
This is a postprint version of the following published document: 

Basanta-Val, P.; Fernández-García, N.; Wellings, A.J.;  Audsley, N.C. 

Improving the predictability of distributed stream processors. Future 

Generation Computer Systems, 2015, v. 52, pp. 22-36.  

DOI: https://doi.org/10.1016/j.future.2015.03.023

© 2015 Elsevier B.V. All rights reserved 

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License 

https://doi.org/10.1155/2016/2682869
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Improving the predictability of distributed stream processors 

P.Basanta-Val ª·*, N. Fernández-García A.j. Wellings c. N.C. Audsleyc

Departamento de lngniela Telemdtica, Universidad Carlos I de Madri, Avda de la niversidad no 0, Legnes, 28911, Madrid, Spain 

Centro Universitrio de la Defensa. Esuela Militar Marin, niversidade de Vigo, Spain 
'epartmnt ofComputer Sciene, Universy fYork, York, Y010 UK 

ABSTRACT 

Next generation real-time applications demand big-data infrastructures to process huge and continuous 
data volumes under complx computational constraints. This ype of application raises new issues on 
current big-data processing infrastructures. The first issue to be considered is that most of current in­
frastructures for big-data processing were defined for general purpose applications. Thus, they set aside 
real-time erformance, which is in sone cases an implicit requirement. A second important limitation is 
the lack of clear computational models that could be supported by current big-data frameworks. In an ef­
fort to reduce this gap, this article contributes along severa( lines. First, it provides a set of improvements 
to a computational model called distributed stream processing in order to ormalize it as a real-time in­
frastructure. Second, it proposes sone extensions to Storm, one of the most popular stream processors. 
These extensions are designed to gain an extra control over the resources used by the application in order 
to improve its predictabiliy. Lastly, the artide presents sone empirical evidences on the performance 
that can be expected from this type of infrastructure. 

Current trends in computational infrastructures look at the 
Intenet as a low-cost distributed-computing platorm for hosting 
legacy and next generation applications in the cloud (1-3]. The 

culty can be characterized using three V's: The first V is for volume 
of processed data, the second V is for variety in the data (that is, 
it can come from different sources and be represented using het­
erogeneous formats ), and the last V refers to velocity (meaning that 
applications work with data produced at high rates ). Typically, big­
benefits offered by the use of an infrastructure such as the Internet 
are diverse: increased computational power, higher availability 
in 24 x 7 periods, and reduced energy consumption (2.4,5]. One 
type of application that may potentially benefit from this low-cost 
execution platform is big-data systems. 
A big-data system processes a collection of data that is difficult 

to process using traditional techniques and, thus, requires specific 
processing tools. According to [4], the main reasons of this diffi-
data applications run analytics on clusters of machines connected 
to the Internet [6-11]. Each big-dataanalytic refers to howthe data 
is analyzed to produce a desired output. Typical application do­
mains include meteoroloy, genome processing, physical simula­
tions, biological research, finance, and Internet search. 
Nowadays, to develop these big-data applications, practition­

ers use different software frameworks, including Hadoop (12], 
Storm [13.14], and Spark (15] which emphasize different pro­
granming aspects of the big-data ecosystem. Hadoop is focused 
on batch processing of large data sets on commodity machines. 
The typical deadline or Hadoop applications ranges from minutes 
to weeks; oten processing Petaytes [16
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] of data. Apache Storm 
works on a streaming data model and it is targeted to online appli­
cations with sub-second deadlines. Lastly, Spark ofers optimized 



I/Oaccess,reducingcomputationaltimesincomparison with
HadoopbutwithheaviercomputationalcoststhanStorm[16].

Anotherfeatureofbig-dataapplicationsisthattheyoftenhave
real-timerequirementsthatneedtobemetinordertoprovideap-
plications withtimelyresponse[8,17].Forinstance,theHadron
collideroutputsa300 Gb/sstreamthathastobefilteredto
300Mb/sforstorageandlaterprocessing.Somedataminingappli-
cations,like,forinstance,thoseusedforon-linecreditcardfraud
detection,andcontextualselectionof webadvertisements may
benefitfromrealtimetechniques.Intheseapplicationshaving
shorterresponse-timeusuallyhasaneconomicimpact.Thisisalso
thecaseofhighfrequencytradingsystems[3,18].Anothersimple
exampleofbig-dataanalyticthatfacestemporalrestrictionsisthe
trendingtopicdetectionalgorithmusedinTwittertoshowady-
namic,up-to-date,listwiththe mostpopularhashtags.TheTwit-
tertrendingtopicdetectionapplicationisthecaseofabig-data
scenariocharacterizedbythe‘‘velocity’’,astweetsaresmallpieces
ofdata(140characters),butareproducedatahighrate.Inallthese
casestheresponsehastomeetapplicationdeadlines.Furthermore,
inmanycasesbig-dataapplicationsrequirementsarecomplexand
maydemandthecoexistenceofseveralquality-of-servicerestric-
tionsonasinglebig-dataapplication.

Thecommondenominatorinalltheseapplicationsisthatthey
maybenefitfromtechniquesincludedinreal-timesystemstoin-
creasethepredictabilityoftheinfrastructureandalsoreducethe
numberofrequiredresources.Thesetypesoftechniquesarewell
known[19]and maybeintegratedintothecomputationalinfras-
tructurestohavefine-grainedcontrolonthenumberof machines
usedbyanapplicationandindetermininganexecutiontimeline
forapplicationswithdifferenttypesofquality.

Mostpopularframeworkslike HadoopandStorm werede-
signedforthegeneralpurposedomainandareinefficientforreal-
timeapplicationdevelopment.Theyprovidesimple models with
minimumparametersthatenablesimpleformsofparallelcompu-
tation,relyingonthe map/reduceandstreamprogramming mod-
els.Theydonotexplicitlyassigndifferentpartsoftheapplication
todifferentphysicalnodes,whichistypicallyrequiredinreal-time
applications.Theyalsolackthenotionofschedulingparameters
enforcedindifferentcomputationalnodes.Intheircurrentforms,
bothtechnologiesareinefficientwhenworst-caseanalysisisused
todeterminetheworst-casecomputationtimes.Fortunately,both
technologies mayincreasetheirpredictabilitybyintegratingpre-
dictablecomputational models withintheircores.Butalthough
somestepshavebeentakeninincreasingpredictabilityinbig-data
infrastructures[20],therearestillsomeimportantpendingissues
inthepathtowardscommercialimplementations.

