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Abstract—Jalali and Poor (“Universal compressed sensing,”

arXiv:1406.7807v3, Jan. 2016) have recently proposed a general-

ization of R

´

enyi’s information dimension to stationary stochastic

processes by defining the information dimension of the stochastic

process as the information dimension of k samples divided by k in

the limit as k ! 1. This paper proposes an alternative definition

of information dimension as the entropy rate of the uniformly-

quantized stochastic process divided by minus the logarithm

of the quantizer step size 1/m in the limit as m ! 1. It is

demonstrated that both definitions are equivalent for stochastic

processes that are  ⇤
-mixing, but that they may differ in general.

In particular, it is shown that for Gaussian processes with

essentially-bounded power spectral density (PSD), the proposed

information dimension equals the Lebesgue measure of the PSD’s

support. This is in stark contrast to the information dimension

proposed by Jalali and Poor, which is 1 if the process’s PSD is

positive on a set of positive Lebesgue measure, irrespective of its

support size.

I. INTRODUCTION

Information dimension, proposed by Rényi in [1], was
recently given an operational characterization in (almost)
lossless compressed sensing. In [2], Wu and Verdú analyzed
both linear encoding and Lipschitz decoding of discrete-
time, independent and identically distributed (i.i.d.), stochastic
processes and showed that information dimension plays a
fundamental role in achievability and converse results.
Jalali and Poor proposed a generalization of information

dimension to stationary, discrete-time, stochastic processes [3],
[4] by defining the information dimension d0(X) of the
stochastic process {Xt, t 2 Z} as the information dimension
of (X

1

, . . . , Xk) divided by k in the limit as k ! 1.1 They
showed that, for  ⇤-mixing processes, the information dimen-
sion d0(X) is a fundamental limit for universal compressed
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1More precisely, Jalali and Poor define the information dimension via
a conditional entropy of the uniformly-quantized process. For stationary
processes, their definition coincides with the above-mentioned definition [3,
Lemma 3].

sensing with linear encoding and decoding via Lagrangian
minimum entropy pursuit [3, Th. 8]. Rezagah et al. showed in
[5], [6] that d0(X) coincides, under certain conditions, with the
rate-distortion dimension dimR({Xt}), defined as twice the
rate-distortion function of the stochastic process {Xt, t 2 Z}
divided by � logD in the limit as D # 0. This generalizes to
stochastic processes the result by Kawabata and Dembo that
the rate-distortion dimension of a random variable (RV) equals
its information dimension [7].
In this work, we propose a different definition for the

information dimension of stationary, discrete-time, stochastic
processes. Specifically, let {[Xt]m, t 2 Z} denote the stochas-
tic process {Xt, t 2 Z} uniformly quantized with step size
1/m. We define the information dimension rate d({Xt}) of
{Xt, t 2 Z} as the entropy rate of {[Xt]m, t 2 Z} divided
by logm in the limit as m ! 1. For i.i.d. processes, our
definition of information dimension coincides with that of
Jalali and Poor (and, in fact, evaluates to Rényi’s information
dimension of the marginal RV Xt). More generally, we show
that these definitions are equivalent for  ⇤-mixing processes.
Nevertheless, there are stochastic processes for which the

two definitions disagree. In particular, for Gaussian processes
with essentially-bounded power spectral density (PSD) SX , we
demonstrate that d({Xt}) is equal to the Lebesgue measure of
the set of harmonics on [�1/2, 1/2] for which SX is positive.
Thus, for processes with a bandlimited PSD, the information
dimension rate d({Xt}) is equal to twice the PSD’s bandwidth.
This is consistent with the intuition that for such processes not
all samples contain information. For example, if the bandwidth
of the PSD is 1/4, then we expect that half of the samples
in {Xt, t 2 Z} can be expressed as linear combinations of
the other samples and, hence, do not contain information. In
contrast, we show that the information dimension d0(X) is 1

if SX is positive on a set of positive Lebesgue measure. In
other words, d0(X) does not capture the dependence of the
information dimension rate on the support size of SX .
By emulating the proof of [7, Lemma 3.2], we show that for

any stochastic process {Xt, t 2 Z}, the information dimension
rate d({Xt}) coincides with the rate-distortion dimension
dimR({Xt}). This implies that d0(X) = dimR({Xt}) only
for those stochastic processes for which d0(X) = d({Xt}).

Due to space limitations, some proofs are deferred to a
longer version of our paper [8].



