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Abstract

This bacherlor thesis proposes a new paradigm to discover biomarkers capable

of characterizing obsessive-compulsive disorder (OCD) by means of machine

learning methods. These biomarkers, named neuromarkers, will be obtained

through the analysis of sets of magnetic resonance images of the brains of

OCD patients and healthy control subjects.

The design of the neuromarkers stems from a method for the automatic

discovery of clusters of voxels, distributed in separate brain regions, rele-

vant to OCD. This method was recently published by Dr. Emilio Parrado

Hernández, Dr. Vanessa Gómez Verdejo and Dr. Manel Mart́ınez Ramón.

With these clusters as a starting point, we will define the neuromarkers as

a set of measurements describing features of these individual regions. Then

we will perform a selection of these neuromarkers, using state of the art

feature selection techniques, to arrive at a reduced, relevant and intuitive

set.

The results will be sent to Dr. Carles Soriano Mas at the Bellvitge Uni-

versity Hospital in Barcelona, Spain. His feedback will be used to determine

the efficacy of our neuromarkers and their usefulness for psychiatric analysis.

The main goal of the project is to come up with a set of neuromarkers for

OCD characterisation that are easy to interpret and handle by the psychiatric

community.

A paper presenting the methods and results described in this bachelor

thesis, of which the student is the main author, has been submitted and ac-

cepted for presentation in the 2014 European Congress of Machine Learning

(ECML/PKDD 2014). The ECML reported a 23.8% paper acceptance rate

for 2014.
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Chapter 1

Introduction

1.1 Problem description

In some areas of medicine it is quite common to find punctuation systems

that allow for state evaluation and patient diagnosis. For instance APACHE

II (Acute Physiology and Chronic Health Evaluation) [30] is one of the most

widely used score-based systems to quantify the seriousness of critical pa-

tient’s state by means of 12 factors or routine physiological measures (blood

pressure, body temperature, heart rate, etc.). Other important score-based

systems are the Ranson criterion, which predicts the severity of acute pan-

creatitis [44], the Glasgow scale [27], used to measure a person’s conscience

level, or the SAPS II index (Simplified Acute Physiology Score) [32] which,

as the APACHE II index, estimates the severity of a patient’s state. It has

been shown that the adequate use of these scores provides a better char-

acterisation of the illness and helps researchers analyse the success of new

therapies and compare their effectiveness in different hospitals.

However, psychiatry lacks direct and objective indicators of the subject’s

physiological state for the diagnosis of a certain pathology or its evolution

analysis [39]. To this end, psychiatrists usually use the Diagnostic and Sta-

tistical Manual of Mental Disorders [13], which provides a classification of

mental illnesses along with descriptions of the diagnostic categories based on

the patient’s medical history and the disorders they may show.
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Chapter 1. Introduction

Over the past few years, neuroanatomical and neurofunctional analysis

have become common practise in the evaluation of certain mental conditions

by means of Magnetic Resonance Imaging (MRI), both structural (sMRI) or

functional (fMRI), aimed at the study of pathologies and the detection of

structural brain anomalies that cause them [11] [51]. For this purpose, dif-

ferent techniques have been proposed in the literature, such as “voxel based

morphometry” (VBM) [4], enabling the analysis of structural abnormalities

in the brain (see Chapter 2), or the “General Linear Model” [1], which es-

tablishes a mathematical model to either analyse sMRI data or obtain the

functional response of the brain in fMRI studies.

These research lines have laid the basis for the re-evaluation of previ-

ous neuroanatomical hypotheses that were considered to be associated with

certain disorders and the proposal of new models with a sound biological

foundation. However, in some occasions these results have not been cor-

rectly translated to the clinical practise [39]. As a result, there has been a

growing interest in the application of other analysis strategies, such as ma-

chine learning methods, since they are able to describe differences between

patient and control groups and to obtain mathematical models that allow dis-

cerning between them [33]. The possibility exists that these methods might

lead to the establishment of a diagnosis paradigm similar to the score-based

systems described above. This would be highly desirable for the psychiatric

community.

Machine learning techniques have positioned themselves as some of the

most promising options to extract relevant information from neuroimaging

data through statistical learning methods. These approaches are mainly

characterised by being able to automatically learn a model of data from a

collection of examples, which in many occasions can enable the detection

of information and data relationships that would otherwise be hidden from

the eyes of an expert. For this reason, machine learning methods are being

successfully used in data based diagnosis in many fields of medicine. For

instance, they are being used in the classification of tissue-cells, the segmen-

tation of retinopathy, the detection of breast-cancer or auricular arrhythmia,

just to name a few.
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Chapter 1. Introduction

Furthermore, the multivariate nature of these techniques, as well as their

ability to extract the greatest amount of available information possible when

the number of data is limited, has favoured the widespread use of machine

learning tools in neuroimaging analysis [41] and the diagnosis from the infor-

mation provided by this type of data [29]. This is particularly relevant to our

study since our data is composed of a limited amount of sMRI brain scans.

So far, scientific production in relation to neuroimaging and machine learning

methods has followed a path in which the psychiatric community provides

MRI data from an experiment designed to study the brain, and the machine

learning community directly applies standard techniques. Because of this, we

can find many examples of the application of machine learning approaches

to magnetic resonance experiments, such as brain mapping from fMRI data

sequences [54], temporal fMRI series analysis [31] or brain state decoding [25]

[35]. Clinical applications can also be found, in which the goal is to detect a

particular mental illness, such as Alzheimer’s disease [53], schizophrenia [12]

or obsessive compulsive disorder [47] [40].

Obssesive-compulsive disroder (OCD) is an anxiety disorder that is char-

acterised by recurring intrusive thoughts that induce uneasiness, fear, ap-

prehension or worry as well as repetitive behaviours that are manifested as

an attempt to reduce such thoughts. It has significant consequences in the

patient’s life as the symptoms can be alienating and time-consuming. Its

impact can be noticed in the patient’s familial, social and professional rela-

tionships. It is a chronic psychiatric disorder that affects 2% of the world’s

population [40].

Prevailing neurobiological models of OCD are based in part on quite solid

neuroanatomical findings accumulated over the course of the past years by

means of the analysis of structural magnetic resonance imaging (sMRI) data.

These findings point to neuroanatomical anomalies that could be associated

with the presence and developement of the disease [43]. This makes sMRI

brain scans of OCD afflicted patients a perfect candidate for our research.

10
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1.2 Goals and motivations

The vast majority of methods proposed in the literature using machine learn-

ing with MRI data focus on analysing differences between patient and control

groups. These methods provide a decision on the class to which each MRI

belongs in the form of a probability value or a binary value (patient/control),

further proving that the images contain relevant information for the diagno-

sis. In the best cases these studies also provide a subset of voxels or regions

that characterize the pathology, which can indicate the psychiatrist or neu-

rologist that a particular region of the brain presents structural or functional

differences between healthy and ill subjects. However, given the isolated

analysis of these regions in an MRI scan from a single patient, the psychia-

trist or neurologist is unable to determine whether the subject is ill or not:

the discrimination pattern provided by the classifier comprises, together with

these regions and groups, a series of mathematical relations between them

that are not directly manageable and are practically impossible to interpret

in most cases.

Furthermore, there is an added difficulty in the fact that the available

MRI data usually comes from different health centres that employ different

magnetic resonance technologies, especially when it comes to the intensity

of the magnetic field, producing varying resolution characteristics in the re-

sulting images. On top of this, the image acquisition methods may present

differences (for instance, different acquisition sequences like EPI, MEPI or

PEPSI) or different space-time bandwidths. For these reasons, studies based

merely on voxel or region selection, like VBM, are hard to extrapolate directly

from one health centre to another, making it very difficult to find a practical

use for them. The cumbersomeness and lack of clarity of the data together

with the lack of invariance in the measurement equipment are the main fac-

tors that have kept machine learning techniques from being incorporated as

practical tools in clinical psychiatry.

The goal of this thesis is to establish a framework for MRI studies using

machine learning techniques in such a way that it can eliminate the aforemen-

tioned obstacles, making it easier to incorporate machine learning in clinical
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Chapter 1. Introduction

psychiatry. To this end we propose a set of models that go beyond the mere

classification between healthy and ill subjects and are capable of automati-

cally discovering a set of neural biomarkers, which we will call neuromarkers,

that are useful in characterising different mental disorders from the analysis

of an MRI brain scan.

A neuromarker is a biomarker that must somehow quantify a neuro-

anatomical characteristic associated with a pathology. It must also present

the following properties:

• Dependence on the subject’s endophenotype, such that its values will

vary with the pathology subtype and will thus allow the subtype’s

identification.

• Different values for a given neuromaker must indicate different evolu-

tions of a pathology in different patients, enabling its use in prognosis.

• Patients with different neuromarkers will present varied responses to

different medications, making the neuromarkers useful in the prescrip-

tion process.

• Neuromarkers won’t be stationary and will possibly vary with time,

which will be an indicator of the patient’s evolution.

For these reasons, neuromarkers will be useful in diagnosing, characterising,

stratifying, prognosis, prescription and overseeing of a pathology.

With this study we aim to propose a new paradigm to discover neuromar-

kers capable of characterizing OCD. These biomarkers, named neuromarkers,

will be obtained through the automatic analysis of sets of MRI brain scans

of OCD patients and control subjects. In order for these neuromarkers to

have penetration in clinical psychiatry, they will have to be interpretable and

manageable.

The design of these neuromarkers stems from a method for the automatic

discovery of clusters of voxels relevant to OCD recently proposed in [40].

With these regions as a starting point, we will first define several candidates

to become neuromarkers, that is, we will propose a set of measurements

describing features of these individual regions.

12
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In order to obtain a reduced subset of neuromarkers for OCD characterisa-

tion, we will apply different selection strategies to remove irrelevant features.

This will result in a small set of neuromarkers that is easy to interpret and

handle by the psychiatric community.

Experiments will analyse the suitability of each subset of neuromarker

candidates, as well as the different selection strategies, showing that we can

produce a subset of no more than 50 useful neuromarkers maintaining the

original performance in terms of classification error.

1.3 The structure of this thesis

This thesis deals with the application of a series of machine learning tech-

niques on data obtained from structural MRI brain scans. Chapter 2 provides

a description of the methods employed to obtain the data. It also introduces

the basic notions on machine learning needed to understand the processes

that we have designed.

