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Lifting Transforms on Graphs
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Ortega, Fellow, IEEE

Abstract—Transformations on graphs can provide compact
representations of signals with many applications in denoising,
feature extraction or compression. In particular, lifting trans-
forms have the advantage of being critically sampled and invert-
ible by construction, but the efficiency of the transform depends
on the choice of a good bipartition of the graph into update
(U) and prediction (P) nodes. This is the update/prediction
(U/P) assignment problem, which is the focus of this paper. We
analyze this problem theoretically and derive an optimal U/P
assignment under assumptions about signal model and filters.
Furthermore, we prove that the best U/P partition is related
to the correlation between nodes on the graph and is not the
one that minimizes the number of conflicts (connections between
nodes of same label) or maximizes the weight of the cut. We also
provide experimental results in randomly generated graph signals
and real data from image and video signals that validate our
theoretical conclusions, demonstrating improved performance
over state of the art solutions for this problem.

Index Terms—Lifting transform, Graphs, U/P Assignment,
Splitting, Graph bipartition.

I. INTRODUCTION

A. Motivation

Graphs are useful tools for describing signals defined on
either regular or irregular domains such as sensor, community,
transportation, or social networks. Every signal sample is asso-
ciated with one node in the graph and weighted links (edges)
between nodes reflect some relationships among samples (e.g.,
correlation, similarity, geometric distance or connectivity) [1]–
[16]. Graph-based transforms have been recently developed
to obtain a compact representation of graph signals, which is
useful in many applications such as compression, denoising or
feature extraction. A drawback of some of these transforms is
that they are not critically sampled [1], [7]–[9], which leads to
less compact representations. The lifting scheme [17], which
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Superior de Investigaciones Cientı́ficas, Madrid, Spain (e-mail: emen-
riquez@tsc.uc3m.es).

Jesús Cid-Sueiro and Fernando Dı́az-de-Marı́a are with the Department of
Signal Theory and Communications, Carlos III University, Madrid, Spain (e-
mail: jcid@tsc.uc3m.es, fdiaz@tsc.uc3m.es).

Antonio Ortega is with the Department of Electrical Engineering, Uni-
versity of Southern California, Los Angeles, CA 90089, ( e-mail: anto-
nio.ortega@sipi.usc.edu).

This work was supported in part by NSF under Grant CCF-1018977 and
in part by the Spanish Ministry of Economy and Competitiveness under
Grants TEC2014-53390-P, TEC2014-52289-R, TEC2016-81900-REDT/AEI
and TEC2017-83838-R.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes a
graphical abstract and a README file describing the source code provided
with the paper. This material is 2.13 MB in size.

(a) Original graph (b) UPA and prediction stage

Fig. 1. (a) Signal defined on a weighted graph. Vertical bars represent
the signal value at every node, with colder colors for lower values and vice
versa, and weight values (not shown) are chosen inversely proportional to the
geometrical distance between nodes. (b) The UPA process requires assigning a
label (U , dark-big nodes; or P , white-small nodes) to each node of the graph.
Then, in the prediction stage, P nodes are predicted from U neighbors, leading
to detail coefficients (black bars).

has been extended to graphs [18]–[20], provides a general
solution that allows to obtain critically sampled transforms
on arbitrary undirected graphs. To perform lifting on graphs,
the input graph signal should be split into update (U) and
prediction (P) nodes, which is called U/P assignment (UPA),
and the update (u) and prediction (p) filters should be defined.
In the prediction stage of the transform, P nodes are predicted
from U neighbor nodes using p filters providing subsampled
high-pass (detail coefficients) versions of the signal. Then,
U nodes are updated from P detail coefficients using u
filters giving rise to subsampled low-pass (smooth coefficients)
versions of the signal. If detail coefficients (prediction resid-
uals) are close to zero, most of the information is captured
by the smooth coefficients, thus obtaining a more compact
representation. Applying this process iteratively on the smooth
coefficients leads to a multiresolution analysis [21] of the
original signal. Figure 1 shows an example of a signal defined
on a weighted graph, an UPA solution, and the prediction stage
of the transform. Lifting transforms can operate on any graph
with arbitrary disjoint UPAs and p and u filter designs, without
compromising its perfect reconstruction and critically sampled
properties [22]. Nevertheless, different UPA and filter choices
may lead to different performance. In this paper we focus on
how to optimize the UPA in order to achieve good energy
compaction with the transform.

B. Related Work

Figure 2 illustrates examples of UPAs proposed in the
literature for different graph topologies and applications. In
the figure, P nodes are white and U nodes are gray. Figure
2(a) shows the UPA proposed in [20], [22], [23] for graph
trees: nodes at odd depth are assigned to P , and nodes at even
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Fig. 2. Different UPA examples proposed in the literature. White nodes
represent P nodes and gray nodes represent U nodes.

depth are assigned to U . This even/odd assignment has been
also employed for lifting-based compact image representation
(Figure 2(b)): pixels along odd rows or columns are assigned
to P [24]–[26]. Figure 2(c) shows a UPA proposed for lifting-
based video coding, where even frames are used to predict
the odd frames [27]–[29], and Figure 2(d) shows a UPA for a
brain computer interface (BCI) application, where samples at
odd time stamps are assigned to P [30], [31].
While straightforward UPAs have been proposed for these

specific examples, optimizing the UPA for arbitrary weighted
non-planar graphs of practical interest becomes a complex
problem, and just a few solutions have been proposed in
the literature. The UPA proposed in [32], [33] to minimize
the total energy consumption in a wireless sensor network
is equivalent to solving a Set-Covering (SC) problem, i.e.,
minimizing the number of U nodes while guaranteeing that
every P node has at least one U neighbor, as in the example
in Figure 2(e). [19] and [34] find techniques that minimize
the number of discarded edges (i.e., the percentage of direct
neighbors in the graph that have the same label), proving that
the UPA that minimizes the error between the transform in
the original graph and in the simplified graph (i.e., after edges
are discarded) corresponds to the solution to the classical
Weighted Maximum-Cut (WMC) problem (i.e., finding the
UPA which maximizes the sum of weights over the edges
between U and P sets, as in Figure 2(f)). In the same way,
[3] proposed to decompose the graph in K bipartite subgraphs
and to design two channel wavelet filterbanks in each bipartite
graph. Nevertheless, none of these UPAs minimize the detail
coefficient energy in order to improve the compaction ability
of the transform.
In previous works we proposed UPAs that aim at minimiz-

ing the energy of detail coefficients in a lifting-based video
encoder [35]–[37]. To this end, given a weighted graph that
represents the video signal, we find the UPA that solves the
WMC problem which, intuitively, maximizes the correlation
between the P and the U sets (Figure 2(f)). The same idea was
applied for image representation in [38] and for downsampling
of signals on graphs [39]. In [40] we introduced a model-based
UPA for a specific lifting-based video coding application. We
considered a simplified model with only two different edge
weights and did not prove optimality of the proposed UPA
solution.

