: Universidad
' § Carlos Il de Madrid - r C VO

Institutional Repository

This is a postprint version of the following published document:

Basanta-Val, P.; Fernandez-Garcia, N.;: Wellings, A.J.; Audsley. N.C.
Improving the predictability of distributed stream processors. Fufure
Generafion Computer Systems, 2015, v. 52, pp. 22-36.

DOI: https://doi.org/10.1016/1.future.2015.03.023

© 2015 Elsevier B.V. All rights reserved

) DOC)

b '] KRC MND

This work is licensed under a Creative Commons Attribution-
NonCommercial-WoDerivatives 4.0 International License

https://doi.org/10.1155/2016/2682869
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Improving the predictability of distributed stream processors
P. Basanta-Val ®*, N. Fernindez-Garcia h,Ps.j. Wellings ©, N.C. Audsley®

&

Deparcamento de ingenierta Telemdtica, Univers idad Corlos M de Madrid, Awda dela Universidad no 3 Leganes, 28911, Madrid, Spain

-]
Centro Universiario de ko Defensa. Escuela Milicar Marin, Universidade de Vigo, Spain
¢ Department of Computer Scence, University of York, Yark, YO 10 5GH, UK

ABSTRACT

Mext generation real-time applications demand big-data infrastructures toprocess huge and continuous
data volumes under complex computational constraints. This type of application raises new issues on
current big-data processing infrastructures. The first issue to be considered is that most of current in-
frastructures for big-data processing were defined for general purpose applications. Thus, they set aside
real-time performance, which is in some cases an implicit requirement. A second important limitation is
the lack of clear computational models that could besupported by currentbig-data frameworks. In an ef-

fort to reduce this gap, this article contributes along several lines. First, it provides a set of improve ments
to acomputational model called distributed stream processing in order to formalize it as a real-time in-
frastructure. Second, it proposes some extensions to Storm, one of the most popular stream processors.
These extensions are designed to gain an extra control overthe resources used by theapplication in order

to improve its predictability. Lastly, the article presents some empirical evidences on the performance

that can be expected from this type of infrastructure.

1. Introduction

Current trends in computational infrastructures look at the
Internet as a low-cost distributed- computing platform for hosting
legacy and next generation applications in the cloud [1-3]. The
benefits offered by the use of an infrastructure such as the Internet
are diverse: increased computational power, higher availability
in 24 x 7 periods, and reduced energy consumption [2,4,5]. One
type of application that may potentially benefit from this low-cost
execution platform is big-data sy stems.

A big-data system processes a collection of d ata that is difficult
to process using traditional techniques and, thus, requires s pecific
processing tools, According to [4], the main reasons of this diffi-

culty can be characterized using three V's: The first V is for volume
of processed data, the second V is for variety in the data (that is,
it can come from different sources and be represented using het-
erogeneous formats), and the last V refers tovelocity (meaning that
applications work with data producedat high rates). Typically, big-
data applications run analytics on dusters of machines connected
to the Internet [6- 11], Each big-dataanalytic refers to how the data
is analyzed to produce a desired output. Typical application do-
mains include meteorology, genome processing, physical simula-
tions, biological research, finance, and Internet search.

Nowaday's, to develop these big-data applications, practition-
ers use different software frameworks, induding Hadoop [12],
Storm [13,14], and Spark [15] which emphasize different pro-
gramming aspects of the big-data ecosystem. Hadoop is focused
on batch processing of large data sets on commodity machines,
The ty pical deadline for Hadoop applications ranges from minutes
to weeks: often processing Petabytes [16] of data. Apache Storm
works on a streaming data model and it is targeted to online appli-
cations with sub-second deadlines. Lastly, Spark offers optimized

If0 access, reducing computational times in comparison with
Hadoop but with heavier computational costs than Storm [16].

Another feature of big-data applications is that they often have
real-time requirements that need to be met in order to provide ap-
plications with timely response [2,17]. For instance, the Hadron
collider outputs a 300 Gbfs stream that has to be filtered to
300 Mbys for storage and later processing. Some data mining appli-
cations, like, for instance, those used for on-line credit card fraud
detection, and contextual selection of web advertisements may
benefit from real time techniques. In these applications having
shorter response-time usually has an economic impact. This is also
the case of high frequency trading systems [3,18]. Another simple
example of big-data analytic that faces temporal restrictions is the
trending topic detection algorithm used in Twitter to show a dy-
namic, up-to-date, list with the most popular hashtags. The Twit-
ter trending topic detection application is the case of a big-data
scenario characterized by the “velocity™, as tweets are small pieces
of data (140 characters), but are produced at a high rate. In all these
cases the response has to meet application deadlines. Furthermore,
in many cases big-data applications requirements are complex and
may demand the coexistence of several quality-of-service restric-
tions on a single big-data application.

The common denominator in all these applications is that they
may benefit from techniques included in real-time systems to in-
crease the predictability of the infrastructure and also reduce the
number of required resources. These types of techniques are well
known [19] and may be integrated into the computational infras-
tructures to have fine-grained control on the number of machines
used by an application and in determining an execution timeling
for applications with different types of quality.

Most popular frameworks like Hadoop and 5torm were de-
signed for the general purpose domain and are inefficient for real-
time application development. They provide simple models with
minimum parameters that enable simple forms of parallel compu-
tation, relying on the map/reduce and stream programming mod-
els. They do not explicitly assign different parts of the application
to different physical nodes, which is typically required in real-time
applications. They also lack the notion of scheduling parameters
enforced in different computational nodes. In their current forms,
both technologies are inefficient when worst-case analysis is used
to determine the worst-case computation times. Fortunately, both
technologies may increase their predictability by integrating pre-
dictable computational models within their cores. But although
some steps have been taken in increasing predictability in big-data
infrastructures [20], there are still some important pending issues
in the path towards commercial implementations.

In this context, the main goal of this article is to increase the
predictability of the stream processing model, in which Storm is
inspired, including real-time capabilities. The approach follows the
guiding principles that inspired real-time Java [21,22], keeping
backward compatibility with plain Storm, allowing plain and pre-
dictable coexistence in a single machine. Thus, the real-time Storm
is able to run traditional and real-time applications in the same
computing cluster (see Fig. 1).

The main improvement in the predictability of Storm in this ar-
ticle is the characterization of the streams of Storm as real-time
entities that can be scheduled using existing real-time scheduling
theory. This characterization allows reasoning about the character-
istics of a real-time application in terms of deadlines, and deter-
mining the number of machines required for its implementation.

The rest of the article is organized as follows. Section 2 ex-
plores other similar frameworks and their relationships with the
real-time stream processing model from the perspective of general
purpose and real-time systems. Section 3 defines a simple compu-
tational model for real-time stream processing, which is mapped to
the Storm framework later in Section 4. Section 5 shows an appli-
cation developed with this new infrastructure. Section & provides

Stream Big Data Applcations.

| Sub second deacines |
i~
Nl tims
= |

Fig. 1. Aframewaork for real-time big-data stream processing.

practical evidence on the performance one may expect from this
type of infrastructure, showing how to deduce the deadlines of the
applications from their real-time characteriz ation. Lastly Section 7
highlights the main contributions and our most related ongoing
work.

2. Related work
2.1. Stream processing technology

Processing high-volume streams with low-latency has tra-
ditionally required the development of ad-hoc solutions [23].
Usually, these solutions are expensive to implement, difficult
to maintain and are tailored to particular application scenarios,
which limit their reusability [24]. To address these limitations
and support the development of stream processing applications,
several proposals of Stream Processing Engines (like Aurora [25],
STREAM [26], Borealis [27], IBM's Stream Processing Core [28], and
SEEP [29]) appeared in the state-of-the-art.

