

This is an original version of the following published document:

Muñoz Organero, Mario; Brito Pacheco, Claudia. Improving accuracy and
simplifying training in fingerprinting-based indoor location algorithms at
room level. Mobile Information Systems, 2016 (2682869), 16 pages.

DOI: https://doi.org/10.1155/2016/2682869

© 2016 Mario Muñoz-Organero and Claudia Brito-Pacheco. This is an
open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288498857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2016/2682869

Research Article
Improving Accuracy and Simplifying
Training in Fingerprinting-Based Indoor Location
Algorithms at Room Level

Mario Muñoz-Organero and Claudia Brito-Pacheco

Department of Telematics Engineering, Universidad Carlos III de Madrid, 28911Leganes, Spain

Correspondence should be addressed to Mario Muñoz-Organero; munozm@it.uc3m.es

Received 9 August 2015;Revised 14 December 2015;Accepted 5 January 2016

Academic Editor: Francesco Gringoli

Copyright © 2016 M. Muñoz-Organero and C. Brito-Pacheco. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Fingerprinting-based algorithms are popular in indoor location systems based on mobile devices. Comparing the RSSI (Received
Signal Strength Indicator) from different radio wave transmitters, such as Wi-Fi access points, with prerecorded fingerprints from
located points (using different artificia intelligence algorithms), fingerprinting-based systems can locate unknown points with a
few meters resolution. However, training the system with already located fi gerprints tends to be an expensive task both in time and
in resources, especially if large areas are to be considered. Moreover, the decision algorithms tend to be of high memory and CPU
consuming in such cases and so does the required time for obtaining the estimated location for a new fi gerprint. In this paper,
we study, propose, and validate a way to select the locations for the training fingerprints which reduces the amount of required
points while improving the accuracy of the algorithms when locating points at room level resolution. We present a comparison of
different artificia intelligence decision algorithms and select those with better results. We do a comparison with other systems in
the literature and draw conclusions about the improvements obtained in our proposal. Moreover, some techniques such as filtering
nonstable access points for improving accuracy are introduced, studied, and validated.

1. Introduction

Indoor location systems provide a solution for user naviga-
tion in places where GPS signals are not available. There are
many alternatives available for locating users indoors that can
be categorized in several ways according to the mathematical
algorithms used, radio technologies required, or hardware
components used. Some of the alternatives are based on the
user carrying a mobile device and others are based on device
free [1]. One classical categorization of indoor location sys-
tems divides them into presmartphone and smartphone eras.
The former are based on specific hardware components like
infrared badges, ultrasound tags, laser rangers, and wireless
modules such as RFID [2]. Since they require additional
equipment to be carried by users, they tend to be difficult to
deploy and use in real scenarios. The latter are based on the
use of smartphones as the user device for indoor location [3,
4]. Smartphones are reliable and user friendly tools that allow

people to have access to information services anytime and
anywhere. Some of these services may require using the loca-
tion of the user and, consequently, integrating indoor location
services in smartphone based systems is a natural way to min-
imize deployment requirements. Smartphones have access
to several radio technologies such as Wi-Fi, Bluetooth, or
terrestrial cellular mobile networks. Th y incorporate built-
in sensors such as accelerometer, gyroscope, magnetometer,
microphone, or camera. They are, therefore, computing
platforms which are capable of sensing the environment and
applying the required calculations in order to locate the users
in scenarios where the GPS signals are not available.

Smartphone based indoor location systems can be catego-
rized into two major families: on-demand location systems
and continuous user location tracking systems. The former
normally rely on fingerprinting techniques [5–9] while the
latter tend to use inertial embedded sensors to calculate
incremental user displacements [10, 11].

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2016, Article ID 2682869, 16 pages
http://dx.doi.org/10.1155/2016/2682869

2 Mobile Information Systems

This paper focuses on fingerprinting smartphone-based
algorithms which are employed to locate users at room level
(the exact location of the user inside a room is not that
relevant but knowing the exact room the user is in with the
highest accuracy is crucial). Using room level granularity will
allow us to overcome one of the crucial aspects of indoor
location systems when the areas to cover are big: scalability
[12].Training indoor locations systems with a complete grid
of training points is time consuming and does not scale
on computational resources required for estimating user
locations. Some research proposals such as [12] overcome
this limitation by using crowdsourcing-based place learning.
However, this approach requires the manual involvement of
volunteer collaborating users to improve the accuracy of the
system and collateral aspects such as data quality should be
taken into account. We will focus on optimizing the way by
which to select sample points to train the system by consid-
ering the geometry of the areas in which to position users.

In summary, this paper contributes in 3 major ways:

(1) The way to select the most convenient sampling points
to measure training fingerprints in order to increase
the accuracy while minimizing the memory and CPU
execution requirements. Th cost for training the
system includes both the number of training points
and the number of fingerprints at each point. The
paper focuses on reducing the cost associated to the
number of points not adding additional constrains on
the number of fingerprints at each training point.

(2) The analysis and evaluation of the performance of
different decision algorithms.

(3) The way to fi ter unstable access points in order to
increase accuracy and minimize execution require-
ments.

The rest of the paper is organized as follows. Section 2
presents a brief review of the major algorithms that have
been previously proposed in order to estimate the current
user location based on already located fingerprints used when
training the system. It also defines the scope of the research
in this paper and its major contributions. In Section 3 we pro-
pose several options for deciding where to take fi gerprints
in order to best train the system. Previously used alternatives
are presented together with a novel mechanism that will
be analysed and validated in Section 6. In Section 4 we
present a mechanism designed to select the best WAPs among
those available. This section shows how this mechanism
provides optimal results in terms of the relative accuracy
provided, as well as the computational resources needed.
Noise and stability filters are presented. Section 5 introduces
different approaches to combine several fi gerprints when
locating unknown points in order to improve results. This is
done thanks to the analysis of the time fluctuations of the
received signal strengths. Section 6 captures the validation
results using experimental data in two real case scenarios.
Conclusions are presented in Section 7.

2. Fingerprinting-Based Algorithms

Several different approaches and technologies have been pro-
posed, analysed, explored, and validated for indoor position-
ing systems, fingerprinting being the preferred alternative
for smartphone-based indoor locations systems [13]. Many
approaches have been tried on location fingerprinting [14].
KNN (K-Nearest Neighbor), which convertsfingerprints into
vectors and chooses the K historical fi gerprints with the
shortest distance to the measured fingerprint to estimate
the location, has been used in algorithms such as Redpin
[14]. Authors in [15] provide a general comparison of SVM
(support vector machines), KNN, Bayesian modeling, and
multilayer perceptrons. Carlotto et al. [16] uses a statisti-
cal Gaussian Mixture Model. Authors in [14] propose an
enhanced version of the Redpin algorithm by modifying
the signific nce of each AP (access point) at each location
according to their correlation and introduce a noise filter
to discard less frequently visible APs at each location. Th
authors compare their results with Näıve Bayes classifie s
(NBC) and SVM based algorithms. Authors in [17] propose a
Wi-Fi indoor location technology based on the combination
of fingerprinting and the use of K-Means algorithm. Th
diff rent approaches are normally compared using two major
metrics: relative accuracy (%) and average errors (𝑚) [13].

The authors in [18] present an analytical model for
analyzingfingerprinting-based indoor location systems. Th y
develop the framework which analyses a simple positioning
system that employs the Euclidean distance between a sample
signal vector and the location fingerprints of an area stored
in a database. They analyse the effect of the number of access
points that are visible and radio propagation parameters on
the performance of the positioning system and provide some
preliminary guidelines on its design. Th y predict that in
optimal circumstances a resolution of a few meters could
be expected in such systems. This predicted result for best
algorithm’s resolution has been a common fact for the latest
developed systems [13]. Authors in [19] propose the idea of
using Virtual Access Points (VAPs) in order to improve the
location’s accuracy. The idea is particularly significant if the
number of available access points is small. The resolution of
the systems using a KNN (K-Nearest Neighbors) approach
is again of a few meters approximately. A recent experiment
comparing 13 infrastructure-based and 9 infrastructure free
indoor location technologies showed that best results for Wi-
Fi fi gerprint based technologies were close to 1meter when
using Bayesian filters [20] but that the localization accuracy
degrades as much as 3 meters due to setup and environmental
changes, such as human or furniture changes.

