (Hull, 2012) and
other SVM . See Balbás et al. (2016) for a further discussion.
12 (9) holds if and only if the market is risk-neutral, but the standard pricing models of

Mathematical Finance deal with a risk-averse framework.
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Y0,2 :=
{
y ∈ S; IE (zΠy) ≤ C̃0, IE (y) ≥ E0C0

}
, (47)

Y0,3 :=
{
y ∈ S; IE (zΠy) ≤ C̃0, ρ (y) ≤ ρ0C0

}
, (48)

Y0,4 :=
{
y ∈ S; IE (zΠy) ≤ C̃0, IE (y) ≥ E0C0, ρ (y) ≤ ρ0C0

}
, (49)

ρ being the value at risk (see (16)) or an arbitrary real-valued risk measure on
Lp satisfying (11), (12) and (13). (46) indicates that one will not invest more
than C0. If C0 > 0 then (47) also imposes a minimum expected return E0,
(48) imposes a maximum risk ρ0 per invested dollar, and (49) imposes both
a minimum expected return and a maximum relative risk.13 The four cases
can be analyzed with the Fritz John-like optimality conditions (35) and the
complementary slackness conditions (42).

Proposition 15 Consider Problem (23) and suppose that IE (zΠy) ≤ C̃0 holds
for every y ∈ Y0 ⊂ S. If k > C̃0 then (4) holds for every y ∈ Y0.

Proof. If IE (zΠy) ≤ C̃0 < k and y ≥ k then IE (zΠ(y − k)) < k − kIE (zΠ) = 0
(see (8)) and y−k ≥ 0, which implies that y−k is an arbitrage strategy (Du¢ e,
1996). �

Remark 16 Throughout Sections 4 and 5 we will also consider that k > C̃0

holds. Hence, Y = S is an open set (relative to S), Y0 ⊂ Y under the four cases
for Y0 (Y0,1, Y0,2, Y0,3 and Y0,4), and Assumption 1 holds. Consequently, both
Theorem 7 and Theorem 10 apply. �

Remark 17 Let us focus on Theorem 7c under the four cases for Y0. The only
di¤erence among these cases is given by the function g, and therefore it only
a¤ects the �rst and sixth conditions in (35). If Y0 = Y0,1 then g is given by

S 3 y → g (y) = IE (zΠy) ∈ IR, (50)

which is linear and coincides with its Fréchet di¤erential. Thus, the two men-
tioned conditions if (35) become{

e′β zΠ − τ (βz∗1 + z∗2) ∈ S⊥

e′β

(
C̃0 − IE (zΠyβ)

)
= 0

(51)

where e′β ∈ IR, e′β ≥ 0. Similarly, for Y0 = Y0,2 one has

S 3 y → g (y) = (IE (zΠy) ,−IE (y)) ∈ IR2, (52)

13Notice that the risk measure ρ allows us to introduce ambiguity in the analysis, in which
case the decision maker will re�ect uncertainty with respect to the real probability of every
state of the world. Indeed, it is for instance su¢ cient to deal with the robust CV aR (see (20)
and (21)) or other robust risk measures (Balbás et al., 2016).
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and 
e′β,1 zΠ − e′β,2 − τ (βz∗1 + z∗2) ∈ S⊥

e′β,1

(
C̃0 − IE (zΠyβ)

)
= 0

e′β,2 (IE (yβ)− C0E0) = 0

, (53)

where e′β,1, e
′
β,2 ∈ IR, e′β,1, e′β,2 ≥ 0.

For Y0 = Y0,3 things become more complex. Indeed, Lp 3 y → ρ (y) ∈ IR
is not necessarily Fréchet di¤erentiable, but one can overcome this caveat by
drawing on the Representation Theorems. Indeed, if ρ is expectation bounded or
a deviation measure then (11) implies that

Y0,3 =
{
y ∈ S; IE (zΠy) ≤ C̃0 and − IE (yz) ≤ C0ρ0 ∀z ∈ ∆ρ

}
.

Thus, one can consider

S 3 y → g (y) = (IE (zΠy) ,−IE (yz)) ∈ IR×C (∆ρ) , (54)

which is linear again and coincides with its di¤erential. Since the natural cone
of C (∆ρ) has non-void interior, bearing in mind (3), the mentioned conditions
in (35) imply 

e′βzΠ − νρzρ − τ (βz∗1 + z∗2) ∈ S⊥

e′β

(
C̃0 − IE (zΠyβ)

)
= 0

νρ (C0ρ0 + IE (yβzρ)) = 0

(55)

with e′β ≥ 0, νρ ≥ 0, zρ ∈ ∆ρ and
(
τ , e′β , νρ

)
6= (0, 0, 0). Similarly, for Y0 = Y0,4

one gets 
e′β,1 zΠ − e′β,2 − νρzρ − τ (βz∗1 + z∗2) ∈ S⊥

e′β,1

(
C̃0 − IE (zΠyβ)

)
= 0

e′β,2 (IE (yβ)− C0E0) = 0

νρ (C0ρ0 + IE (yβzρ)) = 0

(56)

with e′β,1, e
′
β,2 ≥ 0, νρ ≥ 0, zρ ∈ ∆ρ and

(
τ , e′β,1, e

′
β,2, νρ

)
6= (0, 0, 0, 0). �

Remark 18 Let us focus on Theorem 10b under the four cases for Y0. As
above, the only di¤erence a¤ects the second and third conditions in (42). If
Y0 = Y0,1 then (50) implies that e′β ∈ IR, e′β ≥ 0 and{

(β − 1) zβ − β + e′βzΠ ∈ S⊥

e′β

(
C̃0 − IE (zΠyβ)

)
= 0

. (57)

For Y0 = Y0,2 Expressions (42) and (52) lead to
(β − 1) zβ − β + e′β,1zΠ − e′β,2 ∈ S⊥

e′β,1

(
C̃0 − IE (zΠyβ)

)
= 0

e′β,2 (IE (yβ)− C0E0) = 0

(58)
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with e′β,1, e
′
β,2 ∈ IR, e′β,1, e′β,2 ≥ 0. If Y0 = Y0,3 and ρ is expectation bounded or

a deviation measure then (11), (42) and (54) lead to
(β − 1) zβ − β + e′βzΠ − νρzρ ∈ S⊥

e′β

(
C̃0 − IE (zΠyβ)

)
= 0

νρ (C0ρ0 + IE (yβzρ)) = 0

(59)

Similarly, for Y0 = Y0,4 one gets
(β − 1) zβ − β + e′β,1 zΠ − e′β,2 − νρzρ ∈ S⊥

e′β,1

(
C̃0 − IE (zΠyβ)