C. Contributions

The main contribution in this paper is to formalize the UPA
problem in arbitrary weighted graphs and to propose general
and novel solutions with a target to minimize the expected
value of the detail coefficient energy (i.e., the expected value
of the squared prediction error of P nodes from U nodes) for
a given signal model.

Our approach to the UPA problem can be outlined as
follows: consider a graph whose topology and edge weights
are known1 and represented by an adjacency matrix W. We
define a moving average (MA) signal model on the graph,
which is characterized by a coefficient matrix Q that captures
linear relationships between signal values at different nodes in
the graph. Given that the edge weights capture some similarity
or correlation measure between signal samples, we assume
that simple relations exist between W and Q, in such a way
that the latter can be computed from the former. This is a
reasonable assumption because we expect the graph to be
informative about the signals observed. For a given UPA, we
analyze the design of the p filters of the lifting transform as
a linear estimation problem. As a consequence of this, the
matrix of prediction coefficients P is also computed from W.
By analyzing the mean square prediction error of P nodes
from U nodes, we obtain theoretical conclusions about the
optimal UPA and propose a practical implementation using a
greedy algorithm.

Note that other statistical models as the well known Gaus-
sian Markov Random Fields (GMRF) [44], [45] can be used to
optimize the UPA. Nevertheless, we use MA models because
their simplicity facilitate the process of designing lifting trans-
forms, allowing us to obtain the theoretical results presented
in the paper.

The optimal UPA will depend on the signal statistics and
the graph topology. Some interesting properties arise from
the analysis of particular MA models. For instance, we show
that, under simplifying assumptions, the best UPA consists of
having, at every P node, a constant degree when counting only
its direct U neighbors. This criterion is shown to be better than
alternative ones such as minimizing the number of discarded
edges (in unweighted graphs) or maximizing the weight of the
cut (in weighted graphs).

Although this work is focused in the UPA in a lifting
transform framework, the theoretical results we obtain can be
useful in other settings that require bipartite graphs [3], [46],
[47]. To the best of our knowledge, this is the first work to
optimize the UPA problem on arbitrary graphs (in the sense
of minimizing the detail coefficient energy).

The outline for the rest of the paper is as follows. In Section
II we present the notation that will be used throughout the
paper and overview lifting transforms on graphs. In Section
III we formally define the UPA problem and describe our
proposed general solution. In Section IV we analyze and

1The topology is given by the geometry and the physics of the problem
at hand (e.g., sensor networks or community graphs) or selected based on
signal characteristics [35]–[37], [40]–[43], and the weights capture similarity
between samples and can be defined, for example, as the inverse of the
distance, using a Gaussian kernel weighting function [2], or inferred from
the data [36], [37].
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Fig. 3. Lifting scheme. Two levels of decomposition of the forward transform.

obtain optimal UPAs in some particular cases. In Section V we
propose a greedy algorithm to obtain a practical solution to the
proposed UPA. In Section VI we conduct experimental results
that show the compaction ability of the strategy investigated
in comparison with state of the art techniques in randomly
generated graph signals and real data from image and video.
Section VII concludes with some ideas for future work.

II. PRELIMINARIES

A. Notation

A graph is denoted as G = (V, E ,W), where V =
{1, . . . , N} is a set of nodes, E ⊂ V × V a set of edges (or
links) between nodes, and W = [wmn] is the weighted adja-
cency matrix, with wmn ∈ R+ representing the weight of the
edge mn ∈ E (wmn = 0 if mn /∈ E and wmn = 1 ∀mn ∈ E
for unweighted graphs). In the present work we consider arbi-
trary, undirected graphs. The order of the graph is the number
of nodes, N = |V|. Nm = {n ∈ V : mn ∈ E} is the set of
neighbors of node m, and N[m] is its closed neighborhood set
(N[m] = Nm ∪ {m}). For any partition of V into two disjoint
sets, U refers to the set of update nodes and P to the set of
prediction nodes. The number of U neighbors of node i ∈ P
is defined as mi = |Ni ∩U|. The degree of a node m, Dm, is
the sum of weights of all its incident edges (i.e., the number of
neighbors if the graph is unweighted),Dm =

∑
n∈Nm

wmn. A
graph signal x = [x1, x2, . . . , xm, . . . , xN ] is a signal defined
on G = (V , E ,W) so that xm is the value associated to node
m ∈ V .
We use the index i for nodes in set P , k (or h) for nodes

in set U , f and g for indexing different kinds of links, and
j for indexing the level of the transform, while m and n are
general indexes. Vectors and matrices are written in boldface
letters, I is the identity matrix, ei = (0, . . . , 0, 1, 0, . . . , 0) is
the natural basis vector with a single 1 in position i, and 1
is a vector with all components equal to one. The dimension
of these vectors will be clear from the context. For any sets
of indexes I and J and any matrix M, MI is the submatrix
of M resulting from taking the rows in I and MIJ is the
submatrix of M resulting from taking the rows in I and the
columns in J . When the index set is a singleton, {i}, we will
write Mi instead of M{i} for simplicity.

B. Lifting Transforms on Arbitrary Graphs

Lifting transforms on arbitrary graphs were initially pro-
posed by [18], [19] and [20]. Given a graph signal x defined
on G, lifting is specified by three main stages (see Figure 3):

(i) an UPA stage, which finds a bipartition of the graph so
that the input node set at each specific level of decomposition
j (sj−1) is split into prediction (Pj) and update (Uj) sets;
(ii) a prediction stage, where every sample si,j−1 ∈ Pj is
predicted from an arbitrary number of Uj neighbors using
the pi,j filter, yielding the detail coefficient di,j ; and (iii)
an update stage, where every sample sk,j−1 ∈ Uj is filtered
with the uk,j filter using an arbitrary number of Pj neighbor
detail coefficients, giving rise to the smooth coefficient sk,j .
Mathematically, lifting on graphs can be written as:

di,j =si,j−1 −
∑

k∈Ni,j∩Uj

pi,k,j sk,j−1 = si,j−1 − ŝi,j−1,

sk,j =sk,j−1 +
∑

i∈Nk,j∩Pj

uk,i,j di,j , (1)

where pi,k,j (resp. uk,i,j) is the value of the k−th (resp. i−th)
position in the pi,j (resp. uk,j) filter. Inverting the operations
of the forward transform to obtain the inverse transform is
straightforward from (1) as long as sj−1 can be recovered
from di,j and sk,j (because only connections between U and
P nodes are used for filtering).
Without loss of generality, throughout this paper we focus

the discussion on a specific level of the transform and we omit
the subscript j for notational simplicity, so that x = sj is the
graph signal at j and, for every i ∈ Pj , detail coefficients (1)
are written as

di = xi −
∑

k∈Ni∩U

pi,k xk = xi − x̂i. (2)