Indoor location systems focus on solving the problem
of best estimating the user location. Th exact user location
inside a building is occasionally required. In some occasions,
however, the location is only required to be estimated at room
or area levels. Smartphone-based indoor location systems
which rely on fingerprinting can be used for either findi g
the best estimate for the user location inside a building or for
findi g the best room or area in which the user is located.
In the first case it was found that best estimate means that
an exhaustive training of the system is required in order to

Mobile Information Systems 3

measure fingerprints in as many training locations as pos-
sible. Trying to estimate the user location at a room level
involves, on the other hand, different training requirements
for the system. In this paper we focus on best solving this sec-
ond problem. In the next section we analyse different alterna-
tives for selecting the best training locations for indoor loca-
tion fingerprinting-based algorithms. The validation results
are presented in Section 6.

Th major contribution of this paper is the study, analysis,
and evaluation of the relative accuracy of the different
smartphone fi gerprinting-based indoor location algorithms
when locating users at room level. This has been done using
different strategies for selecting the points used to train the
system, applying different values for noise and stability filters
in order to select the best WAPs, and taking the average
of several measured fingerprints when locating the user. In
particular the following algorithms have been used:

(i) ADTree, BFTree, Decision Stump, FT, J-48, J-48graft,
LADTree, LMT, NBTree, Random Forest, Random
Tree, REPTree, SVM, Naı̈ve Bayes, KNN, Redpin, and
WASP.

Th confidenc is also analysed in order to select the best
algorithms, the number of WAPs to be considered, the values
for the noise and stability filters, and the location of the train-
ing points. The results are also validated by comparing them
to those presented in papers which deal with similar aspects.

3. Selecting Training Points

Smartphone finge printing-based indoor location systems
require a training phase to be carried out before they can
be used to locate new unknown points. Select the locations
where taking measures for the set of training fi gerprints
is by itself a decision that has to be studied, analysed, and
optimized taking into account both the fin l relative accuracy
of the location algorithm and the underlying computational
requirements. Two major approaches are examined in pre-
vious studies: using a complete grid of points which cover
the entire part of the building where users are to be located
[18] and using a randomly distributed set of points inside
the building [14] which cover the entire area but without the
restriction of having to use a regular grid of training locations.
The first approach aims to provide a good resolution for the
estimated location of unknown points in every part of the
building by considering a number of training fi gerprints that
grows as 𝑑3 (being 𝑑 the linear dimension of the building).
Th amount of time required to take the training fingerprints
and the computational cost in terms of memory, CPU, and
execution time needed to run the location algorithms are
major drawbacks of this approach if big areas are to be
covered. Randomly selecting the locations to measure the
training fingerprints allows us to provide better resolutions in
certain areas of interest and to relieve the requirements on the
total amount of fingerprints to be measured. This approach
has been used in [14] in order to provide location estimates at
room level for certain rooms in a building.The major problem
of this approach is that it does not give us a mechanism
to optimize the number of points to consider for training

the system but a mechanism which simply selects them in the
areas of interest.

In this paper, we propose a third approach to minimize
the requirements for the number of training fingerprints
when using the indoor location algorithms at room level. We
propose to only measure the points in the border of each
room without fingerprinting the interior part of each area.
This approach is aligned with the objective of the system to be
designed: to differentiate among rooms without taking into
account user movements inside each room. The results in
Section 6 show how this approach can provide even better
accuracy than exhaustive fingerprinting of each room with
a smaller number of training fi gerprints required.

One of the parameters to be considered when finger-
printing an area for training the indoor location system is
the distance between adjacent points that need measuring.
Th authors in [18] propose that in order to select distance
between the points for optimal sampling for training fin-
gerprints, the compromise between granularity and accuracy
should be taken into account. Th y do not recommend
selecting points which are less than 1 meter away from each
other. Th review done in [13]of the different algorithms used
for locating users indoors also shows that optimal resolutions
provide an average error of several meters. The Redpin
algorithm, for example, provides an average error of 3 meters.
Experimental results in Section 6 are carried out taking these
results into consideration.

4. Applying Noise and Stability Filters

The temporal stability of the RSSI has a major impact on the
results of the algorithms that use it to estimate the location of
the user in indoor environments. Th authors in [18], when
presenting an analytical model for analyzing fingerprinting-
based indoor location systems, recognise the impact that
the value of the variance of the measured RSSIs has on
predicted results. While they develop a model to predict the
expected accuracy of a fi gerprinting-based system based on
the measured parameters, they do not propose mechanisms
to improve the accuracy by introducing additional factors
to improve nonmodifi ble parameters such as the standard
deviation of signal strength over time from a single access
point. In this section we propose the application of noise
and stability filters to improve results when unpredictable
and unavoidable changes in the physical setting have to be
considered.

Authors in [14] implement a noise filter to remove less
frequently visible APs for a given location, considering these
signals as noise. They divide the APs into relevant and noisy
APs. Th y also take into account the percentage of times
in which relevant APs contribute to the fingerprints in one
location and create a correlation index between locations
and APs. The obtained results improve those of the basic
algorithm and constitute a promising fiel in order to further
optimize the relative accuracy of fingerprinting-based indoor
location systems.

In this paper we propose (and validate in Section 6) an
improvement of the mechanisms proposed in [14] to reduce
the impact of the fluctuations of the measured RSSIs on

4 Mobile Information Systems

the location estimation results. We propose to fi ter the WAPs
performing a stability based classific tion using different
thresholds. The more restrictive the threshold is, the more
stable the WAPs to be selected are (those with measured
RSSIs fluctuating less over time). However, a more restricted
threshold also implies a smaller number of WAPs to be
selected which may have a negative impact on the results.The
results presented in [14] show that a number of 10–15 WAPs is
enough to obtain optimal results. The algorithm in which we
propose to select this set of optimal WAPs in terms of stability
is the following:

(1) Take several measures over time in the same location
to train the system (ideally on different days and
different times).

(2) Mark as potentially unstable those WAPs whose
number of noisy RSSIs is, for a particular training
location, below a noise threshold.

(3) Mark as potentially unstable those WAPs whose
variance for the RSSI is, for a particular training
location, greater than a stability threshold.

(4) Finally, those WAPs marked as potentially unstable
must be removed if the number of training points
where they are marked as potentially unstable is above
a threshold.

Th selection of the values of these thresholds will provide
a mechanism to select either a smaller number of more stable
WAPs or a bigger number of less stable WAPs. The results
captured in Section 6 show that selecting the best 10–16 WAPs
will provide the optimal results.

In more detail, the following four thresholds have been
set for the analysis performed in this paper.

(1) Noise Threshold (NT). We set its value to −80 dBm as
it is considered the minimum acceptable RSSI value for
establishing a connection.

(2) Number of Noisy Samples Threshold (NNST). It is calcu-
lated according to the following formula:

NNST = 𝑛Samples ∗ factor, where 𝑛Samples ∈ ℵ∗,
factor ∈ [0 ⋅ ⋅ ⋅ 1] and (𝑛Samples ∗ factor) ∈ ℵ∗.

(1) Variance Threshold (VT). We set its value to 60 dBm2
(∼8 dBm). This means that we choose ±4 dBm as the accept-
able range of oscillation of a set of RSSI values for a given
WAP. Above this threshold we consider that it is not possible
to achieve stable transfer rates.

(2) Location Threshold (LT). It is calculated according to the
following formula:

LT = 𝑛Locations ∗ factor, where 𝑛Locations ∈ ℵ∗,
factor ∈ [0 ⋅ ⋅ ⋅ 1] and (𝑛Locations ∗ factor) ∈ ℵ∗.

Having established the above thresholds, the first step of
the algorithm is to calculate the number of noisy samples by
WAP for each location. A sample is considered a noisy one

Ta ble 1: Configur tion of UMR and UL thresholds.

#WAPs 5 8 10 16 20 32
NT = −80 dBm
𝑛Samples = 10

Factor 0.7 0.7 0.7 1 1 1
NNST ≥7 ≥7 ≥7 ≥10 ≥10 ≥10

VT = 60 dBm2 (∼8 dBm)
𝑛Locations = 12

Factor 0.5 0.6∼ 0.75 0.75 0.83∼ 1
LT ≥6 ≥8 ≥9 ≥9 ≥10 ≥12

when its RSSI is less than the value set as NT (note that the
WAP is not considered noisy if it is not detected at a certain
point, only if it is detected with a fluctuating power below the
noise threshold a number of times above the NNST).

