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Abstract—In this paper, we analyze the tradeoff between coding
rate and asymptotic performance of a class of generalized low-
density parity-check (GLDPC) codes constructed by including a
certain fraction of generalized constraint (GC) nodes in the graph.
The rate of the GLDPC ensemble is bounded using classical results
on linear block codes, namely Hamming bound and Varshamov
bound. We also study the impact of the decoding method used
at GC nodes. To incorporate both bounded-distance (BD) and
Maximum Likelihood (ML) decoding at GC nodes into our
analysis without having to resort on multi-edge type of degree
distributions (DDs), we propose the probabilistic peeling decoder
(P-PD) algorithm, which models the decoding step at every GC
node as an instance of a Bernoulli random variable with a success
probability that depends on the GC block code and its decoding
algorithm. The P-PD asymptotic performance over the BEC can
be efficiently predicted using standard techniques for LDPC codes
such as density evolution (DE) or the differential equation method.
Furthermore, for a class of GLDPC ensembles, we demonstrate
that the simulated P-PD performance accurately predicts the actual
performance of the GLPDC code. We illustrate our analysis for
GLDPC code ensembles using (2, 6) and (2, 15) base DDs. In all
cases, we show that a large fraction of GC nodes is required to
reduce the original gap to capacity.

Index Terms—Generalized low-density parity-check codes, codes
on graphs, peeling decoding

I. INTRODUCTION

Generalized low-density parity-check (GLDPC) block codes
were first proposed by Tanner. In contrast to standard LDPC
codes, which are represented by bipartite Tanner graphs where
variable nodes and single parity-check (SPC) nodes are con-
nected according to a given degree distribution (DD), in GLDPC
codes the SPC nodes in the graph are replaced by generalized
constraint (GC) nodes [1]. The sub-code associated to each
GC node is referred to as the component code. Examples of
component codes used in the GLDPC literature are Hamming
codes [2], Hadamard codes [3] or expurgated random codes
[4]. Upon selecting a particular class of component codes, the
DD of the GLDPC code ensemble can be optimized, and near-
capacity iterative decoding thresholds can be achieved [2], [4],
[5]. Capacity-achieving GLDPC code ensembles can also be
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obtained by spatially-coupling GLDPC block codes with regular
DD [6], [7]. With more powerful (compared with simple SPC
codes) component codes involved, GLDPC codes have many
potential advantages, including improved performance in noisy
channels, fast convergence speed and low error floor [4], [8].
So far, GLDPC codes have been designed for a given class

of component codes. In this paper, we analyze GLDPC code
ensembles using a different approach. Instead of selecting a
particular class of component codes and optimizing the graph
DD, we are interested in analyzing the tradeoff between coding
rate and iterative decoding threshold of ensembles of codes with
fixed DD, referred to as the base DD, as we increase the fraction
⌫ of GC nodes in the graph. Furthermore, our analysis does not
consider a particular construction for component codes, but the
family of linear block codes of block length r and minimum
distance d. The Hamming or sphere-packing bound [9] is used
to determine a converse bound on the rate of the GLDPC code
ensemble as a function of a triplet of (⌫, d, r). The Varshamov
bound is considered to determine an achievable rate of the
GLDPC code ensemble [10].
For the BEC, iterative decoding of graph-based codes, such as

LDPC or GLDPC codes, can be performed by means of peeling
decoding (PD) algorithms [12], [13], [14]. In the case of GLDPC
codes, the asymptotic analysis of PD under ML-decoded compo-
nent codes (ML-PD, for short) requires the use of multi-edge-
type DDs [15] to track down all possible decodable erasure
patterns at GC nodes [6], [14]. As a consequence, the list of
code parameters to jointly optimize becomes cumbersome. In
particular, the parameters include the description of the multi-
edge DD, the position of GC nodes in the graph, the edge
labelling at every GC node used to determine positions in the
component block code, and the list of locally ML-decodable
erasure patterns. Most works in the literature overcome this
problem by either fixing in advance the positions of GC nodes,
component codes and decoding method at GC nodes [4], [5], or
rely on suboptimal bounded distance (BD) decoding [7], [16],
[11].
To simplify the analysis, we propose a probabilistic descrip-