However, the emergence of new application scenarios, like high
frequency trading, social network content analysis, sensor-based
monitoring and control applications, and other low-latency big-
data applications, has greatly increased the demands on this kind
of stream processing platforms. As indicated in [30-32], there is a
demand of general-purpose, highly scalable stream computing so-
lutions that can quickly process vast amounts of data.

Taking this into account, it is not surprising to find in the re-
cent state-of-the art several proposals for low-latency big-data
stream processing systems, like 54 (S5imple Scalable Streaming Sys-
tem) [13], Storm [33], or Spark Streaming [34,35], some of them
backed by important Internet companies like Yahoo (54) or Twit-
ter (5torm). These systems are designed as general-purpose plat-
forms that can be run on clusters of commodity hardware. Using
specific programming interfaces, developers can implement scal-
able stream processing applications on top of them, taking advan-
tage of the functionalities provided by the platform: information
distribution, cluster management, or fault-tolerance.

All these major approaches have been designed with the gen-
eral purpose performance in mind and do not provide facilities
for real-time performance, like increased architecture awareness,
low-level access facilities, and deadline characterization. However,
most of them may be easily extended via new programming in-
terfaces developed to increase their scalability and fault tolerance.
For instance, Storm processor includes the pluggable scheduler
concept that may be extended to include different scheduling
policies [36] increasing adaptability. Similar architectural benefits
have been exploited in this article to pin the execution graphs of
the streams to specific machines of a cluster.

2.2. Real-time support for stream processing

Big-data infrastructures like Hadoop and Storm lack efficient
implementations to run multiple concurrent real-time applica-
tions with different quality-of-service requirements, because they

2

were developed for general purpose applications [17] This prob-
lem is general and impacts in a number of aspects ranging
from high level development models to the low-level program-
ming infrastructures, To address this problem, some authors have
explored the computational model of Hadoop and proposed
scheduling models for mapreduce applications that run in clus-
ters [20,37,38,14]. Most of them advocate for the inclusion of
rate-based and deadline-based scheduling into general computing
clusters, This way, these authors have addressed some ofthe limi-
tations arising from using a general purpose infrastructure for de-
veloping of real-time systems because general purpose scheduling
policies are not optimal for real-time,

However, the map-reduce programming model is not the main
paradigm used in stream processing infrastructures, For instance,
the architecture of 54 is inspired by the actor's model. In 54, com-
putation is performed by a set of Processing Elements (PEs), which
interact only through messages (events), In the case of Storm, ap-
plications are structured in topologies. These topologies are di-
rect acyclic graphs that combine two different types of processing
nodes: spouts (stream sources) and baolts (which carry out single-
step stream transformations). Spark Streaming isbased on the con-
cept of D-Streams (Discretized Streams) [8], a processing model
that consists of dividing the total computation to be carried out
into a series of stateless, deterministic micro-batch comput ations
on small time intervals. These batches are run in Spark in an in-
memory cluster computing framework. The rest of this work is fo-
cused in Storm, one of the most popular solutions for sub-second
performance, which currently has not integrated real-time perfor-
mance in its core.

3 Real-time stream model

The proposed model is partially inspired by the transactional
model designed for distributed real-time Java [39] that has been
adapted to the distributed stream model of Storm [13], as shown
later in Section 4. It is also compliant with the definition of dis-
tributed stream included in [40]

According to [40] a stream is “a continuous flux sequence of
data or items” that arrives to a logical node and typically pro-
duces an output, This definition resembles the characterization of
some real-time applications with input data that produce an out-
put within a maximum deadline [41]. This type of analogy sug-
gests that the models used in real-time computing may be merged
with the model of stream processors to produce a more predictable
computational model,

Inthe real-time context, a real-time stream is defined as a con-
tinuous sequence of data or itemswhose processing has some real-
time requirements like a deadline from the input to the output.

3.1. Stream model

Let Abe an application and let us assume that an application is
composed of a set of parallel streams (5):

et
Jq-={s'lt---t$n}- (1]

With each stream (%) characterized by its period (T;), deadline
(D;), and a direct acyclic execution graph (DAG;) that models the
computations that have to be carried out in each activation (in
charge of processing data from the flux) of the stream:

5% T, D, DAG) . @)

Following the model used for most real-time systems, let us as-
sume that three different activation patterns may be defined for a
stream (Fig. 2), namely periodic, sporadic, and aperiodic,

iy i 5 O SR

PR, Tls-

- R T X L
—D—> apeac LB i
Fg 2 Activation partems ina real-time stream.

au-u,:.]
I"’...":I
DAG.=(8:'~| | (8., 8:")~8,"]

Fig- 3. Sequential and parallel stages in a real-time stream.

Periodic release pattern. This ty pe of pattemn refers to different
equidistant periodic activations, ln such a way that the time among
two consecutive activations in the stream (£, t=+1) has the fol
lowing activation pattern:

Ti = (/%" —t[*) for all resin [0, +inf). 3)

Sporadic pattern. This type of pattern is characterized by a
minimum inter-arrval time T™" (minimum time between two
successive activations):

Tmin < (/=1 _t™) for all res in [0, +inf) @)

Aperiodic pattern: In this case, there is not a minimum inter-
arrival time for the different activations of a stream, ie.:

T 2 0T™ < (¢ —) for all res in [0, +inf). (5)

From the point of view of the real-time sy stems scheduling the-
ary [41] periodic and sporadic patterns are simpler than aperiodic
patterns to anaklze.

In the real-time stream model each stream defines a global
deadline (D;). t may be equal (T; = [}) less or equal to (T; = D;) or
larger (T; < [}) than the period. Different techniques of the state-
of-the-art are mapped [41] to each different case to compute ap-
plication response times, T; = [is from the point of view of the
different scheduling models the most beneficial situation with e
ficie nt online admission control tests [41].

The last part of the model of the stream requires dealing with
time taken for the execution of the acyclic graph and its structure,
We assumed this time is bounded by C™C. This maximum cost is
a typical constraint in real-time sporadic and periodic invocation
patterns, The direct acyclic graph is described as a distributed
application that consists of a set of sequential (-+) and parallel (||}
stages {s‘} In addition, each stage (s‘}ofﬂle DAG; has a maximum

computational cost denoted by Cf

Fig. 3 shows details of the execution graph for a simple stream
that consists of four different stages (stages(i) = 4). It also shows
how these four stages are combined to produce an end-to-end
execution model, The communication messages between the first
and the second and the third stages are point-to-point, multicast,
or any application defined policy. In case of Storm the application
may dedide among different policies for the communication.,

3

L |

Fig. 4. S5imple computational model.

3.2. Computational infrastructure

The model also includes the computational infrastructure. As
shown in Fig. 4, the model defines a cluster (/7)) as a set of m iden-
tical and interconnected computational nodes:

def
nm=im,...,). (6)
Each node has a direct connection with the other nodes of the
network. In addition each node has a priority driven preemptive
scheduler that runs different stages of the streams.

3.3. End-to-end response time computations

To be able to perform feasibility analysis [42] as defined by the
real-time scheduling theory, all different sequential and parallel
stages of all streams (5;) have to be assigned to a physical machine
from the cluster (z,*™*® in IT). In addition, each stage has to de-
fine a relationship with the underlying infrastructure reflected in a
priority (P,J-} for all stages of all streams (5;) in the application (A).

rr[rl_|1 ol Eﬂﬂeﬁiﬁ] ’\
o,
s=|[c - =], @)
[F'j', . ,me[i}] .
k[;r,-',...,rr,mm],.]

Enforcing the activation of all different stages on a node that
keeps the periodic activation pattern of the stream [42], one may
calculate local worst-case response times {wm{) in each node us-
ing state-of- the art algorithms like response-time analysis (RTA)
[42]. Once calculated the worst-case response-time {wnﬂ) of each
stage in isolation, two different cases have to be considered recur-
sively to calculate the end-to-end cost of the execution graph.

