
This is a postprint version of the following published document:

Basanta-Val, P.; Fernández-García, N.; Wellings, A.J.; Audsley, N.C.

Improving the predictability of distributed stream processors. Future

Generation Computer Systems, 2015, v. 52, pp. 22-36.

DOI: https://doi.org/10.1016/j.future.2015.03.023

© 2015 Elsevier B.V. All rights reserved

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License

https://doi.org/10.1155/2016/2682869
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Improving the predictability of distributed stream processors

P.Basanta-Val ª·*, N. Fernández-García A.j. Wellings c. N.C. Audsleyc

Departamento de lngniela Telemdtica, Universidad Carlos I de Madri, Avda de la niversidad no 0, Legnes, 28911, Madrid, Spain

Centro Universitrio de la Defensa. Esuela Militar Marin, niversidade de Vigo, Spain
'epartmnt ofComputer Sciene, Universy fYork, York, Y010 UK

ABSTRACT

Next generation real-time applications demand big-data infrastructures to process huge and continuous
data volumes under complx computational constraints. This ype of application raises new issues on
current big-data processing infrastructures. The first issue to be considered is that most of current in­
frastructures for big-data processing were defined for general purpose applications. Thus, they set aside
real-time erformance, which is in sone cases an implicit requirement. A second important limitation is
the lack of clear computational models that could be supported by current big-data frameworks. In an ef­
fort to reduce this gap, this article contributes along severa(lines. First, it provides a set of improvements
to a computational model called distributed stream processing in order to ormalize it as a real-time in­
frastructure. Second, it proposes sone extensions to Storm, one of the most popular stream processors.
These extensions are designed to gain an extra control over the resources used by the application in order
to improve its predictabiliy. Lastly, the artide presents sone empirical evidences on the performance
that can be expected from this type of infrastructure.

Current trends in computational infrastructures look at the
Intenet as a low-cost distributed-computing platorm for hosting
legacy and next generation applications in the cloud (1-3]. The

culty can be characterized using three V's: The first V is for volume
of processed data, the second V is for variety in the data (that is,
it can come from different sources and be represented using het­
erogeneous formats), and the last V refers to velocity (meaning that
applications work with data produced at high rates). Typically, big­
benefits offered by the use of an infrastructure such as the Internet
are diverse: increased computational power, higher availability
in 24 x 7 periods, and reduced energy consumption (2.4,5]. One
type of application that may potentially benefit from this low-cost
execution platform is big-data systems.
A big-data system processes a collection of data that is difficult

to process using traditional techniques and, thus, requires specific
processing tools. According to [4], the main reasons of this diffi-
data applications run analytics on clusters of machines connected
to the Internet [6-11]. Each big-dataanalytic refers to howthe data
is analyzed to produce a desired output. Typical application do­
mains include meteoroloy, genome processing, physical simula­
tions, biological research, finance, and Internet search.
Nowadays, to develop these big-data applications, practition­

ers use different software frameworks, including Hadoop (12],
Storm [13.14], and Spark (15] which emphasize different pro­
granming aspects of the big-data ecosystem. Hadoop is focused
on batch processing of large data sets on commodity machines.
The typical deadline or Hadoop applications ranges from minutes
to weeks; oten processing Petaytes [16

1

] of data. Apache Storm
works on a streaming data model and it is targeted to online appli­
cations with sub-second deadlines. Lastly, Spark ofers optimized

I/Oaccess,reducingcomputationaltimesincomparison with
HadoopbutwithheaviercomputationalcoststhanStorm[16].

Anotherfeatureofbig-dataapplicationsisthattheyoftenhave
real-timerequirementsthatneedtobemetinordertoprovideap-
plications withtimelyresponse[8,17].Forinstance,theHadron
collideroutputsa300 Gb/sstreamthathastobefilteredto
300Mb/sforstorageandlaterprocessing.Somedataminingappli-
cations,like,forinstance,thoseusedforon-linecreditcardfraud
detection,andcontextualselectionof webadvertisements may
benefitfromrealtimetechniques.Intheseapplicationshaving
shorterresponse-timeusuallyhasaneconomicimpact.Thisisalso
thecaseofhighfrequencytradingsystems[3,18].Anothersimple
exampleofbig-dataanalyticthatfacestemporalrestrictionsisthe
trendingtopicdetectionalgorithmusedinTwittertoshowady-
namic,up-to-date,listwiththe mostpopularhashtags.TheTwit-
tertrendingtopicdetectionapplicationisthecaseofabig-data
scenariocharacterizedbythe‘‘velocity’’,astweetsaresmallpieces
ofdata(140characters),butareproducedatahighrate.Inallthese
casestheresponsehastomeetapplicationdeadlines.Furthermore,
inmanycasesbig-dataapplicationsrequirementsarecomplexand
maydemandthecoexistenceofseveralquality-of-servicerestric-
tionsonasinglebig-dataapplication.

Thecommondenominatorinalltheseapplicationsisthatthey
maybenefitfromtechniquesincludedinreal-timesystemstoin-
creasethepredictabilityoftheinfrastructureandalsoreducethe
numberofrequiredresources.Thesetypesoftechniquesarewell
known[19]and maybeintegratedintothecomputationalinfras-
tructurestohavefine-grainedcontrolonthenumberof machines
usedbyanapplicationandindetermininganexecutiontimeline
forapplicationswithdifferenttypesofquality.

Mostpopularframeworkslike HadoopandStorm werede-
signedforthegeneralpurposedomainandareinefficientforreal-
timeapplicationdevelopment.Theyprovidesimple models with
minimumparametersthatenablesimpleformsofparallelcompu-
tation,relyingonthe map/reduceandstreamprogramming mod-
els.Theydonotexplicitlyassigndifferentpartsoftheapplication
todifferentphysicalnodes,whichistypicallyrequiredinreal-time
applications.Theyalsolackthenotionofschedulingparameters
enforcedindifferentcomputationalnodes.Intheircurrentforms,
bothtechnologiesareinefficientwhenworst-caseanalysisisused
todeterminetheworst-casecomputationtimes.Fortunately,both
technologies mayincreasetheirpredictabilitybyintegratingpre-
dictablecomputational models withintheircores.Butalthough
somestepshavebeentakeninincreasingpredictabilityinbig-data
infrastructures[20],therearestillsomeimportantpendingissues
inthepathtowardscommercialimplementations.

Inthiscontext,the maingoalofthisarticleistoincreasethe
predictabilityofthestreamprocessing model,in whichStormis
inspired,includingreal-timecapabilities.Theapproachfollowsthe
guidingprinciplesthatinspiredreal-timeJava[21,22],keeping
backwardcompatibilitywithplainStorm,allowingplainandpre-
dictablecoexistenceinasinglemachine.Thus,thereal-timeStorm
isabletoruntraditionalandreal-timeapplicationsinthesame
computingcluster(seeFig.1).

ThemainimprovementinthepredictabilityofStorminthisar-
ticleisthecharacterizationofthestreamsofStormasreal-time
entitiesthatcanbescheduledusingexistingreal-timescheduling
theory.Thischaracterizationallowsreasoningaboutthecharacter-
isticsofareal-timeapplicationintermsofdeadlines,anddeter-
miningthenumberof machinesrequiredforitsimplementation.