Inthiscontext,the maingoalofthisarticleistoincreasethe
predictabilityofthestreamprocessing model,in whichStormis
inspired,includingreal-timecapabilities.Theapproachfollowsthe
guidingprinciplesthatinspiredreal-timeJava[21,22],keeping
backwardcompatibilitywithplainStorm,allowingplainandpre-
dictablecoexistenceinasinglemachine.Thus,thereal-timeStorm
isabletoruntraditionalandreal-timeapplicationsinthesame
computingcluster(seeFig.1).

ThemainimprovementinthepredictabilityofStorminthisar-
ticleisthecharacterizationofthestreamsofStormasreal-time
entitiesthatcanbescheduledusingexistingreal-timescheduling
theory.Thischaracterizationallowsreasoningaboutthecharacter-
isticsofareal-timeapplicationintermsofdeadlines,anddeter-
miningthenumberof machinesrequiredforitsimplementation.

Therestofthearticleisorganizedasfollows.Section2ex-
ploresothersimilarframeworksandtheirrelationships withthe
real-timestreamprocessingmodelfromtheperspectiveofgeneral
purposeandreal-timesystems.Section3definesasimplecompu-
tationalmodelforreal-timestreamprocessing,whichismappedto
theStormframeworklaterinSection4.Section5showsanappli-
cationdevelopedwiththisnewinfrastructure.Section6provides
Fig.1. Aframeworkforreal-timebig-datastreamprocessing.

practicalevidenceontheperformanceone mayexpectfromthis
typeofinfrastructure,showinghowtodeducethedeadlinesofthe
applicationsfromtheirreal-timecharacterization.LastlySection7
highlightsthe maincontributionsandour mostrelatedongoing
work.

2. Relatedwork

2.1.Streamprocessingtechnology

Processing high-volumestreams withlow-latency hastra-
ditionallyrequiredthe developmentofad-hocsolutions[23].
Usually,thesesolutionsareexpensivetoimplement, difficult
to maintainandaretailoredtoparticularapplicationscenarios,
whichlimittheirreusability[24].Toaddresstheselimitations
andsupportthedevelopmentofstreamprocessingapplications,
severalproposalsofStreamProcessingEngines(likeAurora[25],
STREAM[26],Borealis[27],IBM’sStreamProcessingCore[28],and
SEEP[29])appearedinthestate-of-the-art.

However,theemergenceofnewapplicationscenarios,likehigh
frequencytrading,socialnetworkcontentanalysis,sensor-based
monitoringandcontrolapplications,andotherlow-latencybig-
dataapplications,hasgreatlyincreasedthedemandsonthiskind
ofstreamprocessingplatforms.Asindicatedin[30–32],thereisa
demandofgeneral-purpose,highlyscalablestreamcomputingso-
lutionsthatcanquicklyprocessvastamountsofdata.

Takingthisintoaccount,itisnotsurprisingtofindinthere-
centstate-of-theartseveralproposalsforlow-latencybig-data
streamprocessingsystems,likeS4(SimpleScalableStreamingSys-
tem)[13],Storm[33],orSparkStreaming[34,35],someofthem
backedbyimportantInternetcompanieslikeYahoo(S4)orTwit-
ter(Storm).Thesesystemsaredesignedasgeneral-purposeplat-
formsthatcanberunonclustersofcommodityhardware.Using
specificprogramminginterfaces,developerscanimplementscal-
ablestreamprocessingapplicationsontopofthem,takingadvan-
tageofthefunctionalitiesprovidedbytheplatform:information
distribution,cluster management,orfault-tolerance.

Allthese majorapproacheshavebeendesigned withthegen-
eralpurposeperformancein mindanddonotprovidefacilities
forreal-timeperformance,likeincreasedarchitectureawareness,
low-levelaccessfacilities,anddeadlinecharacterization.However,
mostofthem maybeeasilyextendedvianewprogrammingin-
terfacesdevelopedtoincreasetheirscalabilityandfaulttolerance.
Forinstance,Stormprocessorincludesthepluggablescheduler
conceptthat maybeextendedtoincludedifferentscheduling
policies[36]increasingadaptability.Similararchitecturalbenefits
havebeenexploitedinthisarticletopintheexecutiongraphsof
thestreamstospecific machinesofacluster.

2.2.Real-timesupportforstreamprocessing

Big-datainfrastructureslikeHadoopandStormlackefficient
implementationstorun multipleconcurrentreal-timeapplica-
tionswithdifferentquality-of-servicerequirements,becausethey
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were developed for general purpose applications (17). This prob­
lem is general and impacts in a number of aspects ranging 
from high leve! development models to the low-level program­
ming infrastructures. To address this problem, sone authors have 
explored the computational model of Hadoop and proposed 
scheduling models for map-reduce applications that run in clus­
ters [20,37,38,14). Most of them advocate or the inclusion of 
rate-based and deadline-based scheduling into general computing 
clusters. This way, these authors have addressed sone ofthe limi­
tations arising from using a general purpose inrastructure or de­
veloping of real-time systems because general purpose scheduling 
policies are not optima! for real-time. 
However, the map-reduce programming model is not the main 

paradigm used in stream processing infrastructures. For instance, 
the architecture of S4 is inspired by the actor's model. In S4, com­
putation is perormed by a set of Processing Elements (PEs ), which 
interact only through messages ( events ). In the case of Storm, ap­
plications are structured in topologies. These topologies are di­
rect acyclic graphs that combine two different types of processing 
nodes: spouts (stream sources) and bolts (which carry out single­
step stream transformations ). Spark Streaming is based on the con­
cept of D-Streams (Discretized Streams) (8), a processing model 
that consists of dividing the total computation to be carried out 
into a series of stateless, deterministic micro-batch computations 
on small time intervals. These batches are run in Spark in an in­
memory cluster computing framework The rest of this work is fo­
cused in Storm, one of the most popular solutions or sub-second 
perormance, which currently has not integrated real-time perfor­
mance in its core. 