tion of all components of the GLDPC code, namely, the base
DD, the presence of GC nodes in the graph, and the decoding
method implemented at GC nodes. Regarding the latter aspect,
we parameterize the decoding capabilities of a blocklength-r
component code by a vector p = (p1, p2, ..., pr), where p

w

is the probability that a weight-w erasure pattern chosen at
random is decodable, w 2 {1, . . . , r}. We show how to properly
incorporate such a probabilistic description of the decoding
capabilities of component codes into the PD algorithm, and
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Fig. 1. Tanner graph of a GLDPC code.

denote the resulting algorithm as probabilistic PD (P-PD). Due
to its probabilistic nature, the asymptotic analysis of P-PD
does not require the use of multi-edge type DDs. By computer
simulation, we show that the P-PD performance accurately
predicts the actual GLDPC performance when ML decoding is
used at GC nodes. We illustrate our analysis for GLDPC code
ensembles using (2, 6) and (2, 15) base DDs. In all cases, we
show that a large fraction of GC nodes is required to reduce the
original gap to capacity. However, the closest gap to capacity is
not achieved at ⌫ = 1, but a smaller value must be used. Our
results also suggest that the use of very powerful component
codes in general does not pay off, since the gain in threshold
does not compensate for the severe decrease of the GLDPC
code rate. All these results have not been clearly discussed in
the literature of GLDPC block codes.
The methodology presented is flexible and decouples the

problems of bounding the GLDPC coding rate and the asymp-
totic analysis of the ensemble. In this regard, broader classes
of component codes or improved decoding methods at GC
nodes could be incorporated in a systematic way. An extended
version of this paper can be found in [17], where we include all
derivations and proofs and a larger set of experimental results.

II. GLDPC ENSEMBLES

We introduce the GLDPC code ensembles that are analyzed
in the rest of the paper and the notation used to define their DD.

A. Degree distribution

As illustrated in Fig. 1, the Tanner graph of every member
in the ensemble contains n variable nodes (coded bits) and c
parity-check nodes, among which a fraction ⌫ corresponds to
GC nodes while the rest corresponds to SPC nodes. We denote
by E the number of edges in the Tanner graph and we define
the degree of a node as the number of edges connected to it.
The DD of the ensemble is characterized as follows. The

vector � = (�1,�2, ...,�x

) is the left DD, where �
i

represents
the fraction of edges (w.r.t. E) connected to a variable of degree
i. Given �, n and E are related by [15]

n = E

xX

i=1

�
i

/i. (1)

The right DD is defined by two vectors ⇢
p

=

(⇢
p1, ⇢p2, ..., ⇢pr) and ⇢

c

= (⇢
c1, ⇢c2, ..., ⇢cr), where ⇢

pj

de-
notes the fraction of edges (w.r.t. E) connected to a SPC node
that has degree j and ⇢

cj

denotes the fraction of edges (w.r.t.

E) connected to a GC node that has degree j. Since the fraction
of GC nodes in the graph is ⌫, the following must hold:

⌫ =

P
r

j=1 ⇢cj/jP
r

u=1(⇢cu + ⇢
pu

)/u
. (2)

For simplicity, we restrict our analysis to the class of GLDPC
ensembles characterized by SPC and GC nodes with constant
degree r. The Tanner graph of any code in this ensemble
contains n variable nodes, ⌫E/r GC nodes and (1� ⌫)E/r SPC
nodes. The DD of the GLDPC codes is characterized by the
triple (�, r, ⌫), and the ensemble of codes generated is denoted
by C

�,r,⌫

. The DD of the LDPC ensemble obtained by taking
⌫ = 0 is defined as the base DD, and the corresponding LDPC
code ensemble is referred to as the base ensemble. The coding
rate of the base ensemble, denoted by R0, is computed as

R0 = 1� 1/rP
x

i=1 �i

/i
. (3)

Finally, we assume that the incoming edges to every degree-r
GC nodes are assigned uniformly at random to each position of
the component code.