II. NOTATION AND PRELIMINARIES

We denote by R and Z the set of real numbers and the
set of integers, respectively. For a finite or countably infinite
collection of RVs we abbreviate X

k
` , (X`, . . . , Xk�1

, Xk),
X` , (X`, X`+1

, . . . ), and X

k , (. . . , Xk�1

, Xk). If a
collectionXk

` of RVs has a probability density function (PDF),
then we denote it as fXk

`
. We denote stochastic processes as

{Xt, t 2 Z} or, in short, as {Xt}.
Let b·c denote the floor function. We define the quantization

of X with precision m as

[X]m , bmXc
m

(1)

and denote by [X

k
` ]m = ([X`]m, . . . , [Xk]m) the component-

wise quantization of X

k
` . Quantizations such as [X`]m and

[X

k
]m are defined accordingly.

Let H(·), h(·), and D(·k·) denote entropy, differential
entropy, and relative entropy, respectively, and let I(·; ·) denote
mutual information [9]. We take logarithms to base e ⇡ 2.718,
i.e., mutual informations and entropies have dimension nats.
The entropy rate of a discrete-valued, stationary, stochastic
process {Xt} is defined as

H 0
(X) , lim

k!1

H(X

k
1

)

k
. (2)

If H(Xt) < 1, then the stationarity of {Xt} guarantees that
the limit in (2) exists and is equal to [9, Th. 4.2.1]

lim

k!1

H(X

k
1

)

k
= lim

k!1
H(Xk|Xk�1

1

). (3)

We say that {Xt} is  ⇤-mixing if

lim

k!1
sup

PX0,Xk
(A \B)

PX0
(A)PXk(B)

= 1 (4)

where the supremum is over all A 2 F0 and B 2 Fk satisfying
PX0

(A)PXk(B) > 0. (Here, F0 and Fk denote the �-fields
generated by X

0 and Xk, respectively.)
The Rényi information dimension of a collection of RVs Xk

`
is defined as [1]

d(Xk
` ) , lim

m!1

H
�
[X

k
` ]m

�

logm
, if the limit exists. (5)

The upper Rényi information dimension ¯d(Xk
` ) is defined as

in (5), but with the limit replaced by the limit superior.
The Rényi information dimension is finite if, and only if,

H
�
[X

k
` ]1

�
< 1 [1], [2]. If H

�
[X

k
` ]1

�
< 1, then the Rényi

information dimension of a collection of (k�`+1) real-valued
(scalar) RVs satisfies [1, Eq. (7)], [2, Prop. 1]

0  ¯d(Xk
` )  k � `+ 1. (6)

Furthermore, if X is a real-valued (scalar) RV satisfying
H([X]

1

) < 1 and with probability measure

PX = (1� ⇢)Pd + ⇢Pc (7)

where Pd is a discrete measure, Pc is an absolutely continuous
measure, and 0  ⇢  1, then d(X) = ⇢ [1, Th. 3], [2,

Th. 1]. This implies that the Reńyi information dimension of
a discrete RV is zero, and the Reńyi information dimension
of a continuous RV with a PDF is one.

III. INFORMATION DIMENSION RATE
OF STOCHASTIC PROCESSES

We next generalize the definition of information dimension
to stationary stochastic processes.
Definition 1: Let {Xt} be a stationary stochastic process.

Then, the information dimension rate is defined as

d({Xt}) , lim

m!1

H 0
([X]m)

logm
, if the limit exists. (8)

We define the upper information dimension rate ¯d({Xt}) as
in (8), but with the limit replaced by the limit superior.
It can be shown that ¯d({Xt}) is finite if, and only if,

H([Xt]1) < 1. If H([Xt]1) < 1, then

0  ¯d({Xt})  1. (9)

The information dimension rate can be related to the rate-
distortion dimension of {Xt}. Let R(X

k
1

, D) denote the rate-
distortion function of the k-dimensional source X

k
1

, i.e.,

R(X

k
1

, D) , inf

P
X̂k

1 |Xk
1
:

E[k ˆXk
1�Xk

1k
2
]D

I(Xk
1

;

ˆ

X

k
1

) (10)

where the infimum is over all conditional distributions of ˆ

X

k
1

given X

k
1

such that E[k ˆXk
1

�X

k
1

k2]  D (where k · k denotes
the Euclidean norm).
Definition 2: The rate-distortion dimension of the stochastic

process {Xt} is defined as

dimR({Xt}) , 2 lim

D#0
lim

k!1

R(X

k
1

, kD)

