
This is a postprint version of the following published document: 

Griol D., Molina J.M. (2014) A Framework to Develop Adaptive 
Multimodal Dialog Systems for Android-Based Mobile Devices. In: 
Polycarpou M., de Carvalho A.C.P.L.F., Pan JS., Woźniak M., Quintian 
H., Corchado E. (eds) Hybrid Artificial Intelligence Systems. HAIS 
2014. Lecture Notes in Computer Science, vol 8480. Springer, Cham

DOI: 10.1007/978-3-319-07617-1_3

© Springer International Publishing Switzerland 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288498766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-07617-1_3


A Framework to Develop

Adaptive Multimodal Dialog Systems
for Android-Based Mobile Devices�

David Griol and José Manuel Molina

Applied Artificial Intelligence Group
Computer Science Department
Carlos III University of Madrid

Avda. de la Universidad, 30, 28911 - Leganés, Spain
{david.griol,josemanuel.molina}@uc3m.es

Abstract. Mobile devices programming has emerged as a new trend
in software development. The main developers of operating systems for
such devices have provided APIs for developers to implement their own
applications, including different solutions for developing voice control.
Android, the most popular alternative among developers, offers libraries
to build interfaces including different resources for graphical layouts as
well as speech recognition and text-to-speech synthesis. Despite the use-
fulness of such classes, there are no strategies defined for multimodal in-
terface development for Android systems, and developers create ad-hoc
solutions that make apps costly to implement and difficult to compare
and maintain. In this paper we propose a framework to facilitate the
software engineering life cycle for multimodal interfaces in Android. Our
proposal integrates the facilities of the Android API in a modular archi-
tecture that emphasizes interaction management and context-awareness
to build sophisticated, robust and maintainable applications.

Keywords: Dialog systems, Multimodal interaction, Android, Mobile
devices, User adaptation, Statistical methodologies.

1 Introduction

Continuous advances in the development of information technologies have cur-
rently led to the possibility of accessing information and services on the Internet 
from anywhere, at anytime and almost instantaneously. In addition, these tech-
nological advances have made possible the creation of powerful mobile devices 
capable of running network applications and accessing web services and infor-
mation through wireless connections. Smartphones and tablets are widely used 
today to access the web, but mainly through web browsers or graphical user 
interfaces.

______
*This work was supported in part by Projects MINECO TEC2012-37832-C02-01,
CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485).

1



Different technologies have recently emerged to facilitate the accessibility of
these devices, which reduced size makes them difficult to operate in some situa-
tions and specially for some user groups. For example, multimodal dialog systems
[1] can be employed to build more natural interaction with mobile devices by
means of speech. They can be defined as computer programs designed to emulate
communication capabilities of a human being including several communication
modalities, such as speech, tactile and visual interaction.

In addition, these systems typically employ several output modalities to inter-
act with the user, which allows to stimulate several of his senses simultaneously,
and thus enhance the understanding of the messages generated by the system.
This is particularly useful for people with visual or motor disabilities, allow-
ing their integration and the elimination of barriers to Internet access [2]. For
this reason, multimodal conversational agents are becoming a strong alternative
to traditional graphical interfaces which might not be appropriate for all users
and/or applications [1].

In this paper, we propose a domain-independent framework to develop multi-
modal dialog systems for mobile devices. Currently the 75% of smartphones and
tablets operate with the Android OS [3]. Also, there is an active community of
developers who use the Android Open Source Project and have made possible to
have more than one million applications currently available at the official Play
Store, many of them completely free. For these reasons, our framework makes
use of different facilities integrated in Android-based devices.

The remainder of the paper is as follows. Section 2 briefly describes the mo-
tivation of our proposal and related work. Section 3 describes the proposed
framework to develop adaptive multimodal dialogs systems for mobile devices.
Section 4 presents the application of our proposal to developed an advanced
multimodal city street guide for Android-based mobile devices. This section also
presents the results of a preliminary evaluation of this system. Finally, Section
6 presents some conclusions and future research lines.

2 State of the Art

Although there are currently different approaches to make web contents available
using multimodal interaction, they present important limitations. Some of them
add a vocal interface to an existing web browser [4]. Others are focused on
specific tasks, as e-commerce [5], chat functionalities [6], database access [7],
etc. Finally, the solution could be restricted to access information of a limited
domain, like in [8], where the dialog system works for selected on-line resources.
Several traditional information retrieval systems have been also extended with
a vocal interface. However, these applications usually emphasize on the search
of documents and not on the interaction with the user.