3.Real-time stream model

The proposed model is partially inspired by the transactional 
model designed for distributed real-time Java [39) that has been 
adapted to the distributed stream model of Storm [ 13), as shown 
later in Section 4. lt is also compliant with the definition of dis­
tributed stream included in (40). 
According to [40) a stream is "a continuous flux sequence of 

data or items" that arrives to a logical node and typically pro­
duces an output. This definition resembles the characterization of 
sone real-time applications with input data that produce an out­
put within a maximum deadline (41). This type of analogy sug­
gests that the models used in real-time computing may be merged 
with the model of stream processors to produce a more predictable 
computational model. 
In the real-time context, a real-time stream is defined as a con­

tinuous sequence of data or items whose processing has sone real­
time requirements like a deadline rom the input to the output. 

3.1. Stream model 

LetA e an application and let us assume that an application is 
composed of a set of parallel streams (S¡): 

def 
A Sn)- (1) 

With each stream (S¡) characterized by its period (T¡), deadline 
(D¡), and a direct acyclic execution graph (DAG¡) that models the 
computations that have to be carried out in each activation (in 
charge of processing data from the lux) of the stream: 

def 
S¡ (T¡, D¡, DAG¡). (2) 

Following the model used for most real-time systems, let usas­
sume that three diferent activation patterns may be defined or a 
stream (Fig. 2), namely periodic, sporadic, and aperiodic. 
Steam 

Seam (S
¡
) 

DAGI 1 

DAG, 

Periodic release pattem. This type of pattern refers to diferent 
equidistant periodic activations. In such a way that the time among 
two consecutive activations in the stream (t[s' trs+!) has the fol­
lowing activation pattern: 

T¡ (tr
s+i -trs) or ali res in [O, +in!). (3) 

Sporadic pattern. This ype of pattern is characterized by a 
mínimum inter-arrival time ymin (mínimum time etween two 
successive activations): 

(4) 

Aperiodic pattem: In this case, there is not a mínimum inter­
arrival time for the different activations of a stream, i.e.: 

� Tt
i
n OITt'º � (trs+i -tre for ali res in [O, +in!). (5) 

From the point of view of the real-time systems scheduling the­
ory [ 41 J periodic and sporadic patterns are simpler than aperiodic 
patterns to analyze. 
In the real-time stream model each stream defines a global 

deadline (D¡). lt may be equal (T¡ D;) less or equal to D;) or 
larger (T¡ � D;) than the period. Diferent techniques ofthe state­
of-the-art are mapped [41) to each different case to compute ap­
plication response times. T¡ D¡ is rom the point of view of the 
diferent scheduling models the most beneicia! situation with ef­
ficient online admission control tests [41). 
The last part of the model of the stream requires dealing with 

time taken for the execution of the acyclic graph and its structure. 
We assumed this time is bounded by This maximum cost is 
a typical constraint in real-time sporadic and periodic invocation 
patterns. The direct acyclic graph is described as a distributed 
application that consists of a set of sequential (-+) and parallel ( 11) 

stages (�). In addition, each stage (�) ofthe DAG¡ has a maximum 

computational cost denoted by 
Fig. 3 shows details of the execution graph or a simple stream 

that consists offour different stages (stages(i) 4). lt also shows 
how these four stages are combined to produce an end-to-end 
execution model. Toe communication messages between the first 
and the second and the third stages are point-to-point, multicast, 
or any application deined policy. In case of Storm the application 
may decide among diferent policies for the communication. 
3



Fig.4. Simplecomputational model.

3.2.Computationalinfrastructure

The modelalsoincludesthecomputationalinfrastructure.As

showninFig.4,the modeldefinesacluster(Π)asasetofmiden-

ticalandinterconnectedcomputationalnodes:

Π
def
=(π1,...,πm). (6)

Eachnodehasadirectconnection withtheothernodesofthe
network.Inadditioneachnodehasaprioritydrivenpreemptive
schedulerthatrunsdifferentstagesofthestreams.

3.3.End-to-endresponsetimecomputations

Tobeabletoperformfeasibilityanalysis[42]asdefinedbythe

real-timeschedulingtheory,alldifferentsequentialandparallel

stagesofallstreams(Si)havetobeassignedtoaphysical machine

fromthecluster(π1..stages(i)
i inΠ).Inaddition,eachstagehastode-

finearelationshipwiththeunderlyinginfrastructurereflectedina

priority(Pj

i)forallstagesofallstreams(Si)intheapplication(A).

Si=















T1

i,...,T
stages(i)
i


,

Di,

C1

i,...,C
stages(i)
i


,


P1

i,...,P
stages(i)
i


,


π1

i,...,πstages(i)
i
















. (7)

Enforcingtheactivationofalldifferentstagesonanodethat
keepstheperiodicactivationpatternofthestream[42],one may

calculatelocalworst-caseresponsetimes(wcrtj

i)ineachnodeus-
ingstate-of-theartalgorithmslikeresponse-timeanalysis(RTA)

[42].Oncecalculatedtheworst-caseresponse-time(wcrtj

i)ofeach
stageinisolation,twodifferentcaseshavetobeconsideredrecur-
sivelytocalculatetheend-to-endcostoftheexecutiongraph.