Since our work follows on from the previous research by Doctors Emilio

Parrado Hernández, Vanessa Gómez Verdejo and Manel Mart́ınez Ramón,

presented in [40], Chapter 3 provides a description of the methods they pre-

sented and the implications of their work in the context of our study. Their

discoveries and results are the starting point for our research.

Chapter 4 describes in detail the methods designed to obtain a series

of useful neuromarkers for OCD characterisation. The first section of this

chapter reviews the situation of the problem at this stage. The second section

describes the neuromarker types that we have designed. The third section

describes the selection methods that we employed to verify the relevance of

our neuromarkers.

Chapter 5 presents the results of the experiments. It first analyses the

performance of our neuromarkers in classifying healthy people and OCD af-

flicted patients. It then provides a visual representation of our neuromarkers

inside the brain, analysing the significance of the brain regions that have

been discovered by providing feedback from the medical community.

The conclusions to this thesis are presented in Chapter 6. Chapter 7
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Chapter 1. Introduction

provides a planning and budgetary study for the project.

Figure 1.1 illustrates the whole process, from the initial extraction of

the MRI brain scans to the final extraction of relevant neuromarkers and

their analysis. It brings context to all the different methods that have been

employed throughout the entire research project and can be used as a visual

road-map to follow the process as it is described by the text.
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Figure 1.1: Flowchart describing the process described in this thesis.
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Chapter 2

The current State of the Art

This chapter introduces some of the most important technologies and tech-

niques that are currently being used in the fields of neural imaging and

diagnosis, as well as the machine learning (ML) concepts that are relevant

to this thesis.

The first section describes the process of structural magnetic resonance

imaging, providing a brief description of how it works and the physical prin-

ciples it is based on. It then gives a brief review on voxel based morphometry,

a popular neuroimaging technique used to locate variations in brain anatomy.

The second section introduces the concept of ML and the basic notions

needed to understand the processes and techniques that have been used

throughout the project. It gives a few examples of simple ML scenarios

and explains the reasoning behind the specific methods and algorithms that

are described in Chapters 3, 4 and 5.

The third section describes the support vector machine classifier, one of

the most popular ML methods and the one we use in this study.

2.1 Brain structure visualisation

The current diagnosis methods for OCD employ manuals such as the afore-

mentioned Diagnostic and Statistical Manual of Mental Disorders [13]. These

manuals establish the procedures to be followed in order to diagnose the dis-
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order. Diagnosis based on psychotherapy and pharmacological treatment

are the usual lines of action to keep a patient from relapsing. On the other

hand, research based on neuroimaging techniques has been made to achieve a

deeper understanding of the disorder. The techniques range from structural

neuroimaging, such as structural magnetic resonance imaging (sMRI) [5] or

computed tomography of the brain (brain CT) [48], to functional neuroimag-

ing, such as functional magnetic resonance imaging (fMRI) [10] and positron

emission tomography (PET) [38]. These studies seem to indicate that the

origin of the disorder could lie in genetic causes as well as brain anomalies

and alterations.

Since the goal of this thesis is to find a series of descriptors of brain

regions that are relevant to OCD, we will start with solid neurobiological

models that are based on sMRI analysis of healthy and ill subjects.

2.1.1 Structural MRI

SMRI is a relatively new technique that has been used for medical diagnosis

since the 1980s [45]. It employs powerful magnetic fields and radio waves

so there is no exposure to harmful ionizing radiation forms such as X-rays.

This is precisely it’s main advantage: it provides a non invasive body imag-

ing method that allows for live analysis. MRI has proven to be efficient in

obtaining information on the structure and composition of the body under

study. For this reason it is used in a variety of scenarios such as neuroimaging,

cardiovascular imaging or musculoskeletal imaging.

The basic operation principle of an sMRI scanner makes use of the mag-

netic alignment of the hydrogen nuclei (protons) present in the water molecules

of the human body. The body is introduced in a strong magnetic field that

produces an alignment of the magnetic moments of the protons. A radio field

that oscillates at an appropriate frequency is then generated, inducing the

emission of a radio-frequency electromagnetic flux by the protons as they go

in and out of their magnetic equilibrium state. This flux is then detected

by receiver coils that generate a voltage signal that is in turn processed

into an image. The orientation of the image can be modified by varying

17
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the main magnetic field. Since the protons in different types of tissue re-

turn to their equilibrium state at different rates, structure and composition

can be analysed through the intensity differences, or contrast, in the im-

ages. Additionally, contrast agents may be introduced intravenously, orally

or intra-articularly to further accentuate these structural differences.

A standard sMRI scanner is composed of the following elements:

• A powerful magnet that generates the main magnetic field. Typical

clinical-use magnets are super-conducting and cooled by liquid-helium.

• Adjusting “shimming” coils that make sure the magnetic field is stable

and homogeneous.

• Gradient coils used to spatially encode the positions of protons by vary-

ing the magnetic field across the imaging volume.

• A radio-frequency (RF) system consisting of an emitter subsystem and

a receiver subsystem. The emitter is comprised of an RF synthesiser,

a power amplifier and a transmission coil. The receiver consists of a

receiver coil, a pre-amplifier and a signal processing system. The output

of this processing system will be the object of study for this thesis.

The end result is a 3-D image of the brain composed of volumetric pixels

or voxels. A voxel is simply the elemental volume unit in a three-dimensional

image, equivalent to a pixel in a two-dimensional image. In fact, the word

voxel is a combination of the words “volume” and “pixel”. A voxel contains

graphical information associated with a single point in three dimensional

space (see Figure 2.1).
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Figure 2.1: Representation of a sphere constructed from volumetric pixels or
voxels. Each cube is a voxel containing graphical information.

Each of these voxels represents a numerical value generated by the MRI

device’s software based on the adjustable input parameters fed to the ma-

chine. This information is related to the density of the tissue present in that

point in space. We can analyse structural variations in the tissue by observ-

ing density variations from voxel to voxel. A typical 3-D representation of a

brain obtained with an MRI device can be seen in Figure 2.2 whereas figure

2.3 shows a transversal cut of an MRI brain scan in which three tissue types

have been identified from their density.
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Figure 2.2: Representation of a brain using 3-D graphical information con-
tained in voxels obtained from an MRI device.

Figure 2.3: Transversal cut of a brain MRI showing segmentation of grey
matter, white matter and cerebrospinal fluid.
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2.1.2 Voxel-Based Morphometry

Voxel-based morphometry (VBM) [4] is a neuroimaging analysis technique

designed to study focal differences in brain structure, using statistical para-

metric mapping. Traditionally, morphometry measures the volume of the

brain or any of its parts by designing regions of interest (ROIs) on brain

scans and calculating the enclosed volume. However, this process is complex

and time consuming. Furthermore, it is relatively inaccurate, making it un-

suitable for measuring the volumes of anything but the largest brain areas,

with small volumetric differences going unnoticed.

On the other hand, VBM in it’s simplest form involves a voxel-wise com-

parison of the local concentration of gray matter between groups of subjects.

It starts with a spatial normalization of all the brain images in the study

into a brain template. It then segments grey matter from the normalised im-

ages and applied a smoothing process. Then a series of voxel-wise statistical

tests are performed, comparing the grey matter from brains that belong to

different groups.

Various VBM studies have been performed searching for different brain

functions. In one study, London taxicab drivers were shown to posses a larger

than average hippocampus, suggesting a relationship between this particular

brain region and spatial awareness and navigation [34]. Another paper [19]

used VBM to study the effect of age on grey matter, white matter and cere-

brospinal fluid. The study showed that grey matter decreased linearly with

age, especially for men, whereas white matter remained roughly constant.

The goal of this thesis is very different from what VBM accomplishes.

VBM limits itself to a voxel-wise statistical analysis of structural differences

that may be related to a pathology. Our proposition aims at directly relating

the presence of OCD to differences in very specific brain regions of patients

and healthy people. We also wish to provide a formal representation of these

regions so that the difficult and abstract chore of interpreting tens of thou-

sands of voxels is replaced with the analysis of a few, simple neuromarkers

that specifically characterise OCD.
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2.2 Machine Learning

ML is a branch of the field of artificial intelligence that is concerned with the

construction and study of systems that can learn from data. In 1959 Arthur

Samuel defined ML as a “field of study that gives computers the ability to

learn without being explicitly programmed”. In other words, a ML system

should be able to perform a certain task without having been told how to

do it but rather how to learn to perform the task from experience. This

leads us to the more formal definition provided by Tom M. Mitchell: “A

computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in

T, as measured by P, improves with experience E” [37]. This means that a

ML system needs to be initially provided with a set of data that will give it

experience in performing a desired task. The performance in the realisation

of the task will need to somehow be measured in order to tune the learning

method and improve the system’s capabilities.

Since a ML algorithm depends on the initial training set with which it

is provided, and since this set will always be only a sample of the data that

is relevant to a task, the algorithm’s goal will be to generalise as well as

possible. Generalisation is defined in this case as the ability of the algorithm

to perform accurately on new, previously unseen data that, being of the

same type and statistical nature, has not been used in the initial learning or

training set. In this sense, the measurement of the performance of a learning

system must be done on a test set that must always be composed of different

samples of relevant data from those of the training set.

It follows that the learning process must begin with the system generating

a model from the training set using a ML algorithm. It must then measure

the accuracy of the model on a test set that is completely separate from the

training set.

An example of this process would be a program that is tasked with the

prediction of house prices. In a ML scenario an idea for the first step would be

to provide the program with a set of houses paired with their known prices.

The houses must be defined for the program through one or more relevant
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Figure 2.4: Housing prices example. The blue line is a linear model that fits
the data.

features. In this example we will use a house’s size as the defining feature.