�k logD
(11)

provided the limits exist. If the limits do not exist, we define
the upper rate-distortion dimension dimR({Xt}) by replacing
the limits with limits superior.
Kawabata and Dembo showed that the rate-distortion di-

mension of a RV equals its information dimension [7]. This
result can be generalized to stochastic processes.
Theorem 1: For any stochastic process {Xt},

2 lim

D#0
lim

k!1

R(X

k
1

, kD)

�k logD
= lim

m!1
lim

k!1

H
�
[X

k
1

]m

�

k logm
. (12)

Here, lim denotes the limit superior.
Proof: See Section V.

Note that Theorem 1 does not require {Xt} to be stationary.
If {Xt} is stationary, then the limits over k exist (see [10,
Th. 9.8.1] and [9, Th. 4.2.1]), and we have dimR({Xt}) =

¯d({Xt}). Thus, the (upper) information dimension rate is
equal to the (upper) rate-distortion dimension.
We next derive an expression for the information dimension

rate of stationary Gaussian processes {Xt} with mean µ,
variance �2, and PSD ✓ 7! SX(✓). Thus, SX is a nonnegative,
symmetric function satisfying

KX(⌧) =

Z
1/2

�1/2
e

�i2⇡⌧✓SX(✓)d✓, ⌧ 2 Z (13)



where KX(⌧) , E [(Xk+⌧ � µ)(Xk � µ)] denotes the auto-
covariance function of {Xt} and i ,

p
�1.

Theorem 2: Let {Xt} be a stationary Gaussian process with
mean µ, variance �2, and essentially-bounded PSD SX . Then,

d({Xt}) = � ({✓ : SX(✓) > 0}) (14)

where �(·) denotes the Lebesgue measure on [�1/2, 1/2].
Proof: See Section VI.

Thus, for stationary Gaussian processes, the information di-
mension rate is equal to the support size of its PSD.

IV. ANOTHER DEFINITION OF INFORMATION DIMENSION

Jalali and Poor [3], [4] proposed a different definition for the
information dimension of stochastic processes. We shall refer
to this information dimension as the block-average information
dimension and denote it by d0(X).

Definition 3: Let {Xt} be a stationary stochastic process.
Then, the block-average information dimension is defined as

d0(X) , lim

k!1

d(Xk
1

)

k
(15)

if the information dimension d(Xk
1

) exists. We define the
upper block-average information dimension ¯d0(X) as in (15),
but with d(Xk

1

) replaced by ¯d(Xk
1

).
Remark 1: More precisely, Jalali and Poor define the infor-

mation dimension of the stationary process {Xt} as [3, Def. 2]

d0(X) , lim

k!1
lim

m!1

H([Xk]m|[Xk�1

1

]m)

logm
(16)

if the limit over m exists (the limit over k always exists).
They further define the upper information dimension ¯d0(X)

by replacing the limit over m by the limit superior. As shown
in [3, Lemma 3], this definition coincides with Definition 3.
For the class of  ⇤-mixing processes, Jalali and Poor [3], [4]

demonstrated that ¯d0(X) is a fundamental limit for universal
compressed sensing with linear encoding and decoding via
Lagrangian minimum entropy pursuit. Thus, for this class of
stochastic processes, ¯d0(X) has an operational meaning.
We next demonstrate that, for  ⇤-mixing processes, the

information dimension rate ¯d({Xt}) coincides with the block-
average information dimension ¯d0(X). Thus, for such pro-
cesses the information dimension rate inherits the operational
meaning of the block-average information dimension. How-
ever, in general the two definitions do not coincide, but there
exists an ordering between them.
Theorem 3: Let {Xt} be a stationary stochastic process.

Then,
¯d({Xt})  ¯d0(X). (17)

Moreover, if there exists a nonnegative integer n such that

I(Xk
1

;X

�n
) < 1, k = 1, 2, . . . (18)

then ¯d({Xt}) = ¯d0(X).
Proof: See [8].