Additionally, several studies have reported that providing applications with
multimodal interfaces is becoming a way to achieve more efficient, pleasant and
adapted interaction for mobile applications [9]. In human conversation, speakers
adapt their message and the way they convey it to their interlocutors and to the

2



context in which the dialog takes place. This way, information related to the en-
vironment and users presence and location is essential to achieve this adaptation.
Recent portable devices (e.g. Android-based mobile devices) are equipped with
a diversity of input and output technologies and sensors (accelerometers, multi-
touch screens, compasses) and start using these to support some form of very
basic multimodal interaction. They can be employed to adapt the operation of
the multimodal system by taking into account both the context of the interaction
and user’s specific preferences and previous interactions with the system.

Our proposed framework allows an advance in this direction by considering
these valuable sources of contextual information for the development of adaptive
multimodal interfaces [10]. To do this, a statistical methodology is proposed to
flexible adapt the operation of the system taking into account both user’s specific
interactions and preferences and also environmental conditions.

3 Proposed Framework to Develop Adaptive Multimodal
Dialog Systems for Android-Based Mobile Devices

Figure 1 shows the proposed framework. A spoken dialog system integrates five
main tasks to deal with user’s spoken utterances: automatic speech recognition
(ASR), natural language understanding (NLU), dialog management (DM), nat-
ural language generation (NLG), and text-to-speech synthesis (TTS).

Speech recognition is the process of obtaining the text string corresponding to
an acoustic input. Our proposal integrates the Google Speech API to include the
speech recognition functionality in a multimodal dialog system. Speech recog-
nition services have been available on Android devices since Android 2.1 (API
level 7). The ASR functionality is available by means of a microphone icon
on the Android keyboard, which activates the Google speech recognition ser-
vice. Language-configurable messages can be predefined for specific events like
no speech detected, no suitable match for the user’s utterance, or no Internet
connection is available.

Using the Google Speech API (package android.speech), speech recognition
can be carried out by means on a RecognizerIntent, or by creating an instance
of SpeechRecognizer. The former starts the intent and process its results to com-
plete the recognition, providing feedback to the user to inform that the ASR is
ready or there were errors during the recognition process. The latter provides
developers with different notifications of recognition related events, thus allowing
a more fine-grained processing of the speech recognition process. In both cases,
the results are presented in the form of an N-best list with confidence scores.

Once the conversational agent has recognized what the user uttered, it is
necessary to understand what he said. Natural language processing generally
involves morphological, lexical, syntactical, semantic, discourse and pragmatical
knowledge. Lexical and morphological knowledge allow dividing the words in
their constituents distinguishing lexemes and morphemes. We propose the use
of grammars in order to carry the semantic interpretation of the user inputs.

As explained in the introduction section, a multimodal dialog system involves
user inputs through two or more combined modes, which usually complement

3



Fig. 1. Proposed framework for the generation of multimodal dialog systems in
Android-based mobile devices

spoken interaction by also adding the possibility of textual and tactile inputs
provided using physical or virtual keyboards and the screen. In our contribution,
we want also to model the context of the interaction as an additional valuable
information source to be considered in the fusion process.

We propose the acquisition of external context by means of the use of sensors
currently supported by Android devices. Android allows applications to access
location services using the classes in the android.location package. The central
component of the location framework is the LocationManager system service,
also the Google Maps Android API permits to add maps to the application,
which are based on Google Maps data. This API automatically handles access
to Google Maps servers, data downloading, map display, and touch gestures on
the map. The API can also be used to add markers, polygons and overlays, and
to change the user’s view of a particular map area. To integrate this API into
an application, is it required to install the Google Play services libraries.

Most Android-powered devices have built-in sensors that measure motion,
orientation, and various environmental conditions. These sensors are capable of
providing raw data with high precision and accuracy, and are useful to monitor
three-dimensional device movement or positioning, or monitor changes in the
ambient environment near a device. The Android platform supports three main
categories of sensors. Motion sensors measure acceleration forces and rotational
forces along three axes. This category includes accelerometers, gravity sensors,

4



gyroscopes, and rotational vector sensors. Environmental sensors measure var-
ious environmental parameters, such as ambient air temperature and pressure,
illumination, and humidity. This category includes barometers, photometers,
and thermometers. Finally, position sensors measure the physical position of a
device. This category includes orientation sensors and magnetometers.