Then for each location and wireless access point we check
if the result obtained in the previous step equals or exceeds
the NNST. If so, the WAP is marked as unstable for that
location. If not, the variance of its RSSIs is calculated. If this
number exceeds the VT, the WAP is marked as unstable for
that location. In summary, we consider that a WAP is unstable
at a given location when the number of noisy samples for this
access point in that location equals or exceeds the NNST or
the variance of the RSSIs for that wireless access point and
location exceeds the VT.

Finally, for each wireless access point we add the number
of locations where the WAP is considered unstable. If the
result equals or exceeds the LT we eliminate this WAP.

Depending on how the previous four thresholds (noise,
number of noisy samples, variance, and location) are config-
ured we can be more or less strict when taking into account
a smaller or larger number of WAPs. For instance, if we keep
fixed NT and VT, we take a number of samples (𝑛Samples)
and locations (𝑛Locations) equal to 10 and 12, respectively,
and adjust the factors involved in the calculation of NNST
and LT; we would obtain the results shown in Table 1.

In the first row of Table 1, the number of wireless access
points that would result after applying our algorithm to delete
unstable WAPs, with the configur tions indicated for NNST
and LT, is shown. As can be appreciated, as we expand both
thresholds we are less strict; hence, we obtain a larger number
of WAPs.

5. Optimizing the Location Estimations by
Fingerprint Averaging

Another mechanism that may be used to improve the per-
formance of the fingerprint based indoor location algorithms
is combining several fi gerprints measured when trying to
estimate the location of an unknown point. Th more the
fingerprints over a longer period of time the better the impact
one expects to obtain in the predicted results. However, there
is a trade-off in the number of fingerprints that can be taken
into account in a real setting since the user expects to obtain a
result from the algorithm in a reasonable amount of time. In
this paper we will analyse the impact on the relative accuracy

Mobile Information Systems 5

Figur e 1:Experiments environment, as seen from our Android training application (Google Maps API v2).

obtained when combining several consecutive fingerprints
taken over a few seconds interval. In order to combine the
fi gerprints we propose two different algorithms (the results
will be presented in Section 6):

(1) Calculate the average of the measured fingerprints
and make an estimate of the location of this average
fi gerprint.

(2) Estimate the location of each of the measured finger-
prints and make a majority based decision in order to
select the most likely location.

Section 6 shows the results when 2, 3, or 5 finge prints are
used in the average.

6. Experimental Results

6.1. Environment. All the tests described in this paper took
place in the first floor of the Torres Quevedo Building
(including the hallway and the research lab 4.1.C.03) of
the Telematics Engineering Department at the Carlos III
University of Madrid. In Figure 1, the map corresponding to
the interior of the first floor of the building is shown and
the location of the selected points for the two experiments
conducted is presented.

For the fi st experiment 12 post-its (4 for each area)
were arranged as training labels and they were separated by
a distance of 3 meters. These markers indicated the points
that were going to carry out the sampling. In total there
were 12 training locations that we grouped and divided into
3 sequential areas: 6 interior area locations and the other
remaining 6 were the ones we called “border” locations and
we defin d the three areas designated on the map. For each of
the locations we needed to make 5 consecutive measurements
(at intervals of 15 s) of the RSSI of Wi-Fi networks. Once the
12points had been scanned we repeated the same procedure
for each location; hence the training had involved 10 steps

in two batches of 5 spaced in time. This made a total of 120
(12 locations ∗ 10 measures) fingerprints. The next day we
performed the same experiment, which made it in total a final
set of 240 fi gerprints.

For the second experiment, a more complex setting
was selected. We used 3 areas physically separated by walls
and doors (two connected aisle sections, separated by a
connecting door and a research laboratory wall to wall with
one of the aisle sections). We took 6 location points in each of
these areas following the proposed approach to sample points
in the border between areas. The borders sample points have
been measured with a 2-3-meter separation criteria.

6.2. Experimental Methods. To carry out the analysis of the
tests we used 10-fold cross-validation to estimate how accu-
rate a model is before implementing it. Using this technique
the input data set is divided into 10 equal-sized subsets. Of
these, one subset is taken to validate the generated model,
while the remaining nine are used to train the system and
generate the corresponding model.This process is repeated 10
times, using each of the 10 subsets exactly once to validate the
model. Th 10results from the 10iterations are then averaged
to produce a single estimation. The sampling type we have
chosen is “stratifi d” because not only does it generate
random subsets but also ensures that the class distribution in
these subsets is the same as in the initial set (Figure 2).

In all experiments we simulated, using the RapidMiner
Studio 6.0.008 tool, what would be the response of our indoor
location system when training with each of the following
algorithms?

(1)ADTree. Th basic algorithm is based on [21].Thi current
version only supports two-class problems. The number of
boosting iterations needs to be manually tuned to suit the
dataset and the desired complexity/accuracy trade-off. The
trees’ induction has been optimized, and heuristic search
methods have been introduced to speed learning.

6 Mobile Information Systems

Input Dataset

Training Test

Evaluation

Classific tion

Mean

Evaluation Evaluation Evaluation

Classific tion Classific tion Classific tion

Figur e 2:𝐾-fold cross-validation scheme, with𝐾 = 4 and one classifie .

(2) BFTree. Thi algorithm uses binary split for both nominal
and numeric attributes. For missing values, the method of
“fractional” instances is used. For more information, see [22].

(3) Decision Stump. Thi algorithm is usually used in con-
junction with a boosting algorithm. It does regression (based
on mean-squared error) or classification (based on entropy).
Missing is treated as a separate value.

(4) FT. Functional Trees are classific tion trees that could
have logistic regression functions at the inner nodes and/or
leaves. The algorithm can deal with binary and multiclass
target variables, numeric and nominal attributes, and missing
values. For more information, see [23, 24].

(5) J-48. We use this algorithm to generate a pruned or
unpruned C4.5 decision tree. For more information, see [25].

(6) J-48graft Thi algorithm generates a grafted (pruned or
unpruned) C4.5 decision tree. For more information, see
[26].

(7) LADTree. We use this algorithm to generate a multiclass
alternating decision tree using the LogitBoost strategy. For
more information, see [27].

(8) LMT. Logistic Model Trees are classific tion trees with
logistic regression functions in the leaves. The algorithm can
deal with binary and multiclass target variables, numeric and
nominal attributes, and missing values. For more informa-
tion, see [28, 29].

(9) NBTree. Thi algorithm generates a decision tree with
Naive Bayes classifie s in the leaves. For more information,
see [30].

(10) Random Forest.We use this algorithm to generate a forest
of random trees. For more information, see [31].

(11)RandomTree.Thi algorithm generates a tree that consid-
ers 𝐾 randomly chosen attributes at each node, performs no
pruning, and also has the option to allow estimation of class
probabilities based on a hold-out set (backfitting).

(12) REPTree (Fast Decision Tree Learner). It builds a deci-
sion/regression tree using information gain/variance and
prunes it using reduced-error pruning (with backfitting) and
only sorts values for numeric attributes once. Missing values
are dealt with by splitting the corresponding instances into
pieces (i.e., as in C4.5).

(13) SVM. Thi learner uses the Java implementation of
the support vector machine mySVM by Stefan Rueping.
Thi learning method can be used for both regression and
classific tion and provides a fast algorithm and good results
for many learning tasks.

(14) KNN (𝐾 = 5). Th 𝐾-Nearest Neighbor algorithm is
based on learning by analogy, that is, by comparing a given
test example with training examples (𝐾-Nearest Neighbors)
that are similar to it. “Closeness” is defin d in terms of a
distance metric, such as the Euclidean distance.

(15) Naı̈ve Bayes. A Näıve Bayes classifie is a simple
probabilistic classifie based on applying Bayes’ theorem
(from Bayesian statistics) with strong (naive) independence
assumptions. In simple terms, a Naive Bayes classifie
assumes that the presence (or absence) of a class’ particu-
lar feature (i.e., attribute) is unrelated to the presence (or
absence) of any other feature.