The training set would thus be comprised of a number of houses of different

sizes for whom the prices are know. The program would then use this set to

generate a model that adequately fits the training data. The simplest model

in this example would be a linear function of the form y = w0+w1x where y is

the price of the house, x is the house’s size and w0 and w1 are the parameters

of the model used to fit the function to the training data. Next, the houses

in the test set would be fed to the model, which would in turn predict a price

for each house. It is important to note that the prices of the test houses are

not fed to the model, only their sizes. We would then compare the predicted

prices with the real ones. The accuracy of the prediction will be our measure

of the performance of the system. Figure 2.4 illustrates this example.
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2.2.1 Supervised learning and classification problems

The above example illustrates the most simple process that a ML system

can follow: it first trains with the training data and then tests its accuracy

with the test data. One noteworthy aspect of the example however is the

nature of the data that was used: houses were paired with their prices. In

other words, the input for the system was a house’s size and the output was

its predicted price. In order to learn how to perform the prediction, the

algorithm needed to train on a training set that provided it with house sizes

and their corresponding prices. It then created a model that allowed it to

predict the price of a new house given its size. This is an example of what is

called supervised learning.

In supervised learning each individual subject of data always consists of a

pair: the input object comprised of the set of features that defines a subject;

and its corresponding label, defined by its desired output. The task is then

to predict the label of a new subject given its set of features. In the house

pricing example the only feature is a house’s size and the label is its price. In

this case the labels take continuous values, but there are other cases in which

the labels take discrete values. An example of this would be the separation of

benign or malignant tumours according to their volume. In this case the task

would be to find a classification model that separated benign and malignant

tumours as accurately as possible given their volume.

When the supervised learning task deals with discrete labels we call it

a classification task. The subjects can fall into a series of separate classes

and it is the algorithm’s duty to define a model that will accurately predict

whether a new subject belongs to one class or the other. Tasks that present

only two possible classes are called binary classification tasks. There are other

situations in which a subject can fall into one of a series of different classes,

like for example classifying digital images of galaxies into elliptical, spiral,

lenticular or irregular galaxies [16]. Figure 2.5 illustrates a classification

example in which tumours are described by both their volume and tissue

density and are labelled as “malignant” or “benign”. The blue line is a

classifier model. New tumours that fall to the left of the line will be classified
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Figure 2.5: Binary classification of benign and malignant tumours according
to their volume and tissue density.

as benign, whereas those that fall to the right of the line will be classified as

malignant.

There are other cases in which the data is not specifically labelled. All we

have is a mass of raw data and we need to find some structure within it that

can help us describe it. This is called unsupervised learning. Since we don’t

have a labelling pattern we can’t devise an error or reward signal to evaluate

a potential solution. What we can do is find relationships between subjects

that produce structured groupings or clusters in the data. These techniques

are currently being used in many applications such as genome sequencing

and gene function definition [28].

In the case of this project we are dealing with a binary classification

task: do the MRIs belong to healthy or to OCD afflicted subjects? As

will be further described in Chapter 3, we start with a collection of MRI
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scans belonging to control subjects which are known to be healthy and OCD

patients which have been positively diagnosed with the illness. It is thus a

supervised binary classification learning problem.

2.2.2 Avoiding data overfitting

When designing a machine learning system, it is of vital importance that the

training data set and the testing data set are composed of different samples

of the relevant data type. The reason behind this imposition is that one

can always design a model that perfectly fits the data. In the house prices

example, one could easily arrive at a model like the one presented in Figure

2.6 by using a non linear function of the variables that is forced to adapt

very well to the training samples. If we then use the training data to test

our error rate the result will be very satisfactory since our non linear model

predicts the price of each house in the training set very well. But is this not a

realistic prediction model. The truth is that if we used such a model on new

houses to predict their price the results would be very poor. The error rate

we obtained is constrained to a very small sample of the enormous amount

of possible houses one can find in the real world. Our model is therefore

unable to generalise well when it comes to dealing with reality. This is what

is known as data overfitting.

Generally speaking, whenever we see that a predictor obtains a very low

training error rate but performs badly when tested on new data we are very

probably overfitting our training data. In some scenarios overfitting is very

difficult to avoid. Specifically, whenever a problem presents a very small

number of available training samples with a very large number of defining

features, there will be a very high risk of overfitting. This is known as the

small sample problem and it is very important in the case of this study. The

methods described in Chapter 3 deal with strategies to alleviate its impact.

Another instance in which overfitting can appear is when a specific learn-

ing strategy presents a control parameter (or set of control parameters) that

can be varied to modify its behaviour and performance. These parameters

can range from modifiable constants inherent to the mathematical formula-
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Figure 2.6: Housing prices example. The blue line is a non-linear model that
overfits the training data.

tion of the ML method, to the number of variables we use in training, or the

number of performed iterations of an algorithm.

Any situation in which a control parameter is modified and tested is prone

to produce overfitting unless we are very careful with what data we use to

perform the tests. If we test the parameter against the training data we will

be optimizing it so that it performs well with the training set but, again, it

will not necessarily generalise well to the test set. In this case a validation

process must be performed. To validate a parameter we must obtain a sepa-

rate validation set by, for example, obtaining new data, splitting the original

training set into a smaller training set and a validation set or employing

other validation strategies such as cross-validation, K-fold validation, etc.

The precise validation process that was employed during the development of

this thesis is described in Chapter 5.
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2.2.3 Feature selection

When attempting to solve a classification problem by means of machine learn-

ing methods, a common obstacle that researchers encounter is the large num-

ber of input variables that the data presents. In the field of MRI studies, the

number of available subjects is generally very small compared to the number

of variables, in the form of voxels. Chapter 3 explains how this issue is dealt

with in the particular case of this study.

But having too many variables presents difficulties beyond the small sam-

ple problem, depending on the nature of the case: it often complicates the

visualization and understanding of the data, it increases measurement and

storage requirements and it increases training and utilisation times. Feature

selection strategies aim at finding the subset of features that is most relevant

and informative. In many cases, a data set will present redundant or irrel-

evant features that do not provide information useful towards classification

and are therefore no more than noise [23].

The most often used feature selection strategies fall into three main cat-

egories, presented here in order of complexity [22]:

• Filters: Filters use relevance measurements to analyse how useful each

individual feature is. The selection of features is thus independent from

the classification task and happens as a preprocessing stage prior to the

training stage. Relevance criteria can be combined with search algo-

rithms to produce subsets of variables. The criteria can also be directly

used to produce a ranked list of variables. Two of the most commonly

used search algorithms are forward search and backward search. Back-

ward search algorithms start by evaluating the relevance criterion with

all the features, and then proceed to eliminate the least relevant fea-

tures one at a time in decreasing order of relevant. Forward search

algorithms on the other hand start with a single feature, the one found

to be individually most relevant, and add one feature at a time on each

iteration according to its relevance in decreasing order. Both forward

and backward search algorithms provided nested subsets of variables,

with each subset providing higher relevance than the next. Chapter 4
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Figure 2.7: Filter selection method.

presents specific descriptions of how these two search algorithms were

used in our study. Figure 2.7 illustrates the basic idea behind a filter.

Filters are computationally light and therefore tend to be fast.

• Wrappers: Wrappers use ML to select relevant feature subsets. They

train a classification model with different feature subsets and produce

a ranking based on the classification error obtained with each one.

The fact that they work alongside the classifier allows them to obtain

feedback from the classification output. A wrapper needs to define a

search algorithm. While exhaustive search methods can be used with

small data sets, the problem quickly becomes computationally very

intensive [2]. Also, exhaustive selection of variables is prone to produce

overfitting of the training data since the method tends to pick those

features that produce good results with a given training set, but not

necessarily in a more general scenario. This can again be alleviated

by the use of forward or backward search algorithms, as well as other

search methods. In the case of our study, the use of a wrapper method

even in combination with a backward search algorithm proved to be

too computationally intensive. Figure 2.8 depicts a wrapper method

that implements a backward search algorithm.

• Embedded methods: Embedded methods are algorithms that are

directly integrated into the classification task. Feature selection is ap-

plied alongside the classification task, selecting those features that seem

to improve performance. Since they are embedded in the classifier,

their nature depends on the specific classification method used. The

recursive feature elimination algorithm described in Chapter 4 is an

example of an embedded selection method. These methods tend to

fall in between filters and wrappers as far as computational intensity
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is concerned. They are also less prone to overfitting than wrapper

methods.

Figure 2.8: Wrapper selection method.

As was stated in Chapter 1, the goal of this thesis is to offer a collec-

tion of biomarkers that is easy to use and interpret. To this end, various

filters and one embedded method have been used in the selection of relevant

neuromarkers once these have been defined (see Chapters 4 and 5).

2.3 The Support Vector Machine classifier

Classification models divide the feature space into disjoint regions assigned

to class labels [23]. To this end numerous classifying models have been de-

vised and applied with success over the years. Good examples are logistic

regression [26], neural networks [7], the K nearest neighbours algorithm [15],
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decision trees [42], random forests [9] or gradient boosting algorithms [17].

However, out of all the available classification strategies, perhaps the most

widely used, and the initial go-to choice, when one is presented with a dif-

ficult classification problem is the support vector machine (SVM) classifier

[49].

The basic mathematical idea for SVMs was initially presented in the Gen-

eralized Portrait algorithm by V. Vapnik and A. Lerner in the nineteen-sixties

while they were working at AT&T Laboratories. In 1979, Vapnik wrote the

book Estimation of dependences based on empirical data, translated to en-

glish in 1982 [52]. In this book, apart from setting the foundation for the

statistical theory of learning and generalisation, he introduced a generalisa-

tion of the Generalised Portrait algorithm that would end up being developed

into the SVM classifier. In 1992 B. Boser, I. Guyon and Vapnik published A

training algorithm for optimal margin classifiers [8] in which a formal defi-

nition of the SVM was established. Later developments like C. Cortes’ and

Vapnik’s Support-vector networks [14] propelled the SVM to its current pop-

ularity by providing at least an equal level of performance to other state of

the art techniques such as neural networks.

2.3.1 The linearly separable case

Initially, SVMs were conceived to classify data belonging to two classes that

were linearly separable. This means that a “gap” exists between the data of

the two classes such that they can be perfectly separable by a single hyper-

plane of the form:

w · x− b = 0, (2.1)

where w is the weight vector normal to the hyperplane and b is the bias term

where b
||w|| determines the offset of the hyperplane from the origin along w.

It can be easily seen that in the case of a linearly separable problem there is

an infinite number of hyperplanes that satisfy the classification requirements

(see Figure 2.9).