First, given a set of seg(i) sequential stages their final contribu-
tion to the total worst-case response time is calculated by adding
the partial contributions given by each element:

=))
warg? ™ =% " (wert)). (8)

=1
Second, given a set of parn(i) parallel stages, their final contri-
bution to the total worst-case response time is calculated as the

maximum of all partial worst cases (wcrr}} for each element in the
set, that is:

ward?™® — max (wmi) with j in 1..par (). 9)

Another set of results connects the maximum number of com-
putational machines required to implement a distributed sys-
tem [43,44] and the utilization of each different task of the system.
Among them, one of these sufficient but not necessary equations

connects the utilization of the distributed system (Ugp) with the
minimum number of nodes (m) required from the cluster as fol-
lows [30]:

U, —Z Ef =m- | Upy — max E'j (10)
AV =w))

In this inequation Uyg refers to the maximum utilization given
by the scheduler and ranges from 0 to 1. Assuming a raté mono-
tonic system with harmonic tasks and periods equal to deadlines

ﬂ"{i = D)) this utilization is 1.0. The last term of the inequation

-]
(ie., {%]} refers to the maximum wasted utilization due to the

fragmelnl:atiun in the bin-packing algorithm that assigns streams to
the nodes of the cluster. Our real-time characterization for streams
may use the same computational model because it guarantees pe-
riodic activations in all segments of all streams.

The model also assumes that there is a mechanism that is able
to guarantee network delays in communications that can be de-
coupled from the end-to-end costs.

4. Architecture

The previous section has set foundations for a real-time stream
model, where each stream is represented by a direct acyclic graph.
This general model does not observe any specific technology. This
is the goal of this section that analyzes how to extend Storm to
make it compatible with the previous computational model.

4.1. Increasing the predictability of Storm

As a layered software stack, Storm may benefit from different

optimizations in all its levels (Fig. 5):

— Operating System (05). At this level a predictable version for
Storm would benefit from having a real-time kernel in charge
of enforcing the policies typically used in real-time applications,
including preemptive scheduling, and priority inheritance pro-
tocols.

— Vinual Machine (VM). In addition, the use of virtual machines
offers an interesting opportunity. Java's virtual machine model
is useful to bridge the gap between the real-time operating sys-
tem and Storm. In addition, some modern virtual machines sup-
port specifications such as the Real-time Specification for Java

(RTS]) [22] to offer enhanced predictability.

— The 5Storm framework. The computational infrastructure of
Storm also includes sources of indeterminism. The current
model of Storm does not support the definition or the enforce-
ment of real-time characteristic for different streams. For in-
stance, it does not provide an efficient control to choose in
which of the different nodes of the cluster, each application is
going be run.

4.2, Integration levels

Applications may identify three different integration levels
(Fig. 6):

— Level 0; Access to real-time facilities given by the operating sys-
tem and underlying virtual machine. This includes mechanism
to control the priority given to the execution of an application
and their physical location into a cluster of machines.

— Level 1: New interfaces for controlling resource allocation
from Storm. At this level, the resources provided by the first
level are accessible from the application via an APL. The most
simplistic APl would consist of predictable versions of the two
main building blocks of Storm, namely Spout and Bolt. It
should include mechanisms to describe the different real-time
characteristics of the streams.

— Level 2: Enhanced services. At this level three different types of
facilities would be beneficial for Storm:

4

Plain stack Real ime stack
Sralp Tl RT shreama
oS80 oL
" Issues and concems R
= Lack of programming inerisces
Storm = Lack of computational modd AT Stam
=Mo control on cluster asmignment
- Garbage collection, memoy
Javavitsl management AT dava Virksal
karch i = Ttk ranagement Maching
= M atwork mana gement
FEFTLT RN Mo ptive sched ling o —
Oparating B AT
\ut:n;mumm,nnm) - Oparating

Fig- 5 Transforming me plain software stack into a real-rime equivalent

The first is a scheduler (Scheduler) in charge of selecting in
which machine of the duster each stage of an application is going
to run. The internal logic of the scheduler is compatible with the
algorithms described in Section 3.

The second mechanism is the Elasticity fadlity. A default
elasticity model provides a static model in which the number
of machines defined does not change. Other models may define
minimum and maximum bounds.

The third module (Fault Tolerance) is incharge of detecting
and recovering the application from system failures, Different
policies may coexist to express different strategies for detecting
a failure in a system of streams and specifying its comresponding
recovery mechanism.

43 AP for real-time Storm

In essence a Storm application has two main classes which
are Spout and Bolt to build a direct acydic graph with parallel
and sequential steps, Ty pically, spouts are the sources of streamed
events sent to other connected bolts. From the infrastructure point
of view, they are active objects that are always running. Bolts rep-
resent event-driven objects invoked only when different events
arrive at the node. Both, the spout and bolt entities may send
messages, which are packaged as tuples in a configuration struc-
ture called topology.

Mimicking the same structure, the real-time version of Starm
incorporates a predictability model shared by the bolts and
spouts, This basic model consists of a single interface called
RealtimeEvent that contains the information required by bolts
and spouts. The basic information consists of a priority, a cost,
a minimum inter-arrival time valid for periodic and sporadic ac-
tivations, and an error handler mechanism, that may be config-
ured via getter and setfer operators (Fig. 7). The new cdlasses are
RealtimeBolt and Realt imeSpout. Bothclasses are under the
es,uc3m. it .rtatorm package hierarchy.

The lifecyde of a real-time bolt and spout replicates the be-
havior of their plain counterparts, Both, the plain and real-time
spouts are invoked by the infrastructure thread in a user-space
via a nextTuple() method that generates the next tuple to be
processed. In the case of the plain and real-time bolts, there is an
execute{Tuple, BasicOutputCollector) method whichis
invoked from an infrastructure thread whenever a new tuple for
the object arrives.

The main difference is the time instants and priorities used to
invoke the different event processors, In the case of the real-time

__oG»||___ ol __,_ozé*:o
-] - Jrm -
[mmmtme] o] e e |
el -

Fig- & Real-rime services and integraion levels.

Storm as. ocin. it. rtstorm. RTS
PaaltimeBrant
+gatSeatPriority
+gat/eetCost
+gatfeatMIT
+gatSsatErrorBand]l ar
backtype.storm. F e, ucin. it . reStorm.
tapalogy Jbase. Panlt imebolt
Ba saRtichBolt
backtype.storm. hﬂ!.t}t]m.it.:‘t!tm‘m.
topology base. RmaltimsSpout
BassRichSpoat
es.oncidn. it. rtatorm.
backiype .storm.
tapology base. - !!1:' "Ikuh'l‘t" -
EvanScheduler

Fig 7. Relatonship between the maditional classes in Storm and its real-time
homologous.

spouts, they are invoked in a periodic fashion with a period and
priarity preconfigured. In the case of areal-time bolt, they are in-
voked when there is a new event for the bolt ensuring a minimum
inter-arrival pattem, Fig. & shows the executiontimelines for plain
and real-time bolts and spouts, One may see how the underlying
real-time framework controls the activation of spouts and bolts to
ENsune proper execution,

The last class of the APl refers to the management of the as-
signment of the different stages of a stream. Storm has a dass

(EvenScheduler) in charge of performing global scheduling ac-
3

a
q_)nl 3 (T3 3
. Tupla () Tupla()

b

real time

spout —
e | iy |

AT, SVIURRINRE. NSRRI, SO

L Tuplaf) |

Fig. & Timeline execution for bolts, spouts, and their real-time homalo gous.

tivities that may be used to perform the dynamic adaptability
required by the proposed architecture. This template uses the
FixedPriorityEvenScheduler interface to characterize dif-
ferent scheduling policies.