III. OPTIMIZED UPA FOR LIFTING TRANSFORMS ON
GRAPHS

A. Problem Formulation and Prediction Error
Given a weighted graph G, a random signal x following a

statistical model defined on G, and a predictor x̂i (2) for each
node i ∈ P , we define the total prediction error (Etot) as the
sum of the expected value of the squared prediction error (the
detail coefficient energy) over the P nodes. Our goal is then
to solve the following problem:

Problem III.1. UPA Problem:
Find the UPA that minimizes the total prediction error

Etot =
∑
i∈P

E{(xi − x̂i)
2} =

∑
i∈P

E{d2i } (3)

for a given number of P nodes (|P|):

argmin
U/P

Etot, subject to |P| = T. (4)

Fixing |P| is important because Etot is minimized by
minimizing the size of P . Thus, solving (4) is practical only
if some constraint on the size of P is introduced. In practice,
|P| should be found depending on the application and the
metric used (e.g., finding the |P| optimal that minimizes the
distortion for a given rate in a compression application).

The solution to the UPA problem will depend on the
stochastic process generating the observed signal, x. In the
following, we will assume a moving average model.
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Definition III.1. General Moving Average (MA) Model
The MA model for a signal x defined on G = (V , E ,W) is

xm = c+
∑

n∈N[m]

qm,nϵn + ηm (5)

for some coefficients qm,n, where c is a constant, and ϵn
and ηm are zero-mean independent random variables, with
variances σ2

ϵ and σ2
η , respectively, for any general node

m ∈ V .

Equation (5) can be expressed in vector form as

x = c1+Qϵ+ η, (6)

where Q is a matrix with components qm,n for n ∈ N[m]

and zero otherwise. Model coefficients qm,n can be computed
from the weights of the graph wm,n, as will be discussed in
Section III-B. Next we define general linear predictors that
will be driven by the graph in the sense that prediction x̂i of
xi depends on the U-neighbors of node i in G.

Definition III.2. General Linear Predictor
Assume a given G = (V, E ,W), x, and UPA. General linear

predictors are defined as:

x̂i =
∑

k∈Ni∩U

pi,kxk. (7)

Linear predictors can be expressed in vector form as:

x̂ = Px, (8)

where P is a matrix with components pi,j for j ∈ Ni∩U and
zero otherwise, and Ni is the set of neighbors of node i in G.

Lemma III.1. MA Prediction Error
For a node i ∈ P , let us assume a signal x defined on
G = (V, E ,W), with xi and x̂i satisfying Definition III.1 and
III.2 respectively. The total prediction error is given by

Etot =
∑
i∈P

E{(xi − x̂i)
2} =

∑
i∈P

EMAi (9)

where

EMAi = E{x2
i } − 2pᵀ

i KUii + pᵀ
i KUiUipi

= c2 + µi,i + σ2
η − 2pᵀ

i (MUiei + c21)

+ pᵀ
i (MUiUi + σ2

ηI+ c211ᵀ)pi, (10)

with Ui = Ni ∩ U (i.e., the set of U-neighbors of node i),
K = E{xxᵀ} is the correlation matrix, column vector pi has
components pi,k, k ∈ Ni ∩ U , and

M = σ2
ϵQQᵀ (11)

is a matrix with components

µm,n = σ2
ϵ

∑
ℓ∈N[m]∩N[n]

qm,ℓqn,ℓ. (12)

The proof is straightforward and is omitted.
Note that µm,n is the (m,n) element of M, and can be

interpreted as a measure of correlation (scaled by σ2
ϵ ) between

nodes m and n. In particular, note that if nodes m and n are
not neighbors and have no common neighbors, then µm,n = 0.

The first conclusion that can be extracted from (10) is that
the UPA minimizing Etot depends on the correlation between
nodes along the graph through M. Note also that for a given i,
EMAi is lower as the correlation between i and its U neighbors
is higher, and as the correlation between Ui neighbors is lower,
which is reasonable from the prediction theory point of view,
as correlated U neighbors contribute with similar information
to predict i.

For a fixed UPA, the optimal predictor for node i can
be obtained as a function of the graph topology and model
coefficients by minimizing EMAi :

p∗
i =K−1

UiUi
KUii

=(MUiUi + σ2
ηI+ c211ᵀ)−1(MUiei + c21). (13)

Note that the optimal prediction coefficients are proportional
to the correlation of node i with its U neighbors, and inversely
proportional to the correlation between these neighbors.

B. Graph weights and model parameters

The MA model in (5) assumes that the graph supporting
the signal model is exactly the same than the given weighted
graph. Using a single graph is consistent with our practical
approach to the UPA problem: we will assume that the
model parameters qm,n are unknown and that they can be
approximated from the graph weights wm,n. In particular, if
the graph weights are not normalized and can take any value
in R+, we define the model coefficients from the weights as:

qm,n =
wm,n∑

n′∈N[m]
wm,n′

, ∀n ∈ N[m]. (14)

If the graph has no self-loops (i.e., wm,m = 0 for all m),
which is frequent in practice, we define:

qm,m =

∑
n∈Nm

wm,n

|Nm|
1∑

n′∈Nm
wm,n′ (1 + 1/|Nm|)

, (15)

qm,n = wm,n
1∑

n′∈Nm
wm,n′ (1 + 1/|Nm|)

,

so that coefficients qm,m average the weight over all neighbors.
The normalization factors assure that

∑
n∈N[m]

qm,n = 1.
Note that this choice is up to some extent arbitrary and its

effectiveness can be application dependent. Despite of this, if
the weights of the graph capture some similarity measurement
between nodes, they can be expected to have some correlation
with the MA model coefficients. We will analyze this approach
in an image/video coding scenario and in randomly generated
graphs where the weights are inversely proportional to the
distance between nodes.

IV. CASE STUDIES

Even though (10) provides a closed form expression for the
prediction error, it is not practical for extracting theoretical
conclusions about the optimal UPA. In this section we analyze
the selection of the U/P partition under several specific
scenarios derived from MA. Besides, for simplicity, we will
define suboptimal unbiased predictors from G and the model
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coefficients, but that have been proven to be near-optimal in
the sense of minimal prediction error [37].

