

This is a postprint version of the following published document:

Arias Fisteus, Jesús; Fernández García, Norberto; Sánchez Fernández,
Luis; Fuentes Lorenzo, Damaris (2014) Publication of RDF streams with
Ztreamy.In: Presutti V., Blomqvist E., Troncy R., Sack H., Papadakis I.,
Tordai A. (eds.) The Semantic Web: ESWC 2014 Satellite Events. ESWC
2014. Suiza: Springer International. Pp. 286-291 (Lecture Notes in
Computer Science, v. 8798).
DOI: https://doi.org/10.1007/978-3-319-11955-7_36

© Springer International Publishing Switzerland 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288498737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-11955-7_36

1

Publication of RDF Streams with Ztreamy

Jesus Arias Fisteus, Norberto Fernandez Garcia,
Luis Sanchez Fernandez, and Damaris Fuentes-Lorenzo

Abstract. There is currently an interest in the Semantic Web commu
nity for the development of tools and techniques to process RDF streams.
Implementing an effective RDF stream processing system requires to
address several aspects including stream generation, querying, reason
ing, etc. In this work we focus on one of them: the distribution of RDF
streams through the Web. In order to address this issue, we have devel
oped Ztreamy, a scalable rniddleware which allows to publish and con
sume RDF streams through HTIP. The goal of this demo is to show the
functionality of Ztreamy in two different scenarios with actual, hetero
geneous streaming data.

Introduction

Nowadays there are many practical applications (like social or sensor networks)
where the information to be processed takes the form of a stream, that is, a
real-time, continuous, ordered, sequence of items [5], where each item describes
an application event (social network post, sensor measurement, etc.).

The popularization of streaming data applications has fostered the interest
of the Semantic Web community for this kind of data. As a result of this interest,
a W3C community group on RDF Stream Processing1 has recently started.

There are several aspects that need to be taken into account when implement
ing an effective RDF stream processing system. For instance, querying the RDF
streams (with proposals like C-SPARQL [2] and SPARQLstream [31), reasoning
on streams [9], scaling the stream processing [7], etc.

Another aspect to be taken into account is the scalable publication of RDF
streams on the Web. To address this issue, we have developed Ztreamy [1], a
middleware for large-scale distribution of RDF streams on top of HTTP. As
shown in [1], Ztreamy, is able to publish a real-time stream to tens of thousands
of simultaneous clients with delays of a few seconds, outperforming in this aspect
the mechanisms for stream publication integrated in alternative platforms such
as DataTurbine [8] and Linked Stream Middleware [6]. To achieve these results,
Ztreamy relies on the use of buffering strategies, stream compression and a single
threaded non-blocking input/output paradigm at the server.

1 http://www.w3.org/community/rsp/ (March 12th, 2014)

1

Event-Id: a360bdd8-695b-4e5b-b74e-bdaaec3eeafe
Source-Id: wikipedia-changes-002
Application-Id: wikipedia-changes
Syntax: text/n3
Timestamp: 2014-03-12T18:30:58+01:00
Body-Length: 296

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix webtlab: <http://webtlab.it.uc3m.es/> .

webtlab:_642529540 dc:date "2014-03-12T17:30:28Z" ;
webtlab:pageid "16866376" ;
webtlab:title "Persona (satellite)" .

Fig. 1. An example of item in a Ztreamy stream.

The main goal of this demo is to show the functionality of Ztreamy. In par-
ticular, we demonstrate how applications can publish their own RDF streams
and how these streams can be consumed by other applications. The demonstra-
tion involves actual, heterogeneous streaming data coming from two different
sources: (i) physical sensors placed in a room; and, (ii) information obtained by
monitoring the activities of Wikipedia editors.

2 A Brief Introduction to Ztreamy

Ztreamy is a scalable middleware platform for the distribution of RDF streams
on the Web. Its main objective is serving RDF streams on top of HTTP to as
many clients as possible with minimal delays.

A stream in Ztreamy is a sequence of data items, where each item is composed
by a RDF graph and metadata about it, such as its creation timestamp and the
identifier of its source entity. Figure 1 shows an example of a data item.