Therestofthearticleisorganizedasfollows.Section2ex-
ploresothersimilarframeworksandtheirrelationships withthe
real-timestreamprocessingmodelfromtheperspectiveofgeneral
purposeandreal-timesystems.Section3definesasimplecompu-
tationalmodelforreal-timestreamprocessing,whichismappedto
theStormframeworklaterinSection4.Section5showsanappli-
cationdevelopedwiththisnewinfrastructure.Section6provides
Fig.1. Aframeworkforreal-timebig-datastreamprocessing.

practicalevidenceontheperformanceone mayexpectfromthis
typeofinfrastructure,showinghowtodeducethedeadlinesofthe
applicationsfromtheirreal-timecharacterization.LastlySection7
highlightsthe maincontributionsandour mostrelatedongoing
work.

2. Relatedwork

2.1.Streamprocessingtechnology

Processing high-volumestreams withlow-latency hastra-
ditionallyrequiredthe developmentofad-hocsolutions[23].
Usually,thesesolutionsareexpensivetoimplement, difficult
to maintainandaretailoredtoparticularapplicationscenarios,
whichlimittheirreusability[24].Toaddresstheselimitations
andsupportthedevelopmentofstreamprocessingapplications,
severalproposalsofStreamProcessingEngines(likeAurora[25],
STREAM[26],Borealis[27],IBM’sStreamProcessingCore[28],and
SEEP[29])appearedinthestate-of-the-art.

However,theemergenceofnewapplicationscenarios,likehigh
frequencytrading,socialnetworkcontentanalysis,sensor-based
monitoringandcontrolapplications,andotherlow-latencybig-
dataapplications,hasgreatlyincreasedthedemandsonthiskind
ofstreamprocessingplatforms.Asindicatedin[30–32],thereisa
demandofgeneral-purpose,highlyscalablestreamcomputingso-
lutionsthatcanquicklyprocessvastamountsofdata.

Takingthisintoaccount,itisnotsurprisingtofindinthere-
centstate-of-theartseveralproposalsforlow-latencybig-data
streamprocessingsystems,likeS4(SimpleScalableStreamingSys-
tem)[13],Storm[33],orSparkStreaming[34,35],someofthem
backedbyimportantInternetcompanieslikeYahoo(S4)orTwit-
ter(Storm).Thesesystemsaredesignedasgeneral-purposeplat-
formsthatcanberunonclustersofcommodityhardware.Using
specificprogramminginterfaces,developerscanimplementscal-
ablestreamprocessingapplicationsontopofthem,takingadvan-
tageofthefunctionalitiesprovidedbytheplatform:information
distribution,cluster management,orfault-tolerance.

Allthese majorapproacheshavebeendesigned withthegen-
eralpurposeperformancein mindanddonotprovidefacilities
forreal-timeperformance,likeincreasedarchitectureawareness,
low-levelaccessfacilities,anddeadlinecharacterization.However,
mostofthem maybeeasilyextendedvianewprogrammingin-
terfacesdevelopedtoincreasetheirscalabilityandfaulttolerance.
Forinstance,Stormprocessorincludesthepluggablescheduler
conceptthat maybeextendedtoincludedifferentscheduling
policies[36]increasingadaptability.Similararchitecturalbenefits
havebeenexploitedinthisarticletopintheexecutiongraphsof
thestreamstospecific machinesofacluster.

2.2.Real-timesupportforstreamprocessing

Big-datainfrastructureslikeHadoopandStormlackefficient
implementationstorun multipleconcurrentreal-timeapplica-
tionswithdifferentquality-of-servicerequirements,becausethey
2

were developed for general purpose applications (17). This prob­
lem is general and impacts in a number of aspects ranging
from high leve! development models to the low-level program­
ming infrastructures. To address this problem, sone authors have
explored the computational model of Hadoop and proposed
scheduling models for map-reduce applications that run in clus­
ters [20,37,38,14). Most of them advocate or the inclusion of
rate-based and deadline-based scheduling into general computing
clusters. This way, these authors have addressed sone ofthe limi­
tations arising from using a general purpose inrastructure or de­
veloping of real-time systems because general purpose scheduling
policies are not optima! for real-time.
However, the map-reduce programming model is not the main

paradigm used in stream processing infrastructures. For instance,
the architecture of S4 is inspired by the actor's model. In S4, com­
putation is perormed by a set of Processing Elements (PEs), which
interact only through messages (events). In the case of Storm, ap­
plications are structured in topologies. These topologies are di­
rect acyclic graphs that combine two different types of processing
nodes: spouts (stream sources) and bolts (which carry out single­
step stream transformations). Spark Streaming is based on the con­
cept of D-Streams (Discretized Streams) (8), a processing model
that consists of dividing the total computation to be carried out
into a series of stateless, deterministic micro-batch computations
on small time intervals. These batches are run in Spark in an in­
memory cluster computing framework The rest of this work is fo­
cused in Storm, one of the most popular solutions or sub-second
perormance, which currently has not integrated real-time perfor­
mance in its core.

3.Real-time stream model

The proposed model is partially inspired by the transactional
model designed for distributed real-time Java [39) that has been
adapted to the distributed stream model of Storm [13), as shown
later in Section 4. lt is also compliant with the definition of dis­
tributed stream included in (40).
According to [40) a stream is "a continuous flux sequence of

data or items" that arrives to a logical node and typically pro­
duces an output. This definition resembles the characterization of
sone real-time applications with input data that produce an out­
put within a maximum deadline (41). This type of analogy sug­
gests that the models used in real-time computing may be merged
with the model of stream processors to produce a more predictable
computational model.
In the real-time context, a real-time stream is defined as a con­

tinuous sequence of data or items whose processing has sone real­
time requirements like a deadline rom the input to the output.

3.1. Stream model

LetA e an application and let us assume that an application is
composed of a set of parallel streams (S¡):

def
A Sn)- (1)

With each stream (S¡) characterized by its period (T¡), deadline
(D¡), and a direct acyclic execution graph (DAG¡) that models the
computations that have to be carried out in each activation (in
charge of processing data from the lux) of the stream:

def
S¡ (T¡, D¡, DAG¡). (2)

Following the model used for most real-time systems, let usas­
sume that three diferent activation patterns may be defined or a
stream (Fig. 2), namely periodic, sporadic, and aperiodic.
Steam

Seam (S
¡
)

DAGI 1

DAG,

Periodic release pattem. This type of pattern refers to diferent
equidistant periodic activations. In such a way that the time among
two consecutive activations in the stream (t[s' trs+!) has the fol­
lowing activation pattern:

T¡ (tr
s+i -trs) or ali res in [O, +in!). (3)

Sporadic pattern. This ype of pattern is characterized by a
mínimum inter-arrival time ymin (mínimum time etween two
successive activations):

(4)

Aperiodic pattem: In this case, there is not a mínimum inter­
arrival time for the different activations of a stream, i.e.:

� Tt
i
n OITt'º � (trs+i -tre for ali res in [O, +in!). (5)

From the point of view of the real-time systems scheduling the­
ory [41 J periodic and sporadic patterns are simpler than aperiodic
patterns to analyze.
In the real-time stream model each stream defines a global

deadline (D¡). lt may be equal (T¡ D;) less or equal to D;) or
larger (T¡ � D;) than the period. Diferent techniques ofthe state­
of-the-art are mapped [41) to each different case to compute ap­
plication response times. T¡ D¡ is rom the point of view of the
diferent scheduling models the most beneicia! situation with ef­
ficient online admission control tests [41).
The last part of the model of the stream requires dealing with

time taken for the execution of the acyclic graph and its structure.
We assumed this time is bounded by This maximum cost is
a typical constraint in real-time sporadic and periodic invocation
patterns. The direct acyclic graph is described as a distributed
application that consists of a set of sequential (-+) and parallel (11)

stages (�). In addition, each stage (�) ofthe DAG¡ has a maximum

computational cost denoted by
Fig. 3 shows details of the execution graph or a simple stream

that consists offour different stages (stages(i) 4). lt also shows
how these four stages are combined to produce an end-to-end
execution model. Toe communication messages between the first
and the second and the third stages are point-to-point, multicast,
or any application deined policy. In case of Storm the application
may decide among diferent policies for the communication.
3

Fig.4. Simplecomputational model.