)
= 0

e′β,2 (IE (yβ)− C0E0) = 0

νρ (C0ρ0 + IE (yβzρ)) = 0

(60)

with e′β,1, e
′
β,2 ≥ 0, νρ ≥ 0, zρ ∈ ∆ρ. �

Remark 19 Obviously, ‖zΠ‖∞ = Ess_Sup {zΠ} ≤ ∞, and (10) clearly im-
plies that Ess_Inf {zΠ} ≥ 0. Henceforth we will denote ‖zΠ‖0 = Ess_Inf {zΠ}.
Moreover, (8) trivially shows that ‖zΠ‖∞ ≥ 1 and ‖zΠ‖0 ≤ 1, and it also shows
that ‖zΠ‖0 = ‖zΠ‖∞ if and only if zΠ = 1 (i.e., ‖zΠ‖0 = ‖zΠ‖∞ if and only if
the market is risk-neutral, which is a excluded case). To sum up

0 ≤ ‖zΠ‖0 < 1 < ‖zΠ‖∞ ≤ ∞. (61)

If ‖zΠ‖∞ = ∞ or ‖zΠ‖0 = 0 (or both) we will accept the usual convention
‖zΠ‖∞ / ‖zΠ‖0 = ∞. More generally, we will take ∞/0 = ∞ and ∞/a =
a/0 =∞ for a > 0. �

4.1 Price and return constraints

Let us focus on the particular cases Y0 = Y0,1 and Y0 = Y0,2. If the market
is complete (S = Lp), we will show that the solution of (23) only depends on
the properties of zΠ. Needless to say, the most important pricing models of
Financial Mathematics (binomial model, trinomial models, B&S, Heston, other
SVM , etc.) are complete.14

Lemma 20 Suppose that S = Lp and Y0 = Y0,1. Consider β > 1. The dual
problem (41) is feasible if and only if 0 < ‖zΠ‖0 < ‖zΠ‖∞ < ∞ and β ≥
‖zΠ‖∞ / ‖zΠ‖0. If so, the dual problem (41) becomes

Max
(
k − C̃0

)
e′β

{
z = (β − e′βzΠ)/ (β − 1)

1/ ‖zΠ‖0 ≤ e′β ≤ β/ ‖zΠ‖∞
(62)

14Formally, SVM may be incomplete, but in practice it is assumed the existence of volatility
dependent assets making them complete. Otherwise it would be impossible to use these models
to give a unique price of the usual derivatives.
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its solution is (
zβ , e

′
β

)
=

(
β (‖zΠ‖∞ − zΠ)

(β − 1) ‖zΠ‖∞
,

β

‖zΠ‖∞

)
(63)

and its optimal value equals
((
k − C̃0

)
β
)
/ ‖zΠ‖∞.

Proof. Y0 = Y0,1 and (50) imply that (41) becomes

Max βk − (β − 1) kIE(z)− C̃0e
′
β

{
(β − 1) z − β + e′βzΠ = 0

(z, e′) ∈ B(∞,+) × IR, e′ ≥ 0

Its constraint leads to

z =
β − e′βzΠ

β − 1
, (64)

and therefore the dual objective equals (see (8))

βk − k
(
β − e′β

)
− C̃0e

′
β =

(
k − C̃0

)
e′β . (65)

(64) and z ∈ B(∞,+) lead to 0 ≤ β − e′βzΠ ≤ β − 1, i.e., 1 ≤ e′βzΠ ≤ β. (10)
leads to 1/zΠ ≤ e′β ≤ β/zΠ, which is equivalent to

1

‖zΠ‖0
≤ e′β ≤

β

‖zΠ‖∞
. (66)

(61), (64), (65) and (66) imply that (41) becomes feasible if and only if 0 <
‖zΠ‖0 < ‖zΠ‖∞ <∞ and β ≥ ‖zΠ‖∞ / ‖zΠ‖0, in which case its solution is (63)
and its optimal value becomes

((
k − C̃0

)
β
)
/ ‖zΠ‖∞. �

Lemma 21 Suppose that S = Lp. Ωk (y) ≤ ‖zΠ‖∞ / ‖zΠ‖0 for every y ∈ Y0,1.

Proof. Let us assume that ‖zΠ‖∞ / ‖zΠ‖0 < ∞ (otherwise the result is obvi-
ous). Theorem 10a and Lemma 20 show that (41) is feasible and (31) is bounded
if β = ‖zΠ‖∞ / ‖zΠ‖0 > 1, and

(‖zΠ‖∞ / ‖zΠ‖0) IE
(

(k − y)
+
)
− IE

(
(y − k)

+
)
≥(

k − C̃0

)
(‖zΠ‖∞ / ‖zΠ‖0)

‖zΠ‖∞
> 0,

for every y ∈ Y0,1. Therefore ‖zΠ‖∞ / ‖zΠ‖0 ≥ Ωk (y) for every y ∈ Y0,1. �
Lemma 22 Suppose that S = Lp, Y0 = Y0,2, and β > 1. Then, the dual
problem (41) becomes

Max
(
k − C̃0

)
e′β,1 +

(
C̃0E0 − k

)
e′β,2


z = (β − e′β,1zΠ + e′β,2)/ (β − 1)

1 ≤ ‖zΠ‖0 e′β,1 − e′β,2
‖zΠ‖∞ e′β,1 − e′β,2 ≤ β
e′β,1, e

′
β,2 ≥ 0

(67)
This problem is feasible if and only if β ≥ ‖zΠ‖∞ / ‖zΠ‖0, in which case its
optimal value is strictly positive.
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Proof. Y0 = Y0,2 and (52) imply that (41) becomes

Max βk−(β − 1) kIE(z)−C̃0e
′
β,1+C̃0E0e

′
β,2

{
(β − 1) z − β + e′β,1zΠ − e′β,2 = 0

(z, e′) ∈ B(∞,+) × IR, e′ ≥ 0

The constraints lead to

0 ≤ z =
β − e′β,1zΠ + e′β,2

β − 1
≤ 1, (68)

i.e., 0 ≤ β − e′β,1zΠ + e′β,2 ≤ β − 1, or 1 ≤ ‖zΠ‖0 e′β,1 − e′β,2 ≤ β, which is
obviously equivalent to {

1 ≤ ‖zΠ‖0 e′β,1 − e′β,2
‖zΠ‖∞ e′β,1 − e′β,2 ≤ β

(69)

Moreover, the objective function becomes (see (8) and (68))

βk − k (β − 1) IE(z)− C̃0e
′
β,1 + e′β,2 = ke′β,1 − ke′β,2 − C̃0e

′
β,1 + C̃0E0e

′
β,2.

Replace �≤�with �=�in (69) to get a system of equations. It is easy to see that
the intersection of (68) and e′β,1, e

′
β,2 ≥ 0 is non void if and only if the system

solution (
e′β,1, e

′
β,2

)
=

(
β − 1

‖zΠ‖∞ − ‖zΠ‖0
,
βz̃Π − ‖zΠ‖∞
‖zΠ‖∞ − ‖zΠ‖0

)
,

satis�es e′β,2 ≥ 0, i.e., β ≥ ‖zΠ‖∞ / ‖zΠ‖0. If so,
(
e′β,1, e

′
β,2

)
=

(
1

‖zΠ‖0
, 0

)
is also feasible, and the problem optimal value will have to equal, at least,(
k − C̃0

)
e′β,1 =

(
k − C̃0

)
/ ‖zΠ‖0 > 0. �

Theorem 23 Suppose that S = Lp.