Definition IV.1. Unbiased Predictor
Given a weighted graph G and an UPA, an unbiased

predictor for a MA model with coefficients qm,n is a general
linear predictor (Definition III.2) with:

pi,k =
qi,k∑

k′∈Ni∩U qi,k′
. (16)

Note that, for the weight-based model in (14) or in (15),
predictions (7) based on (16) can be expressed as

x̂i =
1∑

k∈Ni∩U wi,k

∑
k∈Ni∩U

wi,kxk. (17)

According to the MA model in (5), E{x̂i} =(∑
k∈Ni∩U wi,k

)−1∑
k∈Ni∩U wi,kc = c and, thus, the

predictor is statistically unbiased.
In particular, if graph G is unweighted, pi,k = 1/mi (i.e.,

pi =
1
mi

1), with mi = |Ni ∩ U|, and, thus,

x̂i =
1

mi

∑
k∈Ni∩U

xk. (18)

A. Homogeneous Noise Model

First, we consider a very simplistic model in which the value
of every node is a noisy version of some constant. Despite its
simplicity, it will be useful to infer some interesting properties
of a good UPA in some types of graphs.

Definition IV.2. Homogeneous Noise Model
A homogeneous noise model (HNM) is a general MA with

qm,n = 0, so that

xm = c+ ηm. (19)

The HNM can give us an intuition about the optimal UPA
when the samples of the graph signal are independent (i.e.,
xm does not depend on neighbor nodes). In this situation, the
links of the graph are only used to construct the predictors.

Proposition IV.1. Optimal UPA for HNM
Let us assume an unweighted G with xi and x̂i satisfying

Definition IV.2 and Definition IV.1 respectively. For a fixed
|P| and a fixed weight of the cut W =

∑
i∈P mi, any

UPA satisfying that all P nodes have the same number of
U neighbors (same degree with its U neighbors) is optimal in
the sense of minimizing the total prediction error.

The proof is in Appendix A. Note that W is the number
of links between U and P , and Proposition IV.1 implies that,
if the signal components are independent, the optimal UPA
distributes these links equally amongst all the i ∈ P nodes,
i.e., mi = W/|P|.
Although Proposition IV.1 is restricted to a particular model

(HNM) and a specific filter, it unveils a property of the
U/P partition that could be useful for other scenarios. For
instance, even though a constant (unless for the noise) model
like the HNM may be unrealistic, it can be a useful local
approximation for some graphs with links based on similarity

measures between nodes (as, for instance, in image or video
coding). This suggests an UPA algorithm that splits the graph
in subgraphs and searches for U/P partitions satisfying Propo-
sition IV.1 inside each subgraph.

Also, it can be shown that the best UPA for the unbiased
filter is also the best UPA for the optimal predictor in (13) for
the HNM (the proof is omitted). This supports our seminal
idea that reasonable choices of the prediction filters for the
weighted graph may be useful to find good (if not optimal)
solutions to the UPA problem.

B. Smooth Unweighted Model

In this section we propose a signal model for unweighted G
that considers smooth data value variations between neighbors.

Definition IV.3. Smooth Unweighted Model
A smooth unweighted model (SUM) is a general MA given

by (5) with c = 0. 2 Furthermore, from (15) and given that G
is unweighted, qm,n = qm,m = 1

|N[m]|
, so that

xm =
1

|N[m]|
∑

n∈N[m]

ϵn + ηm. (20)

From the unweighted G, unbiased unweighted predictors can
be defined as in (18). Note that pi,k and qi,k are related through
the unweighted G to which they are linked, having that for
node i, the difference between qi,k coefficients of the model
and pi,k coefficients of the predictor is just the normalization
factor (1/N[i] and 1/mi respectively).

Define the clustering degree of nodes m, n on graph G as

c(m,n) =
|N[m] ∩N[n]|
|N[m]||N[n]|

. (21)

Intuitively, c(m,n) is related to the proportion of neighbours
shared by m and n, and coefficients µm,n in matrix M are
given by µm,n = σ2

ϵ c(m,n). Next, we calculate the expected
value of the prediction error assuming the SUM (20) and using
the unweighted predictor defined in (18).

Lemma IV.1. Smooth Unweighted Model Prediction Error
Consider the unbiased predictor (18) for a signal x defined

over an unweighted graph G and driven by the SUM (Defini-
tion IV.3). The prediction error at node i ∈ P is given by

ESUMi = E{(xi − x̂i)
2} (22)

= E{(xi)
2}+ E{(x̂i)

2} − 2E{xix̂i}

= σ2
η +

σ2
ϵ

|N[i]|︸ ︷︷ ︸
A

+
σ2
η

mi
+

σ2
ϵ

m2
i

∑
k∈Ni∩U

∑
h∈Ni∩U

c(k, h)︸ ︷︷ ︸
B

− 2
σ2
ϵ

mi

∑
k∈Ni∩U

c(i, k)︸ ︷︷ ︸
C

.

The proof is in Appendix B. Component A in (22) repre-
sents the variance of the observation, E{(xi)

2}, component B

2Note that, considering normalized predictors,
∑

k∈Ni∩U pi,k = 1, and
thus the constant c does not have influence on the prediction error, as can be
derived from (10).
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represents the variance of the predictor, E{(x̂i)
2}, and compo-

nent C represents the cross-correlation E{xix̂i}. Interestingly,
the variance of the predictor decreases as the number of U
neighbors of node i (mi) increases (i.e., the prediction is
based on more variables) and as the clustering degrees c(k, h)
between U neighbors of node i decrease. Thus, it is of interest
to have many uncorrelated U neighbors of i to perform its
prediction. Note that, if correlation between node i and its U
neighbors (c(i, k)) and between U neighbors of i (c(k, h)) are
constants, the optimal UPA is the same as for the HNM. This
will be formally stated in Corollary IV.1.

C. Discrete Number of Weight Values

A weighted graph G with discrete differentiated weights
arises in some applications where the graph links may be of
a few different types (e.g., in the video representation used in
[35], every spatial (resp. temporal) neighbor is associated with
a specific spatial (resp. temporal) wm,n). In general, we con-
sider F different kinds of neighbors of class Cf with weights
wf

mn (hereafter wf ) if mn ∈ Cf , and with
∑

f wf = 1. Note
that

∪
f∈{1,2,...,F} Cf = E . In this situation, we can assume

that the variance of every node m, the correlation between
every pair of Cf neighbors of m, and the correlation between
m and its Cf neighbors are constant:

E{(xm)2} = σ2, (23)

E{(xnxl)} =
{

αf , if n, l ∈ Nm;mn,ml ∈ Cf
αfg if n, l ∈ Nm;mn ∈ Cf ,ml ∈ Cg,

E{(xmxn)} = γf , if n ∈ Nm,mn ∈ Cf .