3.2.Computationalinfrastructure

The modelalsoincludesthecomputationalinfrastructure.As

showninFig.4,the modeldefinesacluster(Π)asasetofmiden-

ticalandinterconnectedcomputationalnodes:

Π
def
=(π1,...,πm). (6)

Eachnodehasadirectconnection withtheothernodesofthe
network.Inadditioneachnodehasaprioritydrivenpreemptive
schedulerthatrunsdifferentstagesofthestreams.

3.3.End-to-endresponsetimecomputations

Tobeabletoperformfeasibilityanalysis[42]asdefinedbythe

real-timeschedulingtheory,alldifferentsequentialandparallel

stagesofallstreams(Si)havetobeassignedtoaphysical machine

fromthecluster(π1..stages(i)
i inΠ).Inaddition,eachstagehastode-

finearelationshipwiththeunderlyinginfrastructurereflectedina

priority(Pj

i)forallstagesofallstreams(Si)intheapplication(A).

Si=















T1

i,...,T
stages(i)
i


,

Di,

C1

i,...,C
stages(i)
i


,


P1

i,...,P
stages(i)
i


,


π1

i,...,πstages(i)
i
















. (7)

Enforcingtheactivationofalldifferentstagesonanodethat
keepstheperiodicactivationpatternofthestream[42],one may

calculatelocalworst-caseresponsetimes(wcrtj

i)ineachnodeus-
ingstate-of-theartalgorithmslikeresponse-timeanalysis(RTA)

[42].Oncecalculatedtheworst-caseresponse-time(wcrtj

i)ofeach
stageinisolation,twodifferentcaseshavetobeconsideredrecur-
sivelytocalculatetheend-to-endcostoftheexecutiongraph.

First,givenasetofseq(i)sequentialstagestheirfinalcontribu-

tiontothetotalworst-caseresponsetimeiscalculatedbyadding

thepartialcontributionsgivenbyeachelement:

wcrt
seq(i)
i =

seq(i)

j=1

(wcrtj

i). (8)

Second,givenasetofpar(i)parallelstages,theirfinalcontri-

butiontothetotal worst-caseresponsetimeiscalculatedasthe

maximumofallpartialworstcases (wcrtj

i)foreachelementinthe

set,thatis:

wcrt
par(i)
i =max


wcrt

j

i


withjin1..par(i). (9)

Anothersetofresultsconnectsthe maximumnumberofcom-

putational machinesrequiredtoimplementadistributedsys-

tem[43,44]andtheutilizationofeachdifferenttaskofthesystem.

Amongthem,oneofthesesufficientbutnotnecessaryequations
connectstheutilizationofthedistributedsystem(Uapp)withthe

minimumnumberofnodes(m)requiredfromtheclusterasfol-

lows[30]:

Uapp=


∀i,j


C

j

i

T
j

i



<m·



Umax −max


C

j

i

T
j

i



. (10)

InthisinequationUmax referstothemaximumutilizationgiven
bytheschedulerandrangesfrom0to1.Assumingarate mono-
tonicsystem withharmonictasksandperiodsequaltodeadlines

(Tj

i = D
j

i)thisutilizationis1.0.Thelasttermoftheinequation

(i.e.,
C

j
i

T
j
i


)referstothe maximum wastedutilizationduetothe

fragmentationinthebin-packingalgorithmthatassignsstreamsto
thenodesofthecluster.Ourreal-timecharacterizationforstreams
mayusethesamecomputational modelbecauseitguaranteespe-
riodicactivationsinallsegmentsofallstreams.

The modelalsoassumesthatthereisa mechanismthatisable
toguaranteenetworkdelaysincommunicationsthatcanbede-
coupledfromtheend-to-endcosts.

4. Architecture

Theprevioussectionhassetfoundationsforareal-timestream
model,whereeachstreamisrepresentedbyadirectacyclicgraph.
Thisgeneral modeldoesnotobserveanyspecifictechnology.This
isthegoalofthissectionthatanalyzeshowtoextendStormto
makeitcompatiblewiththepreviouscomputational model.

4.1.IncreasingthepredictabilityofStorm

Asalayeredsoftwarestack,Storm maybenefitfromdifferent
optimizationsinallitslevels(Fig.5):

– OperatingSystem(OS).Atthislevelapredictableversionfor
Storm wouldbenefitfromhavingareal-timekernelincharge
ofenforcingthepoliciestypicallyusedinreal-timeapplications,
includingpreemptivescheduling,andpriorityinheritancepro-
tocols.

–Virtual Machine(VM).Inaddition,theuseofvirtual machines
offersaninterestingopportunity.Java’svirtual machine model
isusefultobridgethegapbetweenthereal-timeoperatingsys-
temandStorm.Inaddition,somemodernvirtualmachinessup-
portspecificationssuchastheReal-timeSpecificationforJava
(RTSJ)[22]toofferenhancedpredictability.

–TheStormframework.Thecomputationalinfrastructureof
Stormalsoincludessourcesofindeterminism.Thecurrent
modelofStormdoesnotsupportthedefinitionortheenforce-
mentofreal-timecharacteristicfordifferentstreams.Forin-
stance,itdoesnotprovideanefficientcontroltochoosein
whichofthedifferentnodesofthecluster,eachapplicationis
goingberun.

4.2.Integrationlevels

Applications mayidentifythreedifferentintegrationlevels
(Fig.6):

–Level0:Accesstoreal-timefacilitiesgivenbytheoperatingsys-
temandunderlyingvirtual machine.Thisincludes mechanism
tocontroltheprioritygiventotheexecutionofanapplication
andtheirphysicallocationintoaclusterof machines.

–Level 1: Newinterfacesforcontrollingresourceallocation
fromStorm.Atthislevel,theresourcesprovidedbythefirst
levelareaccessiblefromtheapplicationviaanAPI.The most
simplisticAPIwouldconsistofpredictableversionsofthetwo
mainbuildingblocksofStorm,namely SpoutandBolt.It
shouldinclude mechanismstodescribethedifferentreal-time
characteristicsofthestreams.

–Level2:Enhancedservices.Atthislevelthreedifferenttypesof
facilitieswouldbebeneficialforStorm:
4

Plain stack

Java Vitual
Mchl.

1
ralng
Sy m

/ssues and concems

-Network management

Real time stack

RT Java Virtu .

Mchine

RTO ratig
Syalem

Fig. 5. Transforming che plain sofware srack inro a real-rime equivalenr.

The first is a scheduler (Scheduler) in charge of selecting in
which machine of the cluster each stage of an application is going
to run. The interna! logic of the scheduler is compatible with the
algorithms described in Section 3.
The second mechanism is the Elasticity acility. A default

elasticity model provides a static model in which the number
of machines defined loes not change. Other models may define
minimum and maximum bounds.
The third module (FaultTolerance) is in charge of detecting

and recovering the application from system failures. Diferent
policies may coexist to express diferent strategies ar detecting
a failure in a system of streams and speciying its corresponding
recovey mechanism.