In the case of an SVM, we are looking to maximize the distance between

the hyperplane and the nearest point of any class. This distance is called the
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Figure 2.9: A linearly separable two dimensional case: the coloured lines
represent some of the infinite hyperplanes that correctly separate the data.

functional margin. It can be generally stated that the larger this margin is,

the better the classifier will generalise. This margin can be found by selecting

two hyperplanes that separate the data and then maximizing the distance

(the margin) between them. The two hyperplanes are defined by

w · x− b = 1 (2.2)

and

w · x− b = −1. (2.3)

The margin between the two hyperplanes is geometrically defined as 2
||w|| . It

follows that in order to maximize this margin we need to minimize ||w||.
Equations (2.2) and (2.3) can be rewritten to prevent data points from
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falling into the margin as:

w · xm − b ≥ 1, when ym = 1 (2.4)

and

w · xm − b ≤ −1, when ym = −1. (2.5)

where xm is a subject in the training set and ym is its corresponding label.

In this case, the classification problem is to minimise ||w||.
The optimisation problem is simplified by substituting ||w|| with 1

2
||w||2.

This substitution leaves the solution intact and eliminates the square root

operation implicit in ||w||. The constrained optimisation problem is thus

formulated by:

arg min(w,b)
1
2
||w||2 (2.6)

st. ym(w · xm − b) ≥ 1 for m = 1 . . .M

where the constriction is the unified expression of (2.4) and (2.5).

2.3.2 The non-linearly separable case: soft margin SVMs

Since there are many classification problems where the training data is not

linearly separable (the distributions of both classes overlap), the SVM needs

to be modified. The solution in this case implies finding a hyperplane that

makes as few classification mistakes as possible while still maximizing the

margin between the hyperplane and the nearest cleanly classified data. This

soft margin method introduces non-negative slack variables, ξm, which mea-

sure the degree of misclassification or error penalty for each xm.

In this case, the equivalent to (2.6) with introduction of the error variables

is:
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Figure 2.10: Classification margin of an SVM in a linearly separable case.

arg min(w,ξ,b)

{
1
2
||w||2 + C

∑M
m=1 ξm

}
(2.7)

st. ym(w · xm − b) ≥ 1− ξm for m = 1 . . .M

ξm ≥ 0 for m = 1 . . .M

Non zero ξm are penalised and the optimisation problem is now a trade-

off between maximizing the margin and minimizing the error penalty. C is

a parameter that regulates the trade-off between margin maximisation and

error minimisation.

Both the linearly separable and the non-linearly separable cases can be

solved by using Lagrange multipliers. In the case of the non-linearly separable
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Figure 2.11: A non-linearly separable case solved using a soft margin SVM.

problem, the formulation using the Lagrange multipliers αm and βm is as

follows:

arg min
(w,ξ,b)

max
(α,β)

{
1

2
||w||2 + C

M∑
m=1

ξm −
M∑
m=1

αm[ym(w · xm − b)− 1 + ξm]

−
M∑
m=1

βmξm

}
(2.8)

where the goal is to find the saddle point that minimizes 1
2
||w||2 and ξm and

maximizes αm and βm, for m = 1 . . .M . It is important to note that all the

points for which ym(w ·xm− b)− 1 > 0 do not affect the solution since their

corresponding αm will be set to zero.
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The solution can now be expressed as a linear combination of the training

vectors:

w =
M∑
m=1

αmymxm, (2.9)

where only a few of the αm will be greater than zero. These correspond to

the samples that satisfy ym(w ·xm−b) = 1, meaning that they reside exactly

on the maximum margin. These samples are called the support vectors. In

Figures 2.10 and 2.11 we can see that the two hyperplanes w · x− b = 1 and

w ·x−b = −1 rest on just a few of the training samples: the support vectors.

The classifier hyperplane, w · x− b = 0, lies exactly in between.

The binary classification estimation function for a new subject x can now

be defined as follows:

ŷ(x) = sign

(
M∑
m=1

αmym(xmx) + b

)
(2.10)
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Previous work: a review on disco-

vering brain regions

This chapter is a review on the work of doctors Emilio Parrado Hernández,

Vanessa Gómez Verdejo and Manel Mart́ınez Ramón, in collaboration with

medical personnel of the Bellvitge University Hospital, Barcelona (Spain).

Specifically, it goes over the key aspects of the paper “Discovering brain

regions relevant to obsessive-compulsive disorder identification through bag-

ging and transduction” [40], published in 2014 in the Medical Image Analysis

journal.

This bachelor thesis stems from this work and is a continuation of the

efforts made by the research team to find a solution to OCD characterisation

through ML techniques.

3.1 Initial data description and preprocessing

Eighty-six outpatients with OCD (44 males; mean ± SD age, 34.23 ± 9.25

years) were recruited from the outpatient service of the Department of Psy-

chiatry of the Bellvitge University Hospital. Diagnosis was confirmed by two

senior psychiatrists through separate interviews, held one month apart, using

the Structured Clinical Interview for DSM-IV Axis I Disorders (First et al.,

1997). All the patients had experienced OCD symptoms for at least one year
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prior to the assessment and none of the patients met criteria for Tourette

syndrome, psychotic disorder or psychoactive drug abuse/dependence. The

presence or past history of any neurological or serious medical condition, in

addition to the presence of any sign of abnormality in the MRI scan, were

also regarded as exclusion criteria. Comorbid major depression and anxiety

disorders were not considered to be exclusion criteria provided that OCD

was the primary diagnosis.

A group of 86 healthy control subjects from the same sociodemographical

environment was also recruited. Control subjects were selected according to

the same exclusion criteria and did not differ from the patient group in age

or gender distribution (43 males; mean ± SD age, 33.47± 9.94 years).

The brain images were acquired with a 1.5 Tesla Sigma Excite system

(General Electric, Milwaukee, Wsiconsin) equipped with an eight channel

phased-array head coil. A high T1-weighted anatomical image was ob-

tained for each subject using a 3-dimensional, fast spoiled gradient inversion-

recovery prepared sequence with 130 contiguous slices (TR = 11.8 ms; TE =

4.2 ms; flip angle = 15º; field of view = 30 cm; 256× 256 pixel matrix; slice

thickness = 1.2 mm).

The notation that will be followed from now on throughout this thesis

(unless stated otherwise) is defined as follows:

• X is the data matrix of size M ×D containing all subjects.

• M is the total number of subjects in our data, both patients and con-

trols.

• D is the total number of voxels per subject.

• Each row of X is a vector, xm, of size D that describes subject m

through its D voxels.

• Vector y is the label vector containing the labels for all the subjects.

Control subjects are labelled as y = −1 while patients are labelled as

y = 1.
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An important consideration needs to be made when working with sets of

sMRI brain scans: the analysis of each individual image is performed under

the assumption that its voxels are localised in the same anatomical regions

as in the rest of the images. Since no two brains are alike, a certain standard-

isation of the brain scans needs to be performed before this assumption can

be made. Thus, several pre-processing stages need to be applied to each and

every image. These techniques are commonplace in MRI analysis processes

such as VBM, and usually include a tissue segmentation stage, an image

normalisation stage to a common anatomical template and a final image

smoothing stage. The exact processes that were applied in this case are:

• Segmentation: The first stage is to segment the image, dividing the

brain into the various types of tissue it’s composed of. This transfor-

mation simplifies image analysis and interpretation. Segmentation is

achieved by estimating the probability that each voxel contains matter

of one tissue type or another. Since each voxel represents the density

of the tissue it contains, and the densities of each tissue type follow

known Gaussian probability distributions, the probability that a voxel

contains one type of tissue or another can be obtained by comparing

its value to the different tissue density distributions. In our case we are

interested in the probability that a voxel contains grey matter.

• Normalisation: The second and most important stage is a normalisa-

tion of all the brain images. This is key, since all the experiment’s data

must belong to the same variable space. Normalisation must adjust the

anatomy of each subject’s brain to a standardised brain template, like

the “MNI brain”, without incurring in any significant distortion. In

this case, the data was processed using the DARTEL approach, which

applies a series of non linear transformations that adapt each image

to a common framework [3]. Additionally, the Jacobian determinants

derived from this spatial transformation were used to modulate the im-

age voxel values and restore the volumetric information lost during the

normalisation process.

• Spatial smoothing: Spatial smoothing is the final stage of pre-processing.
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In this stage the image is filtered using a 4 mm full-width at half-

maximum (FWHM) Gaussian kernel. This process is useful since it

cleans the image of noise and simplifies statistical analysis.

3.2 Finding relevant voxels

The above preprocessing method provides a series of grey matter segments

producing a vector of positive coordinates associated with the probability

that the corresponding voxel is composed of grey matter. Due to the fact

that in our problem the number of input variables (of the order of 105 voxels)

is far greater than the number of subjects (a total of 172) independently of

the label assigned to each subject (see Section 2.2 for a description of the

small sample problem), statistical learning theory principles dictate that the

problem is fully separable by a linear classifier.

A linear classifier implements a discriminant function of the following

form:

ŷ(x) = sign(wTx + b) = sign

(
D∑
d=1

wdxd + b

)
, (3.1)

where w = [w1, . . . , wD]T and b are the weight vector and the bias term,

respectively.

Since voxel grey-matter probability is always positive, a linear classifier

allows for a straight forward interpretation of the role that each voxel plays in

the classification process by analysing the value of its corresponding element

in the weight vector. Each voxel can be classified into one of the following

groups in accordance with its subject’s label:

1. A voxel whose wd takes a relatively high negative value will likely be

indicative that x is a healthy subject.

2. A voxel whose wd takes a relatively high positive value will likely be

indicative that x is an OCD patient.

3. A voxel whose wd takes a negligible or zero value indicates that it is

not relevant to estimating the correct label of x.
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It follows that a simple voxel selection process would keep the voxels that

fall under the first two categories and discard the voxels that fall under the

third category.

3.2.1 Bagged Support Vector Machines for voxel selection

The first natural choice for a linear classifier is a soft-margin linear SVM.