Sup {Ωk (y) ; y ∈ Y0,2} = Sup {Ωk (y) ; y ∈ Y0,1} = ‖zΠ‖∞ / ‖zΠ‖0 ≤ ∞.

Proof. According to Lemma 21 and the inclusion Y0,2 ⊂ Y0,1, it is su¢ cient
to see that ‖zΠ‖∞ / ‖zΠ‖0 ≤ Sup {Ωk (y) ; y ∈ Y0,2}. Let us consider 1 < β <
‖zΠ‖∞ / ‖zΠ‖0, and let us show that β < Sup {Ωk (y) ; y ∈ Y0,2}. Lemma 22
and 1 < β < ‖zΠ‖∞ / ‖zΠ‖0 imply that (41) is unfeasible, and Theorem 10a
shows that (31) is unbounded. Hence, Lemma 2 implies that β is not an upper
bound of Sup {Ωk (y) ; y ∈ Y0,2} . �

Remark 24 The most important continuous time pricing models of Financial
Mathematics (B&S, Heston, more general SVM , etc.) have a non-essentially
bounded SDF . In fact, both ‖zΠ‖∞ = ∞ and ‖zΠ‖0 = 0 often hold. Conse-
quently, Theorem 23 implies that (23) is unbounded, and the investor may reach
an omega ratio as large as desired with only one dollar (or one cent), and an
additional return constraint IE (y) ≥ C0E0 does no provoke any essential change.
The omega ratio may become as close to ∞ as desired, regardless of the amount
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to invest and the expected return to reach. This �surprising��nding is related
with some �pathologies�pointed out in Balbás et al. (2010), and later extended
in Balbás et al. (2016). If ρ is a coherent and expectation bounded risk measure
then all the pricing models above imply the existence of a sequence of investment
strategies whose couple (risk, return) tends to (−∞,+∞) or (0,+∞), where the
risk is measured by ρ.
Let us highlight the important role plaid by the SDF . Actually, the optimal

value of (23) only depends on it, and the threshold k is not at all relevant.
Moreover, if Ωk (y) is replaced by the ratio

IE
(

(y − k1)
+
)

IE
(

(k − y)
+
)

with k1 ≥ k, then

Ωk1 (y) ≤
IE
(

(y − k1)
+
)

IE
(

(k − y)
+
) ≤ Ωk (y) ,

and therefore, for Y0 = Y0,1 or Y0 = Y0,2

Sup

 IE
(

(y − k1)
+
)

IE
(

(k − y)
+
) ; y ∈ Y0

 =
‖zΠ‖∞
‖zΠ‖0

≤ ∞.

Similarly,

Sup

 IE
(

(y − k)
+
)

IE
(

(k2 − y)
+
) ; y ∈ Y0

 =
‖zΠ‖∞
‖zΠ‖0

≤ ∞

if C̃0 < k2 ≤ k.
As said above, the threshold k is not relevant to compute the optimal value of

(23), but k a¤ects the optimal solution y∗, if it exists. Actually, if (23) is solved
by some y∗ ∈ Y0,1 (or y∗ ∈ Y0,2) then one can take β = ‖zΠ‖∞ / ‖zΠ‖0 and deal
with conditions (42), (43) and (57) (or (58)) in order to �nd y∗. If this system
is complex, one can previously solve the dual problem of Lemma 20 (Lemma 22),
since it is quite simple and only involves one (two) real variable(s).
However, the absence of solution y∗ of (23) may hold, as can be easily seen

by dealing with the procedure above and the simple binomial model (we do not
include this example in order to shorten the exposition). Moreover, the lack of
a solution is obvious if ‖zΠ‖∞ / ‖zΠ‖0 =∞.
If a solution y∗ of (23) does not exist, it may be interesting to construct a se-

quence of strategies {yn}∞n=1 ⊂ Y0,1 such that limn→∞Ωk (yn) = ‖zΠ‖∞ / ‖zΠ‖0.
Let us do that, and let us point out that straightforward modi�cations of this con-
struction will imply the inclusion {yn}∞n=1 ⊂ Y0,2.
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Consider a strictly decreasing sequence
{
δ(1
n

}∞
n=1

⊂ IR and a strictly in-

creasing one
{
δ(2
n

}∞
n=1

⊂ IR such that limn→∞ δ(1
n = ‖zΠ‖0, δ

(1
n < δ(2

n and

limn→∞ δ(2
n = ‖zΠ‖∞. Consider the disjoint intervals

In,1 =
[
‖zΠ‖0 , δ

(1
n

)
, In,2 =

[
δ(1
n , δ

(2
n

)
, In,3 =

[
δ(2
n , ‖zΠ‖∞

]
and Ξn,j = z−1

Π (In,j), j = 1, 2, 3. Consider

hn,j =

(∫
Ξn,j

zΠ (u) IP (du)

)
/IP (Ξn,j)

(take hn,2 = 0 if IP (Ξn,2) = 0, and notice that both IP (Ξn,1) > 0 and IP (Ξn,3) >
0 hold), and take, m,M ∈ IR and

yn (ξ) =

 M, ξ ∈ Ξn,1
k, ξ ∈ Ξn,2
−m, ξ ∈ Ξn,3

Obviously,

IE (zΠyn) = Mhn,1IP (Ξn,1) + khn2IP (Ξn,2)−mhn,3IP (Ξn,3) ,

so IE (zΠyn) = C̃0 if

M =
C̃0 +mhn,3IP (Ξn,3)− khn2IP (Ξn,2)

hn,1IP (Ξn,1)
.

Since this expression tends to ∞ as so does m, �x m large enough so as to
guarantee that −m < k and M > k. Obviously,

IE
(

(yn − k)
+
)

= (M − k) IP (Ξn,1) =

C̃0 +mhn,3IP (Ξn,3)− k
(

3∑
j=2

hn,j IP (Ξn,j)

)
hn,1

and IE
(

(k − yn)
+
)

= (m+ k) IP (Ξn,3), so

Ωk (yn) =

C̃0 +mhn,3IP (Ξn,3)− k
(

3∑
j=2

hn,j IP (Ξn,j)

)
(m+ k) IP (Ξn,3)hn,1

.