In essence a Storm application has two main classes which
are Spout and Bolt to build a direct acyclic graph with parallel
and sequential steps. Typically, spouts are the sources of streamed
events sent to other connected bolts. From the infrastructure point
of view, they are active objects that are always running. Bolts rep­
resent event-driven objects invoked only when diferent events
arrive at the nade. Both, the spout and bolt entities may send
messages, which are packaged as tuples in a configuration struc­
ture called topoloy.
Mimicking the same structure, the real-time version of Storm

incorporates a predictability model shared by the bolts and
spouts. This basic model consists of a single interface called
Real timeEvent that contains the infarmation required by bolts
and spouts. The basic infarmation consists of a priority, a cost.
a minimum inter-arrival time valid ar periodic and sporadic ac­
tivations, and an error handler mechanism, that may be config­
ured via and operators (Fig. 7). The new classes are
Real time Bol t and Real t imeSpout. Both classes are under the
es. uc3m. it .rtstorm package hierarchy.
The lifecycle of a real-time bolt and spout replicates the be­

havior of their plain counterparts. Both, the plain and real-time
spouts are invoked by the infrastructure thread in a user-space
via a nextTupleO method that generates the next tuple to be
processed. In the case of the plain and real-time bolts, there is an
execute(Tuple, BsicOutputCollector) methodwhichis
invoked from an inrastructure thread whenever a new tuple far
the object arrives.
The main difference is the time instants and priorities used to

invoke the diferent event processors. In the case of the real-time
1 (R) Java Vlllul Mchina

1
(R) Oer1Ung
Sya m

i Level 1

l(R) Java Vir1ul Maella

l
(R)O -ng
Sya1 m

¡ 1 Prdl ale VM
11 P dl

0
�be 1

:.evel O

Fig. 6. Real-rime services and inregrarion Jevels.

Storm RTStorm

+get/ HtCost

+get/ ae IT

Fig. 7. Relarionship berween che rratirional classes in Srorm and irs real-rime
homologous.

spouts, they are invoked in a periodic ashion with a period and
priority preconigured. In the case of a real-time bolt, they are in­
voked when there is a new event far the bolt ensuring a minimum
inter-arrival pattern. Fig. 8 shows the execution timelines far plain
and real-time bolts and spouts. One may see how the underlying
real-time framework controls the activation of spouts and bolts to
ensure proper execution.
The last class of the API refers to the management of the as­

signment of the different stages of a stream. Storm has a class
(EvenScheduler) in charge of perarming global scheduling ac-
5

a
spout

behavlour

b
eal time

next
Tu le

next
Tu le

next
Tu le

·······················T,-······················ ·······················Tr······················

spout 1 -- - - - �
behavour next next

(Prio, Csi, T) ,_ �T�u=l=• � - � - - � �Tu=l�• � � - - - - � -

behav10u)--- - - - - � -�� � - - - - � - - - - -

e,

rel ime lt Tr··············· -··)
behaviour

tivities that may be used to perorm the dynamic adaptability
required by the proposed architecture. This template uses the
FixedPriori tyEvenScheduler interface to characterize dif­
ferent scheduling policies.

5.llluscrative example

To show the proposed computational model, a simple appli­
cation was designed. lt is based on a producer-consumer stream
application, with one entity running as a producer and two con­
sumers (Fig. 9). The producer outputs tuples which are taken by
one of the two consumers in parallel; each stage operating in dif­
ferent data. Both the two consumers and producer are hosted on
a Storm cluster. The application also defines a periodic activation
pattern for the events of 100 ms at the producer and maximum
execution times of 10 ms for producer and the consumers. Each
diferent consumer runs in a different node.

5.1. Computational model

By using the computational model one may define the applica­
tion as a simple producer-consumer stream:

Aprod-2cons (Sprod-2cons). (11)

The application runs in a cluster with three computational re­
so urces, namely worker _ l, worker _2 and worker _3:

lprod-2cons (rworker_l, rworkr.2, rworker_3)- (12)

We may also characterize the direct graph that defines the
unique stream as ollows:

(.
rod

II (
consl cons2)) prod-2cons -* 5prod-2cons' 5prod-2cons · (13)

To define the real-time system, we only need to assign a priority
to ali stages of the stream: Pprd = pm x = Pcons-We also need to
assign a fixed machine to each stage of the stream. Combining ali
these inormation, the resulting system is characterized as ollows:
Storm cluster

Sprd-2ros

(

[Tprd = 100ms, rosl = 200ms, rns2 = 20ms]

)
[Dp1-2ns = 100 ms]

= (Cpd = 10ms, Cosl = 10ms, Cosl = 10ms] . (14)
[P-d = p

mu, = pmu, Pos = p=]
['workr1, 'orktr2, 'wrkr3]

Assuming maximum costs and in absence of other applications
in the cluster, the output is generated in less than 20 ms. This end­
to-end worst-case response time is calculated as follows: 10 ms
Jor the producer + max(lO ms, 10 ms) Jor the parallel consumers,
taking into account the computational rules defined in Eqs. (8) and
(9) and ignoring the communication overheads.

5.2. he application

The listings included Figs. 10, 11, and 12 show the application
from the perspective of the programming model. Fig. 10 includes
the code in charge of generating new tu ples, Fig. 11 the code of the
event consumer in charge of processing the tuple. astly, Fig. 12
shows how the topoloy is built and how the new information is
attached to this entity during the configuration of the topoloy.
The application starts by running the producer in charge of gen­

erating tuples for the consumer (Fig. 10). To exhibit real-time per­
formance the application inherits from the Real timeSpout class
(Fig. 10: line 01). The rest of the behavior of the spout is main­
tained; the infrastructure initializes the system by invoking open
and finishes it with close methods of class. In addition, failures
are notified in fil and violation methods, while successful
notifications for the acknowledgments are sent back to the source
by using the ack callback method.
From the producer perspective, the platform invokes the

nextTuple method each time it needs a new tu ple. The tuple is set
with the emi t method and sends the informaion foward (Fig. 1 O:
line 09) to the consumer.
The consumer is implemented by extending the Real time

Bolt class (Fig. 11: line 01). The most relevant method is
execute, in charge of processing the tuple received from an ex­
terna(entity. In the example the processing (Fig. 11: lines 05-09)
prints out the sentence sent from the producer. The example in­
eludes mechanisms to configure and declare the output types
(Fig. 11: lines 02-04). In addition, there is a violation method
invoked from the infrastructure in a case ofailure in the real-time
runtime.
In Storm, the links between the producer and the consumer are

set in a special class in charge of linking sources of messages and

6

Fig.10. Producerinchargeofgeneratingthetupletotheconsumer.
Fig.11. Consumerinchargeofprocessingthetuple.
destinations.Inadditiontothistypeofsupport,theproposedap-
plication(Fig.12)requiresdefiningtheruntimepriorities,a min-
imuminter-arrivalamongevents,andthe maximumtimeofCPU
requiredfromtheruntime.