The Android sensor framework (android.hardware package) allows to access
these sensors and acquire raw sensor data. Some of these sensors are hardware-
based and some are software-based. Hardware-based derive their data by directly
measuring specific environmental properties, such as acceleration, geomagnetic
field strength, or angular change. Software-based sensors derive their data from
one or more of the hardware-based sensors (e.g., linear acceleration and gravity
sensors).

Android also provides several sensors to monitor the motion of a device. Two
of these sensors are always hardware-based (the accelerometer and gyroscope),
and three of these sensors can be either hardware-based or software-based (the
gravity, linear acceleration, and rotation vector sensors). Motion sensors are
useful for monitoring device movement, such as tilt, shake, rotation, or swing.
All of the motion sensors return multi-dimensional arrays of sensor values for
each SensorEvent. Two additional sensors allow to determine the position of a
device: the geomagnetic field sensor and the orientation sensor. The Android
platform also provides a sensor to determine how close the face of a device is to
an object (known as the proximity sensor). The geomagnetic field sensor and the
proximity sensor are hardware-based. The orientation sensor is software-based
and derives its data from the accelerometer and the geomagnetic field sensor.

Finally, four sensors allow monitoring various environmental properties: rel-
ative ambient humidity, light, ambient pressure, and ambient temperature near
an Android-powered device. All four environment sensors are hardware-based
and are available only if a device manufacturer has built them into a device.
With the exception of the light sensor, which most device manufacturers use
to control screen brightness, environment sensors are not always available on
devices. Unlike most motion sensors and position sensors, environment sensors
return a single sensor value for each data event.

Regarding internal context, our proposal is based on the traditional view of the
dialog act theory, in which communicative acts are defined as intentions or goals.
Our technique is based on a statistical model to predict user’s intention during
the dialog, which is automatically learned from a dialog corpus. This model is
used by the system to anticipate the user’s needs by dynamically adopting their
goals and also providing them with unsolicited comments and suggestions, as well
as responding immediately to interruptions and provide clarification questions.
The model takes into account the complete history of the interaction and also
the information stored in user profiles.

The dialog manager of the system has to deal with different sources of informa-
tion such as the NLU results, database queries results, application domain knowl-
edge, and knowledge about the users and the previous dialog history to select the
next system action. We propose a statistical methodology that combines

5



multimodal fusion and dialogmanagement functionalities. To do this, a data struc-
ture is introduced to store the information provided by the user’s inputs, the user’s
intention model, and the context of the interaction.

The modality fission module receives abstract, modality independent presen-
tation goals from the dialog manager. The multimodal output depends on several
constraints for the specific domain of the system, e.g., the current scenario, the
display size, and user preferences like the currently applicable modality mix. This
module applies presentation strategies that decompose the complex presentation
goal into presentation tasks. It also decides whether an object description is to be
uttered verbally or graphically. The result is a presentation script that is passed
to the the Visual Information and Natural Language generation modules.

The visual generation module creates the visual arrangement of the content
using dynamically created and filled graphical layout elements. Since many ob-
jects can be shown at the same time on the display, the manager re-arranges the
objects on the screen and removes objects, if necessary. The visual structure of
the user interface (UI) is defined in an Android-based multimodal application
by means of layouts. Layouts can be defined by declaring UI elements in XML
or instantiating layouts elements at runtime. Both alternatives can be combined
in order to declare the application’s default layouts in XML and add code that
would modify the state of the screen objects at run time. Declaring the UI allows
to better separate the presentation of the application from the code that controls
its behavior.

UI layouts can be quickly designed in the same way a web page is generated.
Android provides a wide variety of controls that can be incorporated to the UI,
such as buttons, text fields, checkboxes, radio buttons, toggle buttons, spinners,
and pickers. The View class provides the means to capture the events from the
specific control that the user interacts with. The user interactions with the UI
are captured by means of event listeners. The default event behaviors for the
different controls can also been extended using the class event handlers.

Natural language generation is the process of obtaining texts in natural lan-
guage from a non-linguistic representation. The simplest approach consists in
using predefined text messages (e.g., error messages and warnings). Finally, a
text-to-speech synthesizer is used to generate the voice signal that will be trans-
mitted to the user. We propose the use of the Google TTS API to include the
TTS functionality in an application.