B. The coding rate of the C
�,r,⌫

ensemble

Our analysis is not tailored to a specific code construction
at component codes, but it considers the family of linear block
codes with block length r and minimum distance d. Specifically,
we make use of classical results on linear block codes to find
bounds on the coding rate of the GLDPC code ensemble.
Lemma 2.1: Let k(`) 2 N+, ` = 1, . . . , ⌫E/r, denote the

number of rows in the parity-check matrix associated with the
component code of the `-th GC node. The design rate R

�,r,⌫

of
the C

�,r,⌫

ensemble is

R
�,r,⌫

= R0 � ⌫(1� R0)(kavg � 1), (4)

where kavg = (⌫ E
r

)

�1
P

⌫

E
r

`=1 k
(`) denotes the average number of

rows in the parity-check matrix of the component codes.
Proof: See [17].

Note that the second term in (4) accounts for the rate loss at
GC nodes. The fact that component codes are linear block codes
with minimum distance d can be used to derive the following
bounds on the R

�,r,⌫

Lemma 2.2: If all component codes in the C
�,r,⌫

ensemble
are linear block codes with minimum distance d > 2, then

R
�,r,⌫

 R0 � ⌫(1� R0) log2
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Furthermore, there exists a set of linear block codes to be used
as component codes such that

R
�,r,⌫

� R0 � ⌫(1� R0)

&
log2
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r � 1

q

◆!'
. (6)

Here, we use d·e and b·c to denote the ceiling and floor
functions, respectively. It is easy to show that the two bounds
coincide, for example, when d = 3 and r = 2

z � 1, where
z 2 Z+. Thus, in this case the bound in (6) is achieved with
equality.

Proof: See [17]



III. PROBABILISTIC PEELING DECODING OVER THE BEC

Suppose we use a random sample of the C
�,r,⌫

ensemble to
transmit over a BEC(✏). For this channel, each of the n coded
bits is erased with probability ✏. Without loss of generality,
we assume that the all-zero codeword is transmitted, hence the
received vector y belongs to the set {0, ?}n, where ? denotes
an erasure. Let �y ✓ {1, . . . , n} be the index set of the bits
correctly received, namely y

i

= 0, if i 2 �y .

A. Generalized Peeling Decoding

Decoding will be performed using a generalization of the PD
algorithm [12] similar to that proposed for GLDPC codes in
[14]. The final formulation of the decoding algorithm depends
on the decoding capabilities we assume at GC nodes. While
bounded-distance (BD) decoding at component codes considers
decodable all GC nodes up to degree d � 1 [7], [16], in the
case of ML decoding we have to specify a full list of decodable
erasure patterns and, consequently, label each of the incoming
edges at every GC node to differentiate between decodable and
non-decodable GC nodes. As shown in [14], incorporating this
labelling into the asymptotic analysis requires the use of multi-
edge type DDs.

B. Probabilistic PD

In order to incorporate ML decoding at GC nodes into
our analysis, and at the same time maintain a formulation
compatible with the random definition of the C

�,r,⌫

ensemble,
we assume that the fraction of ML-decodable weight-w erasure
patterns at every GC node is given by some p

w

2 [0, 1], w =

1, . . . , r. Thus, the family of component codes under analysis is
the family of blocklength-r linear block codes with minimum
distance d and with decoding profile described by the vector

Algorithm 1 P-PD

Remove from the Tanner graph of the GLDPC code all
variable nodes with indexes in �y .
for all GC nodes do
If the GC has degree w, tag the check node as decodable
with probability p

w

.
end for
Construct ⌦, the index set of check nodes that correspond
to either a degree-one SPC node or GC nodes tagged as
decodable.
repeat
1) Select at random a member of ⌦.
2) Remove from the Tanner graph the check node with the
index drawn, all connected variable nodes, and all attached
edges.
3)
for every non-decodable GC node that has lost one or more
edges do
If the GC has degree w, tag the check node as decodable
with probability p

w

.
end for
4) Update ⌦.

until All variable nodes have been removed (decoding suc-
cess) or ⌦ = ; (decoding failure).