For simplicity of notation, hereafter we refer n ∈ N f
i to

nodes that fulfill that n ∈ Ni and ni ∈ Cf . In the discrete
number of weights case, unbiased weighted predictors are
defined by considering the linear prediction filters of Definition
III.2 with:

pfi,k =
wf

mf
i

, (24)

where k ∈ N f
i ∩ U and mf

i = |N f
i ∩ U|, so that

x̂i =
∑
f

wf

mf
i

∑
k∈N f

i ∩U

xk. (25)

Proposition IV.2. Optimal UPA for MA, Assuming (23)
Let us assume a weighted G with xi satisfying Definition

III.1 (MA model) and assumptions in (23) and x̂i defined in
(25). For a fixed |P| and number of links between P and U
sets Wc =

∑
i∈P mi =

∑
i∈P

∑
f m

f
i , the optimal UPA is

obtained when all the P nodes have the same proportion of
Cf U neighbors (i.e., mf∗

i = Kf , where Kf is a constant that
does not depend on i). The optimal proportion depends on wf

(the higher wf , the higher proportion of Cf U neighbors), and
the correlation between Cf U neighbors of i. Specifically:

mf∗

i = Kf =
Wc

|P|
wfA

f∑
g wgAg

, (26)

where g ∈ {1, 2, ..., F} and Ag =
√
σ2 − αg.

The proof is in Appendix C. Next, we outline some con-
clusions derived from Proposition IV.2.

• If αf is high, every N f
i ∩U provides similar information

to predict i. Thus, the optimal number of mf
i decreases

with αf . Furthermore, it increases with wf . Note that
given (23) and that E{xmxn} ≤

√
E{(xm)2}E{(xn)2},

σ2 − αf ≥ 0.
• Equation (26) implies that to obtain the optimal UPA,

every node i should have constant degree with its U
neighbors, Di =

∑
f

∑
k∈N f

i ∩U wf =
∑

f Kfwf = D.
• WMC maximizes the cut between U and P sets, which

could lead to some P nodes having a large number of
U correlated neighbors, while other nodes may not have
correlated neighbors, giving rise to good and bad pre-
dictions respectively. Under assumption (23), every node
should have a balanced number of correlated neighbors,
which globally improves the mean prediction error over
all nodes in P .

Corollary IV.1. Optimal UPA for SUM, Assuming (23)
Let us assume an unweighted G with xi satisfying Defini-

tion IV.3 (SUM) and assumptions in (23) and x̂i satisfying
Definition IV.1. For a fixed |P| and a fixed weight of the cut
W =

∑
i∈P mi, the optimal UPA is obtained when all the P

nodes have the same number of U neighbors.

The proof is straightforward from Proposition IV.2.

V. PROPOSED GREEDY SOLUTION

Solving Problem III.1 implies minimizing Etot for a given
|P|. A brute-force solution is infeasible because one should
try every possible UPA and calculate the squared error over
all the P nodes for each of these assignments. Thus, we
design a greedy algorithm that locally minimizes Etot (9)
in each iteration3. Specifically, the algorithm starts with all
graph nodes as P nodes and, in each iteration t, the algorithm
changes to U the candidate node c∗ ∈ P that minimizes Etot.

Let us define Θ{t,c} as the Etot difference between it-
erations t − 1 and t if node c is changed (i.e., Θ{t,c} =

E
{t−1}
tot − E

{t,c}
tot ). Note that, as Etot decreases when we

incorporate more U nodes, we have that E{t−1}
tot > E

{t,c}
tot ,

and so Θ{t,c} > 0. Therefore:

c∗ = argmin
c∈P

E
{t,c}
tot = argmax

c∈P
Θ{t,c}. (27)

The advantage of maximizing Θ{t,c} instead of minimizing
E

{t,c}
tot is that now we can find c∗ just by observing how

Etot changes in the neighborhood of every candidate node c
(specifically, looking at two-hop neighbors), and thus without
having to evaluate Etot summing over all nodes i ∈ P for
every c. Note that E{t−1}

tot and E
{t,c}
tot (and thus Θ{t,c}) can be

calculated for every c with a few operations on small matrices
(adjacency matrices of the two-hop neighborhood of c). Vector
Θ{t,c} = [Θ{t,c=1},Θ{t,c=2}, . . . ,Θ{t,c=|P|{t}}] is calculated
sweeping through all candidate nodes, and the best node c∗

3The source code associated with this paper is available from
https://github.com/EduardoMartinezEnriquez
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is obtained searching the maximum of Θ{t,c}. The complete
greedy approach is summarized in Algorithm 1.

Algorithm 1 Proposed UPA Greedy Algorithm
Require: G = (V , E) and predictor definitions, |P| nodes,
U = {∅}, P = {E}

1: Calculate M (11)
2: Obtain two-hop neighbors for every node ∈ V
3: while |P|{t} > |P| do
4: for c = 1 to c = |P|{t} do
5: Calculate Θ{t,c} in the neighborhood of c
6: end for
7: Calculate Θ{t,c}

8: Select the node c∗ with maximum Θ{t,c}, c∗ =
argmaxc∈P Θ{t,c}

9: Let U ← U ∪ {c∗}
10: Let P ← P\{c∗}
11: end while
12: return UPA

Note that the algorithm stops when the target number |P|
of nodes in Problem III.1 is reached.

VI. EXPERIMENTS

In this section we provide experimental results in randomly
generated graph signals and in real data from image and
video signals, comparing the compaction ability of the UPA
technique investigated in Section III, the WMC solution, and
a random UPA assignment. The WMC solution is obtained
using the greedy approach described in [48], which basically
starts with all graph nodes as P nodes, and in each iteration
it moves the P node with largest degree to U . The proposed
MA solution is obtained using Algorithm 1. The random UPA
starts with all nodes as P nodes, and in each iteration of the
algorithm moves to U a P node randomly chosen.
To evaluate the performance of each approach, we measure

the root mean square prediction error over all nodes in P as

ERMS =

√
1

|P|
∑
i∈P

(xi − x̂i)2 =

√
1

|P|
∑
i∈P

(di)2, (28)

where xi is the actual signal value of the node i, and x̂i

the prediction. To obtain the prediction, we use the p filters
defined in Definition IV.1 in all the methods. ERMS is
obtained as a function of the relation |U|/N selected by the
different strategies, where different |U|/N are obtained by
letting the restriction |P| in Problem III.1 and thus in the
greedy algorithms vary. Finally, we compare the compaction
ability of the proposed UPA with the filters employed in
lifting based image and video encoders (JPEG 2000 and [29]
respectively) in a multiresolution framework.