First,givenasetofseq(i)sequentialstagestheirfinalcontribu-

tiontothetotalworst-caseresponsetimeiscalculatedbyadding

thepartialcontributionsgivenbyeachelement:

wcrt
seq(i)
i =

seq(i)

j=1

(wcrtj

i). (8)

Second,givenasetofpar(i)parallelstages,theirfinalcontri-

butiontothetotal worst-caseresponsetimeiscalculatedasthe

maximumofallpartialworstcases (wcrtj

i)foreachelementinthe

set,thatis:

wcrt
par(i)
i =max


wcrt

j

i


withjin1..par(i). (9)

Anothersetofresultsconnectsthe maximumnumberofcom-

putational machinesrequiredtoimplementadistributedsys-

tem[43,44]andtheutilizationofeachdifferenttaskofthesystem.

Amongthem,oneofthesesufficientbutnotnecessaryequations
connectstheutilizationofthedistributedsystem(Uapp)withthe

minimumnumberofnodes(m)requiredfromtheclusterasfol-

lows[30]:

Uapp=


∀i,j


C

j

i

T
j

i



<m·



Umax −max


C

j

i

T
j

i



. (10)

InthisinequationUmax referstothemaximumutilizationgiven
bytheschedulerandrangesfrom0to1.Assumingarate mono-
tonicsystem withharmonictasksandperiodsequaltodeadlines

(Tj

i = D
j

i)thisutilizationis1.0.Thelasttermoftheinequation

(i.e.,
C

j
i

T
j
i


)referstothe maximum wastedutilizationduetothe

fragmentationinthebin-packingalgorithmthatassignsstreamsto
thenodesofthecluster.Ourreal-timecharacterizationforstreams
mayusethesamecomputational modelbecauseitguaranteespe-
riodicactivationsinallsegmentsofallstreams.

The modelalsoassumesthatthereisa mechanismthatisable
toguaranteenetworkdelaysincommunicationsthatcanbede-
coupledfromtheend-to-endcosts.

4. Architecture

Theprevioussectionhassetfoundationsforareal-timestream
model,whereeachstreamisrepresentedbyadirectacyclicgraph.
Thisgeneral modeldoesnotobserveanyspecifictechnology.This
isthegoalofthissectionthatanalyzeshowtoextendStormto
makeitcompatiblewiththepreviouscomputational model.

4.1.IncreasingthepredictabilityofStorm

Asalayeredsoftwarestack,Storm maybenefitfromdifferent
optimizationsinallitslevels(Fig.5):

– OperatingSystem(OS).Atthislevelapredictableversionfor
Storm wouldbenefitfromhavingareal-timekernelincharge
ofenforcingthepoliciestypicallyusedinreal-timeapplications,
includingpreemptivescheduling,andpriorityinheritancepro-
tocols.

–Virtual Machine(VM).Inaddition,theuseofvirtual machines
offersaninterestingopportunity.Java’svirtual machine model
isusefultobridgethegapbetweenthereal-timeoperatingsys-
temandStorm.Inaddition,somemodernvirtualmachinessup-
portspecificationssuchastheReal-timeSpecificationforJava
(RTSJ)[22]toofferenhancedpredictability.

–TheStormframework.Thecomputationalinfrastructureof
Stormalsoincludessourcesofindeterminism.Thecurrent
modelofStormdoesnotsupportthedefinitionortheenforce-
mentofreal-timecharacteristicfordifferentstreams.Forin-
stance,itdoesnotprovideanefficientcontroltochoosein
whichofthedifferentnodesofthecluster,eachapplicationis
goingberun.

4.2.Integrationlevels

Applications mayidentifythreedifferentintegrationlevels
(Fig.6):

–Level0:Accesstoreal-timefacilitiesgivenbytheoperatingsys-
temandunderlyingvirtual machine.Thisincludes mechanism
tocontroltheprioritygiventotheexecutionofanapplication
andtheirphysicallocationintoaclusterof machines.

–Level 1: Newinterfacesforcontrollingresourceallocation
fromStorm.Atthislevel,theresourcesprovidedbythefirst
levelareaccessiblefromtheapplicationviaanAPI.The most
simplisticAPIwouldconsistofpredictableversionsofthetwo
mainbuildingblocksofStorm,namely SpoutandBolt.It
shouldinclude mechanismstodescribethedifferentreal-time
characteristicsofthestreams.

–Level2:Enhancedservices.Atthislevelthreedifferenttypesof
facilitieswouldbebeneficialforStorm:
4
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The first is a scheduler (Scheduler) in charge of selecting in 
which machine of the cluster each stage of an application is going 
to run. The interna! logic of the scheduler is compatible with the 
algorithms described in Section 3. 
The second mechanism is the Elasticity acility. A default 

elasticity model provides a static model in which the number 
of machines defined loes not change. Other models may define 
minimum and maximum bounds. 
The third module (FaultTolerance) is in charge of detecting 

and recovering the application from system failures. Diferent 
policies may coexist to express diferent strategies ar detecting 
a failure in a system of streams and speciying its corresponding 
recovey mechanism. 

In essence a Storm application has two main classes which 
are Spout and Bolt to build a direct acyclic graph with parallel 
and sequential steps. Typically, spouts are the sources of streamed 
events sent to other connected bolts. From the infrastructure point 
of view, they are active objects that are always running. Bolts rep­
resent event-driven objects invoked only when diferent events 
arrive at the nade. Both, the spout and bolt entities may send 
messages, which are packaged as tuples in a configuration struc­
ture called topoloy. 
Mimicking the same structure, the real-time version of Storm 

incorporates a predictability model shared by the bolts and 
spouts. This basic model consists of a single interface called 
Real timeEvent that contains the infarmation required by bolts 
and spouts. The basic infarmation consists of a priority, a cost. 
a minimum inter-arrival time valid ar periodic and sporadic ac­
tivations, and an error handler mechanism, that may be config­
ured via and operators (Fig. 7). The new classes are 
Real time Bol t and Real t imeSpout. Both classes are under the 
es. uc3m. it .rtstorm package hierarchy. 
The lifecycle of a real-time bolt and spout replicates the be­

havior of their plain counterparts. Both, the plain and real-time 
spouts are invoked by the infrastructure thread in a user-space 
via a nextTupleO method that generates the next tuple to be 
processed. In the case of the plain and real-time bolts, there is an 
execute(Tuple, BsicOutputCollector) methodwhichis 
invoked from an inrastructure thread whenever a new tuple far 
the object arrives. 
The main difference is the time instants and priorities used to 

invoke the diferent event processors. In the case of the real-time 
1 (R) Java Vlllul Mchina 

1 
(R) Oer1Ung 
Sya m 

i Level 1 

l(R) Java Vir1ul Maella 

l
(R)O -ng 
Sya1 m 

¡ 1 Prdl ale VM 
11 P dl

0
�be 1 

:.evel O 

Fig. 6. Real-rime services and inregrarion Jevels. 