The text-to-speech functionality has been available on Android devices since
Android 1.6 (API Level 4). To listen a sample of the included TTS speech syn-
thesizer, once located in the settings menu of the device, the option Settings of
Speech Synthesis must be selected in the menu Speech Input and Output. This
menu allows selecting the TTS engine, language, and speed used to read a text
(from very low to very fast).

The android.speech.tts package includes the classes and interfaces required
to integrate text-to-speech synthesis in an Android application. They allow the
initialization of the TTS engine, a callback to return speech data synthesized

6



by a TTS engine, and control the events related to completing and starting the
synthesis of an utterance, among other functionalities.

3.1 Modeling User’s Intention

The statistical technique that we propose to model user’s intention is described
in [11]. The proposed technique carries out the functions of the ASR and SLU
modules, i.e., it estimates user’s intention providing the semantic interpretation
of the user utterance in the same format defined for the output of the SLU mod-
ule. A data structure, that we call User Register (UR), contains the information
provided by the user throughout the previous history of the dialog. For each
time i, the proposed model estimates user’s intention taking into account the
sequence of dialog states that precede time i, the system answer at time i, and
the objective of the dialog O. The selection of the most probable user answer Ui

is given by:

Ûi = arg max
Ui∈U

P (Ui|URi−1, Ai,O)

The information contained in URi is a summary of the information provided
by the user up to time i. That is, the semantic interpretation of the user utter-
ances during the dialog and the information that is contained in a user profile
(e.g., user’s name, gender, experience, skill level, most frequent objectives, ad-
ditional information from previous interactions, user’s neutral voice, and addi-
tional parameters that could be important for the specific domain of the system).
We propose to solve the previous equation by means of a classification process,
which takes the current state of the dialog (represented by means of the set
URi−1, Ai,O) as input and provides the probabilities of selecting the different
user dialog acts.

3.2 Fusion of Input Modalities and Dialog Management

The methodology that we propose for the multimodal data fusion and dialog
management processes considers the set of input information sources (spoken
interaction, visual interaction, external context, and user intention modeling) by
means of a machine-learning technique. As in our previous work on user modeling
and dialog management [11], we propose the definition of a data structure similar
to the User Register to store the values for the different concepts and attributes
provided by means of the different input modalities along the dialog history,
which we called Interaction Register (IR).

The information contained in the IR at each time i has been generated con-
sidering the values provided by the input modules of the system along the dialog
history. Each slot in the IR can be usually completed by means of more tan one
input modality. If just one value has been received for a specific dialog act, then
it is stored at the corresponding slot in the IR using the described codification.
Confidences scores provided by the modules processing each input modality are

7



used in case of conflict among the values provided by several modalities for the
same slot. Thus, a single input is generated for the dialog manager to consider
the next system response.

As in our previous work on dialog management [12], we propose the use of
a classification process to determine the next system response given the single
input that is provided by the interaction register after the fusion of the input
modalities and also considering the previous system response. This way, the
current state of the dialog is represented by the term (IRi, Ai−1), where Ai−1

represents the last system response. The values of the output of the classifier
can be viewed as the a posteriori probability of selecting the different system
responses given the current situation of the dialog, as the following equation
shows:

Âi = arg max
Ai∈A

P (Ai|IRi, Ai−1)

4 Practical Application: An Advanced Multimodal City
Street Guide for Android-Based Mobile Devices

We have applied our proposed framework to develop a practical multimodal
system acting as an enhanced city street guide service for Android-base mobile
devices. The app can be operated either visually or orally and is able to locate
interesting sites near the current position of the user or a different starting
point indicated by the user. It is able to locate sites such as banks, libraries or
restaurants and to retrieve and display information about these sites, visualize
their position in different maps, show routes, visit their webpages or phone them.
The system is also able to initiate navigation to a selected spot considering
different means of transportation, and to track the position where the user has
parked and show a route to it if needed. This information is provided in Spanish.