(16) Redpin. This algorithm uses a weighted combination of
the vector distance and the AP similarity and chooses 𝐾 = 1

Mobile Information Systems 7

Figure 3: “Border” locations for each area.

to decide the best match. The default configur tion is 𝛼 = 1,
𝛽 = 0.4, and 𝛾 = 0.2 and the value of 𝐶 function is within
the range −1to 1, depending on the contribution of the signal
strength of two common Aps. The Redpin source code can be
found here [32].

(17)WASP. Thi algorithm uses Point-Wise Mutual Informa-
tion (PMI) as the weight for one AP to one location and
chooses 𝐾 = 5 to decide the best match. It also applied noise
filter to remove irrelevant Aps.

6.3. Results. Thi section captures the results of both exper-
iments carried out. Section 6.3.1 presents the results of the
simpler scenario based on the measurements on a single aisle
section (divided into 3 areas) and Section 6.3.2 captures the
results of the second experiment based on measurements
from 3 different wall and door separated areas.

6.3.1. Results from the Linear Configuration. In this section
we present a comparison of the algorithms described in
Section 6.2 for the case of the linear configur tion in the aisle
of the building. Th metric we used to evaluate them is called
“relative accuracy” and is commonly used in fingerprinting-
based systems. In our case we aim to measure the number
of test fi gerprints which are correctly classifi d according to
the area to which they belong.

The e algorithms receive as input parameters the area
in which the fi gerprint was taken and the RSSIs values
measured for each WAP. Initially we started with a set of
40 WAPs which involved training the system with 40 (RSSIs
for each WAP) + 1 (area) parameters. Our fi st objective
was using our algorithm to delete unstable WAPs (previously
described in Section 4), discard those access points that do
not provide any relevant information to train the algorithms,
and verify that the results improved compared to when the
process was performed without fi tering.

Our second challenge was to study the behaviour of
the algorithms when we trained the system with only bor-
der locations, that is, the ones that delimit an area, and
to analyse whether the results were better than when all
locations were used (or at least comparable, since training
the system only with border locations simplifie the training
face and increases scalability). In Figure 3, each geometric
shape represents an area of the hallway in which the tests were
conducted. “Border” locations are the ones that look darker.

Finally, we wanted to analyze how the variations in the
measured RSSIs values overnight affect the predictions made
by the system and if there was any way to improve them
when applying our noise and stability filters (in our case, the
building is dedicated to research activities involving wireless
networks and some of the WAPs were moved of switched off
from one day to the other).

In the following two subsections we show a comparison
of the results we obtained when training the algorithms

Ta ble 2: Relative accuracy by algorithm based on the number of
WAPs when training with all locations (part I).

#WAPs ADTree BFTree Decision
Stump FT J-48

40
95.83
±

5.59

95.00
±

4.08

95.00
±

5.53

97.50
±

3.82

95.83
±

5.59

5
85.83
±

9.17

85.83
±

10.57

86.67
±

6.67

79.17
±

11.33

87.50
±

10.03

8
90.00
±

8.16

88.33
±

8.50

87.50
±

10.03

88.33
±

13.02

85.83
±

7.50

10
96.67
±

4.08

95.00
±

6.67

92.50
±

7.86

97.50
±

3.82

93.33
±

6.24

16
95.83
±

4.17

95.83
±

5.59

92.50
±

7.86

96.67
±

5.53

93.33
±

6.24

20
95.83
±

5.59

94.17
±

5.34

92.50
±

7.86

97.50
±

3.82

93.33
±

6.24

32
95.83
±

5.59

94.17
±

5.34

92.50
±

7.86

95.83
±

5.59

94.17
±

5.34

with all locations (12) compared to those obtained when we
only use the “border” (6) and validate the models generated
considering all locations (interior and borders). These results
are presented in conjunction with the ones coming from
our algorithm to delete unstable WAPs. This way we get a
better overview of the impact of our three major contribu-
tions to improve the problem of indoor location based on
smartphones and finge printing and for the metric “relative
accuracy.”

(a) Training the System with All Locations. In Tables 2–4 we
show the results we obtained in the first row for the different
algorithms when we train the system with all locations (12)
and we have not executed our algorithm to delete unstable
WAPs. In this case we choose all the WAPs from the initial
set (40). The we show the values obtained when we also
train the system with all locations (12) but this time we run
our algorithm with the configur tion previously detailed in
Table 1to take 5, 8, 10, 16, 20, and 32 access points, respectively.

Comparing the results for the first and fourth rows we
can see that out of the 15 algorithms evaluated, the results
are maintained or improved significantly for 9 of them
(ADTree[+0.84], BFTree, FT, LADTree[+5.84], Random For-
est, Random Tree[+3.34], REPTree[+0.84], KNN[+1.66], and
NBC[+11.67])and slightly worse for the remaining 6 (Deci-
sion Stump[−2.5], J-48[−2.5], J-48graft −0.83], LMT[−1.66],
NBTree[−0.83], and SVM[−3.34]). Although this decline

8 Mobile Information Systems

80

(%
)

82
84
86
88
90
92
94
96
98

100

A
D

Tr
ee

BF
Tr

ee
D

ec
isi

on
St

um
p FT J-
48

J-
48

gr
aft

LA
D

Tr
ee

LM
T

N
BT

re
e

Ra
nd

om
Fo

re
st

Ra
nd

om
Tr

ee
RE

PT
re

e
SV

M
K

N
N

K
 =

 5
N

BC

40 WAPs
10 WAPs

Figure 4: Relative accuracy by algorithm as we take 40 or 10 WAPs.

Ta ble 3: Relative accuracy by algorithm based on the number of
WAPs when training with all locations (part II).

#WAPs J-48graft LADTree LMT NBTree Random
Forest

40
93.33
±

5.00

85.83
±

12.94

98.33
±

3.33

97.50
±

5.34

97.50
±

3.82

5
86.67
±

10.00

88.33
±

7.64

77.50
±

11.21

85.00
±

8.98

85.83
±

9.17

8
85.83
±

7.50

87.50
±

9.32

87.50
±

7.68

91.67
±

9.13

92.50
±

5.83

10
92.50
±

7.86

91.67
±

8.33

96.67
±

4.08

96.67
±

4.08

97.50
±

3.82

16
91.67
±

7.45

90.83
±

10.17

96.67
±

5.53

98.33
±

3.33

96.67
±

4.08

20
91.67
±

7.45

90.00
±

11.67

96.67
±

5.53

95.00
±

5.53

97.50
±

3.82

32
91.67
±

7.45

90.83
±

10.17

95.00
±

5.53

98.33
±

3.33

98.33
±

3.33

reaches a peak of 3.34 percentage points for the algorithm
of support vector machines (SVM), this number seems
negligible since we generally get better results. At the same
time we are reducing the computational cost substantially,
going from 40 to 10 WAPs.

When we compare the results published for the WASP
and Redpin algorithms with noisefiltering and 5 access points
[11] with the ones we get when we run our algorithm to delete
unstable WAPs (and also take 5 WAPs) we can see that we
get significant improvements for the following algorithms:
ADTree, BFTree, Decision Stump, J-48, J-48graft LADTree,
NBTree, Random Forest, REPTree, and KNN. If we select
the algorithm which provides the best resolution with 5
WAPs (LADTree [88.33]) we see that the difference from
Redpin and WASP is +6.33 percentage points. For 8 access

Ta ble 4: Relative accuracy by algorithm based on the number of
WAPs when training with all locations (part III).

#WAPs Random
Tree REPTree SVM 𝐾NN

𝐾 = 5

NBC

40
90.83
±

7.86

93.33
±

6.24

99.17
±

2.50

94.17
±

6.51

85.00
±

7.26

5
80.83
±

10.57

82.50
±

7.86

71.67
±

10.00

83.33
±

9.86

78.33
±

9.28

8
89.17
±

8.37

86.67
±

11.90

85.00
±

11.06

87.50
±

11.33

79.17
±

11.93

10
94.17
±

6.51

94.17
±

7.50

95.83
±

5.59

95.83
±

5.59

96.67
±

4.08

16
92.50
±

8.70

93.33
±

8.16

97.50
±

5.34

95.83
±

5.59

97.50
±

3.82

20
90.00
±

10.41

92.50
±

9.46

98.33
±

5.00

96.67
±

5.53

95.00
±

6.67

32
87.50
±

9.32

93.33
±

8.98

98.33
±

3.33

95.83
±

5.59

86.67
±

11.30

points we managed to improve the results very signific ntly
with NBTree (91.67) and Random Forest (92.50) compared
to results published for WASP with 8 APs [33]. Thi is an
improvement of +2.50 percentage points when using the
Random Forest algorithm.