Thus, Ωk (yn) tends to hn,3/hn,1 as m tends to ∞, and m may be selected in
such a manner that

Ωk (yn) ≥ hn,3
hn,1

− 1

n
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n ∈ IN

lim
n→∞

hn,3
hn,1

=
zΠ ∞

zΠ 0

,

20 limn→∞ Ωk (yn) = zΠ ∞
/z̃Π

lim
n→∞

hn,1 = zΠ 0

lim
n→∞

hn,3 = zΠ ∞

{hn,1}
∞

n=1

{hn,3}
∞

n=1 zΠ 0 ≤ hn,1 ≤ δ(1n δ(2n ≤ hn,3 ≤ zΠ ∞

4.2 Risk constraints

ρ C0 > 0 E0 > 0
ρ0 ∈ IR C̃0 = C0e

rT

i.e. y ∈ Y0,4 IE (zΠy) <

C̃0 IE (y) > E0C0 ρ (y) < ρ0C0 Y0 = Y0,3 ρ0 > 0
y = 0

Lemma 25 S = Lp Y0 = Y0,3 β > 1

⎧⎪⎨
⎪⎩
Max k − C̃0 eβ − ρ0C0 + kẼ νρ

eβzΠ + (β − 1) z − νρzρ = β

eβ , νρ ≥ 0, z ∈ B(∞,+), zρ ∈ Δρ

eβ , z, νρ, zρ eβ , z, νρ, zρ⎧⎪⎨
⎪⎩
1 + Ẽνρ ≤ eβ ≤ β + Ẽνρ

1 + νρzρ
eβ

≤ zΠ ≤
β + νρzρ
eβ

Proof.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Max βk − k (β − 1) IE(z)− C̃0eβ − ρ0C0 Δρ

ν (dz)

(β − 1) IE(yz)− βIE(y) + eβ IE(yzΠ)− Δρβ
IE(yz̃)ν (dz̃) = 0, ∀y ∈ Lp

z, eβ , ν ∈ B(∞,+) × IR×C (Δρ)

eβ ≥ 0, ν ≥ 0

ρ > ρ

ρ ≤ C > ρ y < ρ C

ρ > E



(
e′β , z, ν

)
being the decision variable. According to (3), ν ∈ C′ (∆ρ) may be

replaced by ν (∆ρ) δzρ for some zρ ∈ ∆ρ. Thus, denoting νρ = ν (∆ρ), (74)
trivially leads to

Max βk − (β − 1) kIE(z)− C̃0e
′
β − ρ0C0νρ

e′βzΠ + (β − 1) z − νρzρ = β

e′β , νρ ≥ 0, z ∈ B(∞,+), zρ ∈ ∆ρ

,

which is equivalent to (72) if one notices that its �rst constraint, (8) and (13)
imply that (β − 1) IE(z) = β − e′β + Ẽνρ.
Besides, taking expectations in the �rst constraint of (72), and bearing in

mind (8) and (13), one has e′β + (β − 1) IE(z) − νρẼ = β, i.e., e′β = β −
(β − 1) IE(z) + νρẼ. Hence, 0 ≤ IE(z) ≤ 1 trivially leads to the �rst condi-
tion in (73). Similarly, e′β ≥ 1 + Ẽνρ ≥ 1 > 0 and the �rst constraint of (72)
imply that

zΠ =
β − (β − 1) z + νρzρ

e′β
,

and the second condition in (73) trivially follows from 0 ≤ z ≤ 1. �
Next let us give the dual problem for Y0 = Y0,4. The proof is similar and

therefore omitted.

Lemma 26 Suppose that S = Lp and Y0 = Y0,4. Consider β > 1. The dual
problem (41) becomes

Max
(
k − C̃0

)
e′β,1 + (E0C0 − k) e′β,2 −

(
ρ0C0 + kẼ

)
νρ

e′β,1zΠ + (β − 1) z − e′β,2 − νρzρ = β

e′β,1, e
′
β,2, νρ ≥ 0, z ∈ B(∞,+), zρ ∈ ∆ρ

(75)

(
e′β,1, e

′
β,2, z, νρ, zρ

)
being the decision variable. If

(
e′β,1, e

′
β,2, z, νρ, zρ

)
is fea-

sible then 
1 + e′β,2 + Ẽνρ ≤ e′β,1 ≤ β + e′β,2 + Ẽνρ

1 + e′β,2 + νρzρ

e′β,1
≤ zΠ ≤

β + e′β,2 + νρzρ

e′β,1

hold. �

Lemma 27 Suppose that S = Lp and β = 1.
a) If Y0 = Y0,3 then the dual problem (45) becomes

Max k − C̃0e
′ − ρ0C0νρ

{
e′zΠ − νρzρ = 1
e′, νρ ≥ 0, zρ ∈ ∆ρ

(76)

(e′, νρ, zρ) being the decision variable.
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b) Y0 = Y0,4

Max k − C̃0e1 + E0C0e2 − ρ0C0νρ
e1zΠ − e2 − νρzρ = 1
e , e2, νρ ≥ 0, zρ ∈ Δρ

(e1, e1, νρ, zρ)

Proof. Y0 = Y0,3

Min k − IE(y)
IE (zΠy) ≤ C̃0
−IE (zy) ≤ ρ0C0, ∀z ∈ Δρ

Max k−C̃0e −ρ0C0
Δρ

μ (dz)
e IE (zΠy)− Δρ

IE (zy)μ (dz) = IE (y) , ∀y ∈ Lp

e ≥ 0, μ ∈ C (Δρ) , μ ≥ 0

νρ = Δρ
μ (dz)

Max k − C̃0e − ρ0C0νρ
IE (y (e zΠ − νρzρ)) = IE (y) , ∀y ∈ L

p

e , νρ ≥ 0, zρ ∈ Δρ

a) b)

Proposition 28 p = 2 S = L2 Y0 = Y0,4 ρ
ρ0 > 0 E0 ≤ e

rT + ρ0ρ (zΠ)

Proof. β = 1 27b
14

Y0,4 = ∅

Ẽ = 0
e1 = 1+e2 νρ = 0 zΠ = (1+e2)/e1

zΠ = 1 νρ > 0

zρ =
(1 + e2)zΠ − e2 − 1

νρ
.

ρ (zρ) = ((1 + e2)ρ (zΠ)) /νρ νρ ≥ (1 + e2)ρ (zΠ)

Max k − C̃0 + e2 −C̃0 + E0C0 − ρ0C0νρ

⎧⎨
⎩ zρ =

(1 + e2)zΠ − e2 − 1

νρ
e2 ≥ 0, νρ ≥ (1 + e2)ρ (zΠ)

,

νρ = (1+ e2)ρ (zΠ)

k − C̃0 + e2 −C̃0 + E0C0 − ρ0C0ρ (zΠ) − ρ0C0ρ (zΠ)

E > erT ρ ρ z



Thus, −C̃0 +E0C0−ρ0C0ρ (zΠ) ≤ 0 must hold because otherwise (77) becomes
unbounded. �

Theorem 29 Suppose that S = Lp.
a) If ‖zΠ‖0 = 0 and the risk measure ρ is coherent and expectation bounded

then
Sup {Ωk (y) ; y ∈ Y0,4} = Sup {Ωk (y) ; y ∈ Y0,3} =∞.

b) If ‖zΠ‖∞ =∞, ρ is expectation bounded and ∆ρ ⊂ L∞ then

Sup {Ωk (y) ; y ∈ Y0,4} = Sup {Ωk (y) ; y ∈ Y0,3} =∞.

c) If ‖zΠ‖∞ =∞, ρ is the absolute deviation and ρ0 > 0 then

Sup {Ωk (y) ; y ∈ Y0,4} = Sup {Ωk (y) ; y ∈ Y0,3} =∞.

d) Suppose that p = 2. If ρ is the standard deviation, ρ0 > 0 and k ≥
C̃0 + ρ0C0ρ (zΠ) then

0 ≤ Sup {Ωk (y) ; y ∈ Y0,4} ≤ Sup {Ωk (y) ; y ∈ Y0,3} ≤ 1.

e) Suppose that p = 2. If ρ is the standard deviation, ρ0 > 0 and C̃0 < k <
C̃0 + ρ0C0ρ (zΠ) then

1 < Sup {Ωk (y) ; y ∈ Y0,4} ≤ Sup {Ωk (y) ; y ∈ Y0,3} ≤ ‖zΠ‖∞ / ‖zΠ‖0 .