To offer these functionalities the system uses Google Maps, Google Directions
and Google Places. Google Maps Android API makes it possible to show an
interactive map in response to a certain query. It is possible to add markers
or zoom to a particular area, also to include images such as icons, highlighted
areas and routes. Google Directions is a service that computes routes to reach a
certain spot walking, on public transport or bicycle, and it is possible to specify
the origin and destination as well as certain intermediate spots. Google Places
shows detailed information about sites corresponding to number of categories
currently including 80 million commerces and other interesting sites. Each of
them include information verified by the owners and moderated contributors.
The application also employs the android.speech and android.speech.tts libraries
described in the previous section.

When the application is started, it displays a map centered in the current
location of the user. The user can search for a place in three ways: spotting it
with a finger in the map, introducing the address in a text field, indicating it
orally. In any of the three cases, the user is indicating a destination, which will
be marked in the map by the system with a red sign. The system also shows the

8



route to the destination from the current location. It can be shown visually or
orally, and it is possible to set the preferred transportation means.

The application offers the possibility to look for stores in a long list of options
around the user position or a position selected previously. The search can be
performed by touching the screen, using the graphical interface or orally. Once
the stores are retrieved, e.g. restaurants in an area of 1km around the campus
(Figure 2, left), the user can obtain further information about them. When a
store is selected, the view is centered on it and an information box appears
indicating the name of the store and its address (Figure 2, center). A new screen
contains an HTML block comprised of an image representing the type of store,
its name, geographic coordinates, complete address, punctuation in the Google+
social network, telephone, website, and its profile in Google+ (Figure 2, right).

Fig. 2. System functionality to look for specific places and show the corresponding
information

Finally, it is possible to store the location where the user parked his vehicle
in order to be able to track it. Initially, the user must register the location using
a drop-down menu with the visual option “I have parked here” or uttering this
sentence after touching the microphone button. This way, the application stores
the coordinates in which the user is at the moment and inserts a blue marker
in the map. When the user wants to go back to the vehicle, he can press the
option “Where is my car?” or utter the same sentence. Then, the application
centers the map in the location registered indicating how to get there as shown
in Figure 3.

The statistical models for the user’s intention recognizer and dialog manage-
ment modules were learned using a corpus acquired by means of an automatic

9



Fig. 3. “Where is my car?” functionality and configuration options for the system

dialog generation technique previously developed [13]. The application also al-
lows users to complete a profile corresponding to their preferences on the location
of the initial maps, preferred travel facilities, preferred types of stores, and spe-
cific details for each one of them.

5 Preliminary Evaluation and Discussion

We have already completed a preliminary evaluation of the developed system
with recruited users and a set of scenarios covering the different functionalities
of the system. A total of 150 dialogs for each agent was recorded from the in-
teractions of 25 users. We asked the recruited users to complete a questionnaire
to assess their opinion about the interaction. The questionnaire had seven ques-
tions: i) Q1: How well did the system understand you? ; ii)Q2: How well did you
understand the system messages? ; iii) Q3:Was it easy for you to get the requested
information? ; iv) Q4:Was the interaction with the system quick enough? ; v) Q5:
If there were system errors, was it easy for you to correct them? ; vi) Q6: How did
the system adapt to your preferences? ; vi) Q7: In general, are you satisfied with
the performance of the system? The possible answers for each questions were the
same: Never/Not at all, Seldom/In some measure, Sometimes/Acceptably, Usu-
ally/Well, and Always/Very Well. All the answers were assigned a numeric value
between one and five (in the same order as they appear in the questionnaire).

Also, from the interactions of the users with the system we completed an
objective evaluation of the application considering the following interaction pa-
rameters: i) question success rate (SR), percentage of successfully completed

10



questions: system asks - user answers - system provides appropriate feedback
about the answer; ii) confirmation rate (CR), computed as the ratio between
the number of explicit confirmations turns and the total of turns; iii) error cor-
rection rate (ECR), percentage of corrected errors.

Table 1 shows the average results of the subjective evaluation using the de-
scribed questionnaire. It can be observed that the users perceived that the system
understood them correctly. Moreover, they expressed a similar opinion regard-
ing the easiness to understand the system responses. In addition, they assessed
that it was easier to obtain the information specified for the different objectives,
and that the interaction with the system was adequate and adapted to their
preferences. An important point remarked by the users was that it was difficult
to correct the errors and misunderstandings generated by the ASR and NLU
processes in some scenarios. Finally, the satisfaction level also shows the correct
operation of the system.