Storm RTStorm 

+get/ HtCost 

+get/ ae IT 

Fig. 7. Relarionship berween che rratirional classes in Srorm and irs real-rime 
homologous. 

spouts, they are invoked in a periodic ashion with a period and 
priority preconigured. In the case of a real-time bolt, they are in­
voked when there is a new event far the bolt ensuring a minimum 
inter-arrival pattern. Fig. 8 shows the execution timelines far plain 
and real-time bolts and spouts. One may see how the underlying 
real-time framework controls the activation of spouts and bolts to 
ensure proper execution. 
The last class of the API refers to the management of the as­

signment of the different stages of a stream. Storm has a class 
(EvenScheduler) in charge of perarming global scheduling ac-
5
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tivities that may be used to perorm the dynamic adaptability 
required by the proposed architecture. This template uses the 
FixedPriori tyEvenScheduler interface to characterize dif­
ferent scheduling policies. 

5.llluscrative example

To show the proposed computational model, a simple appli­
cation was designed. lt is based on a producer-consumer stream 
application, with one entity running as a producer and two con­
sumers (Fig. 9). The producer outputs tuples which are taken by 
one of the two consumers in parallel; each stage operating in dif­
ferent data. Both the two consumers and producer are hosted on 
a Storm cluster. The application also defines a periodic activation 
pattern for the events of 100 ms at the producer and maximum 
execution times of 10 ms for producer and the consumers. Each 
diferent consumer runs in a different node. 

5.1. Computational model 

By using the computational model one may define the applica­
tion as a simple producer-consumer stream: 

Aprod-2cons (Sprod-2cons). ( 11) 

The application runs in a cluster with three computational re­
so urces, namely worker _ l, worker _2 and worker _3: 

lprod-2cons (rworker_l, rworkr.2, rworker_3)- (12) 

We may also characterize the direct graph that defines the 
unique stream as ollows: 

(.
rod 

II ( 
consl cons2 )) prod-2cons -* 5prod-2cons' 5prod-2cons · (13) 

To define the real-time system, we only need to assign a priority 
to ali stages of the stream: Pprd = pm x = Pcons-We also need to
assign a fixed machine to each stage of the stream. Combining ali 
these inormation, the resulting system is characterized as ollows: 
Storm cluster 

Sprd-2ros 

(

[Tprd = 100ms, rosl = 200ms, rns2 = 20ms]

) 
[Dp1-2ns = 100 ms] 

= (Cpd = 10ms, Cosl = 10ms, Cosl = 10ms] . (14) 
[P-d = p

mu, = pmu, Pos = p= ] 
[ 'workr1, 'orktr2, 'wrkr3] 

Assuming maximum costs and in absence of other applications 
in the cluster, the output is generated in less than 20 ms. This end­
to-end worst-case response time is calculated as follows: 10 ms 
Jor the producer + max(lO ms, 10 ms) Jor the parallel consumers,
taking into account the computational rules defined in Eqs. (8) and 
(9) and ignoring the communication overheads.

5.2. he application 

The listings included Figs. 10, 11, and 12 show the application 
from the perspective of the programming model. Fig. 10 includes 
the code in charge of generating new tu ples, Fig. 11 the code of the 
event consumer in charge of processing the tuple. astly, Fig. 12 
shows how the topoloy is built and how the new information is 
attached to this entity during the configuration of the topoloy. 
The application starts by running the producer in charge of gen­

erating tuples for the consumer (Fig. 10). To exhibit real-time per­
formance the application inherits from the Real timeSpout class 
(Fig. 10: line 01). The rest of the behavior of the spout is main­
tained; the infrastructure initializes the system by invoking open 
and finishes it with close methods of class. In addition, failures 
are notified in fil and violation methods, while successful 
notifications for the acknowledgments are sent back to the source 
by using the ack callback method. 
From the producer perspective, the platform invokes the 

nextTuple method each time it needs a new tu ple. The tuple is set 
with the emi t method and sends the informaion foward (Fig. 1 O: 
line 09) to the consumer. 
The consumer is implemented by extending the Real time 

Bolt class (Fig. 11: line 01). The most relevant method is 
execute, in charge of processing the tuple received from an ex­
terna( entity. In the example the processing (Fig. 11: lines 05-09) 
prints out the sentence sent from the producer. The example in­
eludes mechanisms to configure and declare the output types 
(Fig. 11: lines 02-04). In addition, there is a violation method 
invoked from the infrastructure in a case ofailure in the real-time 
runtime. 
In Storm, the links between the producer and the consumer are 

set in a special class in charge of linking sources of messages and 
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Fig.10. Producerinchargeofgeneratingthetupletotheconsumer.
Fig.11. Consumerinchargeofprocessingthetuple.
destinations.Inadditiontothistypeofsupport,theproposedap-
plication(Fig.12)requiresdefiningtheruntimepriorities,a min-
imuminter-arrivalamongevents,andthe maximumtimeofCPU
requiredfromtheruntime.