A. Randomly Generated Graph Signals

Figure 4 shows illustrative examples of three different graph
topologies, generated with [49], used to test the algorithms,
namely: Fig. 4(a) random sensor networks; Fig. 4(b) random
community graphs; and Fig. 4(c) Minnesota road network.

In the sensor network and community graphs, for each
realization of the experiment, a graph with an user-defined
number of nodes N is generated, with random positions of the
nodes and links between them. Weights are obtained with a
Gaussian kernel of the euclidean distance between nodes. The
graph signal is randomly generated following the MA in (5).
ϵn and ηm are Gaussian, and different values for σ2

ϵ , σ
2
η and c

are assessed. Coefficients of the model qm,n are obtained from
graph weights using (15). In the graphs of Figure 4(a), (b) and
(c), the color of the node represents the value of the sample
associated to it. Minnesota road network is an unweighted
graph with a deterministic structure of 2642 nodes.

Figures 4 (d, e, f), show ERMS as a function of |U|/N for
the different UPA techniques, for the sensor network, commu-
nity graph, and Minnesota road examples, respectively, using
the values of N , σ2

ϵ , σ
2
η and c indicated in the figure caption.

Experimental results are obtained averaging 100 realizations
of the experiment.

As expected, ERMS decreases as the proposed algorithms
choose a higher number of U nodes, because the obtained
predictions are better. The ERMS obtained with the proposed
method is lower than with the WMC and random assignments
for any proportion of |U| nodes in the graph. This means
that, for any |P| selected as a restriction in Problem III.1,
the average energy of detail coefficients is lower with the
proposed method, and thus the compaction ability of the
transform is improved. This is especially important in non-
dyadic transforms such as lifting on graphs. For example,
choosing a 15% of nodes of the graph as U (and thus
decorrelating the signal in the rest 85% of P nodes) with
the proposed UPA algorithm, we obtain the same quality in
the prediction than using more than the 30% of nodes of the
graph as U selected with the WMC.

Figure 5 shows the trends for ERMS in the sensor network
example when parameters of the graph and the model are
changed. Increasing σ2

ϵ and σ2
η the error curves move up

(ERMS increases) because the prediction of the node values
becomes harder. This is more pronounced when increasing σ2

η

than σ2
ϵ , because σ2

η is related with the independent noise for
every node. Increasing c implies that the error is higher for
low |U|/N , where not every |P| is predicted, but does not
affect when every |P| has at least one U neighbor. Changing
N does not have a significant influence in the ERMS .

Figure 6 shows the complexity, measured as the time in
seconds per U node selected, of the WMC and the proposed
Algorithm 1 as a function of the number of nodes on the graph
N . An exhaustive greedy approach with no simplifications,
that for every iteration minimizes E{t,c}

tot instead of maximizing
Θ{t,c}, is also shown to analyze the computational advantages
of working just in the neighborhood of every candidate P
node. Time is measured in a PC Intel Xeon CPU E3@3.5
GHz processor, 4 cores, 8GB RAM. As can be observed,
computational time per node increases linearly with N in the
proposed approach, and quadratically in the WMC, so that for
low N , WMC is faster, but for N > 8000 nodes, the proposed
approach outperforms WMC. Note also that the complexity of
the greedy exhaustive algorithm increases very fast with N .

Finally, Figure 7 shows the mean degree per P node with its
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(d) Average results for 100 realizations of (a).
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(e) Average results for 100 realizations of (b).
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(f) Results for 100 realizations of (c).

Fig. 4. Randomly generated graph signals and ERMS as a function of |U|/N for the proposed, WMC, and random UPAs.

U neighbors, and standard deviation, as a function of |U|/N
when the UPA is performed using the proposed approach
and the WMC solution, for (a) the sensor networks, (b) the
community graph and (c) the Minnesota road. In all cases,
the mean degree (µDegree) increases with |U|/N , and is
higher with WMC than with the proposed algorithm, which is
reasonable because WMC moves to U the node that maximizes
the degree with its P neighbors in each iteration. Nevertheless,
the standard deviation (σDegree) is significantly lower with the
proposed method. The reason is that, despite the optimal UPA
depends on the graph topology and weights between nodes, the
proposed algorithm makes that for every P node, the degree
with its U neighbors is similar so that every P node is well
predicted, tending to the conclusion of constant degree with
U neighbors of Propositions IV.2 and IV.1.
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Fig. 5. ERMS as a function of |U|/N for different graph and signal
parameters.

8



0 2000 4000 6000 8000 10000
N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ti
m

e 
pe

r n
od

e 
(s

)
Proposed
WMC
Greedy exhaustive

Fig. 6. Computational complexity (s) as a function of the order of the graph
N of the greedy approach for the proposed UPA (Algorithm 1), a greedy
exhaustive algorithm, and the greedy approach for the WMC proposed in
[48].

B. Image and Video Signal

In this section we test the algorithms using real data from
different standard image and video test sequences. In the image
example, we use the graph representation proposed in [38],
i.e., every pixel is linked to its 8 one-hop adjacent neighbors,
with Gaussian weights wi,j = e−|xi−xj |2/2σ2

, where xi and
xj is the signal value at nodes i and j respectively, and σ
the standard deviation estimated from the data. For the video
example, we use the graph representation proposed in [35],
[40], where every pixel is linked (i) to an arbitrary number
of temporal neighbors (i.e., a pixel of frame in time instant t
linked to a pixel in frame t+1) following a motion estimation
process and (ii) to its 8 one-hop spatial neighbors (i.e., pixels
of the same frame) that do not cross contours4(we assume that
pixels across contours will likely have very different luminance
value). For every frame, weights have a different value for
spatial and temporal links, and they are calculated following
the process explained in [37], [40].
To reduce the computational time associated with the huge

graphs resulting from image and video representations, im-
ages/frames are divided in M blocks of constant size, and
results are obtained by averaging over the M disjoint sub-
graphs formed. Other low cost approaches [36], [37] could be
used to reduce the computational time.
Figure 8 shows the ERMS for the test images Lena (Figure