Thetopologystartsbyallocatingtheobjectsfortheproducer
andtwoconsumersinlines03–05.Oneachoneofthem,theappli-
cationdefinespriorities(lines06–08),inter-arrivals(lines09–11)
and maximumcosts(lines12–14)foreachobjectoftheapplica-
tion.Then,byusingthetopologybuilder,itallocatestheproducer,
thetwoconsumers,andconnectsthemviaashuffleGrouping
method.Inaddition,itcreatesaconfigurationclassinchargeof
definingspecificpropertiesandotherconfigurationparameters
oftheplatform(lines22–23).Lastly,theconfigurationinforma-
tionincludesthenameofthenodeinwhicheachdifferentobject
shouldberunning.Inthisparticularapplication,theproducerruns
onanodecalled‘‘Remote1’’,oneconsumerin‘‘Remote2’’,andan-
otherin‘‘Remote3’’.

Thelastpieceofcodereferstoassignmenttothephysicalclus-
terof machines.Stormincludestheconceptofpluggablesched-
ulersasa meanstocarryoutthis mapping(Fig.13).Thereisa
schedulemethodthat maybeoverriddenwithapplicationspe-
cificalgorithms.Inourparticularexample,itassignseachobjectto
nodewitha machineofthecluster(seeFig.13),whichiscompati-
blewiththeconfigurationparametersgiveninFig.12:lines22–27.

Toassignstagestodifferentclusters,theapplication mayusea
binpackingalgorithmthatassignsdifferentstagesofthestream
toaparticular machineofthecluster.Thesealgorithmsareap-
plicationdependentandarenotoptimal.Basedonaprevious
algorithmdesignedinthecontextofdistributedreal-timeJavaap-
plications[45]itissuggestedabinpackingalgorithm(Alg1.)that
assignsstagestoasetofcomputationalnodes.Thisalgorithmcal-

culatestheoccupationofeachnodeasthesumofallnodestocheck

ifthesystemisfeasibleornotanditiscompatiblewiththeutiliza-

tionboundincludedinEq.(10).

Alg.1.Defaultassignmentalgorithm

6.Empiricalevaluation

TheimplementationofStormhasbeenmodifiedtoincorporate

thereal-timespoutsandbolts.Ourcurrenttestingimplementation

isrt.0.1-9.2.Inaddition,atestinginfrastructureonalocalarea

network(seeTable1andFig.14) wasdeveloped.Followingthe

samestrategyofotherdistributedreal-timeJavainfrastructures

(e.g.[22])theevaluationoptsfora100 MbpsEthernetnetwork

tointerconnecttheirnodes.Inaddition,each machinehasseveral

coresthatofferlocalclusteringfacilities.
7

Fig.12. Topologydescriptionwithreal-timecharacterization.
Fig.13. Real-timeschedulerinchargeof mappingstagestophysical machines.
Severalapplicationshavebeendeveloped withthefollowing
goals:

–Toempiricallyevaluatetheoverheadintroducedbythecom-
municationsandserializationprotocols.

–Toempiricallyevaluatedifferencesbetweenlocalclustering
(i.e.,allprocessingstagesrunningonasingle multicore ma-
chine)andlocalareanetwork(LAN)cluster(withseveral ma-
chinesconnectedthroughIP).

–Toevaluatetheperformanceofreal-timeStormapplications.
Ourusecasestudyisbasedonananalyticsapplicationthatcal-
culatestrendingtopics.Thisapplicationisaconstrainedversion
oftheapplicationrunningonTwitteranditiscurrentlyavail-
ableinStorm.Inthetrendingtopicsapplication,theanalytic
referstothecodethatisinchargeofanalyzingthedata(tweets)
anditsoutputisthelistofthe mostrelevanttopics(hashtags).
Thegoalinalltheseevaluationsisto modelthetrendingtopic

applicationasareal-timestreamapplicationrunningonaclus-

ter.

6.1.Computationaloverheads

Forempiricalpurposes,overheadisdefinedasthetimetaken

forthetransmissionofdatafromonecomputationalnodetoan-

other.Thisoverheadisduetothedatatransmissiondelaysof

thenetworkandtheserializationprotocolsusedtotransfersuch

amountofdata.

Tocomputethisoverheadondistributedstreamprocessors,the

benchmarkpreviouslydescribedin[22]fordistributedreal-time

Java wasextended withthecharacteristicsofstreamprocessors.

The modifiedbenchmarkincludesoperationalfrequenciesfrom
8

lntrastructure

1 Hz to 1 kHz or environments that emita variable number of mes­
sages (ranging from 1 to 8). lt also includes two ypes of application
scenarios: one with small data sets that correspond to short strings,
and another which is a large number of strings packed into a tu ple.
To better characterize the behavior ofthe network, ali experiments
have been executed in a local cluster orinan IP networked cluster.
This type of configuration is useful to assess the performance

of the distributed application in a networked environment. The re­
sults of the experiment for a local cluster are summarized in Fig. 15.
Likewise, the networked counterpart results are shown in Fig. 16.
In a local cluster (Fig. 15) the overhead or the communications

is moderate, i.e. less than 20%, or applications running at 100 Hz
that send a moderate, i.e. 1-2 messages per activation. This
overhead reduces drastically as the frequency of the application
decreases; or instance with 10 Hz the overhead due to the
communications represents 10% of the available time. On the other
hand the overhead is high, i.e. more than 80%, in applications
with 0.5 kHz activation frequencies. This overhead increases as the
number of messages increases.
In general terms, a local area network (lAN) cluster increases

the overhead of the applications because exchanged data have to
be sent from one node to another. In our particular infrastructure,
the cost in communications increased by a ixed actor that is in be­
tween five times and seven times the average cost of the commu­
nications in a local cluster. In addition, to the extra cost introduced
by the serialization protocols, the system has to account that local
clusters running in the same machine have mechanisms to avoid
the data transmission overhead.
The results on a lAN cluster (see Fig. 16) show how the over­

head increases as they are compared to their local cluster equiva­
lent (Fig. 15). In ali cases the time available or the application de­
creases. The lower overhead (<20%) results in a local cluster run­
ning ata 100 Hz frequency is now closer to the 10 Hz frequency,
reducing the amount of effective time available for the application.
Likewise, the previous high overhead ranges (>80%) also moved
Comm.
overhead

• 80%-100%

• 60%-80%

•40%-60%

• 20%-40%

• 0%-20%

Comm.
ovehead

•80%-100%

•60%-80%

• 40%-60%

• 20%-40%

• 0%-20%

Small 1 Ghz -100 Mbits SE-Local

1 ms 10ms 100ms

Stream deadlines (T=O)

Large 1 Ghz -100 Mbits SE-Local

lms lOms 100ms

Stream deadlines (T=D)

4

2

4

2

from the 500 Hz to the 50 Hz range, reducing the time available for
the application.
The evaluation results show that local clusters ofer an advance

ranging from 5 to 7 times the cost of the networked cluster. Local
clusters avoid the overhead in communication and serialization
protocols. They also exploit the multi-core infrastructure offered
by modern CPUs to provide eficient parallel computing platforms,
which in the selected infrastructure consisted of two cores.
The main bottleneck in this experiment is in the 100 Mbps net­

work, which may improve its performance with additional gigabit
ethernet connections and optical fiber. In the particular case of the
peformance of an optical connection, it would be in between the
local multi-core cluster performance and the 100 Mb networked
performance.