Condition (18) is satisfied if {Xt} is  ⇤-mixing. It further
holds if {Xt} is a sequence of i.i.d. RVs, if it is a discrete-
valued process with finite marginal entropy, or if it is a

continuous-valued process with finite marginal differential
entropy and finite differential entropy rate. Example 1 in [8]
further demonstrates that ¯d({Xt}) = ¯d0(X) for the piecewise
constant processes studied in [3]–[6], even though they do not
satisfy (18). However, in many cases, the inequality (17) can
be strict, as demonstrated by the following example.
Example 1: Let {Xt} be a zero-mean, variance-�2, station-

ary Gaussian process with bounded PSD SX having support
IX . It follows from Theorem 2 that d({Xt}) = �(IX).
We next argue that the assumption �(IX) > 0 implies that
d0(X) = 1. Consequently, d({Xt}) < d0(X) unless SX has
full support. Indeed, denoting by lim the limit inferior, we
obtain

lim

m!1

H
�
[X

k
1

]m

�

k logm
� lim

m!1

H
�
[X

0

]m

��
X

�1

�k

�

logm
(19)

by the chain rule, the stationarity of {Xt}, and because con-
ditioning reduces entropy. Since {Xt} is Gaussian, it follows
that, conditioned on X

�1

�k, the RV X
0

is Gaussian with mean
E[X

0

|X�1

�k] and variance �2

k, which is independent of X�1

�k. It
can be further shown that if �(IX) > 0 then �2

k > 0 for every
finite k; see, e.g., [8, Lemma 4]. It follows that, conditioned
on any X

�1

�k = x

�1

�k, the RV X
0

has a PDF, so by [1, Th. 3],
[2, Th. 1]

lim

m!1

H
�
[X

0

]m

��
X

�1

�k = x

�1

�k

�

logm
= 1. (20)

With Fatou’s lemma, this shows that the right-hand side (RHS)
of (19) is 1. Together with Definition 3 and (6), this gives
d0(X) = 1.
As a final remark, Rezagah et al. showed that if

limD!0

R(Xk
1 ,kD)

�k logD exists for all k, then [5], [6, Th. 2]

dimR({Xt}) = ¯d0(X). (21)

This may appear as a contradiction to our results, since we
have demonstrated in Theorem 1 that dimR({Xt}) = d({Xt})
(if the limits exist), and Example 1 shows that there are
stochastic processes for which d({Xt}) < d0(X). However,
the proof of (21) relies on the fact that [5, Sec. VI-E]
����
1

k
R(X

k
1

, kD)� lim

!1

1


R(X


1

,D)

���� 
1

k
I(Xk

1

;X

0

) (22)

and that the RHS of (22) vanishes as k ! 1. If (18)
holds for n = 0, then this is indeed the case. As shown in
Theorem 3, in this case we also have ¯d({Xt}) =

¯d0(X).
In contrast, the RHS of (22) is infinite, e.g., if {Xt} is a
stationary stochastic process with a PSD that is zero on a
set of positive Lebesgue measure, since for such processes
h(X

1

|X0

) = �1. Our proof of Theorem 1 does not rely on
(22). We thus conclude that dimR({Xt}) = d({Xt}) for any
stochastic process {Xt} for which the limits in (12) exist, but
that dimR({Xt}) = d0(X) only for those processes for which
d0(X) = d({Xt}).



V. PROOF OF THEOREM 1
The proof of Theorem 1 is essentially identical to the proof

of [7, Lemma 3.2] by Kawabata and Dembo, so we only
provide a brief outline. More details can be found in [8].
Indeed, choosing in (10) ˆ

X

k
1

= [X

k
1

]m, m =

1p
D

yields

R(X

k
1

, kD)  H
�
[X

k
1

]m

�
(23)

since for this choice, kXk
1

� ˆ

X

k
1

k2  kD almost surely, hence
it satisfies the distortion constraint. That the left-hand side
(LHS) of (12) is upper-bounded by the RHS of (12) then
follows by dividing by �k logD and by taking limits over
k and D.
To show that the LHS of (12) is lower-bounded by the RHS

of (12), we use the following bound given in [7, Eq. (A.1)]:

R(X

k
1

, D) � sup

s0,�s

�
sD + E

⇥
log �s(X

k
1

)

⇤ 
(24)

where �s : Rk ! [0,1) is any nonnegative measurable
function satisfying

sup

yk
12Rk

E
h
�s

�
X

k
1

�
e

s
Pk

`=1(y`�X`)
2
i
 1. (25)

As in the proof of [7, Lemma 3.2], we apply (24) with

s = �m2 (26a)

�s(x
k
1

) =

1

Nk

X

ik12Zk

1

�
[x

k
1

]m = i

k
1

/m
 

Pr
�
[x

k
1

]m = i

k
1

/m
� (26b)

N = 1 + 2

1X

i=0

e

�i2 (26c)

where 1{·} denotes the indicator function. Evaluating (24) for
this choice gives

R(X

k
1

, kD) � H
�
[X

k
1

]m

�
� k(m2D + logN). (27)

The claim thus follows by choosing m =

1p
D
, by dividing

both sides of (27) by �k logD and by taking limits over k
and D. This proves Theorem 1.