8(a)), Cameraman (Figure 8(b)), and Barbara (Figure 8(c)),
and the test video sequences Football (Figure 8(d)), Carphone
(Figure 8(e)), and Tempete (Figure 8(f)). As with the randomly
generated graph signals, for any |U| the average energy of
detail coefficients is lower with the proposed method than
with the WMC and the random UPA solutions. To further
analyze the implications of the improvement in energy com-
paction when using the proposed UPA technique, Figure 9
shows Lena and Cameraman test images reconstructed using
the inverse lifting transform from a specific number of U
nodes, setting all detail coefficients in P nodes to 0. Black
pixels are P nodes that don’t have U neighbors and thus

4To avoid confusion we call image “contours” edges that appear in the
image between sets of pixels of different intensities, while we reserve the
term “edge” for the links between nodes in a graph.

they are not predicted, so that after applying the inverse
transform they remain 0. First, second, and third columns
show Lena reconstructed from |U| = 0.05N , |U| = 0.2N , and
|U| = 0.4N respectively, using the random UPA (first row),
WMC (second row), and the proposed UPA (third row). Fourth
column shows Cameraman reconstructed from |U| = 0.3N
using the random UPA, WMC, and the proposed UPA. Note
that for |U| = 0.05N , |U| = 0.2N and |U| = 0.3N , WMC and
random assignment have many non-predicted P nodes thus not
decorrelated. With the WMC, this non-predicted nodes tend to
be close to the contours of the image, where weights are low.
Consequently, U nodes are not chosen, and P nodes remain
without U neighbors. On the contrary, the proposed approach
tend to distribute the U nodes so that more P nodes can be
well predicted, accordingly with conclusion extracted from
Figure 7. Interestingly, note that even in areas with all nodes
predicted, the subjective quality obtained with the proposed
approach significantly outperforms the WMC, especially close
to the contours, where the prediction of P nodes is much
better with the proposed method. This fact can be clearly seen
comparing Figures 9(g) and (k).

C. Multiresolution and Comparison with Lifting Based Image
and Video Encoders

In this section we apply the proposed UPA algorithm at
different levels of decomposition to obtain a multiresolution
transform, and compare its compaction ability with the trans-
form used in a lifting based image encoder (Daubechies 9/7
filters used in JPEG 2000 [50]) and video encoder (biorthog-
onal 5/3 filters proposed in [29]). To obtain the graph at
transformation level j from the graph at level j−1, we use the
algorithm explained in detail in [40], Algorithm 2. Basically,
we connect those U nodes that are either directly connected
or at two-hop of distance in the graph at level j − 1, and
the corresponding link weight is the product of the weights in
the path between connected nodes at level j − 1. For every
graph at the different levels of the transform, the proposed
UPA method is applied, fixing the restriction of |P| nodes in
Algorithm 1 to have |U|/N = 1/2j in order to obtain a dyadic
transform. At every j, the prediction stage of the transform
is performed (the update stage was not implemented in this
example). In the experiments, four levels of decomposition
are performed. Table I shows the ERMS at different levels
of decomposition for the test images Lena, Cameraman, and
Barbara. Note that applying two levels of decomposition of
the bidimensional separable transform used in JPEG 2000 is
equivalent to four levels of decomposition of the proposed
graph transform (|U|/N = 1/16). Table II shows the ERMS

for the test video sequences Football, Carphone, and Tempete.
As expected, the ERMS is higher as j increases (i.e., as |U|
is lower and more pixels are decorrelated). Furthermore, the
ERMS obtained with the proposed method is lower than with
the lifting based JPEG 2000 and with [29] for the same |U|/N
except for the video sequence Tempete.

D. Discussion
In the experiments with real data from image and video, x

is a deterministic signal, while our solution has been obtained
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Fig. 7. µDegree and σDegree as a function of |U|/N for different graphs.
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(f) Tempete.

Fig. 8. ERMS as a function of |U|/N in real data from image and video test sequences for the proposed, WMC, and random UPAs.

considering a random signal that follows a specific model.
Even if the signal model is a crude approximation to the
image or video generation process, the proposed UPA leads to
a good energy compaction of the transform, much better than
other UPAs as the WMC (Figure 8), so that the theoretical
conclusions and the practical solution we propose are useful
for different kinds of signals, and they are probably similar to
the ones that would be obtained from more complex models
as GMRFs. Furthermore, working with random instead of
deterministic signals we obtain general solutions that do not
depend on the signal itself, which is very useful in different
applications such as coding, where an specific strategy is used
in encoder and decoder and therefore the UPA is not needed
to be sent to the decoder.

VII. CONCLUSIONS AND FUTURE WORK

Lifting transforms on graphs are very useful to obtain an
efficient invertible, critically sampled, compact representation
of a given graph signal. Nevertheless, their performance de-
pends on different optimization problems which solutions are
not trivial in arbitrary graphs. The U/P assignment process,
which consists of assigning a label to every node on the graph,
is one of the most relevant process of the transform. In this
paper, we have introduced a theory in the optimization of the
U/P assignment, finding a general technique that minimizes
the expected value of the squared prediction error. Given a
weighted G, and considering a moving average signal model
and a linear predictor linked to G, we have proven that
the optimal assignment depends on the correlation between
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(a) |U| = 0.05N . Random UPA. (b) |U| = 0.2N . Random UPA. (c) |U| = 0.4N . Random UPA. (d) |U| = 0.3N . Random UPA.

(e) |U| = 0.05N . WMC UPA. (f) |U| = 0.2N . WMC UPA. (g) |U| = 0.4N . WMC UPA. (h) |U| = 0.3N . WMC UPA.

(i) |U| = 0.05N . Proposed UPA. (j) |U| = 0.2N . Proposed UPA. (k) |U| = 0.4N . Proposed UPA. (l) |U| = 0.3N . Proposed UPA.

Fig. 9. Lena and Cameraman reconstructed using the inverse lifting transform from different |U|/N and UPA solutions.

nodes on the graph, and is not the one that minimize the
edges discarding or that maximize the weight of the cut in
unweighted and weighted graphs respectively.
Finally, we have experimentally validated this conclusion

by evaluating the detail coefficient energy of the proposed
UPA technique against state of the art methods in randomly
generated graph signals and real data from image and video.
There are some interesting directions for future work. Mov-

ing average models have been used to derive the optimal U/P
assignments discussed in this paper. It would be interesting
to use different models as GMRFs [45] and investigate opti-
mal U/P assignment methods assuming these models. This
approach has been recently explored in [51]. Problem III.1
is formulated and Algorithm 1 is designed so that energy is
minimized for a given |P| nodes. Therefore, in a practical
application, one should fix |P| nodes. It would be interesting
to select |P| as a function of the application and the signal
of interest. Our current work is focused in the selection of
|P| (and other parameters of the transform) by means of a

Rate-Distortion optimization of the graph for image and video
coding applications.