Thetopologystartsbyallocatingtheobjectsfortheproducer
andtwoconsumersinlines03–05.Oneachoneofthem,theappli-
cationdefinespriorities(lines06–08),inter-arrivals(lines09–11)
and maximumcosts(lines12–14)foreachobjectoftheapplica-
tion.Then,byusingthetopologybuilder,itallocatestheproducer,
thetwoconsumers,andconnectsthemviaashuffleGrouping
method.Inaddition,itcreatesaconfigurationclassinchargeof
definingspecificpropertiesandotherconfigurationparameters
oftheplatform(lines22–23).Lastly,theconfigurationinforma-
tionincludesthenameofthenodeinwhicheachdifferentobject
shouldberunning.Inthisparticularapplication,theproducerruns
onanodecalled‘‘Remote1’’,oneconsumerin‘‘Remote2’’,andan-
otherin‘‘Remote3’’.

Thelastpieceofcodereferstoassignmenttothephysicalclus-
terof machines.Stormincludestheconceptofpluggablesched-
ulersasa meanstocarryoutthis mapping(Fig.13).Thereisa
schedulemethodthat maybeoverriddenwithapplicationspe-
cificalgorithms.Inourparticularexample,itassignseachobjectto
nodewitha machineofthecluster(seeFig.13),whichiscompati-
blewiththeconfigurationparametersgiveninFig.12:lines22–27.

Toassignstagestodifferentclusters,theapplication mayusea
binpackingalgorithmthatassignsdifferentstagesofthestream
toaparticular machineofthecluster.Thesealgorithmsareap-
plicationdependentandarenotoptimal.Basedonaprevious
algorithmdesignedinthecontextofdistributedreal-timeJavaap-
plications[45]itissuggestedabinpackingalgorithm(Alg1.)that
assignsstagestoasetofcomputationalnodes.Thisalgorithmcal-

culatestheoccupationofeachnodeasthesumofallnodestocheck

ifthesystemisfeasibleornotanditiscompatiblewiththeutiliza-

tionboundincludedinEq.(10).

Alg.1.Defaultassignmentalgorithm

6.Empiricalevaluation

TheimplementationofStormhasbeenmodifiedtoincorporate

thereal-timespoutsandbolts.Ourcurrenttestingimplementation

isrt.0.1-9.2.Inaddition,atestinginfrastructureonalocalarea

network(seeTable1andFig.14) wasdeveloped.Followingthe

samestrategyofotherdistributedreal-timeJavainfrastructures

(e.g.[22])theevaluationoptsfora100 MbpsEthernetnetwork

tointerconnecttheirnodes.Inaddition,each machinehasseveral

coresthatofferlocalclusteringfacilities.
7



Fig.12. Topologydescriptionwithreal-timecharacterization.
Fig.13. Real-timeschedulerinchargeof mappingstagestophysical machines.
Severalapplicationshavebeendeveloped withthefollowing
goals:

–Toempiricallyevaluatetheoverheadintroducedbythecom-
municationsandserializationprotocols.

–Toempiricallyevaluatedifferencesbetweenlocalclustering
(i.e.,allprocessingstagesrunningonasingle multicore ma-
chine)andlocalareanetwork(LAN)cluster(withseveral ma-
chinesconnectedthroughIP).

–Toevaluatetheperformanceofreal-timeStormapplications.
Ourusecasestudyisbasedonananalyticsapplicationthatcal-
culatestrendingtopics.Thisapplicationisaconstrainedversion
oftheapplicationrunningonTwitteranditiscurrentlyavail-
ableinStorm.Inthetrendingtopicsapplication,theanalytic
referstothecodethatisinchargeofanalyzingthedata(tweets)
anditsoutputisthelistofthe mostrelevanttopics(hashtags).
Thegoalinalltheseevaluationsisto modelthetrendingtopic

applicationasareal-timestreamapplicationrunningonaclus-

ter.

6.1.Computationaloverheads

Forempiricalpurposes,overheadisdefinedasthetimetaken

forthetransmissionofdatafromonecomputationalnodetoan-

other.Thisoverheadisduetothedatatransmissiondelaysof

thenetworkandtheserializationprotocolsusedtotransfersuch

amountofdata.

Tocomputethisoverheadondistributedstreamprocessors,the

benchmarkpreviouslydescribedin[22]fordistributedreal-time

Java wasextended withthecharacteristicsofstreamprocessors.

The modifiedbenchmarkincludesoperationalfrequenciesfrom
8



lntrastructure 

1 Hz to 1 kHz or environments that emita variable number of mes­
sages (ranging from 1 to 8). lt also includes two ypes of application 
scenarios: one with small data sets that correspond to short strings, 
and another which is a large number of strings packed into a tu ple. 
To better characterize the behavior ofthe network, ali experiments 
have been executed in a local cluster orinan IP networked cluster. 
This type of configuration is useful to assess the performance 

of the distributed application in a networked environment. The re­
sults of the experiment for a local cluster are summarized in Fig. 15. 
Likewise, the networked counterpart results are shown in Fig. 16. 
In a local cluster (Fig. 15) the overhead or the communications 

is moderate, i.e. less than 20%, or applications running at 100 Hz 
that send a moderate, i.e. 1-2 messages per activation. This 
overhead reduces drastically as the frequency of the application 
decreases; or instance with 10 Hz the overhead due to the 
communications represents 10% of the available time. On the other 
hand the overhead is high, i.e. more than 80%, in applications 
with 0.5 kHz activation frequencies. This overhead increases as the 
number of messages increases. 
In general terms, a local area network (lAN) cluster increases 

the overhead of the applications because exchanged data have to 
be sent from one node to another. In our particular infrastructure, 
the cost in communications increased by a ixed actor that is in be­
tween five times and seven times the average cost of the commu­
nications in a local cluster. In addition, to the extra cost introduced 
by the serialization protocols, the system has to account that local 
clusters running in the same machine have mechanisms to avoid 
the data transmission overhead. 
The results on a lAN cluster (see Fig. 16) show how the over­

head increases as they are compared to their local cluster equiva­
lent (Fig. 15). In ali cases the time available or the application de­
creases. The lower overhead ( <20%) results in a local cluster run­
ning ata 100 Hz frequency is now closer to the 10 Hz frequency, 
reducing the amount of effective time available for the application. 
Likewise, the previous high overhead ranges ( >80%) also moved 
Comm. 
overhead 

• 80%-100% 

• 60%-80% 

•40%-60% 

• 20%-40% 

• 0%-20% 
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Stream deadlines (T=D) 

4 

2 

4 

2 

from the 500 Hz to the 50 Hz range, reducing the time available for 
the application. 
The evaluation results show that local clusters ofer an advance 

ranging from 5 to 7 times the cost of the networked cluster. Local 
clusters avoid the overhead in communication and serialization 
protocols. They also exploit the multi-core infrastructure offered 
by modern CPUs to provide eficient parallel computing platforms, 
which in the selected infrastructure consisted of two cores. 
The main bottleneck in this experiment is in the 100 Mbps net­

work, which may improve its performance with additional gigabit 
ethernet connections and optical fiber. In the particular case of the 
peformance of an optical connection, it would be in between the 
local multi-core cluster performance and the 100 Mb networked 
performance. 