5. Mustracve example

To show the proposed computational model, a simple appli-
cation was designed, It is based on a producer-consumer stream
application, with one entity running as a producer and two con-
sumers (Fig. 9), The producer outputs tuples which are taken by
one of the two consumers in parallel; each stage operating in dif-
ferent data. Both the two consumers and producer are hosted on
a Storm cluster. The application also defines a periodic activation
pattern for the events of 100 ms at the producer and maximum
execution times of 10 ms for producer and the consumers. Each
different consumer runs ina different node.

5.1. Computational model

By using the comput ational model one may define the applica-
tion as asimple producer-consumer streanmm:
Apud‘—zcms = {s;nd—]cn} (11)
The application runs in a cluster with three computational re-
sources, namely warker_1, woarker_2 and worker_3:
Mrot-2com = (Mworker_1. Mworker 2, Mwrker_3)- (12)

We may also characterize the direct graph that defines the
unique stream as follows:

(B Y.]) (13)

To define the real-time system, we only need to assign a priority
to all stages of the stream: Pyog = P™™ = Pons. We also need to
assign a fixed machine to each stage of the stream. Combining all
these information, the resulting system is characterized asfollows:

AT Storm dluster
Spout A ——— (' Producer T
(Tm 100 ms) ="=T Worker1 ’-
tuples -
1 Worker 2 |—
- Warker 3
.

Fig. 9. Single-producer dual-consumer siréam applicaion with Smem.

Sl' o =200

[Toroa = 100 ms, MIT gasy = 200 ms, MIT gz = 200ms]
[Drad—z2coms = 100 ms]
= [Cm.. = 10ms, G = 10mM5, Coms = IDIZI'IS]
[Poroa = P™=, Prons = P™=, Peyes = P™]
[Murarter, « Fumciterys Towarters]

Assuming maximum costs and in absence of other applications
in the cluster, the output is generated in less than 20 ms. This end-
to-end worst-case response time is calculated as follows: 10 ms
Jor the producer + max (10 ms, 10 ms) for the parallel consumers,
taking into account the computational rules defined in Eqs.(8) and
(9] and ignoring the communication overheads.

.(14)

5.2. The application

The listings included Figs. 10, 11, and 12 show the application
from the perspective of the programming model. Fig. 10 indudes
the code incharge of generating new tuples, Fig. 11 the code of the
event consumer in charge of processing the tuple. Lastly, Fig. 12
shows how the topology is built and how the new information is
artached to this entity during the configuration of the topology.

The application starts by running the producer in charge of gen-
erating tuples for the consumer (Fig. 10). To exhibit real-time per-
formance the application inherits from the Realt imeSpout dass
(Fig. 10: line D1). The rest of the behavior of the spout is main-
tained; the infrastructure initializes the system by invoking open
and finishes it with close methods of class. In addition, failures
are notified in fail and violation methods, while successful
notifications for the acknowledgments are sent back to the source
by using the ack callback method.

From the producer perspective, the platform invokes the
next Tuple method each time it needs anew tuple, The tuple is set
with the emit method and sends the information forward (Fig. 10;
line 09) to the consumer.

The consumer is implemented by extending the Realtime
Bolt dass (Fig. 11: line 01). The most relevant method is
execute, in charge of processing the tuple received from an ex-
temal entity. In the example the processing (Fig. 11: lines 05-09)
prints out the sentence sent from the producer. The example in-
cludes mechanisms to configure and dedare the output types
(Fig. 11; lines 02-04). In addition, there is a violation method
invoked from the infrastructure in a case of failure in the real-time
runtime.

In Storm, the links between the producer and the consumer are
set in a spedal class in charge of linking sources of messages and

6

01: publiec clazs RTProducer extends RealtimeSpout|

02: publiec wvold ack (Object magld)

03: [Syatem.out.println("OK:"+magld):}

04: public wvoid clese() {]
05: public wvolid fail (Object magld)

Q6: [System.out.println ("FAIL:"+msgld);}

07: private int counter=0;
08: public vold nextTuple (]

99: [this.collector.emlit (new Valves ("Value®), "Counter "+ (+4+counter));)
10: publie vald epen(Map conf, TepologyCentext context,

11: SpoutfutputCollector collector)
12z { this.cellector=collactory |

13: public wvoid declareOutputFields (CubputFieldsDeclarer declarer)
14: { declarer.declare {new Fields("line")};]

153: public void viclation(ExceplLion &)
SysCem.out.printle ("Runtime exception®™+e); i

16: {
17: }

Fig. 10. Producer in charge of generating the tuple to the consumer.

01: public class RTConsumer extends RealtimeBolt|

0Z: public wvolid prepare(Map stormConf, TopologyContext context)]
03: public vold declarefutputFields (OutputFieldsDeclarer declarer) |}
od: S/Execute method ls wnder realtime congtraints

25: public veid execute (Tuple input, BasiclutputCollector collector)

06: |

o7z String sentence = input.getString(0);
08: System.ocub.println(*|output] i"+sentence) ;
08; |

11: /A4 or overuns

10: SAvielation if2 invoked when the application misses deadlines

12: public veid vielatien (Exceplicon e)

13: |

14: System.cut.println ("Runtime exception™+e);

15: }
16: }

Fig. 11. Consumer in charge of processing the tuple.

destinations. In addition to this type of support, the proposed ap-
plication (Fig. 12) requires defining the runtime priorities, a min-
imum inter-arrival among events, and the maximum time of CPU
required from the runtime.

The topology starts by allocating the objects for the producer
and two consumers in lines 03-05. On each one of them, the appli-
cation defines priorities (lines 06—08), inter-arrivals (lines 09-11)
and maximum costs (lines 12-14) for each object of the applica-
tion. Then, by using the topology builder, it allocates the producer,
the two consumers, and connects them via a shuf fleGrouping
method. In addition, it creates a configuration class in charge of
defining specific properties and other configuration parameters
of the platform (lines 22-23). Lastly, the configuration informa-
tion includes the name of the node in which each different object
should be running. In this particular application, the producer runs
on a node called “Remotel”, one consumer in “Remote2”, and an-
other in “Remoted”.

The last piece of code refers to assignment to the physical clus-
ter of machines. 5torm includes the concept of plugsable sched-
ulers as a means to carry out this mapping (Fig. 13). There is a
gchedule method that may be overridden with application spe-
cific algorithms. In our particular example, it assigns each object to
node with a machine of the cluster (see Fig. 13), which is compati-
ble with the configuration parameters given in Fig. 12: lines 22-27.

To assign stages to different clusters, the application may use a
bin packing algorithm that assigns different stages of the stream
to a particular machine of the cluster. These algorithms are ap-
plication dependent and are not optimal. Based on a previous
algorithm designed in the context of distributed real-time Java ap-
plications [45] it is suggested a bin packing algorithm (Alg 1.) that

aAs5igns stages to a set of computational nodes. This algorithm cal-
culates the occupation of each node as the sum of all nodes to check
if the system is feasible or not and it is compatible with the utiliz a-
tion bound included in Eq. (10).

fkodes wilh wtiizatan: Adf]
fisieges that demand comautationation units: sgj|
01 assign nel], sol])

0z for_all segiin seg

o} fer_all ng innd

04 ifind.inusal+sgi reguired(F=nd i)
a5 nd.agdisegl)

06 jmp cont

or endif

08 andfar

og: BIGr Errer not fRasiole’)

10 e

1 endfor

Alg. 1. Default assignment algorithm

6. Empirical evaluation

The implementation of Storm has been modified to incorporate
the real-time spouts and bolts. Our current testing implementation
is .0.1-9.2. In addition, a testing infrastructure on a local area
network (see Table 1 and Fiz. 14) was developed. Following the
same strategy of other distributed real-time Java infrastructures
(e.g. [22]) the evaluation opts for a 100 Mbps Ethernet network
to interconnect their nodes. In addition, each machine has several
cores that offer local clustering facilities.