TABLE I
CODING RATES AND ITERATIVE DECODING THRESHOLDS UNDER PD OF

DIFFERENT BASE DDS

Base DD � r R0 ✏0 Gap to capacity
(2, 6)-regular �2 = 1 6 2/3 0.206 0.127
(2, 15)-regular �2 = 1 15 13/15 0.071 0.062

TABLE II
FAMILIES OF COMPONENT LINEAR BLOCK CODES.

Code Family Index Blocklength r d pd pd+1

I 6 3 80% 0
II 6 4 80% 0
III 15 3 92.31% 61.54%
IV 15 4 92.31% 61.54%

p = (p1, . . . , pr). Note that if the minimum distance of the
component code is d, then p

w

= 1 for w  d� 1.
By exploiting the fact that incoming edges at every GC

node are randomly assigned to each of the r positions of the
component code, we can incorporate ML-decoded GC nodes
into PD as shown in Algorithm 1, denoted as probabilistic PD
(P-PD). Observe that the key P-PD feature is tagging GC check
nodes as decodable with probabilities given by p. Thus, at every
iteration, P-PD emulates the ML decoding operation of a degree-
w GC node by drawing the decoding capability according to
a Bernoulli distribution with parameter p

w

, w 2 {1, . . . , r}.
Note that P-PD must be regarded as a procedure that allows
for simpler analysis rather than a practical decoding algorithm.
Further, note that we recover the bounded distance PD (BD-PD)
algorithm from P-PD if we set p

w

= 0 for w � d and p
w

= 1

otherwise.

C. P-PD asymptotic analysis

In [12] it is shown that if we apply the PD to elements of
an LDPC ensemble, then the expected DD of the sequence of
residual graphs can be described as the solution to a set of
differential equations. The deviation of the process w.r.t. the
expected evolution decreases exponentially fast with the LDPC
blocklength. This analysis is based on a result on the evolution
of Markov processes due to Wormald [18]. In [17] we analyze
the asymptotic behaviour of the C

�,r,⌫

ensemble under P-PD by
extending the technique proposed in [12]. An estimate of the P-
PD threshold for the C

�,r,⌫

ensemble is obtained by numerically
searching for the highest ✏ value for which there is at least one
decodable check node on the residual GLDPC Tanner graph
until the end of the decoding process.

IV. ANALYSIS OF THE C
�,r,⌫

ENSEMBLE UNDER P-PD
In this section, we study the asymptotic performance of the

C
�,r,⌫

ensemble for different base DDs as we vary the fraction
⌫ of GC nodes in the graph. We use base DDs that correspond
to regular LDPC code ensembles with variable degree equal to
2, as summarized in Table I. We denote by ✏0 the PD threshold
of the base LDPC ensemble. To find reference block codes
as component codes, we exhaustively search over the database
[19], [20], which implements MAGMA [21] to design block
codes with the largest minimum distance. More precisely, for
every r, we search for the code with the largest found minimum
distance d, and its corresponding pd and pd+1 parameters.
These values are listed in Table II and used as a reference for
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the whole family of linear block codes. We construct C
�,r,⌫

ensembles by combining base DDs with the component code
families summarized in Table II. For each code ensemble, we
compute the P-PD threshold ✏⇤ as a function of ⌫. The inverse
of the ✏⇤(⌫) function is denoted by ⌫(✏⇤) and provides the
minimum fraction of GC nodes in the graph required to achieve
an ensemble threshold at least ✏⇤.
We use Lemma 2.2 to determine bounds on R

�,r,⌫

for a given
targeted decoding threshold ✏⇤. By using ⌫(✏⇤) in (5), we obtain
a converse bound on the coding rate required to achieve a P-
PD decoding threshold equal to ✏⇤ using component codes with
minimum distance d. Similarly, using ⌫(✏⇤) in (6), we obtain
an achievable bound on the coding rate required to achieve a P-
PD decoding threshold equal to ✏⇤ using linear component codes
with minimum distance d. We proceed along the same lines to
obtain bounds on the C