6.2. Trending topics case study

The irst part of the empirical section evaluated the overhead
introduced by the Storm infrastructure on a distributed set-up.
This overhead is crucial for determining the response time in dis­
tributed applications. Now, this inormation is complemented with
the analysis of the results off e red by an application.
The selected case study is a reduced version of the trending

topic application running in Twitter, which is available or Storm
in the following link [46). Toe goal was to choose a simple applica­
tion that could be developed with the proposed real-time stream
model. The application calculates the list of the most popular hash­
tags in Twitter. Typically, the list is updated every two seconds [46)
and potentially receives hashtags at an unbounded speed.
The goal was to illustrate the benefits of the real-time stream

model scheduling framework proposed in Section 3. In particular,
this section shows how they can be used to analyze the relation­
ships among the properties of the cluster (e.g. the numberof nodes)
9

Comm.
ovehead

•80%-100%

•60%-80%

•40%-60%

• 20%-40%

•0%-20%

Comm.
ovehead

•80%-100%

•60%-80%

•40%-60%

• 20%-40%

•0%-20%

Small 1 Ghz -10 Mbits SE-Cluster

Stream deadlines

Large 1 Ghz -10 Mbits SE-Cluster
8

4

lms 10ms 100ms

Sream deadlines

Fig. 16. Verhead peñormance resulcs in a necworked lAN cluster.

and the perormance of the system in terms of maximum input fre­
quency and application deadlines. Toe characterization of an ap­
plication as a real-time stream enables the possibility of reasoning
about its real-time performance.
In this particular set of experiments, the activation of each dif­

ferent bolt and spout has the following constraint: T = D, which
enables the use of the constraint defined in Eq. (10) to calculate a
safer bound or the number of nodes required to implement the
system.

The basic case study (Fig. 17) consists of two streams. In the
irst stream there is a spout which extracts the hashtags from each
tweet and outputs tu ples, each of them containing a hashtag. Two
counter bolts receive the spout tu ples, and keep a sliding window
counter or each hashtag. This counter indicates the number of
times the hashtag has been received at the counter bol t. The tu ples
provided as output by the counter bolts contain a table which as­
sociates hashtags with their respective counters, These tuples are
received by an aggregator bolt. which aggregates the tables coming
from the different counter bolts and generates a single output ta­
ble. The output of the aggregator is the input for the second stream,
namely, ranker stream, which runs second and produces an
ordered list with the top-ranked hashtags.
In the evaluation of our approach we have used as data source

an application that mi mies the behavior of the Twitter streaming
API [46). To do so, we captured a trace of actual tweets (1 million)
and stored it into a file. Later on, our application reads the file and
produces a continuous (and potentially infinite) flow of data simu­
Iating Twitter's social network. This input data is then used to feed
the real-time application running on top of Storm, with the goal of
determining the worst-case computation times of each stage of the
application.
With this information, the application may be characterized as

two real-time streams. Table 2 contains the characterization ofthe
application costs of each of the stages that compose the applica­
tion described in Fig. 17. Toe application consists oftwo streams:
the first is Scoumer in charge of calculating the number of times each
hashtag has been mentioned in tweets. lt consists of three stages:
source (spout), counter and aggregator (bolts). Toe second stream
is in charge of running the trending topic calculations, which con­
sists of three stages: source processor, counter, and aggregator;
and the second stream in charge of producing the inal ranking.
The ranker has a 1 Hz frequeny and the counter stream has a vari­
able frequency, which depends on the rate at which the tweets are
received at the input. In this evaluation, the minimum input fre­
quency should be 1 Hz.
With the topology for the trending topic application described

in Fig. 17 and Table 2 the maximum application deadlines may be
determined. In this case, a safe utilization bound is used for the
two streams to ensure that the global utilization is Iess than 100%.
The deadline for the Sranker is always 1 s its period because it con­
sists of a unique stage. In the Scoumer stream, the end-to-end can
be calculated adding the partial deadlines of the three elements;
each segment contributes its maximum deadline and the end-to­
end deadline is three times the input period (Fig. 18).
Using the real-time scheduling model and the theory associated

to the model (see Section 3) one may derive a maximum input fre­
quency (see results in Fig. 19)which is never feasible in a single ma­
chine ifthe system is over 100%. The application has been deployed
Fig. 17. Trending copies use case: basic configuracion. Daca encering wich a variable maximum frequency (nax). The characcerization or che application is shown in Table 2.
10

Table2
Real-time characcerizacion r che crending copie use case applicacion. (T = D co be
able co use che ucilization bounds descried in Eq.

Cose (µ.s)
Prioricy

Max freq
(Fmax).

Oeadline

Source Councer Agregacor Ranker

138

Inverse coche frequency r Che casks

Daca Input freq (> Hz) Daca Oucpuc freq Hz)

¡ = = 1/Ff s(T = D)

Maximum dadllne

Fig. 18. Maximum deadline ofS,ounre, scream for Fig. 17 serup when che frequency
ar which che daca is receved changes.

in the local cluster and in the LAN to calculate the maximum input
frequency or the system. The most critical section (in terms of per­
formance) is the part in charge of processing the hashtags that come
at high frequencies. The ranker takes less time because it runs at a
very low frequency (1 Hz or less). As in the previous case the local
cluster outperforms the AN cluster; the local cluster may process
data up to a maximum frequency empirically set in 1.25 kHz. This
frequency reduces to 0.21 kHz in the networked environment due
to the overhead of the serialization and communication protocols.
According to the relationships expressed in Fig. 18, when the input
frequency is 1.25 kHz the output has a maximum ounded delay of
2.4 ms, whereas when the input frequency is 0.21 Hz the maximum
delay is 12 ms.
By using the facilities included in Storm, one may add the par­

allel units to increase the performance of the system, running
topologies in parallel, and increasing the maximum frequency of
operation of the trending topic application. In these scenarios the
utilization of the system may be over 1.0, requiring multiple ma­
chines.

6.2.2. Parallelizing input processing
This experiment takes the basic trending topic detection appli­

cation, depicted in Fig. 17, and modifies the layout of the Sounrer
stream by proposing a distributed altenative that divides the traf­
fic of the Internet into n different paths (see Fig. 20) that are pro­
cessed by independent spouts and bolts. In this scheme, the unique
element, which is still receiving inormation from ali nodes, is the
aggregator, which runs ata maximum frequency of the input data.
This change in the topoloy also increases the maximum dead­

line of the application ecause the requency at which each counter
receives its input is lower. In the case of a double input lux (n 2),
the deadline of the Scounrer is ive times the input period and with
four parallel inputs, it is nine times the input frequency. Fig. 21
shows this relationship for two and four parallel inputs.
This configuration increases the performance of the system,

measured as the maximum input data requency to the system,
in comparison with the previous coniguration (see Fig. 22). The
results obtained for the utilization bound show how the maxi­
mum requency of input data may move from 0.2 to 0.47 kHz us­
ing a cluster with 16 machines. Likewise, the previous maximum
1.25 kHz bound of the local cluster may be extended to a maximum
of 2.7 kHz input if one admits multiple counters in the system.
The results also show the main bottleneck of the solution, which is
System Utilizatian

Local Cluster

1 sec 10 sec 100 sec

Ranker
frequency

System Utilization

Networked Cluster

Data frequency

1 Hz

1000

sec

Data frequency

1 Hz

• 80,00%-100,00%

• 60,00%·80,00%

• 40,00%-60,00%

• 20,00%-40,00%

• 0,00%-20,00%

• 80,00%-100,00%

• 60,00%·80,00%

• 40,00%·60,00%

1 kHz • 20,00%·40,00%

10kHz
• 0,00%·20,00%

1 sec 10 sec 100 1000
sec sec

Ranker
frequency

Fig. 19. Basic crending copie application utilizacion: lcal cluster vs. lAN cluster.

the aggregator that receives inormation ata high speed frequency
from ali luxes.
Another analysis that may be carried out is the eficiency of

the application. In the particular application, the eficiency of the
system may be defined as the number of petitions (associated to
tweets) that may be processed in a period of time divided by the
number of resources (which may be cores of a local cluster or ma­
chines of a local area cluster). The higher this number is, the higher
the eficiency of the application.
In our particular case, the results (Fig. 23) show how peror­

mance is a concave function. The example also shows that the
eficiency of the local cluster is higher than the eficiency of the
networked cluster.