7

01l: public class TopologyMain |

02: public stetic wold main(String[] args){

03: ETProducer rtpred=new RIFroducer():

04 ETConaumer rtoons=new RTConsumer () :

05: RETCongumer rtoons2=new RTConsumer ()

[{]-H] rtprod. setPriority (100

07z rtoons.setPriority (10)

0Bz rtoons2, sebPriority (10);

09: rtprod, setMit {100,0); /100 ms

10: rteong. aetMit (200,00 ¢ 7200 ms

11: rtoona?.setMit (200,00 ;/ /200 ms

12: rtprod.setCeost (10,0} // Maximum consumed CEU: 10 ms
13: rtcons.setCest {10, 0} ¢ #/ Maximum consumed CPU: 10 ms
14: rteans2. sebfest (10, 0) ¢ //Maximum consumed CEU: 10 ms
15: TopalogyBullder builder = new TopolagyBuillder();

16: builder, setS8pout ("producer™, riprod);

17: builder. sstBolt {"consumerl™, rtcons)

1B: shuffleGrouping | "oroducer™) i

18: builder ., setBolt | "consumar2", rtconad)

20 .shuffleGrouping ("oroducer™) ;

21: Configq conf = new Configl)i

22: conf.aetNumWorkers (3);

23 conf.setMaxSpoutFending (5000) »

24 ffInformation for the plugable schaduler

- H conf.put ("producer™, "Remotel™) 2

26: conf.put ("censumerl”, "Remotel™) ;

FaH conf.put ("consumer2™, "Remote3™) ;

2B: 1

FETH

Fig. 12. Topology description with real-time characterization.

01: public class PinnedScheduler extends FixedPriorityEvenScheduler
02: pubklic class FluggableScheduler implementa IS5chedoler |

03: RAoverride

04: public woid prepare(Map list] [

0%: 1}

06: BOverride

07: public veid schedule (Topologies topologies,

oa Cluster cluater) |

0%: /f/Get all supervisors

10: f/Get all topologies
11: f/hssign topologies to nodes by using the config file

13: }

14:}
Fig. 13. Real-time scheduler in charge of mapping stages to physical machines.
Several applications have been developed with the following The goal in all these evaluations is to model the trending topic
goals: application as a real-time stream application running on a clus-

— To empirically evaluate the overhead introduced by the com- er.

munications and serialization protocols. .
- To empirically evaluate differences between local clustering 6-1- Computational overheads
(i.e., all processing stages running on a single multicore ma-
chine) and local area network (LAN) cluster (with several ma- For empirical purposes, overhead is defined as the time taken
chines connected through IP). for the transmission of data from one computational node to an-
— To evaluate the performance of real-time Storm applications. other. This overhead is due to the data transmission delays of
Our use case study is based on an analytics application that cal- the network and the serialization protocols used to transfer such
culates trending topics. This application is a constrained version amount of data.
of the application running on Twitter and it is currently avail- To compute this overhead on distributed stream processors, the
able in Storm. In the trending topics application, the analytic benchmark previously described in [22] for distributed real-time
refers to the code that is in charge of analyzing the data (tweets) Java was extended with the characteristics of stream processors.
and its output is the list of the most relevant topics (hashtags). The modified benchmark includes operational frequencies from
B

Table 1
Type d nodes used in (he evaluation
IndrastrucTure
(u; 1} 1 GHz, tual core (2 cores)
Memory EGB
Nemwork 100 Mb Switched Ethernet 100 Mb
v 3 Ubuntu 14 ri-patch
SO VErsion mil-92
Benchmark
Messages [y pes Smiall and lLarge {200 bytes o 200 bytes)
Mezages 11.2.46.712,13,15]
Clusters Local chuster (single machine with 2 comres) or
Metworked LAM duster (with several machines)
Streamed App
A RO WO
AT-Storm \ \ \
Infram truciine 100

T Mhits ¢ o

I .

Fig. M. Benchmark infrasoruciure.

1Hz to 1kHz for environments that emit a variable number of mes-
sages(ranging from 1to 8], It also includes twoty pes of application
scenarios: one with small data sets that correspond to short strings,
and another which is a large number of strings packed into a tuple.
To better characterize the behavior of the network, all experiments
have been executed in a local duster or in an IP networked cluster,

This type of configuration is useful to assess the performance
of the distributed application in a networked environment, The re-
sults of the experiment for a local cluster are summarized in Fig. 15,
Likewise, the networked counterpart results are shownin Fig. 16,

Ina local cluster (Fig. 15) the owerhead for the communications
is moderate, ie. less than 20%, for applications running at 100 Hz
that send a moderate, ie. 1-2 messages per activation. This
overhead reduces drastically as the frequency of the application
decreases; for instance with 10 Hz the overhead duwe to the
communicationsrepresents 10% of the available time, On the other
hand the overhead is high, ie. more than BO%, in applications
with 0.5 kHz activation frequencies. This overhead increases as the
number of messages increases,

In general terms, a local area network (LAN) cluster increases
the overhead of the applications because exchanged data have to
be sent from one node to another, ln our particular infrastructure,
the cost in communications increased by a fixed factor that is in be-
tween five times and seven times the average cost of the commu-
nications in a local cluster. In addition, to the extra cost introduced
by the serialization protocols, the system has to account that local
clusters running in the same machine have mechanisms to avoid
the data transmission overhead.

The results on a LAN cluster (see Fig. 16) show how the over-
head increases as they are compared to their local duster equiva-
lent (Fig. 15), In all cases the time available for the application de-
creases, The lower overhead (<20%) results in a local cluster run-
ning at a 100 Hz frequency is now closer to the 10 Hz frequency,
reducing the amount of effective time available for the application,
Likewise, the previous high overhead ranges (>80%) also moved

Small 1 Ghz - 100 Mbits SE- Local

Comm.
overhead

= B0k-100%

= 60%-B0%
= 4rk- 60

u k-4

= (- 0%

1ims 10ms
Stream deadlines [T=D)

100 ms 1 s

Fig. 15. Overhead performance results inthe local custer.

from the 500 Hz to the 50 Hz range, reducing the time available for
the application.

The evaluation results show that local dusters offer an advance
ranging from 5 to 7 times the cost of the networked cluster. Local
dusters avoid the overhead in communication and serialization
protocols, They also exploit the multi-core infrastructure offered
by modem CPUs to provide efficient parallel computing platforms,
which in the selected infrastructure consisted of two cores,

The main bottleneck in this experiment is in the 100 Mbps net-
work, which may improve its performance with additional gigabit
ethernet connections and optical fiber. In the particular case of the
performance of an optical connection, it would be in between the
local multi-core duster performance and the 100 Mb networked
performance,

6.2 Trending topics cose study

The first part of the empirical section evaluated the overhead
introduced by the 5torm infrastructure on a distributed set-up.
This overhead is crucial for determining the response time in dis-
tributed applications, Now, thisinformation is complemented with
the analysis of the results offered by an application.

The selected case study is a reduced wversion of the trending
topic application running in Twitter, which is available for Storm
in the following link [45]. The goal was to choose a simple applica-
tion that could be developed with the proposed real-time stream
model. The application calculates the list of the most popular hash-
tags in Twitter. Typically, the list is updated every two seconds [46]
and potentially receives hashtags at an unbounded speed.