�,r,⌫

rate for the BD-PD thresholds.
In Fig. 2 we plot these bounds for both P-PD and BD-PD

using families of block component codes I and III, both with
minimum distance d = 3. Observe first that the performance
oft both BD-PD and P-PD approximately overlaps for coding
rates close to the original rate of the base DD, i.e., for small
values of ⌫.1 However, while the BD-PD gap to capacity always
grows with ⌫, this is not the case for P-PD. Furthermore, there
are values of ⌫ for which the P-PD gap to capacity is smaller
than for than the base LDPC ensemble under PD. For the (2, 6)
base DD, the P-PD minimum gap to capacity, measured using
the achievable rate bound, is 0.0823 for a coding rate of 0.2254.
According to Table I, for this base DD, the PD gap to capacity is
0.127. For the (2, 15) base DD with Fam. III block component
codes, observe that the two rate bounds coincide, as predicted
by Lemma 2.2. In this case, the P-PD mimimum gap to capacity

1Recall that by (4), increasing ⌫ yields smaller coding rates.
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is 0.0743, achieved at a coding rate of 0.5476.

V. SELECTING SPECIFIC COMPONENT CODES

By using the bounds on the C
�,r,⌫

code rate, we have been
able to assess the performance of the C

�,r,⌫

ensemble for
a whole family of linear block component codes. In certain
scenarios the proposed bounds on the C

�,r,⌫

code rate provide
meaningful design information about the asymptotic behaviour
of the ensemble. The natural question that arises at this point
is whether we can find specific component codes within the
family that improve the achievability bound in (6), reducing
the gap to the rate converse bound in (5). In this section,
we analyze the asymptotic performance of the C

�,r,⌫

ensemble
when we use the specific block component codes in Table III.
The construction of these linear block codes is detailed in [19],
and their the generator matrix is given in the extended version of
this manuscript [17]. Upon selecting a specific component code,
we can compare by simulation the C

�,r,⌫

performance under
P-PD with the performance obtained when PD is combined
with GC nodes decoded via ML. As an example, in Fig. 3 we
present the simulated average performance of members of the
C
�,r,⌫

ensemble for a (2, 6) base DD with Code A component
codes. The perfect match between ML-PD decoder and P-PD
in all cases shows that we are not sacrificing accuracy with the
probabilistic description of the decoder.
Once we fix a particular class of component codes to be used

at GC nodes, we can replace the C
�,r,⌫

code bounds by the
actual code rate in (4). In Fig. 4 we plot the C

�,r,⌫

coding
rate and the achievable bound of the corresponding family of
codes for (2, 6) and (2, 15) base DDs as a function of the P-PD
threshold. Observe that with the component codes proposed, we
are able to perform at least as good as the achievable bound of
the corresponding family of block component codes. Note also
that in the case of the (2, 6) base DD, the use of component
codes of type B, which have higher mimimum distance than
codes of type A but also lower coding rate, does not improve
the GLDPC asymptotic performance.



TABLE III
BLOCK COMPONENT CODES. k IS THE NUMBER OF ROWS IN THE CODE

PARITY-CHECK MATRIX.

Code Index Blocklength r k Rate Code Family
A 6 3 1/2 I
B 6 4 1/3 II
C 15 4 11/15 III
D 15 5 2/3 IV

VI. CONCLUSIONS AND FUTURE LINES OF RESEARCH

One of the main contributions of the presented paper is the
methodology itself. By introducing a certain amount of GC
nodes in the LDPC Tanner graph, we analyze if the gap to
channel capacity is reduced at the resulting coding rate. We
have also proposed the P-PD algorithm as a flexible model to
analyze beyond-BD decoding algorithm at GC nodes. Note that
in our analysis, the evaluation of both coding rate and of iterative
decoding threshold are decoupled problems. In this regard,
broader classes of component codes or improved decoding
methods at GC nodes could be incorporated in a systematic way.
In addition, one of our main lines of research is the extension
of the proposed analysis of GLDPC ensembles to incorporate
rate adaptation techniques by means of puncturing [22] and the
use of generalized variable nodes [23].
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