6.2. Trending topics case study 

The irst part of the empirical section evaluated the overhead 
introduced by the Storm infrastructure on a distributed set-up. 
This overhead is crucial for determining the response time in dis­
tributed applications. Now, this inormation is complemented with 
the analysis of the results off e red by an application. 
The selected case study is a reduced version of the trending 

topic application running in Twitter, which is available or Storm 
in the following link [46). Toe goal was to choose a simple applica­
tion that could be developed with the proposed real-time stream 
model. The application calculates the list of the most popular hash­
tags in Twitter. Typically, the list is updated every two seconds [ 46) 
and potentially receives hashtags at an unbounded speed. 
The goal was to illustrate the benefits of the real-time stream 

model scheduling framework proposed in Section 3. In particular, 
this section shows how they can be used to analyze the relation­
ships among the properties of the cluster ( e.g. the numberof nodes) 
9
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Fig. 16. Verhead peñormance resulcs in a necworked lAN cluster. 

and the perormance of the system in terms of maximum input fre­
quency and application deadlines. Toe characterization of an ap­
plication as a real-time stream enables the possibility of reasoning 
about its real-time performance. 
In this particular set of experiments, the activation of each dif­

ferent bolt and spout has the following constraint: T = D, which 
enables the use of the constraint defined in Eq. ( 10) to calculate a 
safer bound or the number of nodes required to implement the 
system. 

The basic case study (Fig. 17) consists of two streams. In the 
irst stream there is a spout which extracts the hashtags from each 
tweet and outputs tu ples, each of them containing a hashtag. Two 
counter bolts receive the spout tu ples, and keep a sliding window 
counter or each hashtag. This counter indicates the number of 
times the hashtag has been received at the counter bol t. The tu ples 
provided as output by the counter bolts contain a table which as­
sociates hashtags with their respective counters, These tuples are 
received by an aggregator bolt. which aggregates the tables coming 
from the different counter bolts and generates a single output ta­
ble. The output of the aggregator is the input for the second stream, 
namely, ranker stream, which runs second and produces an 
ordered list with the top-ranked hashtags. 
In the evaluation of our approach we have used as data source 

an application that mi mies the behavior of the Twitter streaming 
API [46). To do so, we captured a trace of actual tweets (1 million) 
and stored it into a file. Later on, our application reads the file and 
produces a continuous (and potentially infinite) flow of data simu­
Iating Twitter's social network. This input data is then used to feed 
the real-time application running on top of Storm, with the goal of 
determining the worst-case computation times of each stage of the 
application. 
With this information, the application may be characterized as 

two real-time streams. Table 2 contains the characterization ofthe 
application costs of each of the stages that compose the applica­
tion described in Fig. 17. Toe application consists oftwo streams: 
the first is Scoumer in charge of calculating the number of times each 
hashtag has been mentioned in tweets. lt consists of three stages: 
source (spout), counter and aggregator (bolts). Toe second stream 
is in charge of running the trending topic calculations, which con­
sists of three stages: source processor, counter, and aggregator; 
and the second stream in charge of producing the inal ranking. 
The ranker has a 1 Hz frequeny and the counter stream has a vari­
able frequency, which depends on the rate at which the tweets are 
received at the input. In this evaluation, the minimum input fre­
quency should be 1 Hz. 
With the topology for the trending topic application described 

in Fig. 17 and Table 2 the maximum application deadlines may be 
determined. In this case, a safe utilization bound is used for the 
two streams to ensure that the global utilization is Iess than 100%. 
The deadline for the Sranker is always 1 s its period because it con­
sists of a unique stage. In the Scoumer stream, the end-to-end can 
be calculated adding the partial deadlines of the three elements; 
each segment contributes its maximum deadline and the end-to­
end deadline is three times the input period (Fig. 18). 
Using the real-time scheduling model and the theory associated 

to the model (see Section 3) one may derive a maximum input fre­
quency (see results in Fig. 19)which is never feasible in a single ma­
chine ifthe system is over 100%. The application has been deployed 
Fig. 17. Trending copies use case: basic configuracion. Daca encering wich a variable maximum frequency (nax). The characcerization or che application is shown in Table 2. 
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Table2 
Real-time characcerizacion r che crending copie use case applicacion. (T = D co be 
able co use che ucilization bounds descried in Eq. 

Cose (µ.s) 
Prioricy 

Max freq 
(Fmax). 

Oeadline 

Source Councer Agregacor Ranker 

138 

Inverse coche frequency r Che casks 

Daca Input freq (> Hz) Daca Oucpuc freq Hz) 

¡ = = 1/Ff s(T = D) 

Maximum dadllne 

Fig. 18. Maximum deadline ofS,ounre, scream for Fig. 17 serup when che frequency 
ar which che daca is receved changes. 

in the local cluster and in the LAN to calculate the maximum input 
frequency or the system. The most critical section (in terms of per­
formance) is the part in charge of processing the hashtags that come 
at high frequencies. The ranker takes less time because it runs at a 
very low frequency ( 1 Hz or less ). As in the previous case the local 
cluster outperforms the AN cluster; the local cluster may process 
data up to a maximum frequency empirically set in 1.25 kHz. This 
frequency reduces to 0.21 kHz in the networked environment due 
to the overhead of the serialization and communication protocols. 
According to the relationships expressed in Fig. 18, when the input 
frequency is 1.25 kHz the output has a maximum ounded delay of 
2.4 ms, whereas when the input frequency is 0.21 Hz the maximum 
delay is 12 ms. 
By using the facilities included in Storm, one may add the par­

allel units to increase the performance of the system, running 
topologies in parallel, and increasing the maximum frequency of 
operation of the trending topic application. In these scenarios the 
utilization of the system may be over 1.0, requiring multiple ma­
chines. 