Recalling what was stated in Section 2.2, in a soft -margin SVM w and p are

calculated by solving the optimization problem:

arg min(w,ξ,b)

{
1
2
||w||2 + C

∑M
m=1 ξm

}
(3.2)

st. ym(w · xm − b) ≥ 1− ξm for m = 1 . . .M

st. ξm ≥ 0 for m = 1 . . .M

The starplots method proposed in [6] uses an interesting approach in order

to achieve good generalisation in problems with sparse training data. In this

method, an ensemble of diverse linear classifiers is constructed. Then the

voxels that present consistent weight patterns over the classifier pool can be

determined as relevant to the classification task. This ensemble is constructed

on the basis of bagging classifiers. The bagging classifier approach picks

a subset of L subjects from the training data set at random and without

replacement. It then trains the classifier and calculates the weight vector,

w. It repeats this process S times where S is the number of classifiers in the

ensemble, each time storing the classifier’s weight vector. It then checks the

sign-consistency of the voxels over the classifiers in the ensemble and groups

them into the following categories:

1. The voxels with wd taking a positive value in r% of the classifiers.

2. The voxels with wd taking a negative value in r% of the classifiers.

3. The voxels that do not show the sign-consistency needed to fall into

either of the other two groups.
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The consistency threshold r must be properly validated.

Figure 3.1: Flow chart depicting the SVM bagging process. M is the total
number of subjects. L is the number of subjects in each classifier. S is the
size of the classifier ensemble. V is the subset of voxels that have been found
to be relevant.

Once the bagging process concludes, only the voxels that fall into the first

two categories are considered to be relevant to OCD characterisation since

they consistently show up as aligned with the classification process. Figure
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3.1 illustrates the SVM Bagging process.

3.2.2 Transductive refinement of the voxel selection

Due to the extreme nature of the small sample problem presented by our

data, it is very difficult to determine which of those voxels selected by the

bagging process are truly related to OCD and which are being selected simply

because they are capable of separating a particular brain from the others,

regardless of whether its label is positive or negative.

In order to deal with this problem the techniques of transductive learning

and conformal analysis offer a series of ideas and strategies that can prove to

be very helpful towards variable selection. The basic idea behind transductive

learning is that forcing labels of test subjects to be positive or negative

(regardless of what their original label was) and then training the classifier

can provide us with information as to whether certain variables consistently

help the classifier perform its task or, by contrast, they are highly dependant

on the initial labelling of the subjects.

Applying this idea to OCD characterisation, the team developed the fol-

lowing refinement to the SVM bagging strategy. The process starts with the

selection of a single test subject from the data set, xtest. The SVM bagging

process will then be performed twice, with the label for xtest being forced to

be positive in the first iteration and negative in the second. This will give us

two sets of relevant voxels:

• V+ is the set obtained in the bagging process that had xtest labelled as

positive.

• V− is the set obtained in the bagging process that had xtest labelled as

negative.

The final selection of voxels will be the intersection between V+ and V−.

The intuition behind this reasoning is that voxels that appear in one of

the two subsets, but not in the intersection, are highly dependant on the

particular labelling of xtest but are not necessarily relevant to OCD. This

could be due to factors that have nothing to do with the disease such as
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Figure 3.2: Flow chart depicting the T-BS process.

gender, age, etc. Figure 3.2 illustrates the transductive refinement of SVM

bagging (T-BS).

This process is repeated once for each subject in the test set. This pro-

vides a different subset of voxels for each test subject. A classifier is then

trained and tested with each of the subsets and the test errors are averaged,

resulting in a global classification error.

3.3 Initial results and conclusions

After the experiments were performed, the empirical results showed that

the T-BS process is very effective at selecting a set of approximately 43.000
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voxels that are strongly related to OCD. However, this set of voxels is by itself

not particularly helpful in clinical applications since clinicians characterize

diseases in terms of region-wise features. For this reason a clustering process

of interconected voxels was applied, resulting in an average of 718±40 groups.

In order to check whether or not the detected regions were reliable, the

classification accuracy of the T-BS approach was compared to the accuracy

of two other base-line variable selection approaches: mass-univariate voxel

selection and recursive feature elimination [23]. The classification error of

these methods ranges between 32% and 37%. The advantages of the T-BS

method became obvious when it was observed that it obtained a classification

error of 26.2%.

To summarize this chapter, the T-BS method applied to voxel selection

led to the identification of a large set of OCD related brain alterations. After

the connected voxels are adequately clustered, these alterations can be char-

acterised in terms of region wise features of clinical relevance. Furthermore,

the transductive refinement greatly improved the control of the small sam-

ple problem. However, the classification accuracy is still too low for clinical

purposes. Also, the resulting data is still too abstract in nature to be easily

managed by the psychiatric community. Some transformation of the data

needs to be performed in order to achieve a more meaningful interpretation

of these 43.000 voxels. The following chapters will introduce and experi-

ment with various ideas aimed at constructing a set of biomarkers and thus

achieving this goal.
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Building and selecting

Neuromarkers

This chapter presents a formal description of the bulk of the work that has

been performed during the development of this thesis.

It begins with a revision of the relationship between the investigation

and its medical usefulness at this point. It illustrates the necessity to process

the data into a reduced and useful set of features in the form of neuromar-

kers. It then proceeds with a definition of the different ideas that we have

implemented in order to find these neuromarkers. Finally, it deals with the

description of the feature selection methods that have been developed to fur-

ther reduce the set of relevant neuromarkers that is most clinically-friendly

and interpretable by the psychiatric community.

4.1 Motivations and goals

There is no doubt that the process described in the previous chapter is in-

valuably useful. It must be noted that the initial dimension of the data set

was of the order of 500.000 variables in the form of voxels. This meant that

the dimensionality of the data was three orders of magnitude greater than the

number of subjects we had to work with. After the voxel selection process,

we are left with around 43.000 voxels that are relevant to OCD characteri-
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sation. Not only is this reduction of one order of magnitude substantial, but

the classification error also rate dropped from around 40% when using all the

voxels to just over 26% after the T-BS process. However, despite the useful-

ness of the aforementioned process, the obtained subset of voxels presents an

unfriendly characterisation of the OCD pathology, since its huge size is still

unmanageable and difficult to understand for the clinical community. It is

almost impossible to relate the value of each individual voxel with the brain

deformity or dystrophy which may be related to the disorder.

However, we can exploit the grouped distribution of these voxels, the 718

brain regions on average described at the end of Chapter 3, to define a set of

measurements which are able to represent the relevant information of these

brain regions in a friendly manner. Due to the fact that these measurements

must be useful for disease characterisation, we will denote them as neural

biomarkers, or simply neuromarkers, as per the definition of a biomarker

presented in Chapter 1. Section 4.2 of this chapter describes the methods

that have been applied to the data in pursuit of valuable neuromarkers.

Once the neuromarkers have been constructed, the goal will be to ve-

rify whether they are all relevant to the task of OCD characterisation or

whether some of them can be ruled out. This would reduce the number of

features even more, simplifying the problem and leaving us with a much more

manageable set of neuromarkers. In order to measure the relevance of our

neuromarkers we have implemented a series of feature selection algorithms,

described in Section 4.3.

The verification of the validity of these processes will be performed through

validation, as will be described in Chapter 5. It is important to stress once

again that our goal now is not necessarily to improve the classification er-

ror, but rather to arrive at a small set of useful features that adequately

characterise an OCD afflicted brain. We even consider that a small increase

in the classification error is an acceptable trade-off if it implies an impor-

tant reduction of features that makes the data more intuitive and easy to

interpret.
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4.2 Building Neuromarkers

First we will devise a series of methods to define different types of neuromar-

kers. Each voxel of an MRI scan is characterized by its grey matter probabil-

ity. We have grouped the relevant voxels in a subset of 718 brain regions on

average over all the subjects, with each region noted by Sg, g = 1, . . . , G. We

can now characterize the grey matter probability of these regions with some

measurements or data transformations that we will define as neuromarkers.

After a series of trials, we have arrived at four different types of measure-

ments that can be used as neromarkers for OCD characterisation, providing

a single parameter for each brain region that represents the entirety of the

voxels it comprises. The methods used to construct these neuromarkers are

described in the following subsections.

The validity of each of these four neuromarkers will be tested in Chapter

5. It is important to note that each of these four types of neuromarker acts

independently from the others and that the task will be to discern which one

is better suited to the task of OCD characterisation.

4.2.1 Average of grey matter probability

This first, most basic, measurement directly obtains a single parameter for

subject xm over each brain region Sg by averaging the gray matter probability

values of the voxels that belong to it. We will refer to this neuromarker as

the AV neuromarker from now on:

AV(g)
m =

1

|Sg|
∑
i∈Sg

xm,i (4.1)

where AV(g)
m is the AV neuromarker for region Sg and subject xm, and |Sg| is

the number of voxels in brain region g.

This neuromarker can be understood as a representation of the surface

area of each brain region.
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4.2.2 Accumulated grey matter probability

Another interesting parameter can be obtained by summing the values of all

the voxels of subject xm belonging to each region Sg. We will refer to this

neuromarker as the ACC neuromarker from now on, given by:

ACC(g)
m =

∑
i∈Sg

xm,i (4.2)

where ACC(g)
m is the ACC neuromarker for region Sg and subject xm, and

|Sg| is the number of voxels in brain region g.

Note that, unlike AV markers, this marker is not dividing by the brain

region size. Therefore, it can be interpreted as a representation of the volume

of each brain region.

4.2.3 Variance of grey matter probability

Here, we consider the variance of the voxel gray matter probability to rep-

resent each brain region. The idea of this neuromarker is that evaluating

variances in grey matter density might help to characterise OCD by locating

strong variations or dystrophies in the brain’s structure. We will refer to this

neuromarker as the VAR neuromarker from now on. Each VAR neuromarker

for subject xm and region Sg is computed as:

VAR(g)
m =

1

|Sg|
∑
i∈Sg

(xm,i − AV(g)
m )2 (4.3)

where AV(g)
m is the AV neuromarker for xm and brain region Sg.