APPENDIX

A. Proof of Proposition IV.1

Proof:
According to the homogeneous noise model, we have

µm,n = 0, for all m,n. Thus, Mi = 0 and the prediction
error at node i reduces to

EHNMi = c2 + σ2
η − 2c2pᵀ

i 1+ σ2
ηp

ᵀ
i pi + c2(pᵀ

i 1)
2

= c2 (1− pᵀ
i 1)

2
+ σ2

η (1 + pᵀ
i pi) . (29)

Replacing pi =
1
mi

1 into (29), and summing over P nodes,
we have

EtotHNM = σ2
η

(
|P|+

∑
i∈P

(
1

mi

))
. (30)
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TABLE I
ERMS OF THE PROPOSED UPA AND JPEG 2000 AT DIFFERENT LEVELS OF THE TRANSFORM IN AN IMAGE CODING APPLICATION.

JPEG 2000 Proposed
j = 1 j = 2 j = 1 j = 2 j = 3 j = 4

(|U|/N = 1/4) (|U|/N = 1/16) (|U|/N = 1/2) (|U|/N = 1/4) (|U|/N = 1/8) (|U|/N = 1/16)
Lena 11.4 12.9 5.3 6.6 7.9 9.4

Cameraman 13.6 15.1 6.1 7.7 9.4 10.9
Barbara 15.6 16.0 6.2 11.0 12.2 13.4

TABLE II
ERMS OF THE PROPOSED UPA AND [29] AT DIFFERENT LEVELS OF THE TRANSFORM IN A VIDEO CODING APPLICATION.

[29] Proposed
j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

(|U|/N = 1/2) (|U|/N = 1/4) (|U|/N = 1/8) (|U|/N = 1/16) (|U|/N = 1/2) (|U|/N = 1/4) (|U|/N = 1/8) (|U|/N = 1/16)
Football 19.4 20.4 21.2 21.9 13.5 14.9 15.7 16.2
Carphone 8.3 10.1 11.4 12.4 7.5 9.2 10.4 11.5
Tempete 9.2 11.2 12.7 14.7 12.8 14.3 15.3 16.2

Noting that the function f(m) = 1/m is convex in 0 <
m <∞, we can write∑

i∈P

f(mi) ≥ |P|f

(
1

|P|
∑
i∈P

mi

)
(31)

with equality for mi = W/|P|. Using (31) in (30) we can
write

EtotHNM ≥ σ2
η

(
|P|+

∑
i∈P

1
W
|P|

)
(32)

which shows that mi = W/|P| is optimal.

B. Proof of Lemma IV.1

Proof:
Let xi and x̂i satisfy Definition IV.3 and Definition IV.1

respectively. Taking pi,k = 1/mi in (10), we get

ESUMi = E{(xi − x̂i)
2} = µi,i + σ2

η − 2
1

mi

∑
k∈Ni∩U

µi,k

+
1

m2
i

∑
k∈Ni∩U

∑
h∈Ni∩U

µk,h +
σ2
η

mi
, (33)

and taking qm,n = 1/|N[m]| in (12) we get

µk,h = σ2
ϵ

∑
ℓ∈N[k]∩N[h]

qk,ℓqh,ℓ = σ2
ϵ

|N[k] ∩N[h]|
|N[k]||N[h]|

= σ2
ϵ c(k, h)

(34)

and, thus, µk,k = σ2
ϵ /|N[h]|, for any k. Joining (33) and (34),

we get

ESUMi = σ2
η +

σ2
ϵ

|N[i]|
+

σ2
η

mi
+

σ2
ϵ

m2
i

∑
k∈Ni∩U

∑
h∈Ni∩U

c(k, h)

− 2
σ2
ϵ

mi

∑
k∈Ni∩U

c(i, k). (35)

C. Proof of Proposition IV.2

Proof:
EMAi can be expressed as:

EMAi = E{(xi − x̂i)
2} = E{(xi)

2}+ E{(x̂i)
2} (36)

− 2E{xix̂i}.

Note that

E{(x̂i)
2} =

∑
k∈Ni∩U

∑
h∈Ni∩U

pi,kpi,hE {(xkxh)} (37)

and

E{xix̂i} =
∑

k∈Ni∩U

pi,kE{xixk}. (38)

Therefore:

EMAi = E{(xi)
2}+

∑
k∈Ni∩U

∑
h∈Ni∩U

pi,kpi,hE {(xkxh)}

(39)

− 2
∑

k∈Ni∩U

pi,kE{xixk}.

Let us define ESAMi as EMAi under assumtions in (23).
ESAMi can be expressed as:

ESAMi = σ2 +
∑
f

(
(pfi,k)

2mf
i σ

2 + (pfi,k)
2mf

i (m
f
i − 1)αf

)
(40)

+
∑
g ̸=f

mf
i m

g
i p

f
i,kp

g
i,kα

fg − 2
∑
f

mf
i p

f
i,kγ

f ,

where f, g ∈ {1, 2, ..., F} are different classes of links.
Finally, using the weighted filters defined in (24) we get

ESAMi = σ2 +
∑
f

w2
f

(
σ2

mf
i

+ αf (1− 1

mf
i

)

)
(41)

+
∑
f

∑
g ̸=f

wfwgα
fg − 2

∑
f

wfγ
f .

12



Now, we want to seek the mf
i , i ∈ P , that minimizes Etot

for a fixed |P| and number of links between P and U sets
Wc =

∑
i∈P mi =

∑
i∈P

∑
f m

f
i :

min
mf

i

{∑
i∈P

ESAMi

}
s. t.

∑
i∈P

∑
f

mf
i = Wc. (42)

Minimizing the Lagrangian

L =
∑
i∈P

ESAMi + λ

∑
i∈P

∑
f

mf
i −Wc

 . (43)

with respect to each mf
i , using (41):

∂L
∂mf

i

= −w2
f

(
σ2

(mf
i )

2
− αf

(mf
i )

2

)
+ λ = 0 =⇒ (44)

mf∗

i = wf

√
(σ2 − αf )

λ
= Kf ,

where Kf is a constant that does not depend on i.
Furthermore,∑

i∈P

∑
g

mg
i = |P|

∑
g

Kg = Wc =⇒ (45)

∑
g

Kg =
Wc

|P|
=
∑
g

wg

√
(σ2 − αg)

λ
=⇒

mf∗

i =
Wc

|P|
wfA

f∑
g wgAg

,

where g ∈ {1, 2, ..., F} and Ag =
√
σ2 − αg .
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