The goal was to illustrate the benefits of the real-time stream
maodel scheduling framework proposed in Section 2. In particular,
this section shows how they can be used to analyze the relation-
ships among the properties of the cluster (e.g. the number of nodes)

9

Small 1 Ghz - 100 Mbits SE- Quster

Comm.
overh ead

= Bk 100%
= G- B0
= -5
= -

= -0 i
¥

1ms 10ms 100 ms 1sec
Stream deadlines (T=D)

Large 1 Ghz - 100 Mbits SE- Cluster

1ms 10ms
Stream dead lines [T=D)

Fig. 16. Overhead performance resulls in 3 nenworked LAN duster.

and the performance of thesystem in terms of maximum input fre-
quency and application deadlines. The characterization of an ap-
plication as a real-time stream enables the possibility of reasoning
about its real-time perfformance,

In this particular set of experiments, the activation of each dif-
ferent bolt and spout has the following constraint: T = D, which
enables the use of the constraint defined in Eq. (10) to calculate a
safer bound for the number of nodes required to implement the
system.

6.2.1. Application characterization
The basic case study (Fig. 17) consists of two streams. In the
first stream there is a spout which extracts the hashtags from each

Countert
{RTEalt) .
Tweets Hashtag
- Source
[RTSpout)
Counter2
(RTBok)

tweet and outputs tuples, each of them containing a hashtag, Two
counter bolts receive the spout tuples, and keep a sliding window
counter for each hashtag. This counter indicates the number of
times the hashtag has been received at the counter bolt. The tuples
provided as output by the counter bolts contain a table which as-
sociates hashtags with their respective counters, These tuples are
received by an aggregator bolt, which aggregates the tables coming
from the different counter bolts and generates a single output ta-
ble, The out put of the aggregator is the input for the second stream,
namely, ranker stream, which runs every second and produces an
ordered list with the top-ranked hashtags.

In the evaluation of our approach we have used as data source
an application that mimics the behavior of the Twitter streaming
AP1[46]. Todo so, we captured a trace of actual tweets (1 million)
and stored it into a file. Later on, our application reads the file and
produces a continuous (and potentially infinite) flow of data simu-
lating Twitter's social network. This input data is then used to feed
the real-time application running on top of Storm, with the goal of
determining the worst-case computation times of each stage of the
application.

With this information, the application may be characterized as
two real-time streams. Table 2 contains the characterization of the
application costs of each of the stages that compose the applica-
tion described in Fig. 17. The application consists of two streams:
the first is Spuner in charge of calculating the number of times each
hashtag has been mentioned in tweets, It consists of three stages:
source (spout), counter and aggregator (bolts). The second stream
is in charge of running the trending topic calculations, which con-
sists of three stages: source processor, counter, and aggregator;
and the second stream in charge of producing the final ranking,
The ranker has a 1 Hz frequency and the counter stream has a vari-
able frequency, which depends on the rate at which the tweets are
received at the input. In this evaluation, the minimum input fre-
quency should be 1 Hz.

With the topology for the trending topic application described
in Fig. 17 and Table 2 the maximum application deadlines may be
determined. In this case, a safe utilization bound is used for the
two streams to ensure that the global utilization is less than 100%,
The deadline for the Songer i5 always 15 its period because it con-
sists of a unique stage. In the Smuyer stream, the end-to-end can
be calculated adding the partial deadlines of the three elements;
each segment contributes its maximum deadline and the end-to-
end deadline is three times the input period (Fig. 18],

Using the real-time scheduling model and the theory associated
to the model(see Section 2) one may derive a maximum input fre-
quency (see results in Fig. 19) which is neverfeasible in a single ma-
chine ifthe system is over 100%. The application has been deployed

Aggregator Ranker de_llng v
(RTBolt) (RTBaolt) ﬂ' /
]J |~Srankar—
Teohosper

Fig.17. Trending topics use case: basic configur aion Dataentering with a variable maxdimuom (reguency {Imax). The characierization of theapplication is shown in Tabke 2

10

Table 2
Real-time characterzation of the wending topic use caseapplication. (T = D to be
able to use the wdization bounds described in E. [10L)

Soume Counter Ageregator Ranker
Cost (j25) 115 138 150 1820

Priority Inverse 1o the frequency of the asks
Max freq Dara impurt freq (=1 Hz) Dhara Ot feeq {1 Hz)
(Fmit})
Deadline B=T=1 15(T =D)
DO | Matireum desdline

Ag 18 Maximum deadine of 5, q, ., Sream for Fig. 17 seupwhen the frequency
al which the dara is received changes.

in the local cluster and in the LAN to calculate the maximum input
frequency for the system. The most critical section (in terms of per-
formance) is the part incharge of processing the hashtags that come
at high frequencies. The ranker takes less time because it runs at a
very low frequency (1 Hz or less). As in the previous case the local
duster outperforms the LAN cluster; the local cluster may process
data up to a maximum frequency empirically set in 125 kHz, This
frequency reduces to 0.21kHz in the networked environment due
to the overhead of the serialization and communication protocols.
According to the relationships expressed in Fig. 18, when the input
frequency is 1.25 kHz the output has a maximum bounded delay of
2.4 ms, whereas when the input frequency is 0.2 1 Hz the maximum
delay is 12 ms,

By using the facilities included in Storm, one may add the par-
allel units to increase the peformance of the system, running
topologies in parallel, and increasing the maximum [requency of
operation of the trending topic application. In these scenaros the
utilization of the system may be over 1.0, requiring multiple ma-
chines,

6.2.2. Parallelizing input processing

This experiment takes the basic trending topicdetection appli-
cation, depicted in Fig. 17, and modifies the layout of the Spuner
stream by proposing a distributed alternative that divides the traf
fic of the Internet into n different paths (see Fig. 20) that are pro-
cessed by independent spouts and bolts, In this scheme, the unique
element, which is still receiving information from all nodes, is the
aggregator, which runs at a maximum frequency of the input data,

This change in the topology also increases the maximum dead-
line of the application because the frequency at whicheach counter
recefves its input is lower, In the case of a doubleinput flux (n = 2),
the deadline of the Scouncer i5 five times the input perod and with
four parallel inputs, it is nine times the input frequency. Fig. 21
shows this relationship for two and lour parallel inputs,

This configuration increases the performance of the system,
measured as the maximum input data frequency to the system,
in comparison with the previous configuration (see Fig. 22). The
results obtained for the utilization bound show how the maxi-
mum frequency of input data may move from 0.2 to 047 kHz us-
ing a cluster with 16 machines. Likewise, the previous maximum
1.25 kHz bound of the local cluster may be extended to a maximum
of 27 kHez input if one admits multiple counters in the system
The results also show the main battlenedk of the solution, which is

= B0, 00k 100,00%

u B0, 00r%-B0,00%

u 410,00%- 60,00%

u 20, 00r%-40,00%

w0, Oor- 20, O

u B0, 00r%- 100,00%

60, 00r%-BO,00%

u 40, 00r%-60,00%

20, D0r%-40,00%

0, 0% 20,00%

FAg 12 Basic trending topic application utilization: local duster vs LAN cluster.

the aggregator that receives information at a high speed frequency
from all fluxes,

Another analysis that may be carried out is the eficiency of
the application. In the particular application, the efficiency of the
system may be defined as the number of petitions (associated to
tweets) that may be processed in a period of time divided by the
number of resources (which may be cores of a local dluster or ma-
chines of a local area cluster). The higher this number is, the higher
the efficiency of the application

In our particular case, the results (Fg 23) show how peror-
mance is a concave function, The example also shows that the
efficiency of the local cluster is higher than the efficiency of the
networked cluster.