To generate the comparative chart on Figure 4 we have
considered the case where our algorithm to delete unstable
WAPs gives us 10 access points since for a larger number
we did not observe a signific nt improvement. We have used
the green colour to show the results when we have not run
our algorithm and thus the number of input parameters that
the algorithms receives is equal to the RSSIs corresponding
to the initial number of access points (40) plus the area. In
blue we show the results we get when we have executed our
algorithm with a given configur tion to take 10 access points.

Mobile Information Systems 9

70

75

80

85(%
)

90

95

100

ADTree
BFTree
Decision Stump
FT
J-48
J-48graft
LADTree
LMT

NBTree
Random Forest
Random Tree
REPTree
SVM
KNN K = 5
NBC

5APS 8APS 10APS 16APS 20APS 32APS

Figure 5: Relative accuracy by algorithm based on the number of WAPs.

In this case the number of parameters that will be passed to
the algorithms will be equal to the RSSIs corresponding to the
10 WAPs selected plus the area (30 parameters less than the
previous case).

Figure 5 shows a comparison of the “relative accuracy”
for algorithms evaluated when the system is trained with
all locations and by the number of WAPs selected. For 8
access points the algorithm that provides the best resolution
is Random Forest while for 10 the FT and Random Forest
algorithms are at the same level.

(b) Training the System with “Border” Locations. Th results
of this second test are presented in the same format as those
already discussed in the previous section. The only difference
is that now the system has been trained with only half of the
locations (6), those we have called “border,” and has been
validated with all (internal and border) (Tables 5, 6, and 7).

If we compare the values and reliability intervals obtained
in this second test for the metric “relative accuracy” we can
see a significant improvement as compared to when all
locations were used. Th increases/decreases in percentage
points in those cases where we did not execute our algorithm
to delete unstable WAPs are as follows (we take all the WAPs
from the initial set, as indicated in the fi st row of combined
Tables 2–4 and combined Tables 5–7): ADTree[+2.34],
BFTree[+0.17], Decision Stump[−0.50], FT[+2.33], J-
48[−4.33], J-48graft[−1.16], LADTree[+2.17], LMT[+0.67],

NBTree[+0.17], Random Forest[+1.50], Random Tree[+0.67],
REPTree[−0.83], SVM[−1.17],KNN[+2.83], and NBC[+2.17].

Although for five (Decision Stump, J-48, J-48graft,
REPTree, and SVM) of the fi een algorithms evaluated
the percentages decrease, when we run our algorithm to
rule out unstable WAPs these results improve substantially
(Decision Stump[+4.17], J-48[+2.50], J-48graft[+3.33],
and SVM[+2.34]). Just to REPTree [−0.84] we do not get
an improvement. For other algorithms markers would
be as follows: ADTree[+2.33], BFTree[+1.83], FT[+1.67],
LADTree[+0.16], LMT[+1.16], NBTree[+1.00], Random
Forest[+1.00], Random Tree[+3.16], KNN[−3.66], and
NBC[+0.33].

Comparing the results of the second test for the firs and
fourth rows we can see that out of the 15 algorithms tested, the
results are maintained or improved signific ntly for 11of them
(ADTree[+0.83], BFTree[+1.66], Decision Stump[+2.17], J-
48[+4.33], J-48graft[+3.66], LADTree[+3.83], NBTree,
Random Tree[+5.83], REPTree[+0.83], SVM[+0.17], and
NBC[+9.83]) and slightly worse for the remaining 4
(FT[−0.66], LMT[−1.17], Random Forest[−0.50], and
KNN[−4.83]). Although this decline reaches a peak of 4.83
percentage points for the algorithm of K-Nearest Neighbors,
this number seems negligible since generally we get better
results, especially for NBC and Random Tree algorithms. At
the same time, again, we are reducing the computational cost
substantially, going from 40 to 10 WAPs.

10 Mobile Information Systems

Ta ble 5: Relative accuracy by algorithm based on the number of
WAPs when training with border locations (part I).

#WAPs ADTree BFTree Decision
Stump FT J-48

40
98.17
±

0.90

95.17
±

1.57

94.50
±

3.95

99.83
±

0.50

91.50
±

4.31

5
91.33
±

1.94

87.67
±

2.13

85.50
±

1.07

70.50
±

5.00

85.00
±

3.07

8
93.33
±

0.75

94.17
±

0.83

89.83
±

0.50

88.17
±

4.74

90.17
±

2.63

10
99.00
±

1.11

96.83
±

0.50

96.67
±

0.00

99.17
±

0.83

95.83
±

1.34

16
97.33
±

1.33

95.50
±

0.76

94.83
±

0.50

99.17
±

1.12

95.17
±

1.57

20
97.50
±

1.12

95.83
±

1.34

94.83
±

0.50

98.83
±

1.07

96.17
±

1.67

32
98.00
±

1.63

94.17
±

2.71

94.83
±

3.61

99.00
±

1.33

91.50
±

3.02

Ta ble 6: Relative accuracy by algorithm based on the number of
WAPs when training with border locations (part II).

#WAPs J-48graft LADTree LMT NBTree Random
Forest

40
92.17
±

3.73

88.00
±

4.00

99.00
±

1.11

97.67
±

1.53

99.00
±

0.82

5
85.33
±

3.48

73.33
±

15.26

77.83
±

4.02

91.00
±

2.71

90.00
±

1.83

8
90.17
±

2.63

91.50
±

0.50

93.67
±

1.63

92.00
±

2.08

94.50
±

0.76

10
95.83
±

1.71

91.83
±

2.17

97.83
±

1.67

97.67
±

1.33

98.50
±

1.17

16
95.17
±

1.74

92.33
±

2.13

98.33
±

1.83

98.83
±

1.30

99.00
±

0.82

20
96.17
±

1.67

93.50
±

2.52

98.83
±

1.07

99.67
±

0.67

98.33
±

1.29

32
92.17
±

2.59

87.33
±

4.03

99.33
±

1.11

98.00
±

1.63

99.00
±

0.82

When we compare the results published for the WASP
and Redpin algorithms with noise filtering and 5 access
points [11] with the ones we get when we run our algorithm
to delete unstable WAPs (and also take 5 WAPs) we can
see that we get signific nt improvements for the following

Ta ble 7: Relative accuracy by algorithm based on the number of
WAPs when training with border locations (part III).

#WAPs Random
Tree

REP
Tree SVM 𝐾NN

𝐾 = 5

NBC

40
91.50
±

3.76

92.50
±

3.59

98.00
±

1.00

97.00
±

1.63

87.17
±

1.83

5
88.33
±

1.29

82.50
±

4.17

68.17
±

1.74

80.00
±

2.98

80.50
±

1.07

8
87.83
±

1.83

92.17
±

2.89

87.50
±

2.71

86.33
±

1.94

81.17
±

1.07

10
97.33
±

1.53

93.33
±

3.07

98.17
±

0.50

92.17
±

1.30

97.00
±

0.67

16
95.67
±

3.00

92.83
±

3.66

98.33
±

0.75

95.17
±

1.89

96.67
±

1.05

20
93.83
±

3.66

93.83
±

3.95

97.50
±

0.83

94.67
±

1.63

95.50
±

1.30

32
95.83
±

4.43

92.83
±

3.66

99.33
±

0.82

98.50
±

0.90

87.50
±

1.54

algorithms: ADTree, BFTree, Decision Stump, J-48, J-48graft,
NBTree, Random Forest, Random Tree, and REPTree. If we
select the algorithm which offers the best resolution with 5
WAPs (ADTree [91.33]) we observe that the difference from
Redpin and WASP is +9.33 percentage points. For 8 access
points we managed to improve the results very signific ntly
with Random Forest (94.50) and BFTree (94.17) compared
to results published for WASP with 8 APs [12]. This is an
improvement of +4.50 percentage points when using the
Random Forest algorithm.