Proof. a) Suppose that Y0 = Y0,3. Consider β > 1. If
(
e′β , z, νρ, zρ

)
is (72)-

feasible then (14) and (73) imply that e′β ≥ 1 and

1

e′β
≤ 1 + νρzρ

e′β
≤ zΠ,

and therefore 0 < 1/e′β ≤ z̃Π, contradicting the assumptions. Thus, (72) is
not feasible and Theorem 10a implies that (31) is not bounded. Consequently,
Lemma 2 implies that β is not an upper bound of (23).
If Y0 = Y0,4 the proof is similar, but Lemma 26 must play the role of Lemma

25.
b) Suppose that Y0 = Y0,3. As in the proof of a) we have that

zΠ ≤
β + νρzρ

e′β
≤
β + νρ ‖zρ‖∞

e′β
<∞, (78)

so ‖zΠ‖∞ ≤
(
β + νρ ‖zρ‖∞

)
/e′β and we have a contradiction again. Thus, (72)

is not feasible and Theorem 10a and Lemma 2 apply.
If Y0 = Y0,4 the proof is similar, but Lemma 26 must play the role of Lemma

25.
c) Suppose that Y0 = Y0,3. Consider β > 1. If

(
e′β , z, νρ, zρ

)
is (72)-feasible

then Ẽ = 0, (22) and (73) imply that e′β ≥ 1 and (78) again holds. Hence,
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‖zΠ‖∞ ≤
(
β + νρ ‖zρ‖∞

)
/e′β and we have a contradiction again. Thus, (72) is

not feasible and Theorem 10a and Lemma 2 apply.
Once again, the proof is similar if Y0 = Y0,4.
d) 0 ≤ Sup {Ωk (y) ; y ∈ Y0,3} trivially follows from (5), so let us see that

Sup {Ωk (y) ; y ∈ Y0,3} ≤ 1. Consider Problem (31) with β = 1 and its dual
Problem (76) (Remark 14 and Lemma 27). Taking expectations in the constraint
of (76), and bearing in mind (8), (13) and Ẽ = 0, we have that e′ = 1. If νρ = 0
the same constraint leads to zΠ = 1, against (61), so νρ > 0 and the constraint
becomes

zρ =
zΠ − 1

νρ
.

Hence, ρ (zρ) = (ρ (zΠ)) /νρ and, according to (22), Problem (76) becomes

Max k − C̃0e
′ − ρ0C0νρ

 zρ =
zΠ − 1

νρ
e′ = 1, νρ ≥ ρ (zΠ)

,

whose obvious solution is e′ = 1, νρ = ρ (zΠ) and zρ = (zΠ − 1) /ρ (zΠ). Its
optimal value becomes k−C̃0−ρ0C0ρ (zΠ), which is non negative. Consequently,
Remark 14 implies that the objective function of (31) remains non negative if
β = 1, and Lemma 2 implies that β = 1 is an upper bound of (23).
In order to prove that Sup {Ωk (y) ; y ∈ Y0,4} ≤ 1, notice that Proposition

28 leads to −C̃0 + E0C0 − ρ0C0 ≤ 0. As in the proof of this proposition, for
β = 1 the dual (77) of (31) becomes

Max k − C̃0 + e′2

(
−C̃0 + E0C0 − ρ0C0

)
− ρ0C0ρ (zΠ)

zρ =
(1 + e′2)zΠ − e′2 − 1

νρ

e′2 ≥ 0, νρ = (1 + e′2)ρ (zΠ)

whose optimal value is attained at e′2 = 0 and becomes k − C̃0 − ρ0C0ρ (zΠ).
The rest of the proof is similar to that already given for Y0 = Y0,3.

e) Sup {Ωk (y) ; y ∈ Y0,3} ≤ ‖zΠ‖∞ / ‖zΠ‖0 trivially follows from Y0,3 ⊂ Y0,1

and Lemma 21, so let us see that 1 < Sup {Ωk (y) ; y ∈ Y0,3}. Consider Problem
(31) with β = 1 and its dual Problem (76) (Remark 14 and Lemma 27). As
above, its optimal value equals k − C̃0 − ρ0C0ρ (zΠ), which is negative. Con-
sequently, Remark 14 implies that the objective function of (31) takes negative
values if β = 1, and Lemma 2 implies that β = 1 is not an upper bound of (23).
If Y0,3 is replaced by Y0,4 then proceed as in the proof of d). �

Remark 30 Suppose that S = Lp and Y0 = Y0,3 or Y0 = Y0,4. Theorem
29 shows that most of the caveats pointed out in Remark 24 still apply if risk
constraints are imposed. Pricing models such as B&S and most of the SVM
generate a SDF such that ‖zΠ‖0 = 0 and ‖zΠ‖∞ = ∞. Hence, the ex-
istence of risk constraints does not prevent a supremum of (23) equaling ∞
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for every expectation bounded and coherent risk measure, or for every risk
measure whose representation set ∆ρ is composed of essentially bounded ran-
dom variables. Very important examples are CV aR and WCV aR (see (15),
(17), (18) and (19)), among others. Furthermore, if the expectation bounded
measure is replaced by the absolute deviation then (23) is still unbounded, as
pointed out in Statement e). The standard deviation is the only example of
Section 2 that prevents this caveat, but, under the presence of asymmetries,
this is also the unique example re�ecting lack of compatibility with the sec-
ond order stochastic dominance and the standard utility functions (Ogryczak
and Ruszczynski, 1999 and 2002). Needless to say, all of these pricing models
are used to price options and other derivatives, which are often very asym-
metric. To sum up, and bearing in mind both Theorem 29 and the results
of Balbás et al. (2010), the most important continuous time pricing mod-
els of Financial Mathematics lead to the existence of sequences of strategies
whose price is lower than one dollar (or one cent), whose expected return and
omega ratio are as large as desired, and whose risk (or absolute deviation) is
as close as desired to zero. Moreover, if the selected risk measure is V aR, and
bearing in mind that CV aR1−α (y) ≤ ρ0C0 =⇒ V aR1−α (y) ≤ ρ0C0 because
V aR1−α (y) ≤ CV aR1−α (y), the caveat above still holds, despite the fact that
V aR is not expectation bounded. �

Remark 31 Suppose that S = Lp and Y0 = Y0,3 or Y0 = Y0,4. If the inequality
‖zΠ‖∞ / ‖zΠ‖0 <∞ holds then (23) becomes bounded (Lemma 21). Approxima-
tions to the optimal value of (23) may be given by means of minor modi�cations
of Algorithms 4 and 5 or Remark 6. In particular, if this optimal value is higher
than one (for instance, under the conditions of Theorems 23 or 29e), then one
can choose a �small enough� error ε > 0 and solve the dual problem (41)
(which may become (62), (67), (72) or (75)) for β = 1 + nε, n = 1, 2, ...The
optimal value f (n) of (41) will equal the optimal value of (31) (Theorem 10),
and Lemmas 1 and 2 justify the choice of n0 minimizing |f (n)|. Once we know
an approximations for the dual solution and the optimal value β = 1 + n0ε, the
primal solution of (31) will give approximations to the solution of (23). Solu-
tions of (31) for β = 1 + n0ε may be estimated by means of (42) (which may
become (57), (58), (59) or (60)).
If the optimal value of (23) is not higher than one (for instance, under the

conditions of Theorem 29d), the sequence β = 1 + nε, n = 1, 2, ..above must be
replaced by β = nε, n = 1, 2, .., and the role of the duality theory must be replaced
by Conditions (35) (which may become (51), (53), (55) or (56)). Obviously, in
this case things may become more complex since both the solution of (31) and its
multipliers must be simultaneously estimated. Lastly, if in advance one cannot
anticipate whether the optimal value of (23) is higher than one� then one will
take β = nε, n = 1, 2, ..and combine both procedures, since, depending on n,
both nε ≤ 1 and nε ≥ 1 may hold. �
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5 Buy and hold approaches

This section will be devoted to optimizing omega in static frameworks. Con-
sequently, there are only two trading dates, namely, t = 0 (agents make the
investment decision) and t = T (agents recover the invested amount plus ran-
dom earnings/losses). The strategy is selected at t = 0 and it will not be
rebalanced before t = T .
Consider a �nite set of available assets

S0 = {1, y1, y2, ..., yn} ⊂ L2, (79)

1 representing the pay-o¤ at T of the riskless asset and yj ∈ L2, j = 1, 2, ..., n,
representing the pay-o¤ of the j− th risky asset. Obviously, the space S of mar-
keted claims equals the linear subspace generated by S0, while the orthogonal
space S⊥ will be composed of those y ∈ L2 such that{

IE (y) = 0

IE (yjy) = 0, j = 1, 2, ..., n
(80)

The set of current prices will be denoted by{
e−rT = Π (1) ,Π1 = Π(y1),Π2 = Π (y2) , ...,Πn = Π (yn)

}
.

As indicated in the second section, there is a unique SDF belonging to S, so it
will be given by

zΠ = zΠ,0 +
n∑
j=1

zΠ,jyj , (81)

where (zΠ,j)
n
j=0 ∈ IRn+1 solves the linear system

(zΠ,0, zΠ,1, ..., zΠ,n)M =
(

1, Π̃1, Π̃2, ..., Π̃n

)
with Π̃j = erTΠj , j = 1, 2, ..., n, and M being the (n+ 1)× (n+ 1) symmetric
matrix  M0,0 = 1

M0,j = Mj,0 = IE (yj) , j = 1, 2, ..., n
Mi,j = Mj,i = IE (yiyj) , i, j = 1, 2, ..., n

(82)

Without lost of generality one can assume that M is regular,17 so the SDF will
be given by (81), with

(zΠ,0, zΠ,1, ..., zΠ,n) =
(

1, Π̃1, Π̃2, ..., Π̃n

)
M−1 (83)

17M is regular if and only if the n + 1 available assets are linearly independent, i.e., their
unique vanishing linear combination is the trivial one. If M were singular then there would
exist redundant securities which could be removed, the problem dimension would decrease
and �the new M−matrix�would become regular.
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M 4
i.e. zΠ = 1 (zΠ,0, zΠ,1, ..., zΠ,n) = (1, 0, ..., 0)

Y0 = Y0,4 C0 > 0

C̃0 = C0e
rT E0 > erT > 0 ρ0 ∈ IR k > C̃0

Y0,4 = i.e. i.e.

1 15

0 ≤ β∗ = Sup {Ωk (y) ; y ∈ Y0,4} ≤ ∞

β∗ > 1
10 7

Proposition 32 β∗

A = (α, zρ) ∈ (0,∞)×Δρ; IE (yjzρ) = ẼΠ̃j + α Π̃j − IE (yj) , j = 1, ..., n .

A = ∅ α∗ = Sup {α; (α, zρ) ∈ A} ∈ (0,+∞]
a) A = ∅ β∗ > 1
b) A = ∅ α∗ < +∞ z∗ρ ∈ Δρ α∗, z∗ρ ∈ A

E0 ≤ e
rT + ρ0 + e

rT /α∗

c) A = ∅ k/C0 < e
rT + ρ0 + e

rT /α∗ β∗ > 1
d) A = ∅ k/C0 < E0 β∗ > 1
e) A = ∅ k/C0 ≥ e

rT + ρ0 + e
rT /α∗ β∗ ≤ 1

Proof. β = 1 14

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Max k − C̃0e1,1 + E0C0e1,2 − ρ0C0 + C̃0 νρ

IE e1,1zΠ − e1,2 − νρzρ = 1
IE(yj e1,1zΠ − e1,2 − νρzρ − 1 ) = 0, j = 1, 2, ..., n
e1,1, e1,2, νρ ≥ 0, zρ ∈ Δρ

e1,1 = 1+ e1,2+ Ẽνρ

⎧⎪⎪⎨
⎪⎪⎩
Max k − C̃0 + E0C0 − C̃0 e1,2 − ρ0C0 + C̃0 νρ

Π̃j − IE (yj) e1,2 + ẼΠ̃j − IE (yjzρ) νρ = IE (yj)− Π̃j , j = 1, 2, ..., n

e1,2, νρ ≥ 0, zρ ∈ Δρ

Y , Y , Y , Y ,

i.e.



(
e′1,2, νρ, zρ

)
being the decision variable. Furthermore, if

(
e′1,2, νρ, zρ

)
is (85)-

feasible then νρ > 0, because νρ = 0 implies
(

Π̃j − IE (yj)
)
e′1,2 = IE (yj) − Π̃j ,

and e′1,2 6= −1 (or e′1,2 ≥ 0) implies Π̃j − IE (yj) = 0, against the assumptions
(the market is not risk neutral).

a) If A = ∅ then (85) has no feasible solutions, since otherwise(
α =

1 + e′1,2
νρ

, zρ

)
∈ A.

Remark 14 implies that (31) (or (32), or (44)) is unbounded for β = 1, so there
exists y0 ∈ Y0,4 such that

IE
(

(k − y0)
+
)
− IE

(
(y0 − k)

+
)
< 0, (86)

i.e., β∗ ≥ Ωk (y0) = IE
(

(y0 − k)
+
)
/IE
(

(k − y0)
+
)
> 1.

b) If (α, zρ) ∈ A then take e′1,2 ≥ 0 and νρ =
(
1 + e′1,2

)
/α.