6.2.3. Parallelizing the agregator
The analysis of the trending to pie application showed the main

bottleneck of the previous configuration: a single aggregator that
receives ali trending topic information from ali parallel flows. One
common solution to this problem is to use a multi-step aggregation
output phase where the aggregation of inormation is carried out
in different stages.

Fig. 24 shows how to implementa double step aggregator in the
trending topics application. This type of configuration reduces the
maximum frequency of the messages that reach any of the aggre­
gators.
This change in the topoloy increases the ratio among the input

frequency and the deadline (Fig. 25). For the new version of the
Scounrer stream two parallel inputs (n 2) the system has a
maximum end-to-end deadline which is seven times the input
11

Fig. 20.
Maximum deadline
1000.0

10.0

- x9 (counter_n4)
0_1

o.oo 2000_00 4000.00 6000.00

t.

256

64

16

4

1
1 4 16 64 256 1024

� Local Cluster - Networ<ed Cluster

4096

period. Likewise for our parallel inputs (n 4), the maximum
deadline of the output is twelve times the input period.
As a result of the double aggregation, the maximum operational

frequency of the input data increases in local and networked
clusters (see Fig. 26). In the local cluster, it increases the maximum
data input frequency admissible from 2.7 to 5.4 kHz. In the
networked cluster, the maximum data input frequency increases
from 0.47 to 0.95 kHz.
However, this increase in the maximum frequency also involves

a more reduced eficiency because the application has an addi­
tional step that consumes additional resources (see Fig. 27). In this
particular scenario, the demand of new resources reduces the peak
of the cuve as the number of stages in the aggregation increases
from one to two.

vs.
The last experiment is ocused on a simple use case that illus­

trates the benefits that can be obtained from the use of the real­
time version of Storm. To this end, let us introduce a system with
4 16 64 256 1024

- Local Cluster - Networked Cluster

4096

0.6

0.1

two simple streams (see Fig. 28 and Table 3), one of them with real­
time requirements and another heavy stream (with 0.5 utilization)
but without real-time constraints. Assuming that two streams are
using the same machine and the system does not include the tech­
niques like those described or real-time Storm, then the worst­
case response time or the real-time stream is 0.6 ms (because its
worst-case response time has to include the heavy node computa­
tion). Using the real-time facilities and assigning a lower priority
to the stream with no deadline (the heavy stream), then the higher
priority stream sees the system in isolation and its response time
changes to 0.1 ms.

7.

Current big-data applications can improve their predictabil­
ity by integrating techniques derived from the real-time domain
12

1
-

f. fm
Maxlmum deadllne
1000.0

10.0
- 5(counter_n=2)

9(counter_n=4)
e 0,1- � � � � - � � � � - � � � �

0.0 2000.00 4000.00 6000.00

within their infrastructures. This article has analyzed the integra­
tion of traditional scheduling techniques into a popular stream
processor named Storm. The integration has addressed changes
in the architecture of Storm and new APls; it also modeled the
streams as real-time entities that may be running in a cluster of
machines. Toe identification of stream processors as distributed
applications has opened the door to the use of common-of-the­
shelf scheduling mechanism to guarantee end-to-end predictabil­
ity, typically used in other distributed real-time infrastructures. lt
also provides a backwards compatible infrastructure for real-time
Storm where plain and real-time streams may coexist. The empiri­
cal evaluation carried out also illustrated the performance one may
expect from these infrastructures and illustrated how the schedul­
ing theory can be used to calculate deadlines in Storm applications.

Our ongoing work is ocused on expanding the model to other
scenarios, including industrial applications, next generation inor­
mation systems and business intelligence scenarios like those de­
scribed in [47). We also plan to address other big-data processing
infrastructures, like those using optical-fiber networks in combi­
nation with the message passing interface (MPI) technoloy
and map-reduce (49-51).

Acknowledgments

This work has been partially supported by HERMES (Healthy
and Eficient Routes in Massive open-data basEd Smart cities). lt
256

4

o 16

16 256 4 6

Mximun input da frequeny (tu)

Ouster.single.aggregator

Ouster.double.agregator

1.024

256

64

16

4

256

- Local
Cluster.slngle.aggre
gator

- Networked
Cluster.single.aggre
gator

- Local
Cluster.double.agr
egator
13

hasbeenalsopartiallyfinancedbyDistributedJavaInfrastructure

forReal-TimeBigData(CAS14/00118).Ithasbeenalsopartially

fundedbyeMadrid(S2013/ICE-2715)andbyEuropeanUnion’s7th

FrameworkProgrammeunderGrantAgreementFP7-IC6-318763.

References

[1]R.Buyya,etal.,CloudcomputingandemergingITplatforms:Vision,hype,and
realityfordeliveringcomputingasthe5thutility,FutureGener.Comput.Syst.
25(6)(2009)599–616.

[2]M.Armbrust,etal.,Aviewofcloudcomputing,Commun.ACM53(4)(2010)
50–58.

[3]M.García-Valls,P.Uriol-Resuela,F.Ibáñez-Vázquez,P.Basanta-Val,Low
complexity reconfiguration for real-time data-intensive service-oriented
applications,FutureGener.Comput.Syst.37(2014)191–200.

[4]PaulZikopoulos,ChrisEaton,UnderstandingBigData:AnalyticsforEnterprise
ClassHadoopandStreamingData,firsted.,McGraw-HillOsborneMedia,2011.

[5]A.Jacobs,Thepathologiesofbigdata,Commun.ACM52(8)(2009)36–44.

[6]Y.Demchenko,Z.Zhao,P.Grosso,A.Wibisono,C.deLaat,Addressingbig-data
challengesforscientificdatainfrastructure,in:CloudCom,2012,pp.614–617.

[7]J. Lin, R. Dmitriy, Scaling big-data mining infrastructure: the twitter
experience,ACMSIGKDDExplor.Newsl.14(2)(2013)6–19.

[8]K.Kambatla,G.Kollias,V.Kumar,A.Grama,Trendsinbig-dataanalytics,
J.ParallelDistrib.Comput.74(7)(2014)http://dx.doi.org/10.1016/j.jpdc.2014.
01.003.

[9]G.Blelloch,Bigdataonsmallmachines,in:BigDataAnalytics2013,Cambridge.
May23–24,2013.

[10]H.V.Jagadish,etal.,Bigdataanditstechnicalchallenges,Commun.ACM57(7)
(2014)86–94.

[11]V.N. Gudivada, R. Baeza-Yates, V.V. Raghavan, Big data: Promises and
problems,Computer48(3)(2015)20–23.

[12]K.Shvachko,H.Kuang,S.Radia,R.Chansler,TheHadoopdistributedfile
system,in:2010IEEE26thSymposiumon MassStorageSystemsand
Technologies,MSST,pp.1–10.