Figure 6 compares the results for the metric “relative
accuracy” when we run our algorithm to delete unstable
WAPs (shown in blue) versus when we do not (shown in
green). For most algorithms (11/15)percentages are main-
tained or improved signific ntly.

Figure 7 presents a comparison of the “relative accuracy”
for algorithms evaluated when the system is trained only with
“border” locations and by the number of WAPs selected. For
8 access points the algorithm that provides the best resolution
is Random Forest while for 10 the ADTree and FT algorithms
ranked first and second, respectively.

(c) Average Test Fingerprint to Validate the System Trained
with “Border” Locations. Out of the 15 evaluated algorithms
to conduct for this test we chose Random Forest, as this one
gave us the best results overall for 16(99.00), 10(98.50), and
5(90.00) WAPs, respectively, as it is reflected in the previous
paragraph “Training the System with ‘Border’ Locations.”

Our goal here was to evaluate the system’s predictions
for each of the three areas we have trained and labeled “1”
(left side hallway), “2” (central hallway), and “3” (right side

Mobile Information Systems 11

80

(%
)

82
84
86
88
90
92
94
96
98

100

40 WAPs
10 WAPs

A
D

Tr
ee

BF
Tr

ee
D

ec
isi

on
St

um
p

J-
48

J-
48

gr
aft

LA
D

Tr
ee

LM
T

N
BT

re
e

Ra
nd

om
Fo

re
st

Ra
nd

om
Tr

ee
RE

PT
re

e
SV

M
K

N
N

K
 =

 5
N

BCFT

Figure 6: Relative accuracy by algorithm as we take 40 or 10 WAPs.

65

70

75

80

85

90

(%
)

95

100

ADTree
BFTree
Decision Stump
FT
J-48
J-48graft
LADTree
LMT

NBTree
Random Forest
Random Tree
REPTree
SVM
KNN K = 5
NBC

5APS 8APS 10APS 16APS 20APS 32APS

Figure 7: Relative accuracy by algorithm based on the number of WAPs.

hallway). As detailed at the beginning of Section 6 for each
area we carried out measurements on two consecutive days
in 4 different locations and for each we took 10 fi gerprints.
Of these 4 locations we choose 2 (only for this test’s purposes,
as we are only taking into account “border” locations). This
makes a total of 20 fingerprints (10 fingerprints ∗ 2 locations)
for each area. Thus we have a set of training data of 60 fin-
gerprints (20 fingerprints/area ∗ 3 area) per day. To validate
the system, we selected as test data set both fingerprints (the
ones corresponding to the day when we trained the system
and the ones corresponding to the previous/following day)
for all locations (indoors and borders). Here we only show the

results corresponding to when we train the system with the
fi gerprints that are taken on the second day and validated
with the previous one. As we discussed at the beginning of
Section 6.3, we intend to study how changes in the stability of
the WAPs from one day to another affect to the predictions of
the areas. Also, we aim to study how to adjust our algorithm
to delete unstable WAPs with the configuration that we saw in
Table 1such predictions evolve as we take 16, 10, and 5 WAPs.

In Tables 8–13,we have the following: in the first row we
point out the number of fingerprints, followed by the cor-
responding area identifie , the area forecast that the system
gives us, and the reliability intervals for area “1,” “2,” and “3.”

12 Mobile Information Systems

Ta ble 8: System predictions for area 1when using 16 WAPs (part I).

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.6 0.5 0.7
0.3 0.2 0.3 0.3 0.2 0.0 0.1 0.2 0.2 0.0
0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.3 0.3

Ta ble 9: System predictions for area 1when using 16 WAPs (part II).

11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 3
0.5 0.7 0.9 0.7 0.7 0.4 0.6 0.5 0.4 0.4
0.3 0.0 0.0 0.2 0.2 0.4 0.2 0.3 0.3 0.1
0.2 0.3 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.5

Ta bl e 10: System predictions for area 2 when using 16 WAPs (part
I).

21 22 23 24 25 26 27 28 29 30
2 2 2 2 2 2 2 2 2 2
2 2 2 1 2 2 2 2 2 2
0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.4 0.7 0.4 0.8 1.0 0.8 0.9 0.9 0.9
0.0 0.3 0.2 0.2 0.2 0.0 0.1 0.0 0.0 0.0

Ta bl e 11: System predictions for area 2 when using 16 WAPs (part
II).

31 32 33 34 35 36 37 38 39 40
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 3 2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 1.0 0.8 0.6 0.7 1.0 0.8 0.8 0.3 0.8
0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.1 0.5 0.0

Ta bl e 12: System predictions for area 3 when using 16 WAPs (part
I).

41 42 43 44 45 46 47 48 49 50
3 3 3 3 3 3 3 3 3 3
3 2 2 3 2 3 2 3 3 3
0.1 0.1 0.0 0.2 0.1 0.3 0.1 0.3 0.1 0.1
0.4 0.5 0.7 0.2 0.5 0.3 0.5 0.3 0.2 0.2
0.5 0.4 0.3 0.6 0.4 0.4 0.4 0.4 0.7 0.7

When we train the system with the fingerprints collected
on the second day and validate with the ones corresponding
to the first, adjusting our algorithm to take 16 WAPs, we
obtain a relative accuracy of 80% (48/60 successes and 12/60
failures) (Tables 14, 15, 16, and 17).

For 10 access points the results are as follows: area 1(20/20
successes and 0/20 failures) and area 2 (18/20 successes and
2/20 failures) (Tables 18, 19, 20, 21, 22, and 23).

Ta bl e 13: System predictions for area 3 when using 16 WAPs (part
II).

51 52 53 54 55 56 57 58 59 60
3 3 3 3 3 3 3 3 3 3
3 2 2 3 3 3 2 3 1 1
0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.3 0.4 0.4
0.2 0.4 0.5 0.4 0.2 0.4 0.5 0.3 0.3 0.3
0.5 0.3 0.4 0.5 0.7 0.5 0.4 0.4 0.3 0.3

Ta bl e 14: System predictions for area 1 when using 10 WAPs (part
I).

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0.9 0.9 0.9 0.9 0.9 1.0 0.9 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0

Ta bl e 15: System predictions for area 1 when using 10 WAPs (part
II).

11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1

Ta bl e 16: System predictions for area 2 when using 10 WAPs (part
I).

21 22 23 24 25 26 27 28 29 30
2 2 2 2 2 2 2 2 2 2
2 1 2 1 2 2 2 2 2 2
0.2 0.7 0.3 1.0 0.0 0.2 0.2 0.2 0.0 0.0
0.8 0.3 0.7 0.0 1.0 0.8 0.8 0.8 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ta bl e 17: System predictions for area 2 when using 10 WAPs (part
II).

31 32 33 34 35 36 37 38 39 40
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
0.2 0.2 0.3 0.0 0.0 0.2 0.2 0.3 0.2 0.0
0.8 0.8 0.7 0.9 1.0 0.8 0.8 0.7 0.7 1.0
0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0

If we analyze the results for 5 access points (area 1) we can
see that the system succeeds 19 times out of 20 and fails once
out of 20 (fingerprint 11). For area 2 the system is wrong in its
prediction for the fingerprint 39; it succeeds 19 times out of 20
and it fails once out of 20. As for area 3 it succeeds 14 times out
of 20 and it fails 6 out of 20 times (fingerprints 46, 49, 51, 52,
56, and 57). In total the system succeeds 52 times out of 60 and

Mobile Information Systems 13

Ta bl e 18: System predictions for area 1when using 5 WAPs (part I).

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0.8 0.6 0.7 0.8 0.7 0.8 0.6 0.8 0.5 0.5
0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.2 0.1
0.2 0.2 0.1 0.0 0.1 0.2 0.4 0.2 0.3 0.4

Ta ble 19: System predictions for area 1when using 5 WAPs (part II).

11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
0.3 0.4 0.6 0.7 0.7 0.7 0.8 0.5 0.4 0.5
0.0 0.2 0.1 0.2 0.2 0.0 0.0 0.0 0.2 0.2
0.7 0.4 0.3 0.1 0.1 0.3 0.2 0.5 0.4 0.3

Ta bl e 20: System predictions for area 2 when using 5 WAPs (part I).