Stream servers are the core of Ztreamy. They aggregate the items they
receive from data producers (e.g. physical sensors) into streams, and provide
those streams to consumers with a publish-subscribe paradigm. The platform is
flexible with respect to how streams are served an manipulated. For example,
a stream can easily be filtered, split into separate streams, joined with other
streams in order to form aggregate streams, etc. Streams can be served from
just one server or replicated from many servers.

Like the Web, the Ztreamy platform is intended to be open. It allows any
entity to publish its own streams just by installing a server. It is also possible to
mirror any stream that can be consumed or publish derivative streams.

Data producers and consumers communicate with Ztreamy servers through
HTTP. Therefore, producers and consumers can be programmed with almost
any programming language and run on almost any platform. This includes fully-
fledged servers for stream processing, desktop applications, JavaScript applica-
tions that run on Web browsers, mobile applications and embedded systems.

Ideally, consumers subscribe to a stream with long-lived HTTP requests.
With this mechanism the server sends the response in chunks as new data is

2

available, but never finishes the response neither closes the connection. This
way of communication is efficient because just one underlying TCP connection
is used and just one HTTP request needs to be processed for a possibly long
period of time. Some HTTP client libraries and HTTP proxies may not be
compatible with long-lived requests, as they expect responses to be complete
before retransmitting them. In that case, consumers can use long-polling instead,
in which the server finishes the response as soon as all the available data has
been sent, and the consumer sends a new HTTP request immediately after that.

The Ztreamy platform provides some basic built-in services ready to use by
applications, such as some simple semantics-based filters. However, it does not
aim at being a complete platform for RDF stream processing. Applications that
need more complex services such as a stream query engine can integrate them
on top of Ztreamy, or use other systems for the data processing tasks and leave
Ztreamy just for publishing the streams.

The main focus of our work was on scalable publication of streams to large
amounts of simultaneous consumers. Therefore, we carried out a performance
evaluation of Ztreamy in which we show that it outperforms other existing solu-
tions in that task [1]. Our experiments show that the main factors that contribute
to achieving that level of performance are:

– Buffering data at the server: Instead of sending new data to consumers as
soon as it is available, it is buffered and sent periodically. The experiments
show that even with very small periods (e.g. 0.5 s), which barely delay the
delivery of data, there are big gains in the use of CPU of the servers. Thus,
the servers are able to handle more simultaneous clients.

– Compressing the streams: Streams in Ztreamy can be compressed with the
Deflate stream compression protocol. In combination with the server buffer-
ing mechanism, our experiments show not only a reduction of about 85 % in
network traffic but also additional gains in the use of CPU in the server, which
allows it to handle more clients.

– Use of single-threaded non-blocking input/output: Ztreamy servers are built
on top of the Tornado Web server, which was designed to handle large amounts
of simultaneous clients. To do so, Tornado uses a single-threaded non-blocking
input/output paradigm based on the new asynchronous facilities of mod-
ern operating systems. Many servers are recently switching from the multi-
threaded to the non-blocking paradigm because of its performance advantages
when handling many simultaneous network connections.

We have published the current prototype of Ztreamy, which is implemented
with the Python programming language, under the free software GNU GPL
license. More information about the platform is available at [1] and at its
website2.
2 http://www.it.uc3m.es/jaf/ztreamy (March 12th, 2014)

3

Fig. 2. Wikipedia edits demo interface. Fig. 3. Light sensor demo interface.