[13]Storm.Distributedandfault-tolerantreal-timecomputation.Available(2014)
onhttps://storm.incubator.apache.org/.

[14]G.Lodi,etal.,Anevent-basedplatformforcollaborativethreatsdetectionand
monitoring,Inf.Syst.39(2014)175–195.

[15]Spark.Lightning-fastclustercomputing.Available(2014)onhttps://spark.
apache.org.

[16] M.Rychl,P.Skoda,P.Smrz,Schedulingdecisionsinstreamprocessingon
heterogeneousclusters,in:EighthInternationalConferenceonComplex,
IntelligentandSoftwareIntensiveSystems,2014,pp.614–619.

[17]I.Gray,Y.Chan,N.Audsley,A. Wellings,Architecture-awarenessforreal-
timebig-datasystems,in:Proceedingsofthe21stEuropeanMPIUsers’Group
Meeting,pp.151–156.

[18]T.Chordia,A.Goyal,B.N.Lehmann,G.Saar,High-frequencytrading,J.Financ.
Mark.(ISSN:1386-4181)16(4)(2013)637–645.

[19]C.Grier,K.Thomas,V.Paxson,M.Zhang,@spam:theundergroundon140
charactersorless,in:Proceedingsofthe17thACMConferenceonComputer
andCommunicationsSecurity,pp.27–37.

[20]L.T.X.Phan,Z.Zhang,B.T.Loo,I.Lee,Real-time MapReducescheduling,in:
TechnicalReportN.MS-CIS-10-32,UniversityofPennsylvania,2010.

[21]M.T.Higuera-Toledano,A.J. Wellings,Distributed,EmbeddedandReal-time
JavaSystems,Springer,2012,p.378.X.

[22]P.Basanta-Val,M.Garcia-Valls,Adistributedreal-timeJava-centricarchitec-
tureforindustrialsystems,IEEETrans.Ind.Inf.10(1)(2014)27–34.

[23]T.Aniello,etal.Cloud-baseddatastreamprocessing,in:ACMInternational
ConferenceonDistributedEvent-BasedSystems,DEBS’14,pp.238–245.

[24]M.Stonebraker,U.Çetintemel,S.Zdonik,The8requirementsofreal-time
streamprocessing,SIGMODRec.34(4)(2005)42–47.

[25]D.J.Abadi,etal.,Aurora:anew modelandarchitecturefordatastream
management,VLDBJ.12(2)(2003)120–139.

[26]A.Arasu,etal.STREAM:thestanfordstreamdatamanager,in:ACMSIGMOD
InternationalConferenceonManagementofData,pp.665–665.

[27]D.J.Abadi,etal.Thedesignoftheborealisstreamprocessingengine,in:
ConferenceonInnovativeDataSystemsResearch,CIDR2005,pp.277–289.

[28]L.Amini,etal.SPC:adistributed,scalableplatformfordatamining,in:Data
MiningStandards,Services,andPlatforms,DMSSP’06,pp.27–37.

[29] M. Migliavacca, et al. SEEP: scalable and elastic event processing, in:
Middleware’10.Article4,p.2.

[30]L.Neumeyer,etal.S4:Distributedstreamcomputingplatform,in:IEEE
InternationalConferenceonDataMining,pp.170–177.

[31]C.Yixin,L.Tu, Density-basedclusteringforreal-timestreamdata,in:
Proceedingsofthe13thACMSIGKDDInternationalConferenceonKnowledge
DiscoveryandDataMining.

[32]J.A.Silva,etal.,Datastreamclustering:Asurvey,ACMComput.Surv.46(1)
(2013)31.http://dx.doi.org/10.1145/2522968.2522981.Article13.

[33] M.Zaharia,etal.Discretizedstreams:fault-tolerantstreamingcomputation
atscale,in:ACMSymposiumonOperatingSystemsPrinciples,SOSP’13,
pp.423–438.
[34]G.Agha,Actors:AModelofConcurrentComputationinDistributedSystems,
MITPress,Cambridge,MA,USA,1986.

[35] M.Zaharia,etal.Spark:clustercomputingwithworkingsets,in:2ndUSENIX
ConferenceonHotTopicsinCloudComputing,HotCloud’10,pp.10–10.

[36]L.Aniello,etal.AdaptiveonlineschedulinginStorm,in:ACMInternational
ConferenceonDistributedEvent-BasedSystems,DEBS’13,pp.207–218.

[37]X.Dong,Y. Wang,H.Liao,Scheduling mixedreal-timeandnon-real-time
applicationsinMapReduceenvironment,in:ParallelandDistributedSystems,
ICPADS,2011.

[38]F.Teng,etal.,Anovelreal-timeschedulingalgorithmandperformance
analysisofaMapReducebasedcloud,J.Supercomput.69(2)(2014)739–765.

[39]M. Garcia-Valls, P. Basanta-Val, Comparative analysis of two different
middlewareapproachesforreconfigurationofdistributedreal-timesystems,
J.Syst.Archit.60(2)(2014)221–233.

[40]L.Golab,M.TamerÖzsu,Issuesindatastreammanagement,SIGMODRec.32,
2,5–14.http://doi.acm.org/10.1145/776985.776986.

[41]P.BasantaVal, M.GarciaValls,Asimpledistributedgarbagecollectorfor
distributedreal-timeJava,J.Supercomput.(2014)inpress.http://dx.doi.org/
10.1007/s11227-014-1259-x.

[42]L.Sha,etal.,Real-timeschedulingtheory:Ahistoricalperspective,Real-Time
Syst.28(2–3)(2004)101–155.

[43]J.M.López,J.L.Díaz,D.F.García,Minimumandmaximumutilizationboundsfor
multiprocessorratemonotonicscheduling,IEEETrans.ParallelDistrib.Syst.
(2004)642–653.

[44]R.I.Davis,A.Burns,Asurveyofhardreal-timeschedulingformultiprocessor
systems,ACMComput.Surv.(CSUR)43(4)(2011)35.

[45]P. Basanta-Val, M. García-Valls, Towards a reconfiguration service for
distributedreal-timeJava,in:REACTION2012 Workshops.PuertoRico,
December,4,2012.

[46] M.Noll,Implementingreal-timetrendingtopicsinStorm.Availablein2014
onhttp://www.michael-noll.com/blog/2013/01/18/implementing-real-time-
trending-topics-in-storm/.

[47]V.Chang,Thebusinessintelligenceasaserviceinthecloud,FutureGener.
Comput.Syst.,37,pp.512–534.

[48]N.Irizarry,MixingCandJavaTMforhighperformancecomputing.MTR130458.
MITRETechnicalReport,2013.

[49]J.C.S.dosAnjos,I.CarreraIzurieta, W.Kolberg,A.L.Tibola,L.BezerraArantes,
C.F.R.Geyer, MRA++:Schedulinganddataplacementon MapReducefor
heterogeneousenvironments,FutureGener.Comput.Syst.42(2015)22–35.

[50]L. Woo,K.Jin-Soo, M.Seungryoul,Large-scaleincrementalprocessingwith
MapReduce,FutureGener.Comput.Syst.36(2014)66–79.

[51]G.Lianjun,Z.Tang,Gu.Xie,Theimplementationof MapReducescheduling
algorithmbasedonpriority,in:ParallelComputationalFluid Dynamics,
Springer,Berlin,Heidelberg,2014.
14