21 22 23 24 25 26 27 28 29 30
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0
1.0 0.5 1.0 0.7 1.0 1.0 0.7 1.0 1.0 1.0
0.0 0.4 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0

Ta ble 21:System predictions for area 2 when using 5 WAPs (part II).

31 32 33 34 35 36 37 38 39 40
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 1 2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0

Ta bl e 22: System predictions for area 3 when using 5 WAPs (part I).

41 42 43 44 45 46 47 48 49 50
3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 1 3 3 1 3
0.3 0.2 0.1 0.0 0.1 0.6 0.4 0.3 0.5 0.3
0.0 0.1 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.7 0.9 0.6 0.9 0.4 0.6 0.7 0.5 0.7

fails 8 times out of 60 which means there is a relative accuracy
of 86.67%. If we compare this result with those obtained for
16 (80%) and 10 (63.34%) WAPs we get a difference of +6.67
and +23.33 percentage points, respectively. This findi g is of
special interest since it proves that when changes occur in the
WAPs’ measured RSSIs considered day to day we need to be
stricter when selecting access points in order to obtain better
predictions.

As we saw in the previous tables the system made, among
others, the following wrong predictions: for area 1(fi gerprint
11), for area 2 (fingerprint 39), and for area 3 (fingerprint 52).

Ta bl e 23: System predictions for area 3 when using 5 WAPs (part
II).

51 52 53 54 55 56 57 58 59 60
3 3 3 3 3 3 3 3 3 3
2 1 3 3 3 1 1 3 3 3
0.3 0.5 0.1 0.2 0.2 0.6 0.5 0.2 0.4 0.3
0.4 0.2 0.3 0.3 0.2 0.1 0.1 0.3 0.0 0.0
0.3 0.3 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.7

Ta bl e 24: System predictions for area 1 when using average finger-
print based on the number of WAPs.

tag(1) pred (tag) conf (1) conf (2) conf (3)
16WAPs

11 1 0.5 0.3 0.2
10-11(average) 1 0.5 0.2 0.3
10-11-12(average) 1 0.5 0.2 0.3
9-10-11-12-13(average) 1 0.5 0.2 0.3

10WAPs
11 1 0.9 0.0 0.1
10-11(average) 1 0.9 0.0 0.1
10-11-12(average) 1 0.9 0.0 0.1
9-10-11-12-13(average) 1 0.9 0.0 0.1

5 WAPs
11 3 0.3 0.0 0.7
10-11(average) 1 0.8 0.0 0.2
10-11-12(average) 1 0.4 0.3 0.3
9-10-11-12-13(average) 1 0.5 0.1 0.4

The e are the three scenarios in which we will introduce
average fingerprinting to help the system make the right
predictions for each of the areas. To do this we will calculate
the average fi gerprint using (a) the previous fingerprint, (b)
the previous and subsequent ones, and (c) two previous and
two subsequent fingerprints to the current one.

As we see in Table 24, when we use the average fingerprint
resulting from these three methods (previous, previous and
subsequent, two previous, and two subsequent) the system
makes the right prediction with a reliability of an 80% per-
cent, 40% percent, and 50% percent, respectively (Table 25).

For area “2” the system also makes the right prediction
when it receives the average fi gerprint in the three modal-
ities described before. For 16 WAPs the system says that it
belongs to area 2 with 80% confidenc whereas for 5 WAPs
this percentage increases up to 100% (Table 26).

For area 3, fingerprint 52, the system also makes the right
prediction when it receives the average fi gerprint for 5 and
16 WAPs scenarios with 50% and 80% percent of reliability,
respectively. However, when the system takes 10 WAPs it
still fails. Why? This is because whether we calculate the
average fingerprint using the previous one (51),one previous
finge print and subsequent one (51 and 53) or two previous
and two subsequent fingerprints (50, 51, 53, and 54) the
predictions made by the system for these finge prints are also
wrong so there is no way to get an upgrade.

14 Mobile Information Systems

Figur e 8: Validation points.

Ta bl e 25: System predictions for area 2 when using average
fingerprint based on the number of WAPs.

tag(2) pred (tag) conf (1) conf (2) conf (3)
16WAPs

39 3 0.2 0.3 0.5
38-39 (average) 2 0.1 0.8 0.1
38-39-40 (average) 2 0.1 0.8 0.1
37-38-39-40-41(average) 2 0.1 0.9 0.0

10WAPs
39 2 0.2 0.7 0.1
38-39 (average) 2 0.0 0.9 0.1
38-39-40 (average) 2 0.0 1.0 0.0
37-38-39-40-41(average) 2 0.3 0.7 0.0

5 WAPs
39 1 0.4 0.3 0.3
38-39 (average) 2 0.0 1.0 0.0
38-39-40 (average) 2 0.0 1.0 0.0
37-38-39-40-41(average) 2 0.0 1.0 0.0

6.3.2. Results from the Second Experiment. A more complex
scenario including 3 wall and door separated areas has also
been implemented as presented in Figure 1. In order to
validate the accuracy of the algorithms for estimating the
area of an unlocated validation point based on the proposed
training only with area border points, different validation
points from those used for training were selected (randomly
selected at each area) as shown in Figure 8.

A similar approach to evaluate the 15 machine learning
algorithms as in the previous section was used. The same
sampling schema as in Section 6.3.1was used for the training
points. The average results of the estimated areas for each
validation point are shown in Table 27.

All validation points are properly located except point 15
which is a point very close to the border between areas 2 and

Ta bl e 26: System predictions for area 3 when using average
fingerprint based on the number of WAPs.

tag(3) pred (tag) conf (1) conf (2) conf (3)
16WAPs

52 2 0.30 0.40 0.30
51-52 (average) 2 0.10 0.50 0.40
51-52-53 (average) 3 0.10 0.40 0.50
50-51-52-53-54 (average) 2 0.20 0.50 0.30

10WAPs
52 1 0.90 0.10 0.00
51-52 (average) 1 0.90 0.10 0.00
51-52-53 (average) 1 0.90 0.10 0.00
50-51-52-53-54 (average) 1 0.90 0.10 0.00

5 WAPs
52 1 0.50 0.20 0.30
51-52 (average) 3 0.00 0.10 0.90
51-52-53 (average) 3 0.00 0.20 0.80
50-51-52-53-54 (average) 3 0.30 0.20 0.50

3. For a moving target to be located, the assessed trajectory
information could be used to decide in which area a user
is in order to improve the accuracy of the algorithms when
approaching the border of two areas.

7. Conclusion

In this paper we have presented several ways to optimize
fi gerprinting-based techniques for locating users indoors
when only room level accuracy is required.

One of the parameters studied is the way to select the most
convenient sampling points to measure training fingerprints
in order to increase the accuracy while minimizing the
memory and CPU execution requirements. Previous studies
have focused on either an exhaustive grid of sample points

Mobile Information Systems 15

Ta ble 27: Estimated areas for the validation points.

Validation points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Estimated area 1 1 1 1 1 1 1 2 2 2 2 2 3 3 2 3 3 3

or a random selection of them. This paper concludes that, for
room level accuracy, border points between rooms or areas
contain the required information for the prediction algorithm
in order to provide a similar or even better accuracy that the
one provided by exhaustive or random sampling techniques.

The paper also provides a comparative analysis and eval-
uation of the performance of diff rent decision algorithms
identifying under which circumstances each of them work
better.

Another contribution presented in this paper is the
proposal and evaluation of a new way to fi ter unstable
access points in order to increase accuracy and minimize
execution requirements. Taking into account the quality and
stability over time of the received signals from the diff rent
WAPs, the algorithm selects those maximizing both the signal
strength and the minimal fluctuations over time. Several
thresholds are defin d. Th experimental results show that the
algorithms find optimal behavior when fi ters are configured
to select between 10 and 16WAPs.