3 Ztreamy Demo

The main goal of the demo is to show how applications can publish their own
RDF streams using Ztreamy and how can these streams be consumed by other
applications. In particular, we center our demo in two different scenarios:

– Wikipedia edits: In this scenario, a Python application acts as information
source. It uses the Wikipedia API3 to monitor the activity of Wikipedia edi-
tors. Every 30 s, this applications generates a new data item (similar to that
in Fig. 1) with metadata about the edits recently carried out in the encyclope-
dia (including the timestamp and the title of the modified page). Then, using
HTTP, the application sends the item to a Ztreamy stream server that pub-
lishes it in a stream. A second application connects to this server to consume
the stream. It is a Web application4 implemented in JavaScript that runs in
the Web browser of the user. It uses the ztreamy.js library in order to interact
with the stream server. The interface of the application (depicted in Fig. 2)
includes two graphs: one graph shows the number of edits every 30 s in the last
hour, and a second graph shows a ranking with the top 10 Wikipedia pages
by number of edits (from a list containing the last 2000 edited pages). Both
graphs are dynamic: they are updated every time a new item in the stream is
received at the browser.

– Physical sensors: In this scenario two information sources publish items
to the same stream. In particular, each information source consists of a PC
connected to an Arduino and a TSL235R light sensor. Every second, a Python
application installed in each of the PCs, reads the measurements provided by
the local sensor through an USB port and generates a Ztreamy stream item.
Then, it publishes the item into a single stream server shared between the

3 http://en.wikipedia.org/w/api.php (March 12th, 2014)
4 Available at: http://www.it.uc3m.es/berto/ZtreamyDemo/wikiedits.html

4

different sources. The stream server integrates the information coming from
the two PCs into a single stream that is consumed by a Web application5.
The consumer application shows in a single graph (see Fig. 3) the evolution
in real-time of the measurements provided by the sensors.

4 Conclusions and Future Lines

This demo has shown how applications can take advantage of the functionalities
provided by Ztreamy to publish RDF streams or to consume RDF streams pub-
lished by third parties. We have also shown how the information provided by dif-
ferent sources can be easily integrated into a single stream. Though we have used
Python to implement the information providers and JavaScript to implement the
consumers, given that Ztreamy relies on HTTP as communication protocol, it is
possible to use other alternatives. Thus, implementing libraries to interact with
Ztreamy from other languages, like Java or Ruby, is a work to be developed
in the near future. At the moment Ztreamy relies on the general-purpose Zlib
stream compressor, which implements Deflate. However, we are considering as
a future line the possibility of integrating RDF stream compression algorithms
like [4] into the system.

Acknowledgements. This work has been partially funded by the Spanish Govern-
ment through the project HERMES-SMARTDRIVER (TIN2013-46801-C4-2-R).

References

1. Arias, J., Fernández, N., Sánchez, L., Fuentes-Lorenzo, D.: Ztreamy: a middleware
for publishing semantic streams on the Web. Web Semant. Sci. Serv. Agents World
Wide Web 25, 16–23 (2014). doi:10.1016/j.websem.2013.11.002

2. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for C-SPARQL queries. In: Proceedings of the 13th International Conference on
Extending Database Technology, EDBT ’10, pp. 441–452 (2010)

3. Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 96–111. Springer, Heidelberg (2010)

4. Fernández, N., Arias, J., Sánchez, L., Fuentes-Lorenzo, D., Corcho, Ó.: RDSZ:
an approach for lossless RDF stream compression. In: Presutti, V., d’Amato, C.,
Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol.
8465, pp. 52–67. Springer, Heidelberg (2014)

5. Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Rec. 32, 5–14
(2003)

6. Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware
framework for scalable management of linked streams. Web Semant. Sci. Serv.
Agents World Wide Web 16(5), 42–51 (2012)

5 Available at: http://www.it.uc3m.es/berto/ZtreamyDemo/roomlight.html

5

7. Le-Phuoc, D., Nguyen Mau Quoc, H., Le Van, C., Hauswirth, M.: Elastic and
scalable processing of linked stream data in the cloud. In: Alani, H., et al. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 280–297. Springer, Heidelberg (2013)

8. Tilak, S., Hubbard, P., Miller, M., Fountain, T.: The ring buffer network bus
(RBNB) dataturbine streaming data middleware for environmental observing sys-
tems. In: IEEE International Conference on e-Science and Grid Computing, pp.
125–133, December 2007

9. Valle, E.D., Ceri, S., Harmelen, Fv, Fensel, D.: It’s a streaming world! reasoning
upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)

6