4.2.4 SVM weighted grey matter probability

Finally, we can use the information provided by the linear SVM classifier to

extract the relevant information of each brain region. We use the weights

computed during the SVM training phase as a representation of each voxel in

the same way that the classifier uses them to separate controls from patients.
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As was seen in Chapter 2, a linear SVM classifier applied over the overall

set of selected voxels S computes the output for a sample x as:

f(x) =
∑
i∈S

wixi + b (4.4)

If we split the index set S into the different brain regions (S = S1 ∪
S2 . . . ∪ SG), (4.4) can be rewritten as:

f(x) =
G∑
g=1

∑
i∈Sg

wixi + b (4.5)

and each term of the inner summation would be summarizing the information

of each region. We can now define the SVM weighted grey matter proba-

bility neuromarker for subject xm and region Sg, which we will call the WE

neuromarker, as:

WE(g)
m =

∑
i∈Sg

wixm,i (4.6)

4.3 Neuromarker selection

The definition of these four types of neuromarkers gave us a much more in-

tuitive set of features to work with. Instead of 43.000 voxels we now have,

on average, 718 neuromarkers of four different types per subject. Further-

more, each neuromarker successfully represents a relatively large region of

the brain, some of which are easily identifiable by psychiatrists as relevant,

pathology related areas.

However, as was explained in Chapter 2, the process of feature selection

can yield important benefits in terms not only of performance and gener-

alization, but also in terms of ease of interpretation. For these reasons we

decided to apply several feature selection algorithms to the neuromarkers de-

fined above with the intention of arriving at a set of markers that is reduced

and manageable enough to be useful to the psychiatric community.

After building the neuromarkers, a series of modifications to our notation
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is required. The data matrix X now contains all the subjects, each one

described by neuromarkers instead of voxels. D is thus no longer the total

number of voxels, but the total number of neuromarkers. Also, the vector

representing the values of the dth neuromarker (out of the total D) across

all the M subjects will be represented as n(i), where n(i) =
[
n
(i)
1 , n

(i)
2 . . . n

(i)
M

]
.

4.3.1 Variance based ranking

A quick glance over the neuromarker values reveals that some of them are

constant over all subjects, regardless of whether they are patients or controls.

This indicates that they will probably not be useful when discriminating

patients from controls, therefore being irrelevant to OCD characterisation

Therefore, a simple criterion to remove this redundancy is to apply a filtering

process, ranking the neuromarkers according to their variance.

In this sense, the assumption is made that those neuromarkers that

present a greater variance must be more relevant to OCD. The variance for

each neuromarker, n(d), was estimated using the unbiased variance estimator:

σ̂2(n(d)) =
1

M − 1

M∑
m=1

(n(d)
m − n̄(d))2 (4.7)

where n̄(d) is the average of the values of n(d) across the M subjects.

4.3.2 Correlation based ranking

This criterion supposes that good neuromarkers should be highly correlated

with the classification task. Thus, another straightforward selection pro-

cedure is to rank the neuromarkers according to their correlation with the

classification labels [22].

The Pearson correlation coefficient between neuromarker n(d) and label

vector y is defined as follows:

R(n(d)) =
cov(n(d),y)√
var(n(d))var(y)

(4.8)
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where cov designates de covariance and var designates the variance. The

sample correlation coefficient is an estimator for the Pearson correlation co-

efficient and it is given by:

R̂(n(d)) =

∑M
m=1(n

(d)
m − n̄(d))(ym − ȳ)√∑M

m=1(n
(d)
m − n̄(d))2

∑M
m=1(ym − ȳ)2

(4.9)

where the bar notation stands for an average over the index m.

It is important to note that the Pearson correlation coefficient is only able

to detect linear dependencies between a neuromaker and the labels.

Since greater values of R for a given neuromarker imply a stronger correla-

tion between a neuromarker and the label vector, we interpret that those neu-

romarkers which produce greater correlation coefficients must be of greater

relevance to OCD.

4.3.3 T-test based ranking

The third criterion applies a standard t-test [22] to analyse the statistical

differences of the neuromarkers belonging to patient and control populations.

Specifically, we first separate the data set into patients and controls ac-

cording to the labels. We then perform a two sample t-test of the hypothesis

that the neuromarkers from the patient and control groups come from dis-

tributions with equal means. This is called the null hypothesis.

The t-test produces two results for each neuromarker: the test result, H,

and the result’s p-value. H = 0 indicates that the null hypothesis (that the

means are equal) cannot be rejected at the 5% significance level. The p-value

represents the probability of observing the given result, or one more extreme,

by chance assuming that the null hypothesis is true. A small p-value casts

doubt on the validity of the null hypothesis.

Since we are creating a ranked list of neuromarkes, the p-value is the most

useful parameter to us. In this sense we interpret a small p-value for a neu-

romarker as an indication that it’s distribution varies greatly from patients

to controls and that it is therefore more relevant to OCD characterisation.
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4.3.4 Forward-search by the Hilbert-Schmidt independence

criterion

The correlation criterion analyses the linear relationships between features

and labels. The strategy defined in this method extends this idea by measur-

ing non linear relationships by means of the Hilbert-Schmidt independence

criterion [20], [46].

Covariance allows us to measure linear relations between two variables:

CAB = EAB(ABT )− EA(A)EB(BT ) (4.10)

This definition of covariance can be extended to a Hilbert space using

kernel functions [18]:

CAB = EAB[(φ(A)− µA)⊗ (ψ(B)− µB)] (4.11)

where φ(A) and ψ(B) are the kernel functions applied to A and B respec-

tively, and µA = EA(φ(A)) and µB = EB(ψ(B)).

The Hilbert-Schmidt independence criterion (HSIC) is provided by the

norm-2 of the covariance obtained in the Hilbert space, ||CAB||2HS, which can

be expressed in kernel terms as:

HSIC(A,B) =
1

m2
Tr(K̃AK̃B) (4.12)

where K̃A and K̃B are the centred kernel matrices associated with the vari-

ables A and B.

If a linear kernel function is used, calculating HSIC between two variables

is equivalent to calculating their correlation. However, if a non-linear kernel

function is used, non linear relations between the variables will be computed.

In the case of our work we used a Gaussian kernel function. When the

Gaussian kernel function is applied to a set of neuromarkers, it yields a

kernel matrix, K, for which each individual element, ki,j, is computed as
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follows:

ki,j = exp

(
−||ni − nj||2

2σ2

)
(4.13)

where ni and nj are two neuromarkers from the set.

As with the correlation criterion, we interpret that larger values for the

HSIC test imply a higher relation between neuromarkers and labels. In this

case both a standard ranking and a forward-search algorithm were imple-

mented, but only the forward search approach provided significant results.

As was explained in Section 2.2, forward-search algorithms don’t produce a

ranking of features but rather a series of nested subsets in order of relevance.

Figure 4.1 depicts the forward-search HSIC selection algorithm.

Since this selection algorithm is computationally very intensive, the first

iterations were programmed so that they eliminated the 10 least relevant

features each time until only 100 features were left. From this point on we

continued by eliminating only one feature per iteration.

4.3.5 Recursive feature elimination

Recursive feature elimintaion (RFE) was first proposed in [21] as an instance

of backward feature elimination applied to SVM classifiers. Since RFE se-

lects features according to the classification margin provided by the SVM

classifier, it does not separate the learning process from the feature selec-

tion process. For this reason, it falls into the category of embedded feature

selection algorithms [23].

RFE aims at finding the subset of features that is able to provide the

largest classification margin in an SVM classifier. To achieve this goal it

starts by training an SVM with all the features and then analysing which

of the features can be eliminated while producing the smallest variation in

the classification margin. This process is repeated, each time eliminating

one feature, until no features are left. Thus, in each iteration the algorithm

trains an SVM classifier using a smaller subset of features than in the previous

iteration. Figure 4.2 describes the RFE algorithm in detail.

If, as is our case, the classification process is using a linear SVM, the

absolute value of the weight vector for a given feature, |wd|, can be used as
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Figure 4.1: Flow-chart depicting the forward-search HSIC algorithm. The
notation HSIC([SF f ],y) means that we calculate HSIC between the features
listed in SF with feature f appended and the label vector y.

the relevance criterion, where w is the weight vector obtained from the SVM

classifier and is calculated as (see Section 2.3):

w =
M∑
m=1

αmymxm (4.14)

In each iteration, the feature that corresponds with the lowest wd will be

eliminated since it is the one that produces the smallest variation in the

classification margin.

As with the previous feature selection criteria, this recursive elimination

process will provide nested subsets of neuromarkers, each being more dis-

criminating than the previous one.
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Figure 4.2: Flow-chart depicting the RFE algorithm.

As with the previous algorithm, the first iterations of the RFE strategy

were programmed so that they eliminated 10 features at a time until only

100 were left. From then on it proceeded by eliminating one at a time.
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Experiments

This chapter shows and explains the results obtained after applying the meth-

ods described in Chapter 4.

It starts by describing the double leave-one-out algorithm, which is the

specific validation and testing strategy that was used.

It then analyses the performance of each neuromarker type paired with

each feature selection strategy and determines which is the most effective

combination. It also shows the evolution of the classification test error with

the number of selected neuromarkers.

Finally, it maps the most relevant neuromarkers of the winning subset to

a brain template and renders them so that they may be visually analysed.

To this end, input from the medical personnel of the Bellvitge University

Hospital is included.

The algorithms were designed and tested on a ThinkPad L512 laptop

running Matlab 8.01 (The MathWorks Inc, Natick, Mass) on a Linux Mint

(www.linuxmint.com) operating system. The Matlab SVM classification li-

brary that was used is libSVM (www.csie.ntu.edu.tw/c̃jlin/libsvm). Data

processing, which was very computationally intensive, was performed on a

Fura computer cluster where each node was running Matlab 7.8 on a Linux

Gentoo (www.gentoo.com) operating system. The results were brought back

to the ThinkPad laptop for analysis and visualisation purposes. MRI scans

were processed using MRIcro (www.mricro.com) for the 2-D renders and
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MRIcroGL (www.cabiatl.com) for the 3-D renders. Both these programmes

are open-source.

5.1 Validation and testing strategy: the double

leave-one-out algorithm

For our experiments, a great deal of validation had to be performed to deter-

mine the optimal number of features for each neuromarker type and selection

algorithm. After this validation process is done, the method’s generalisation

capabilities need to be tested. In Section 2.2 we emphasised the importance

of employing a proper training and validation strategy. Because the amount

of subjects we have in this case is extremely small, it would be inadequate

to simply split the training data into training and validation subsets because

we would increase the severity of the small sample problem even more.