Finally, the paper has presented that taking several
consecutive fingerprints when locating a mobile device can
improve the accuracy of the results. A compromise exists
between the accuracy obtained and the time required to
locate the user. The results show that 3 consecutive measures
are a reasonable trade-off.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research leading to these results has received funding
from the “HERMES-SMART DRIVER” Project TIN2013-
46801-C4-2-R within the Spanish “Plan Nacional de I+D+I”
funded by the Spanish Ministerio de Economı́a y Compet-
itividad, from the Grant PRX15/00036 for the “Estancias
de Movilidad de Profesores e Investigadores Seniores en
Centros Extranjeros de Enseñanza Superior e Investigación,”
from the Ministerio de Educación Cultura y Deporte, and
from the Spanish Ministerio de Economı́a y Competitividad
funded projects (cofinanced by the Fondo Europeo de Desar-
rollo Regional (FEDER)), IRENE (PT-2012-1036-370000),
COMINN (IPT-2012-0883-430000), and REMEDISS (IPT-
2012-0882-430000) within the INNPACTO program.

References

[1] I. Sabek, M. Youssef, and A. V. Vasilakos, “ACE: an accurate and
effici t multi-entity device-free WLAN localization system,”
IEEE Transactions on Mobile Computing, vol. 14, no. 2, pp. 261–
273, 2015.

[2] J. Hightower and G. Borriello, “Location systems for ubiquitous
computing,” Computer, vol. 34, no. 8, pp. 57–66, 2001.

[3] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell, “A survey of mobile phone sensing,” IEEE
Communications Magazine, vol. 48, no. 9, pp. 140–150, 2010.

[4] K. P. Subbu, C. Zhang, J. Luo, and A. V. Vasilakos, “Analysis and
status quo of smartphone-based indoor localization systems,”
IEEEWireless Communications, vol. 21, no. 4, pp. 106–112, 2014.

[5] A. Varshavsky, A. Lamarca, J. Hightower, and E. De Lara, “The
skyLoc fl or localization system,” in Proceedings of the 5th
Annual IEEE International Conference on Pervasive Computing
and Communications (PerCom ’07), pp. 125–134, IEEE, White
Plains, NY, USA, March 2007.

[6] Y. Jiang, X. Pan, K. Li et al., “ARIEL: automatic Wi-Fi based
room fi gerprinting for indoor localization,” in Proceedings
of the 14th International Conference on Ubiquitous Computing
(UbiComp ’12), pp. 441–450, Pittsburgh, Pa, USA, September
2012.

[7] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik, “Indoor local-
ization without infrastructure using the acoustic background
spectrum,” in Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services (MobiSys ’11), pp. 155–
168, ACM, Washington, DC, USA, June-July 2011.

[8] K. P. Subbu, B. Gozick, and R. Dantu, “LocateMe: magnetic-
fields-ba ed indoor localization using smartphones,” ACM
Transactions on Intelligent Systems and Technology, vol. 4, no.
4, article 73, 2013.

[9] P. Bolliger, “Redpin—adaptive, zero-configur tion indoor local-
ization through user collaboration,” in Proceedings of the 1st
ACM International Workshop onMobile Entity Localization and
Tracking in GPS-Less Environments (MELT ’08), pp. 55–60, San
Francisco, Calif, USA, September 2008.

[10] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable
and accurate indoor localization method using phone inertial
sensors,” in Proceedings of the 14th International Conference on
Ubiquitous Computing (UbiComp ’12), pp. 421–430, Pittsburgh,
Pa, USA, September 2012.

[11] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen,
“Zee: zero-effort crowdsourcing for indoor localization,” in
Proceedings of the 18th Annual International Conference on
Mobile Computing and Networking (Mobicom ’12), pp. 293–304,
ACM, Istanbul, Turkey, August 2012.

[12] H. Shin, Y. Chon, Y. Kim, and H. Cha, “A participatory service
platform for indoor location-based services,” IEEE Pervasive
Computing, vol. 14, no. 1, pp. 62–69, 2015.

[13] K. Subbu, C. Zhang, J. Luo, and A. Vasilakos, “Analysis and
status quo of smartphone-based indoor localization systems,”
IEEEWireless Communications, vol. 21, no. 4, pp. 106–112, 2014.

[14] H. Lin, Y. Zhang, M. Griss, and I. Landa, “WASP: an enhanced
indoor locationing algorithm for a congested Wi-Fi environ-
ment,” in Mobile Entity Localization and Tracking in GPS-Less
Environnments: Second International Workshop, MELT 2009,
Orlando, FL, USA, September 30, 2009. Proceedings, vol. 5801 of
Lecture Notes in Computer Science, pp. 183–196, Springer, Berlin,
Germany, 2009.

16 Mobile Information Systems

[15] M. Brunato and R. Battiti, “Statistical learning theory for
location fi gerprinting in wireless LANs,” Computer Networks,
vol. 47, no. 6, pp. 825–845, 2005.

[16] A. Carlotto, M. Parodi, C. Bonamico, F. Lavagetto, and M. Valla,
“Proximity classific tion for mobile devices using wi-fi envi-
ronment similarity,” in Proceedings of the 1st ACM International
Workshop on Mobile Entity Localization and Tracking in GPS-
Less Environments (MELT ’08), pp. 43–48, San Francisco, Calif,
USA, September 2008.

[17] C. Zhou, H. Xie, and J. Shi, “Wi-Fi indoor location technology
based on K-means algorithm,” in LISS 2014, pp. 765–770,
Springer, Berlin, Germany, 2015.

[18] K. Kaemarungsi and P. Krishnamurthy, “Modeling of indoor
positioning systems based on location fingerprinting,” in Pro-
ceedings of the 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’04), vol.
2, pp. 1012–1022, March 2004.

[19] A. K. M. M. Hossain, H. N. Van, and W.-S. Soh, “Fingerprint-
based location estimation with virtual access points,” in Pro-
ceedings of the 17th International Conference on Computer
Communications and Networks (ICCCN ’08), pp. 485–490,
IEEE, August 2008.

[20] D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury, V.
Handziski, and S. Sen, “A realistic evaluation and comparison of
indoor location technologies: experiences and lessons learned,”
in Proceedings of the 14th International Conference on Informa-
tion Processing in Sensor Networks (IPSN ’15), pp. 178–189, ACM,
Seattle, Wash, USA, April 2015.

[21] Y. Freund and L. Mason, “Th alternating decision tree learning
algorithm,” in Proceedings of the 16th International Conference
on Machine Learning, pp. 124–133, Bled, Slovenia, June 1999.

[22] H. Shi, Best-First Decision Tree Learning, University of Waikato,
Hamilton, New Zealand, 2007.

[23] J. Gama, “Functional trees,” Machine Learning, vol. 55, no. 3, pp.
219–250, 2004.

[24] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,”
Machine Learning, vol. 59, no. 1-2, pp. 161–205, 2005.

[25] R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers, San Mateo, Calif, USA, 1993.

[26] G. I. Webb, “Decision tree grafting from the all-tests-but-
one partition,” in Proceedings of the 16th International Joint
Conference on Artifici l Intelligence (IJCAI ’99), vol. 2, Morgan
Kaufmann Publishers, Stockholm, Sweden, July-August 1999.

[27] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall,
“Multiclass alternating decision trees,” in Proceedings of the 13th
European Conference onMachine Learning (ECML ’02), pp. 161–
172, Helsinki, Finland, August 2002.

[28] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,”
Machine Learning, vol. 59, no. 1, pp. 161–205, 2005.

[29] M. Sumner, E. Frank, and M. Hall, “Speeding up logistic model
tree induction,” in Knowledge Discovery in Databases: PKDD
2005: 9th European Conference on Principles and Practice of
Knowledge Discovery in Databases, Porto, Portugal, October 3–
7, 2005. Proceedings, vol. 3721 of Lecture Notes in Computer
Science, pp. 675–683, Springer, Berlin, Germany, 2005.

[30] R. Kohavi, “Scaling up the accuracy of naive-bayes classifie s:
a decision-tree hybrid,” in Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining, pp. 202–
207, Portland, Ore, USA, August 1996.

[31] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[32] P. Bolliger, Redpin, 2008, http://www.redpin.org/.
[33] H. Lin, Y. Zhang, M. Griss, and I. Landa, “WASP: an enhanced

indoor locationing algorithm for a congested Wi-Fi environ-
ment,” in Mobile Entity Localization and Tracking in GPS-Less
Environnments, pp. 183–196, Springer, Berlin, Germany, 2009.