6.23 Porallelizing the aggregator

The analysis of the trending topic application showed the main
bottleneck of the previous configuration: a single aggregator that
receives all trending topic information from all parallel flows. One
commeon solution to this problem is to use amulti-step agg regation
output phase where the aggregation of information is carried out
in different stages,

Fig. 24shows how to implement a double step aggregator in the
trending topics application. This type of configuration reduces the
maximum frequency of the messages that reach any of the aggre-
gators,

This change in the topology increases the ratio among the input
frequency and the deadline (Fg. 25). For the new version of the
Scoumeer Stream two parallel inputs (n = 2) the system has a
maximum end-to-end deadline which is seven times the input

11

Spout
Twests Hashiag
Source_1
(RTSpout)
{Max Data Frg.ph
Spout
Twiat Hashitag
Source_|
(ATSpout)
(Max Data

1 Trending
W Toples

. {Max Data Frg)

.56
4

Fig- 20 Trending opic analytic model with n-parallel counters. Mukiple spours are added to offer the possibility of adding new machines to the clusters.

- Maximum deadline
=E 1000.0
-
FE w0 —o— xS nter_ne2)
E —f— 8 {counter_r=4]
& 0.1 f : {

0.00 200000 000,00 6000 00

Freq input Data Hr

Fig. Z1. Maximum deadling of 5., WIth nparalel counters.

Maxdimaum input data frequenc y
256 v number of comput ational nodes

o

E 64

E 16

E L]

z 1 1 A —
4 16 64 156 1024 4096

Maximun Input data freguency [Hz)
e | ocal Chster s Networked Cluster

Fig 722 Number of compuiEtonal nodes vs MaGmum frequency [multiple
COUNErs and a single aggregatr).

period. Likewise for four parallel inputs (n = 4), the maximum
deadline of the out put is twelve times the input period.

As aresult of the double aggregation, the maximum operational
frequency of the input data increases in local and networked
chisters (see Fiz. 26). In the local cluster, it increases the maximum
data input frequency admissible from 27 to 54 kHz. In the
networked cluster, the maximum data input frequency increases
from 0.47 to 0,95 kHz.

However, this increase in the maximum frequency also involves
a more reduced efficiency because the application has an addi-
tional step that consumes additional resources (see Fig. 27). In this
particular scenario, the demand of new resources reduces the peak
of the curve as the number of stages in the aggregation increases
from one to two.

6.24. Real-time storm vs, plain storm

The last experiment is focused on a simple use case that illus-
trates the benefits that can be obtained from the use of the real-
time version of Storm. To this end, let us introduce a system with

Efficieny (input frequencynodes reguined)
1.024

156

16

=

e 4 lﬁ El- 256
Maadmum input dsta frequency [He)
s L ocal Chrster s Networked Chster

1024 Lli

Fig 23. EMiciency in theclusterin the trendi ngiopic application (mukiple counters
and single aggregarr).

Table 3
Response times for all streams with plain Stomm and real-Lime Storm Cluster with
1 machime and 2 streams with one single segment

Smream P C Tonin D Resp
Plain stonm

Real-time ol 0s 0s 06
Background Detauit 0s 10 = 07
Real time stom

Feal-time High o1 05 0s a1
Backgmund Low 0s 010 = 07

two simple streams (see Fig. 28 and Table 3), oneof them with real-
time requirements and another he avy stream (with0.5 utilization)
but without real-time constraints. Assuming that two streams are
using the same machine and the system does not include the tech-
niques like those described for real-time Storm, then the worst-
case response time for the real-time stream is 0.6 ms (because its
worst-case response time has to include the heavy node computa-
tion), Using the real-time facilities and assigning a lower priority
to the stream with no deadline (the heavy stream), then the higher
priority stream sees the system in isolation and its response time
changesto 0.1 ms.

7. Conclusions and future work
Current big-data applications can improve their predictabil-

ity by integrating techniques derived from the real-time domain
12

{Max Daka Frg.}n

(Max Data Frgn

[Max Dala Frgn

{Max Daka Fro.J2

{Max Data Fro.)2

Scounter_n

BERC

Fig- 24. Trending topic analytc application (muliple countersand a 2-step aggregarion).

- Maximum deadline
£ 10000
]
| =
3-g 0.0 e % fEOUR S _f1=2)
2
B ooal N —=— = ey
o.00 2000,00 4000,00 000,00
Freq input Data Hr

Fig. 25. Trending wopic analytic applicaton{multple counters and 2 Aggregators).

within their infrastructures. This article has analyzed the integra-
tion of traditional scheduling techniques into a popular stream
processor named Storm. The integration has addressed changes
in the architecture of Storm and new APls: it also modeled the
streams as real-time entities that may be running in a cluster of
machines, The identification of stream processors as distributed
applications has opened the door to the use of common-off-the-
shelf scheduling mechanism to guarantee end-to-end predictabil-
ity, typically used in other distributed real-time infrastructures. It
also provides a backwards compatible infrastructure for real-time
Storm where plain and real-time streams may coexist. The empiri-
cal evaluation carried out alsoillustrated the performance one may
expect from these infrastructures and illustrated how the schedul-
ing theory can be used to calculate deadlines in Storm applications.

Our ongoing work is focused on expanding the model to other
scenarios, induding industrial applications, next generation infor-
mation systems and business intelligence scenarios like those de-
scribed in [47]. We also plan to address other big-data processing
infrastructures, like those using optical-fiber networks in combi-
nation with the message passing interface (MHM) [48] technology
and map-reduce [49-51].

Adknowledgments

This work has been partially supported by HERMES (Healthy
and Efficient Routes in Massive open-data basEd Smart cities). It

Maximum input data frequency
wi. number of oo mputational nodes

—— Locy
Cluster single. aggregator

—— Metworked
Chuster single AEgregatar

iy Lol
Chuster. double_spgregator

&

Humber of podes
-

e Networked
O sher.double Sggnegator

Manimn et data f equenscy (M)

Fig. 26. Mumber of computational nodes v< maximum frequency of input data
(multiple counters and 2 aggreganors).

Efficie ny [Input frequencyino des requined)

i Lo 3l
4 Ouster single.aggre
3 B|tor
i Hetworked
Ouster singleaggre
@ator

Efficiency

_thEE

e e o N P |

i g
Ouster double.ager
egator

M mirmuim input dasta frequency [Hr]

Fig. Z7. EMiciency (multple councers and 2 aggregiors)

e e
Straam Stream -]
Single Com
e
| D

Sapemn (plain or reaktime) Chigter

Fig. 28 Single machine cluster running a real-time and background Steam in 2
plain and a real-rime cluster.

13

has been also partially financed by Distributed Java Infrastructure
for Real-Time Big Data (CAS14/00118). It has been also partially
funded by eMadrid (52013/ICE-2715) and by European Union's 7th
Framework Programme under Grant Agreement FP7-1C6-318763.

References

[1] R Buyya, et al., Cloud computing and emerging IT platforms; Vision, hype, and
reality for delivering computing as the 5th utility, Future Gener. Comput. Syst,
25 (6) (2009) 599-616,

[2] M. Armbrust, et al,, A view of cloud computing, Commun, ACM 53 (4) (2010)
50-58.

[3] M. Garcia-Valls, P. Uriol-Resuela, F, Ibifiez-Vizquez, P, Basanta-Val, Low
complexity reconfiguration for real-time data-intensive service-oriented
applications, Future Gener. Comput, Syst. 37 (2014) 191-200,

[4] PaulZikopoulos, Chris Eaton, Understanding Big Data; Analytics for Enterprise
(Class Hadoop and Streaming Data, first ed., McGraw-Hill Osborne Media, 2011,

[5] A.Jacobs, The pathologies of big data, Commun, ACM 52 (8) (2009) 36-44,

[&] Y. Demchenko, Z, Zhao, P, Grosso, A, Wibisono, C. de Laat, Addressing big-data
challenges for scientific data infrastructure, in; CloudCom, 2012, pp. 614-617,

[7]]. Lin, R. Dmitriy, Scaling big-data mining infrastructure; the twitter
experience, ACM SIGKDD Explor. Mewsl. 14 (2] (2013) 6-19,

[8] K. Kambatla, G. Kollias, V. Kumar, A, Grama, Trends in big-data analytics,
]. Parallel Distrib, Comput. 74 (7) (2014) http:/|dx.doiorg/ 10,1016/j jpdc 2014,
01.003,

[9] G.Blelloch, Big data on small machines, in: Big Data Analytics 2013, Cambridge.
May 23-24, 2013,

[10] H.V, Jagadish, et al,, Big data and its technical challenges, Commun, ACM 57 (7)
(2014) 36-94,

[11] VN, Gudivada, R Baeza-Yates, V.V, Raghavan, Big data: Promises and
problems, Computer 48 (3) (2015) 20-23.