Other validation strategies like K-fold cross-validation employ a differ-

ent tactic: instead of simply splitting the training data into two subsets, it

randomly splits it into K different subsets; it then uses a single subset for

validation and the rest of the subsets for training; the process is repeated

K times, with each iteration using a different subset for validation; finally,

the K validation results can be averaged (or otherwise combined) to produce

a single estimation. There is no risk of overfitting since in each iteration

of the process the training and validation subsets are composed of different

samples. Figure 5.1 depicts the K-fold validation algorithm.

When K = M , M being the total number of subjects in the original

training set, the K-fold cross-validation goes through exactly M iterations of

the validation process. In each iteration only one of the subjects is used for

validation while the remaining M − 1 subjects are used as the training data.

This is known as the leave-one-out (LOO) cross-validation algorithm.

The LOO cross-validation strategy serves our purposes well since it max-

imises the amount of data available to us for training. However, we still need

a testing data set to calculate our classification error rates. To overcome this

problem, a double LOO (2LOO) strategy was employed. This idea extends
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Figure 5.1: The K-fold cross-validation strategy.

LOO cross-validation by nesting one LOO algorithm inside another. An in-

tuitive description of this concept is to imagine that we have M independent

universes, one for each subject in the original data. In each of these universes

we have a single test subject and M−1 training subjects. We then validate a

parameter by executing the nested LOO cross-validation algorithm with the

M − 1 training subjects, where each iteration of the nested LOO will train

with M − 2 subjects; we then calculate the predicted label for the single test

subject using the validated parameter. The classification error will be either

0 or 1 depending on whether the label was correctly or incorrectly predicted.

If we repeat this process for each of our M independent universes, we will end

up with M different classification errors. The average of these independent

classification errors will be the global classification test error for our problem.

Figure 5.2 illustrates this process.

In order to create our feature rankings and nested subsets, we applied the

2LOO algorithm to each of the 172 subjects in our data. For each subject

we ranked the features through LOO cross-validation using the remaining

171 subjects and following the selection criteria described in Chapter 4. We

59



Chapter 5. Experiments

Figure 5.2: The 2LOO validation and test strategy.

then predicted each test subject’s test label using the subset of features that

provided the lowest validation error in its 2LOO universe. To obtain the

global classification error we averaged the prediction test errors obtained in

each of the 2LOO universes.

5.2 Performance analysis

In this section we analyse the usefulness of each of the neuromarkers from

Section 4.2 and the extent to which we can reduce their number by means of

the feature selection strategies described in Section 4.3. To this end we shall

consider a neuromarker to be useful if we can maintain a classification error

that is similar to the 26.2% obtained with the T-BS process from Chapter 3.
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Table 5.1: Analysis of the 2LOO classification errors (CE) and average num-
ber of neuromarkers (# NM) obtained by selection criteria and neuromarker
type.

AV VAR ACC WE

All neuromarkers
CE (%) 35.47 49.42 33.14 28.49
# NM 718 718 718 718

Variance ranking
CE (%) 34.30 50.58 36.63 28.49
# NM 96.22 144.81 40.02 38.84

t-Test selection
CE (%) 34.88 52.91 38.37 32.56
# NM 258.25 198.75 286.65 525.83

RFE
CE (%) 36.05 51.16 32.56 30.23
# NM 132.88 245.03 224.45 60.26

HSIC-Test ranking
CE (%) 38.37 47.09 40.12 31.98
# NM 96.81 148.20 54.76 48.41

Correlation ranking
CE (%) 40.12 50.00 40.70 32.56
# NM 575.40 435.61 513.93 527.51

Table 5.1 illustrates the effectiveness of our neuromarker types, paired

with each selection strategy, at characterising OCD by means of the clas-

sification error and the number of neuromarkers that yield said error. For

comparison, the first row shows the error rate obtained without applying any

selection algorithm.

Overall, the most capable neuromaker is by far the WE type. Most selec-

tion criteria converge at errors of around 30% when applied with it. Moreover,

the number of relevant features needed to characterise the pathology using

this neuromarker is of around 50 with the variance ranking, HSIC ranking

and RFE methods.

Both the ACC and AV neuromarkers manage to characterise OCD fairly

well, obtaining error rates smaller than 40% with reduced numbers of neu-

romarkers. The VAR neuromarker type, on the other hand, performs very

poorly since it doesn’t seem to accurately discriminate the disorder at all

(a classification error of 50% in a binary problem means that the model is

performing no better than a random classifier).

Specifically, the most effective criterion overall is the WE neuromarker
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paired with the variance ranking selection strategy. This combination pro-

duces a global test error of 28.49%, which is only slightly greater than the

error obtained before the neuromarker construction and selection process,

while the number of features it employs is one order of magnitude smaller:

only 38.8 on average over the 172 subjects as opposed to the 718 original

brain regions obtained from the T-BS process. It is important to remember

that the initial problem had a dimensionality of 500.000 variables in the form

of voxels versus a very scarce number of subjects. We have now managed to

greatly reduce the problem by employing only around 40 neuromarkers on

average, all the while keeping the classification error below 30%.

Figure 5.3: Evolution of the average test error rate with subset size for the
WE neuromarker.

Figure 5.3 depicts the evolution of the classification test error rate with

the number of neuromarkers used for testing for the WE neuromarker and

the three most successful selection strategies. It can be seen that the error

rates show very little variation as we decrease the number of neuromarkers.

The error rates start to vary significantly once we start training with less

than 150 neuromarkers. This points to high redundancy or low relevance in

the data up until that point. Only after we have decreased the subset size

to under 35 neuromarkers does the error rate begin to steadily increase. As
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is expected, when the number of neuromarkers used is high, the error rate

converges to the values obtained when no selection is applied.

5.3 Visualizing neuromarkers

Given the results of the previous section, we will now analyse the relevance

and neuroanatomical position of the most important WE neuromarkers se-

lected by the variance ranking method.

Due to the fact that we are employing the 2LOO validation and test

strategy over the 172 study subjects, we have obtained 172 different subsets of

neuromarkers with an average size of 38.84. In order to obtain a single subset

that is easy to interpret, we have merged the 172 subsets into a single one of

size 59, where each of its neuromarkers appears in at least one of the original

172 subsets. Note that these neuromarkers present varying consistencies in

the voxels they contain over the 172 iterations, meaning that some of these

voxels appear in every iteration while others in just a few.

To establish the relevance of each neuromarker we have applied a simple

algorithm that resembles a single iteration of the wrapper feature selection

method described in Section 2.2. We obtain the classification error rates when

each of the 59 neuromarkers is eliminated from the training set. These error

rates are then compared to the error rate obtained when all 59 neuromarkers

are used in the training process. The neuromarkers whose elimination from

the training set produce a greater variation in the classification error will be

ranked higher.

Table 5.3 shows these classification error rate deviations for the most

important neuromarkers, that is, those which cause a significant classification

increment when they are not used during training. The analysis is completed

by associating each of these neuromarkers with the most significant MNI

neuroanatomical regions in which they exist [50] (those regions whose voxel

consistency is greater than 50% over the 172 subjects).

The neuromarkers can be remapped to their component voxels and ex-

ported as NIfTI files, which is the standard sMRI visualisation format. Fig-

ures 5.4 - 5.16 show the localization of the thirteen most important neuro-
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markers within the brain, with color intensity indicating the consistency of

each voxel across the study subjects (bright yellow means that a particular

voxel was selected in all the iterations, while redder tones imply lower con-

sistency). In these figures, the top left image is a vertical cut seen from the

rear of the brain, the top right image is a vertical cut seen from the right

hand side of the brain, bottom left is a horizontal cut viewed from the top of

the brain and, finally, bottom right is a 3-D visualisation of the entire brain

in which the appropriate neuromarker has been highlighted.

At this stage, the data was sent back to Dr. Carles Soriano Mas of the

Department of Psychiatry of the Bellvitge University Hospital in Barcelona.

After his analysis it was determined that the five most relevant neuromar-

kers to OCD (Figures 5.4 - 5.8) are located in the frontal, temporal and

parietal lobes. Three of them appear in regions traditionally associated with

the disorder, such as the orbitofrontal cortex (right inferior frontal and mid-

dle frontal gyri) and the striatum (putamen and globus pallidum, extending

to the adjacent insular cortex). Such regions are part of the distributed

cortico-striatal circuits know to be involved in OCD pathophysiology [24].

Specifically, while striatal regions seem to be hyperactive (their volume ap-

pears increased in patients), prefrontal areas seem to be hypoactive (their

volume appears decreased in patients) and inefficient in regulating enhanced

striatal activity, which leads to the development of the repetitive and ritual-

ized behaviors characteristic of OCD.

Other regions present in our neuromarkers, such as the superior temporal

and supramarginal gyri, have been less frequently associated with the dis-

order, although they are also connected to subcortical striatal regions and

thus may also be considered as part of the extended cortico-striatal circuitry.

Indeed, the role of the parietal cortex (i.e., supramariginal gyrus) in striatal

regulation and the importance of such parieto-striatal connectivity for OCD

has already been incorporated in more recent neurobiological models of the

disease [36].
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Table 5.2: Neuroanatomical analysis for the most important neuromarkers

NM ranking ∆ CE (%) MNI ROIs

1 6.39 Temporal Sup-Mid L

2 5.81 Frontal Inf Tri-Orb R; Insula R

3 4.65 Insula L; Putamen L; Pallidum L

4 4.65 Parietal Inf L; SupraMarginal L

5 3.49 Frontal Sup-Mid R

6 2.9
Calcarine L-R; Lingual L; Precuneus L-R;
Cerebelum 6 L; Vermis 4-5-6

7 2.9

Olfactory L-R; Frontal Med Orb L; Rectus L;
Cingulum Ant R; Lingual L-R; Occipital Inf R;
Fusiform L-R; Precuneus L; Caudate L;
Pallidum L; Thalamus L-R; Temporal Inf R;
Cerebelum Crus-1-3-4-5-6-7b-9-10 L-R;
Vermis 1-2-3-4-5-7-10

8 2.9 Temporal Sup-Mid R

9 2.9
Frontal Inf Oper-Tri R; Insula R; Putamen R;
Pallidum R; Heschl R; Temporal Sup-Pole Sup R

10 2.9
Precentral R; Frontal Mid R; Postcentral R;
Parietal Inf R; SupraMarginal R

11 2.9 Parietal Inf R; SupraMarginal R; Angular R;
Temporal Sup R

12 2.9 Frontal Mid L

13 2.9 Cerebelum Crus2-7b-8 R

14 2.32 Lingual R

15 2.32 Fusiform L; Temporal Inf L

16 2.32 Frontal Sup-Mid L

17 2.32 Frontal Med Orb L-R; Rectus L-R

18 2.32 Frontal Sup Orb L; Rectus L

19 1.74 Cuneus L; Parietal Sup L; Precuneus L

20 1.16
Occipital Inf L; Parietal Sup-Inf L; SupraMarginal L;
Angular L; Temporal Sup-Mid L

21 1.16 Temporal Sup-Mid-Inf R

22 1.16 Temporal Mid L

23 0.58 Precentral; Frontal Sup-Mid L

24 0.58 Frontal Sup Medial L-R; Cingulum Ant L-R

25 0.58 Precentral L; Frontal Mid L

26 0.58 Hippocampus L-R

27 0.58 Occipital Sup-Mid R
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Figure 5.4: Position of the first ranked neuromarker: Temporal Sup-Mid
Left.