The results of the objective evaluation for the described interactions show
that the developed system could interact correctly with the users in most cases,
achieving a success rate of 96.73%. The fact that the possible answers to the
user’s responses are restricted made it possible to have a very high success in
speech recognition. Additionally, the approaches for error correction by means
of confirming or re-asking for data were successful in 94.15% of the times when
the speech recognizer did not provide the correct input.

Table 1. Results of the preliminary evaluation with recruited users (For the mean
value M: 1=worst, 5=best evaluation)

Q1 M = 4.56, SD = 0.47

Q2 M = 4.67, SD = 0.35

Q3 M = 4.12, SD = 0.58

Q4 M = 3.74, SD = 0.39

Q5 M = 3.49, SD = 0.51

Q6 M = 3.97, SD = 0.55

Q7 M = 4.02, SD = 0.27

SR CR ECR

96.73% 11.00% 94.15%

6 Conclusions and Future Work

Multimodal interactive systems offer the user combinations of input and output
modalities for interacting with the systems, taking advantage of the naturalness
of speech. In particular, multimodal interfaces are a useful alternative to graphic
user interfaces for mobile devices, allowing the use of other communication as
an alternative to tapping through different menus. However, there are no guide-
lines for the development of multimodal interfaces for mobile devices. Different
vendors offer APIs for the development of applications that use speech as a pos-
sible input and output modality, but developers have to design ad-hoc solutions

11



to implement the interaction management. In this paper we have presented a
general-purpose modular framework for the development of mobile speech ap-
plications in Android that integrates the libraries provided by the Android API.

Using our framework it is possible to develop multimodal interfaces that opti-
mize interaction management and integrate different sources of information that
make it possible for the application to adapt to the user and the context of
the interaction. To show the pertinence of our proposal, we have implemented
an evaluated an Android application that uses geographical context in order to
provide different location services to its users. The results show that the users
were satisfied with the interaction with the system, which achieved high perfor-
mance rates. We are currently using the framework to build applications in other
increasingly complex domains implying different web services and web services
mashups.

References

1. Pieraccini, R.: The Voice in the Machine: Building Computers That Understand
Speech. MIT Press (2012)

2. Agree, E.: The potential for technology to enhance independence for those aging
with a disability. Disability and Health Journal 7(1), 33–39 (2014)

3. McTear, M., Callejas, Z.: Voice Application Development for Android. Packt Pub-
lishing (2013)

4. Vesnicer, B., Zibert, J., Dobrisek, S., Pavesic, N., Mihelic, F.: A voice-driven web
browser for blind people. In: Proc. of Interspeech/ICSLP, pp. 1301–1304 (2003)

5. Tsai, M.: The VoiceXML dialog system for the e-commerce ordering service. In:
Proc. of CSCWD 2009, pp. 95–100 (2005)

6. Kearns, M., Isbell, C., Singh, S., Litman, D., Howe, J.: CobotDS: A Spoken Dia-
logue System for Chat. In: Proc. of AAAI 2002, pp. 425–430 (2002)

7. Nishimoto, T., Kobayashi, Y., Niimi, Y.: Spoken Dialog System for Database Ac-
cess on Internet. In: Proc. of AAAI 1997 (1997)

8. Polifroni, J., Chungand, G., Seneff, S.: Towards the Automatic Generation of
Mixed-Initiative Dialogue Systems from Web Content. In: Proc. of Eurospeech
2003, pp. 193–196 (2003)

9. Gabbanini, F., Burzagli, L., Emiliani, P.: An innovative framework to support
multimodal interaction with Smart Environments. Expert Systems with Applica-
tions 39, 2239–2246 (2012)

10. Corchado, E., Wozniak, M., Abraham, A., de Carvalho, A., Snásel, V.: Recent
trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)

11. Griol, D., Carbó, J., Molina, J.: A statistical simulation technique to develop and
evaluate conversational agents. AI Communication 26(4), 355–371 (2013)

12. Griol, D., Callejas, Z., López-Cózar, R., Riccardi, G.: A domain-independent sta-
tistical methodology for dialog management in spoken dialog systems. Computer
Speech and Language 28(3), 743–768 (2014)

13. Griol, D., Carbó, J., Molina, J.: An Automatic Dialog Simulation Technique to
Develop and Evaluate Interactive Conversational Agents. Applied Artificial Intel-
ligence 27(9), 759–780 (2013)

12