(
e′1,2, νρ, zρ

)
trivially becomes (85)-feasible. Furthermore, the objective of (85) equals(

k − C̃0

)
− ρ0C0 + C̃0

α
+

(
E0C0 − C̃0 −

ρ0C0 + C̃0

α

)
e′1,2. (87)

If the coe¢ cient of e′1,2 were positive then the expression above would tend to
+∞ as e′1,2 → +∞, so (Remark 14) (31) (or (32), or (44)) would not be feasible
(or Y0,4 = ∅), against the assumptions. Thus,

E0C0 − C̃0 −
ρ0C0 + C̃0

α
≤ 0, (88)

the supremum of (87) is achieved for e′1,2 = 0 when α has been �xed, and the
maximum in (85) equals(

k − C̃0

)
− ρ0C0 + C̃0

α∗
= C0

(
k

C0
− erT − ρ0 + erT

α∗

)
. (89)

In particular, α∗ < ∞ because otherwise the optimal value of (85) would not
be attainable.

c) As in a), it is su¢ cient to show the existence of y0 ∈ Y0,4 satisfying (86),
which becomes obvious because the optimal value (89) of (85) is negative.

d) (88) for α = α∗ implies that E0 ≤ erT +
ρ0 + erT

α∗
.

e) The optimal value (89) of (85) is not negative, and it is a lower bound for
(31) (or (44)) if β = 1. Thus,

IE
(

(k − y)
+
)
− IE

(
(y − k)

+
)
≥ C0

(
k

C0
− erT − ρ0 + erT

α∗

)
≥ 0

holds for every y ∈ Y0,4, i.e., Ωk (y) ≤ 1 for every y ∈ Y0,4. �
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Remark 33 Proposition 32 shows that the linear problem

Max α

{
IE (yjzρ) = ẼΠ̃j + α

(
Π̃j − IE (yj)

)
, j = 1, 2, ..., n

α ≥ 0, zρ ∈ ∆ρ

(90)

is solvable if it is feasible, and it permits us to know whether β∗ > 1 holds. In
particular, if (90) is feasible, then β∗ ≤ 1 will hold for k �large enough�. Once
we can compare β∗ with 1, we will apply Algorithms 4 or 5 (or extensions, see
Remark 6) in order to estimate β∗ and solve (23). We will deal with Theorem 7
(10) if β∗ ≤ 1 (β∗ > 1). Tow numerical examples will be given in Sections 5.1
and 5.2. �

5.1 Derivative markets: Numerical experiment

Consider an underlying asset (bond, stock, or likely an international stock index)
and denote by y1 ∈ L2, y1 ≥ 0, its random price at T . Suppose that there exists
a derivative market where European calls on this asset can be traded.21 Suppose
that T is the maturity of them all,22 and denote by

0 = a1 < a2 < ... < an <∞

the available strikes. Obviously, (y1 − aj)+ is the random pay-o¤ of the j − th
option, j = 1, 2, ..., n, and the �rst option (j = 1) is the underlying security.
Furthermore, the set (79) of available assets is

S0 =
{

1, (y1 − a1)
+

= y1, (y1 − a2)
+
, ..., (y1 − an)

+
}
,

and generates the matrixM above leading to the SDF (see (81), (82) and (83)).

Remark 34 It is known that every �smooth enough�European style derivative
of y1 ∈ L2 may be replicated by a static portfolio containing �in�nitely many�
European options (Haugh and Lo, 2001). Since the space of continuous func-
tions is often dense in L2 (Anderson and Nash, 1987), every European style
derivative of y1 has a �good enough� approximation containing �many� Euro-
pean calls. This intuitive argument, along with Theorem 29, may be used in
order to prove that, under the assumptions of the classical pricing models of
Financial Mathematics (B&S, SVM , etc.), the optimal omega ratio will tend
to in�nity if n → ∞, limn→∞ (Max {a2 − a1, a3 − a2, ..., an − an−1}) = 0 and
one deals with a coherent and expectation bounded risk measure or with the ab-
solute deviation. Nevertheless, in practice there are only �nitely many available
options, and the non available options cannot be replicated in a buy and hold
approach, so the optimal omega may remain bounded. �
21Put options may be accepted as well, but we will not deal with them because the put/call

parity (Hull, 2012) makes them theoretically redundant.
22This assumption may be relaxed, but it simpli�es the mathematical framework.
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We have adopted the B&S model and have supposed that y1 is the value at
T = 1 of a Geometric Brownian Motion with drift equal to 0.03 and volatility
equal to 0.15. The interest rate vanishes, the current price of y1 equals 1, and
there are three available European calls whose strikes equal 0.9, 0.95 and 1,
respectively. The B&S formula leads to(

1, Π̃1, Π̃2, Π̃3, Π̃4

)
=

(1, 1, 0.120217274, 0.086658648, 0.059785288) ,

it is easy to see that Matrix M becomes
1 1.030454534, 0.144873428, 0.107893997, 0.077130424
1.030454534, 1.085998673, 0.169908609, 0.129431978, 0.094866155
0.144873428, 0.169908609, 0.039522523, 0.032327381, 0.025448773
0.107893997 0.129431978, 0.032327381, 0.026932681, 0.021592251
0.077130424 0.094866155, 0.025448773, 0.021592251, 0.01773573


and (83) leads to 

zΠ,0

zΠ,1

zΠ,2

zΠ,3

zΠ,4

 =


3.18150435
−2.266672452
1.118091119
−0.858038333
1.099359264


Consider that ρ = σ1 is the absolute deviation.23 Bearing in mind the equality
Ẽ = 0 (Section 2) and Expression (22), Problem (90) becomes

Max α

{
IE (yj (w − IE (w))) = α

(
Π̃j − IE (yj)

)
, j = 1, 2, 3, 4

α ∈ IR, α ≥ 0, w ∈ L∞, 0 ≤ w ≤ 2

The value of every Π̃j is given above, and the value of every IE (yj) is given
by the �rst column of M . Thus, every parameter in the in�nite-dimensional
linear problem above is known. The problem can be solved with the algorithms
presented in Anderson and Nash (1987),24 and its optimal value is α∗ = 0.
Accordingly, the set A of Proposition 32 is void, and β∗ > 1 (Statement a) for
every k > C̃0 and every (E0, ρ0) making (23) feasible and satisfying the Slater
condition for Y0 = Y0,4.
In order to solve (23) with Y0 = Y0,4 let us deal with Algorithm 5. We will

have to solve (29), which becomes (32) because β > 1. According to Theorem

23Recall that the absolute deviation is consistent with the second order stochastic dominance
and the usual utility functions, while this property fails for the standard deviation if there
are asymmetric returns (Ogryczak and Ruszczynski, 1999). Needless to say, asymmetries are
usual in derivative markets.
Many authors have illustrated the importance of preserving the second order stochastic

dominance in portfolio analysis (see, for instance, Singh and Dharmaraja, 2018, for a recent
discussion).
24See also Balbás and Heras (1993).
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10, it is su¢ cient to solve the dual problem (41). As in Lemmas 25 and 26, and
bearing in mind (80) and Ẽ = 0, it is easy to see that (41) becomes