Figure 5.5: Position of the second ranked neuromarker: Frontal Inf Tri-Orb
Right; Insula Right.
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Figure 5.6: Position of the third ranked neuromarker: Insula Left; Putamen
Left; Pallidum Left

Figure 5.7: Position of the fourth ranked neuromarker: Parietal Inf Left;
SupraMarginal Left.
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Figure 5.8: Position of the fifth ranked neuromarker: Frontal Sup-Mid Right.

Figure 5.9: Position of the sixth ranked neuromarker: Calcarine Left-Right;
Lingual Left; Precuneus Left-Right; Cerebelum 6 Left; Vermis 4-5-6
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Figure 5.10: Position of the seventh ranked neuromarker: Olfactory L-R ;
Frontal Med Orb L; Rectus L; Cingulum Ant R; Lingual L-R; Occipital Inf R;
Fusiform L-R; Precuneus LCaudate L; Pallidum L; Thalamus L-R; Temporal
Inf R; Cerebelum Crus L-R; Vermis.

Figure 5.11: Position of the eighth ranked neuromarker: Temporal Sup-Mid
Right.
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Figure 5.12: Position of the ninth ranked neuromarker: Frontal Inf Oper-Tri
R; Insula R; Putamen R; Pallidum R; Heschl R; Temporal Sup-Pole Sup R.

Figure 5.13: Position of the tenth ranked neuromarker: Precentral R; Frontal
Mid R; Postcentral R; Parietal Inf R; SupraMarginal R.
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Figure 5.14: Position of the eleventh ranked neuromarker: Parietal Inf R;
SupraMarginal R; Angular R; Temporal Sup R.

Figure 5.15: Position of the twelfth ranked neuromarker: Frontal Mid L.
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Figure 5.16: Position of the thirteenth ranked neuromarker: Cerebelum
Crus2-7b-8 R.

72



Chapter 6

Conclusions and future lines of in-

vestigation

This thesis set out to establish a framework to automatically obtain a set of

neuromarkers capable of characterizing OCD. To this end, it follows on from

the conclusions reached by the studies presented in [40], where an average of

43.000 voxels had been identified as being relevant to the classification task

of OCD afflicted brains. Although this is a much better analysis scenario

for the psychiatric community than the initial 500.000 voxels produced by a

standard sMRI, it is still a very abstract and difficult characterisation of the

brain of an average OCD patient.

First we needed to transform this cumbersome and unfriendly amount of

data into a series of intuitive measurements associated with the 718 separate

brain regions, on average per subject, that contained the 43.000 voxels. These

measurements, defined as neuromarkers, would then be tested for their rele-

vance by analysing their performance when used as input data for the task

of discerning healthy brains from unhealthy ones.

The presented work analyses four different kinds of neuromarkers candi-

dates:

• The AV neuromarker candidate is a measurement of the average grey

matter density of each region.

• The ACC neuromarker measures the accumulated grey matter density
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of each region.

• The VAR neuromarker represents the variance of the grey matter den-

sity contained in each region.

• The WE neuromarker is a measurement of the SVM linear classifier

weights associated to the voxels contained in each region.

Once the data is processed we are left with an average of 718 possible

neuromarkers per subject, each representing a differentiated brain region

with a single measurement instead of hundreds of voxels. An initial test of

the viability of these measurements as neuromarker candidates yields very

positive results: when used to train and test a classifier, three of them prove

to be effective at characterising OCD, with test error rates of under 40% for

the AV, ACC and WE neuromarkers.

Specifically, the WE neuromarker obtains a classification test error rate

of 28.49%, which is only very slightly greater than the 26.2% error rate

obtained when classifying with the 43.000 voxels. More importantly, these

neuromarkers are obtaining much better error rates than the approximately

40% that was obtained when testing a classifier with all the 500.000 voxels

produced by an sMRI brain scan. This means that a lot of redundant or

irrelevant information has been eliminated.

The next step is to test whether or not all of the 718 neuromarkers are

useful or, on the other hand, a further reduction aimed at finding more

relevant neuromarkers can be achieved. It must be remembered that our

goal is to define a limited number of neuromarkers that are manageable and

useful to medical personnel. In this regard, the fewer relevant neuromarkers

we end up with, the better our system will be.

To achieve this, we apply a series of state of the art feature selection

methods to our neuromarkers. The results of these selection processes are

very positive. Experimental results reveal that the WE neuromarker candi-

date in combination with a selection based on its variance is able to provide

a subset of no more than 50 values that are easy to interpret and handle by

the psychiatric community. Furthermore, this is achieved while retaining a
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test classification error which is only slightly greater than the error obtained

when classifying with the 43.000 voxels discovered in [40]. We have now gone

from 500.000 voxels initially produced by an sMRI brain scan to just under

50 neuromarker candidates that represent as many relevant brain regions

with a single value.

In order for this neuromarker candidate to be confirmed as such it needs

to meet the definition for a neuromarker presented in Chapter 1. We con-

sider that the the WE neuromarker candidate adequately fulfils the task of

quantifying a neuroanatomical characteristic associated with a pathology.

Future lines of work will be focused on studying further compliance with

the neuromarker definition:

• Can these neuromarkers also be used to analyse the patient’s evolution?

• Can these neuromarkes help in detecting a pathology’s subtype?

• Can these neuromarkers provide aid in the prescription process?

In order to pursue these goals, more data will be needed. Multi-class clas-

sification analysis can be done if we can obtain clearly differentiated sMRI

brain scans of separate endophenotypes of OCD, or of patients in different

stages of illness evolution.

Furthermore, we also intend to extend this framework to other pathologies

that could benefit from being characterized by neuromarkers. Structural and

functional brain anomalies have already been pointed out to be at least partly

responsible for Alzheimer’s disease [53] and schizophrenia [12].

Extending our research to these ailments could prove to be extremely

useful in testing the effectiveness of our methods. Eventually, our work could

provide society with a very powerful and useful tool in the diagnosis and

treatment of mental illness.
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Research project budgets and plan-

ning

In the first section of this chapter we will discuss project planning and layout.

The second section deals with cost justification and budgets.

7.1 Project planning

The initial stage of the project consisted on an intensive tutor-student infor-

mation transfer. Many concepts that go beyond the scope of the student’s

bachelor degree, especially those concerning ML, needed to be thoroughly

understood in order to give the student the necessary tools to be able to

develop and test the required methods. To further set the foundations of

the student’s understanding of ML, the 10 week ML online course by Proff.

Andrew Ng from Standford University, through the Coursera online learning

platform, was taken.

The next stage was a familiarisation with the work previous to this thesis.

Apart from the work presented in [40], numerous articles and text books on

themes ranging from ML to neuroimaging were studied. During this stage,

the software tools that were going to be used, specifically the libSVM classifier

library, were also studied.

The third stage was the design and testing of all the algorithms and
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methods. Many refinements and fine-tuning processes were required in order

to adapt the algorithms to the complex dimensionality of the database that

was being used.

Finally, the methods were applied to the data and the results were anal-

ysed by the student, the tutor and the medical personnel at the Bellvitge

Hospital. A 15 page paper on the subject was presented to the 2014 Euro-

pean Congress of Machine Learning (ECML/PKDD 2014; paper acceptance

rate of 23.8% for 2014) with the student as the main author. The paper has

been accepted for presentation.

During the entire project, the student worked in close collaboration with

the tutor, holding weekly meetings to oversee progress and maintaining daily

communication via e-mail.

Figure 7.1 shows a comprehensive list of the primary and secondary stages

that comprise the project. Figure 7.2 shows a Gantt graph depicting the

evolution of the project.

Figure 7.1: Project task list. The project started on the sixteenth of Septem-
ber, 2013.
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Figure 7.2: Project Gantt graph. Tasks coloured in red are time-critical
tasks.

7.2 Project budgets

This section presents a justification of the overall project costs. We analyse

both personnel costs as well as material resource costs to finally arrive at a

global budget figure.

7.2.1 Personnel costs

Three people have participated in this project’s development:

• The student, considered a junior engineer.

• The tutor, a senior researcher.

• Doctor Carles Soriano Mas, involved only in the results analysis phase.

From the development times described in Figure 7.1, Table 7.1 shows the

number of hours that each person has dedicated to the project and the as-

sociated costs.

7.2.2 Material resources costs

During the development of the project several material resources have been

used. These are listed with their associated costs in Table 7.2.
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Table 7.1: Personnel costs.

Personnel Work hours Hourly Rate (e/h) Total (e)
Junior engineer 980 12 11.760
Senior researcher 155 23 3.565
Medical personnel 20 30 600

TOTAL 15.925

Table 7.2: Material resources costs. Amortisation is yearly.

Concept Quantity Price (e/unit) Amort. Total (e)
MRI brain scan 172 150 50% 12.900
Matlab License 1 2.000 100% 2.000
ThinkPad L512 1 850 25% 212,5
Computer cluster 100 nodes 40 per node 20% 800

TOTAL 15.912,5

7.2.3 Total project budget

The overall budget for the project is presented in Table 7.3.

Table 7.3: Overall budget.

Concept Total (e)
Personnel costs 15.925
Material resource costs 15.912,5
Total costs 31.837,5
VAT (21%) 6.685,9
Total Budget 38.523,4
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