VI. PROOF OF THEOREM 2
Let {Xt} be a stationary Gaussian process with mean µ,

variance �2, and essentially-bounded PSD SX , and let Zt =

[Xt]m, t 2 Z. To compute d({Xt}), we express H(Z

k
1

) as

H(Z

k
1

) = h(Z
1

+ U
1,m, . . . , Zk + Uk,m) + k logm (28)

where {Ut,m, t 2 Z} is a sequence of i.i.d. RVs with
Ut,m uniformly distributed on the interval [0, 1/m]. Defining
Wt , Zt + Ut,m, and using that h(Wk

1

) can be written
as h((Wk

1

)G) � D(fWk
1
kgWk

1
) (where (W

k
1

)G denotes a
Gaussian vector with the same mean and covariance matrix
as Wk

1

, and gWk
1
denotes its PDF) we obtain

H 0
(Z) = lim

k!1

h((Wk
1

)G)�D(fWk
1
kgWk

1
)

k
+ logm. (29)

The first term on the RHS of (29) is the differential entropy
rate of a stationary Gaussian process, which can be expressed

in terms of its PSD SW [9, Sec. 11.5]. By the independence
of {Zt} and {Ut,m}, SW is given by SZ +SU , where SZ and
SU denote the PSDs of {Zt} and {Ut,m}, respectively. Since
{Ut,m} is i.i.d., we have that

SU (✓) =
1

12m2

, �1

2

 ✓  1

2

. (30)

The following lemma provides a characterization of SZ .
Lemma 1: Let {Xt} be a stationary Gaussian process with

mean µ, variance �2, and essentially-bounded PSD SX , and
let Zt = [Xt]m, t 2 Z. Then, the PSD SZ of {Zt} satisfies

a2
1

SX(✓)  SZ(✓)  a2
1

SX(✓) +
c

m2

, �1

2

 ✓  1

2

(31)

where a
1

, E [(Zt � E [Zt])(Xt � µ)] /�2 and c is a positive
constant. Moreover, |1� a

1

|  1

m

p
2/(⇡�2

).
Proof: The proof is based on [11] and appears in [8].

Combining Lemma 1 with (30), it follows that

SW (✓) = a2
1

SX(✓) + gm(✓), �1

2

 ✓  1

2

(32)

where the function ✓ 7! gm(✓) satisfies
k
1

m2

 gm(✓)  K
1

m2

, �1

2

 ✓  1

2

(33)

for some nonnegative constants k
1

and K
1

. Together with [9,
Sec. 11.5], this yields

lim

k!1

h((Wk
1

)G)

k
=

1

2

log(2⇡e)

+

1

2

Z
1/2

�1/2
log

�
a2
1

SX(✓) + gm(✓)
�
d✓. (34)

We next consider the second term on the RHS of (29). We
show that, for some positive constant K

2

,

lim

k!1

D(fWk
1
kgWk

1
)

k
 K

2

. (35)

To this end, we first note that X = (X
1

, . . . , Xk)
T (where (·)T

denotes transpose) can be written as [12, Th. 23.6.14]

X = AN+ µ (36)

where N is a k0-dimensional, zero-mean, Gaussian vector
(k0  k) with independent components whose variances
are the nonzero eigenvalues of the covariance matrix CX

of X, A is a k ⇥ k0 matrix satisfying ATA = I (where I
denotes the identity matrix), and µ = (µ, . . . , µ)T. Denoting
W = (W

1

, . . . ,Wk)
T, the chain rule for relative entropy yields

D(fWk
1
kgWk

1
)  D(fW,NkgW,N)

=

Z
D(fW|N=nkgW|N=n)fN(n)dn (37)

where gW,N denotes the PDF of a Gaussian vector with
the same mean and covariance matrix as (W,N), and
gW|N=n(w) , gW,N(w,n)

fN(n) . The inequality in (37) follows
because the conditional relative entropy between fN|W and
gN|W is nonnegative; the equality follows because N is
Gaussian, so D(fNkgN) = 0.