6.2.2. Parallelizing input processing 
This experiment takes the basic trending topic detection appli­

cation, depicted in Fig. 17, and modifies the layout of the Sounrer 
stream by proposing a distributed altenative that divides the traf­
fic of the Internet into n different paths (see Fig. 20) that are pro­
cessed by independent spouts and bolts. In this scheme, the unique 
element, which is still receiving inormation from ali nodes, is the 
aggregator, which runs ata maximum frequency of the input data. 
This change in the topoloy also increases the maximum dead­

line of the application ecause the requency at which each counter 
receives its input is lower. In the case of a double input lux (n 2), 
the deadline of the Scounrer is ive times the input period and with 
four parallel inputs, it is nine times the input frequency. Fig. 21 
shows this relationship for two and four parallel inputs. 
This configuration increases the performance of the system, 

measured as the maximum input data requency to the system, 
in comparison with the previous coniguration (see Fig. 22). The 
results obtained for the utilization bound show how the maxi­
mum requency of input data may move from 0.2 to 0.47 kHz us­
ing a cluster with 16 machines. Likewise, the previous maximum 
1.25 kHz bound of the local cluster may be extended to a maximum 
of 2.7 kHz input if one admits multiple counters in the system. 
The results also show the main bottleneck of the solution, which is 
System Utilizatian 
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Fig. 19. Basic crending copie application utilizacion: lcal cluster vs. lAN cluster. 

the aggregator that receives inormation ata high speed frequency 
from ali luxes. 
Another analysis that may be carried out is the eficiency of 

the application. In the particular application, the eficiency of the 
system may be defined as the number of petitions (associated to 
tweets) that may be processed in a period of time divided by the 
number of resources (which may be cores of a local cluster or ma­
chines of a local area cluster). The higher this number is, the higher 
the eficiency of the application. 
In our particular case, the results (Fig. 23) show how peror­

mance is a concave function. The example also shows that the 
eficiency of the local cluster is higher than the eficiency of the 
networked cluster. 

6.2.3. Parallelizing the agregator 
The analysis of the trending to pie application showed the main 

bottleneck of the previous configuration: a single aggregator that 
receives ali trending topic information from ali parallel flows. One 
common solution to this problem is to use a multi-step aggregation 
output phase where the aggregation of inormation is carried out 
in different stages. 

Fig. 24 shows how to implementa double step aggregator in the 
trending topics application. This type of configuration reduces the 
maximum frequency of the messages that reach any of the aggre­
gators. 
This change in the topoloy increases the ratio among the input 

frequency and the deadline (Fig. 25). For the new version of the 
Scounrer stream two parallel inputs (n 2) the system has a 
maximum end-to-end deadline which is seven times the input 
11
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period. Likewise for our parallel inputs (n 4), the maximum 
deadline of the output is twelve times the input period. 
As a result of the double aggregation, the maximum operational 

frequency of the input data increases in local and networked 
clusters (see Fig. 26). In the local cluster, it increases the maximum 
data input frequency admissible from 2.7 to 5.4 kHz. In the 
networked cluster, the maximum data input frequency increases 
from 0.47 to 0.95 kHz. 
However, this increase in the maximum frequency also involves 

a more reduced eficiency because the application has an addi­
tional step that consumes additional resources (see Fig. 27). In this 
particular scenario, the demand of new resources reduces the peak 
of the cuve as the number of stages in the aggregation increases 
from one to two. 

vs. 
The last experiment is ocused on a simple use case that illus­

trates the benefits that can be obtained from the use of the real­
time version of Storm. To this end, let us introduce a system with 
4 16 64 256 1024 

- Local Cluster - Networked Cluster 

4096 

0.6 

0.1 

two simple streams (see Fig. 28 and Table 3), one of them with real­
time requirements and another heavy stream (with 0.5 utilization) 
but without real-time constraints. Assuming that two streams are 
using the same machine and the system does not include the tech­
niques like those described or real-time Storm, then the worst­
case response time or the real-time stream is 0.6 ms (because its 
worst-case response time has to include the heavy node computa­
tion). Using the real-time facilities and assigning a lower priority 
to the stream with no deadline (the heavy stream), then the higher 
priority stream sees the system in isolation and its response time 
changes to 0.1 ms. 

7.

Current big-data applications can improve their predictabil­
ity by integrating techniques derived from the real-time domain 
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within their infrastructures. This article has analyzed the integra­
tion of traditional scheduling techniques into a popular stream 
processor named Storm. The integration has addressed changes 
in the architecture of Storm and new APls; it also modeled the 
streams as real-time entities that may be running in a cluster of 
machines. Toe identification of stream processors as distributed 
applications has opened the door to the use of common-of-the­
shelf scheduling mechanism to guarantee end-to-end predictabil­
ity, typically used in other distributed real-time infrastructures. lt 
also provides a backwards compatible infrastructure for real-time 
Storm where plain and real-time streams may coexist. The empiri­
cal evaluation carried out also illustrated the performance one may 
expect from these infrastructures and illustrated how the schedul­
ing theory can be used to calculate deadlines in Storm applications. 

Our ongoing work is ocused on expanding the model to other 
scenarios, including industrial applications, next generation inor­
mation systems and business intelligence scenarios like those de­
scribed in [47). We also plan to address other big-data processing 
infrastructures, like those using optical-fiber networks in combi­
nation with the message passing interface (MPI) technoloy 
and map-reduce (49-51). 
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