Max

(
k − C̃0

)
e′β,1 + (E0C0 − k) e′β,2 − ρ0C0νρ

(β − 1) IE (z) + e′β,1 − e′β,2 = β

(β − 1) IE (yjz) + Π̃je
′
β,1 − IE (yj) e

′
β,2 − IE (yjzρ) νρ = βIE (yj) , j = 1, 2, 3, 4

e′β,1, e
′
β,2, νρ ≥ 0, z ∈ B(∞,+), zρ ∈ ∆ρ

(91)
Let us choose C0 = 1, E0 = 1.01, ρ0 = 0.2 and k = 1.2. This in�nite-dimensional
problem becomes linear if νρ is �xed, and consequently it can be solved with the
methods of Anderson and Nash (1987). Algorithm 5 leads to the optimal omega
ratio β∗ = 1.06, in which case the optimal value of (91) equals −0.000856258
(quite close to zero, see Lemma 3a and Algorithm 5). Once the solution of (91)
is known, Problem (23) can be easily solved by means of (43) and (60). Let us
omit this step in order to shorten the exposition.

5.2 Portfolio choice: Numerical experiment

Let us illustrate some potential applications of Section 3 in Portfolio Choice
Problems involving equity and commodity markets. In particular, let us deal
with biweekly quotations related to four future contracts. The database was
already used in Balbás et al. ( 2016) and (2017), and it is available in both
references, where further details are given. It contains the quotations in the
future market of two international stock indices (DAX−30 and S&P−500) and
two commodities (Gold and Brent) during 2010. Since there are 26 quotations
we have 25 biweekly returns. Therefore, the set of estimated states of nature
is �nite and contains 25 elements, and we will assume that the probability
of every scenario equals 1/25. Moreover, T = 1/26 years (two weeks) and,
according to the information provided by the European Central Bank, we have
taken r = 0.004 = 0.4%.25 As in Section 5.1, it is easy to see that

(1,Π1,Π2,Π3,Π4) = (1, 1, 1, 1, 1, ) ,

Matrix M equals
1, 1.006961159, 1.00507663, 1.009494879, 1, 00783441
1.006961159, 1.015132529, 1.013122039, 1.016534871, 1.01586752
1.00507663, 1.013122039, 1.011533078, 1.014879184, 1.014559008
1.009494879, 1.016534871, 1.014879184, 1.019918871, 1.0181489
1, 00783441 1.01586752 1.014559008 1.0181489 1.019340047


25See http://www.ecb.int/stats/money/yc/html/index.en.html
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SDF⎛⎜⎜⎜⎜⎝
zΠ,0
zΠ,1
zΠ,2
zΠ,3
zΠ,4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
20.82062209
−16.33843094
11.10470761
−14.98314601
0.591238321

⎞⎟⎟⎟⎟⎠
ρ = CV aR90% Ẽ = 1 2

Max α

⎧⎪⎨
⎪⎩
IE (yjzρ) = Π̃j + α Π̃j − IE (yj) , j = 1, 2, 3, 4

IE (zρ) = 1
α ∈ IR, α ≥ 0, zρ ∈ IR

25, 0 ≤ zρ ≤ 10

25

α∗ = 2.788695457 32b) 32c)

E0 ≤ e
rT + ρ0 + e

rT /α∗ = 1.000038462 + (ρ0 + 1, 000038462) /2.788695457

Y0,4 = ∅

k/C0 < 1.000038462 + (ρ0 + 1, 000038462) /2.788695457

β∗ > 1 ρ0 = −0.4
k/C0 < 1.215363395 21%

E0 ≤ 1.215363395
21%

ρ0 = −0.4 E0 = 1.000039 erT = 1.000038462
C0 = 1 k = 1.1

5.1 Ẽ = 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Max k − C̃0 eβ,1 + (E0C0 − k) eβ,2 − (ρ0C0 + k) νρ

(β − 1) IE (z) + eβ,1 − eβ,2 − νρ = β

(β − 1) IE (yjz) + Π̃jeβ,1 − IE (yj) eβ,2 − IE (yjzρ) νρ = βIE (yj) , j = 1, 2, 3, 4

eβ,1, eβ,2, νρ ≥ 0, z ∈ B(∞,+), zρ ∈ Δρ

5.1 νρ
5

i.e. CV aR y ≤ − . C CV aR y − C ≤ − . C C . C

CV aR



the optimal omega ratio β∗ = 1.4, in which case the optimal value of (93) equals
0.001012978 (again close to zero) and its solution becomes

z8 = 0.647356271 zρ,2 = 9.498564473
z9 = 0 zρ,8 = 0.480696573
zj = 1, otherwise zρ,9 = 10
e′β,1 = 4.971018485 zρ,14 = 5.020738954

e′β,2 = 3.496670898 zρ,j = 0, otherwise

νρ = 0.2

(94)

The combination (x0, x1, x2, x3, x4) of the available assets leading to the optimal
omega 1.4 above may be trivially computed from (43), (60), and (94).

6 Conclusion

Asymmetric returns and heavy tails are provoking a growing interest in risk
and performance measures beyond the classical standard deviation and Sharpe
ratio. Thus, the omega ratio is deserving more and more attention in �nancial
literature, since it focuses on both downside potential losses and upside potential
gains.
This paper has provided new algorithms, optimality conditions and duality

results to optimize omega in general Banach spaces. Both �nite- and in�nite-
dimensional frameworks are accepted. This seems to be an interesting topic since
many classical arbitrage free pricing models of Financial Mathematics (B&S,
Heston, SVM , etc.) often lead to problems involving in�nite-dimensional spaces
of random variables.
Representation theorems have plaid a critical role in both optimality condi-

tions and duality results. As a consequence, for many important pricing models
the optimal value of omega is often given by the quotient between the essential
supremum and the essential in�mum of the SDF . In particular, most of the
continuous time stochastic pricing models make omega unbounded, and the se-
quence of investment strategies whose omega tends to in�nity can be explicitly
built. Hence, the investor may reach an omega ratio as large as desired with
only one dollar (or one cent), an additional return and/or risk constraints do
not modify this �nding. The omega ratio may become as close to ∞ as desired,
regardless of the amount to invest. This �surprising�property seems to be re-
lated with some �pathologies�pointed out in Balbás et al. (2010). For many
coherent risk measures and pricing models there exist sequences of investment
strategies whose couple (risk, return) tends to (−∞,+∞) or (0,+∞).
Section 5 has illustrated how the optimality conditions also apply in more

classical portfolio choice problems only dealing with buy and hold investment
strategies. Two numerical examples have been presented. The �rst example
dealt with with in�nite-dimensional spaces in order to optimize omega in an
option market, while the second one dealt with �nite-dimensional spaces in order
to optimize omega in a portfolio selection problem involving two international
indices and two commodities.
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