To evaluate the relative entropy on the RHS of (37), we
note that x can be obtained from n via (36), so for w 2 Rk,

fW|N=n(w) = mk
1{[w]m = [An+ µ]m} . (38)

Thus, denoting W(n) = {w 2 Rk
: [w]m = [An+ µ]m},

D(fW|N=nkgW|N=n) = log

⇣
mk

q
(2⇡)kdetCW|N

⌘

+

mk

2

Z

W(n)
(w � µW|N=n)

TC�1

W|N(w � µW|N=n)dw (39)

where µW|N=n and CW|N denote the conditional expectation
and the conditional covariance matrix of W given N = n.
These can be computed as [12, Th. 23.7.4]

µW|N=n = E [W] + CWNC�1

N n (40a)
CW|N = CW � CWNC�1

N CT
WN (40b)

where CWN denotes the cross-covariance matrix of W and
N, and CW and CN denote the covariance matrices of W

and N, respectively.
By Bussgang’s theorem, the cross-covariance matrix of W

and X is CWX = a
1

CX, where a
1

is as in Lemma 1.
From (36) we get CX = ACNAT and CWN = CWXA, hence
CWN = a

1

ACN. Together with (40), this yields

µW|N=n = E [W] + a
1

An (41a)
CW|N = CW � a2

1

CX. (41b)

Combining (41a) with (36), we can upper-bound each
component of w � µW|N=n as

|w` � E [W`]� a
1

(x` � µ)|
 |z` � x`|+ |u` � E [U`]|

+ |E [Z`]� µ|+ |1� a
1

||x` � µ|. (42)

The first and the third term on the RHS of (42) are both upper-
bounded by 1

m , and the second term is upper-bounded by 1

2m .
With Lemma 1 we thus get

kw � µW|N=nk2  1

m2

✓
25k

2

+

4

⇡�2

kx� µk2
◆
. (43)

We next note that, since SW = SZ + SU and SU (✓) =
1

12m2 ,

CW|N = CZ � a2
1

CX +

1

12m2

I (44)

where Z = (Z
1

, . . . , Zk)
T. Noting that CZ � a2

1

CX is the
conditional covariance matrix of Z given N and, therefore, is
positive semidefinite, it follows that the smallest eigenvalue
of CW|N is lower-bounded by 1

12m2 . Together with (43), this
yields for the second term on the RHS of (39)

mk

2

Z

W(n)
(w � µW|N=n)

TC�1

W|N(w � µW|N=n)dw

 6mk+2

1

mk

1

m2

✓
25k

2

+

4

⇡�2

kx� µk2
◆

= k⌘1 + ⌘2kx� µk2 (45)

for some constants ⌘
1

and ⌘
2

that do not depend on (k,m).

To upper-bound the first term on the RHS of (39), we use
that (44) and Lemma 1 imply that every diagonal element of
CW|N is upper-bounded by ⌥/m2, where ⌥ , c + 1

12

. It
follows from Hadamard’s inequality that

log

⇣
mk

q
(2⇡)kdetCW|N

⌘
 k

2

log(2⇡⌥). (46)

Combining (45) and (46) with (39) and (37) yields

D(fWk
1
kgWk

1
)  k

2

log(2⇡⌥)+k⌘
1

+⌘
2

E
⇥
kX� µk2

⇤
(47)

which together with E
⇥
kX� µk2

⇤
= k�2 proves (35).

To conclude the proof of Theorem 2, we divide H 0
(Z) in

(29) by logm and let m tend to infinity. The nonnegativity
of relative entropy and the upper bound (35) imply that the
relative entropy on the RHS of (29) does not contribute to the
information dimension rate. Thus, by (34),

d({Xt}) = 1 + lim

m!1

1

2

Z
1/2

�1/2

log

�
a2
1

SX(✓) + gm(✓)
�

logm
d✓.

(48)
To evaluate the RHS of (48), we follow along the lines of
[13, Sec. VI] and swap the order of limit and integral (which
can be justified by the dominated and monotone convergence
theorem). The integrand vanishes as m ! 1 for those
frequencies ✓ for which SX(✓) > 0. Moreover, by (33),
limm!1

log gm(✓)
logm = �2. Consequently,

lim

m!1

1

2

Z
1/2

�1/2

log

�
a2
1

SX(✓) + gm(✓)
�

logm
d✓

= ��({✓ : SX(✓) = 0}). (49)

Together with (48), this demonstrates that d({Xt}) =

�({✓ : SX(✓) > 0}) and concludes the proof.
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