[12] K. Shvachko, H. Kuang, 5. Radia, R Chansler, The Hadoop distributed file
system, in: 2010 IEEE 26th Symposivm on Mass Storage Systems and
Technologies, M35T, pp. 1-10.

[13] Storm, Distributed and fault-tolerant real-time computation. Available (2014)
on https:|storm.incubator.apache.org,

[14] G. Lodi, et al., An event-based platform for collaborative threats detection and
monitoring, Inf, Syst. 39 (2014) 175- 195,

[15] Spark. Lightning-fast cluster computing. Available {2014) on https:/|spark.
apache.org.

18] M. Rychl, P. Skoda, P, Smrz, Scheduling decisions in stream processing on
heterogeneous clusters, in: Eighth International Conference on Complex,
Intelligent and Software Intensive Systems, 2014, pp. 614-619,

[17] L. Gray, ¥, Chan, M, Audsley, A, Wellings, Architecture-awareness for real-
time big-data systems, in: Proceedings of the 2 1st European MPI Users” Group
Meeting. pp. 151-158,

[18] T.Chordia, A. Goyal, BN, Lehmann, G. Saar, High-frequency trading, J. Financ,
Mark, (I55M; 1386-4181) 16 (4) (2013) 637 -645,

[19] C. Grier, K. Thomas, V, Patson, M. Zhang, @ spam: the underground on 140
characters or less, i Proceedings of the 17th ACM Conference on Computer
and Communications Security, pp. 27-37.

[20] LTX, Phan, Z Zhang, B.T, Loo, 1. Lee, Real-time MapReduce scheduling, in:
Technical Report N, M5-C15-10-32, University of Pennsylvania, 2010,

[21] M.T. Higuera-Toledano, A]. Wellings, Distributed, Embedded and Real-time
Jawa Systems, Springer, 2012, p. 378, X}

[22] P, Basanta-Val, M. Garcia-Valls, A distributed real-time Java-centric architec-
ture for industrial systems, IEEE Trans, Ind. Inf. 10({1) (2014) 27-34,

|23] T. Aniello, et al, Cloud-based data stream processing, in; ACM International
Conference on Distributed Bvent-Based Systems, DEBS™ 14, pp. 238-245,

[24] M. Stonebraker, U, Cetintemel, 5. Zdonik, The & requirements of real-time
stream processing, SIGMOD Rec. 34 (4) (2005) 42-47.

[25] D). Abadi, et al, Aurora: a new model and architecture for data stream
management, VLDB]. 12 (2] (2003) 120~ 139,

|28] A. Arasuw, et al, STREAM: the stanford stream data manager, in; ACM SIGMOD
International Conference on Management of Data, pp. 665-665,

|27] DJ. Abadi, et al, The design of the borealis stream processing engine, in:
Conference on Innovative Data Systems Research, CIDR 2005, pp. 277-289,

|28] L Amini, et al, SPC: a distributed, scalable platform for data mining, in; Data
Mining 5tandards, Services, and Platforms, DMSSF06, pp. 27-37,

|29] M. Migliavacca, et al, SEEP: scalable and elastic event processing, im:
Middleware'10. Article 4, p, 2.

|30] L. MNeumeyer, et al. 54; Distributed stream computing platform, in; [EEE
International Conference on Data Mining, pp. 170-177.

[31] C. Yixin, L. Tu, Density-based clustering for real-time stream data, in:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

|32] JA. Sitva, et al,, Data stream clustering; A survey, ACM Comput. Surv, 45 (1)
{2013) 31, http:/|de.doi.org 10.1145/2522968 252298 1, Article 13,

|33] M. Zaharia, et al. Discretized streams; fault-tolerant streaming computation
at scale, in: ACM Symposium on Operating Systems Principles, 50513,
Pp. 423-438.

[34] G.Agha, Actors; A Model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, MA, USA, 1986,

[35] M. Zaharia, et al. Spark; cluster computing with working sets, in; 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotClowd™ 10, pp. 10-10.

[38] L. Aniello, et al. Adaptive online scheduling in Storm, in: ACM International
Conference on Distributed Event- Based Systemns, DEBS 13, pp. 207-218,

[37] X. Dong, ¥, Wang, H. Liao, Scheduling mixed real-time and non-real-time
applications in MapReduce environment, in: Parallel and Distributed Systems,
ICPADS, 2011,

[38] F. Teng. et al. A novel real-time scheduling algorithm and performance
analysis of a MapReduce based cloud, |. Supercomput. 69 (2) (2014) 739-765,

[39] M. Garcia-Valls, P, Basanta-Val, Comparative analysis of two different
middleware approaches for reconfiguration of distributed real-time systems,
J. Syst. Archit. 60 (2] (2014) 221-233,

[40] L. Golab, M. Tamer Ozsu, Issues in data stream management, SIGMOD Rec, 32,
2,5-14, http://doiacm.org/10.1145/7 760857 76986,

[41] P. Basanta Val, M. Garcia Valls, A simple distributed garbage collector for
distributed real-time Java, |. Supercomput. (2014) in press, http:/|de.doi.org/
10,1007(511227-014-125%-x,

[42] L. Sha, et al,. Real-time scheduling theory; A historical perspective, Real-Time
Syst. 28 (2-3) (2004) 101-155.

[43]].M. Lopez, L. Diaz, D.F. Garcia, Minimum and maximum utilization bounds for
multiprocessor rate monotonic scheduling, 1EEE Trans, Parallel Distrib. Syst.
(2004) 542-553,

[44] R.L Davis, A, Burns, A survey of hard real-time scheduling for multiprocessor
systems, ACM Comput, Surv, (CSUR) 43 (4) (2011) 35.

[45] P. Basanta-Val, M, Garcia-Valls, Towards a reconfiguration service for
distributed real-time Jawva, in: REACTION 2012 Workshops, Puerto Rico,
December, 4, 2012,

[45] M. Nall, Implementing real-time trending topics in Storm. Available in 2014
on hetp: [fwww . michael-noll.com/blog(2013/01 18/implementing-real- time-
trending- topics-in-storm),

[47] V. Chang, The business intelligence as a service in the cloud, Future Gener,
Comput. Syst., 37, pp. 512-534,

[4B] M. Irizarry, Mixing C and Java™for high performance computing, MTR 130458,
MITRE Technical Report, 2013,

[489]]J.C5. dos Anjos, 1. Carrera lzurieta, W, Kolberg, AL, Tibola, L, Bezerra Arantes,
CFR Geyer, MRA++: Scheduling and data placement on MapReduce for
heterogeneous environments, Future Gener. Comput. Syst. 42 (2015) 22-35,

[50] L. Woo, K, Jin-Soo0, M. Seungryoul, Large-scale incremental processing with
MapReduce, Future Gener. Comput. Syst. 36 (2014) 66-79.

[51] G. Lianjun, Z. Tang, Gu, Xie, The implementation of MapReduce scheduling
algorithm based on priority, in: Parallel Computational Fluid Dynamics,
Springer, Berlin, Heidelberg, 2014,

14

