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A b s t r a c t

The automatic generation of street networks is attracting the attention of research and industry communities in areas such as routable map generation. This paper presents a novel 
mechanism that focuses on the automatic detection of street elements such as traffic lights, street crossings and roundabouts which could be used to generate street maps and populate 
them with trafficinfluencing infrastructural elements such as traffic lights. In order to minimize the system requirements and simplify the data collection from many users with minimal 
impact for them, only traces of GPS data from a mobile device while driving are used. Speed and acceleration time series are derived from the GPS data. An outlier detection algorithm 
is used first in order to detect abnormal driving locations (which can be due to infrastructural elements or particular traffic conditions). Using deep learning, speed and acceleration 
patterns are automatically analyzed at each outlier in order to extract relevant features which are then classified into a traffic light, street crossing, urban roundabout or other element. 
The classification results are enhanced by adding the degree of atypicity for each point calculated as the percentage of times that a particular location is detected as an outlier in several 
drives. The proposed algorithm achieves a combined recall of 0.89 and a combined precision of 0.88 for classification.

1. Introduction

Mobile phone integrated sensors offer advanced services that have 
the potential of enhancing the overall user knowledge, perception and 
experience applied to areas such as transportation or agriculture 
(Kamilaris & Pitsillides, 2016). Using data obtained from embedded 
sensors on mobile devices when worn by a human user, different human 
activities can be detected (Munoz-Organero & Lotfi, 2016). Using si-
milar data when the mobile device is transported while driving, re-
levant infrastructural and traffic related information can be extracted. 
Infrastructural information such as the location of traffic lights and their 
red/green periods, the location of roundabouts or street crossings and 
the common speed patterns while traversing those elements can be used 
to provide better estimations of the travel time to reach a parti-cular 
destination using a routable map. The travel time estimates could be 
personalized to a particular user, the time of the day and the day of the 
week. The main objective of this manuscript is to present and va-lidate a 
new algorithm to extract road infrastructural elements based on GPS 
traces while driving. The algorithm combines outlier detection and deep 
learning classification techniques based on speed and acceleration

patterns derived from the GPS sensor on a mobile device.
Using in-vehicle sensors to automatically detect road and traffic 

conditions while driving has motivated several previous research stu-
dies. Hemminki, Nurmi, and Tarkoma (2013) used the acceleration data 
from a mobile device for accurate and fine-grained detection of dif-
ferent transport modes by using a set of accelerometer features that are 
able to capture key characteristics of vehicular movement patterns, and 
a hierarchical decomposition of the detection task. Lan, Xu, Khalifa, 
Hassan, and Hu (2016) used a different sensor for the same objective. 
They used the output voltage from the kinetic energy harvesting device 
as the signal source to achieve transportation mode detection. The ac-
celerometer data from a mobile device has also been used to detect 
infrastructural elements on the road, either when carried by pedestrians 
or vehicles. Bujari, Licar, and Palazzi (2012) used acceleration based 
movement pattern recognition in day-by-day urban street behavior to 
detect when a pedestrian stops and then crosses a street ruled by a traffic 
light. Perttula, Parviainen, and Collin (2016) used on-vehicle inertial 
measurement units to detect pedestrians, driving behavior, as well as 
road conditions like bumps. Smartphones have also been used to 
automatically detect traffic accidents using sensors on mobile devices.
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of the proposed algorithm in crowdsensing scenarios. Speed and ac-
celeration data series are computed form the GPS data. Window-seg-
ments of a constant duration around locations classified as outliers while 
driving are used to train a DBN (Deep Believe Network) followed by a 
classifier in order to detect 3 particular road elements: traffic lights, 
street crossings (where two roads cross each other with signs only) and 
roundabouts. The algorithm is applied to 16.97 h (61,076 s.) of 
unlabeled driving data in order to assess the detection performance.

2. Methods

The methods used to pre-process the data, perform a pre-classifi-
cation process to simplify the searching space and finally perform a road 
element detection while driving are presented in this section.

2.1. Data sensing and pre-processing

The GPS sensor in a mobile device is used to obtain both the vehi-
cle's location and the estimated driving speed. The speed can be derived 
from the distance traveled per time unit following Eq. (1). The distance 
traveled between two points 1 and 2 can be calculated form the GPS 
coordinates as captured in Eq. (2)

=
∆

∆
v s

t (1)

1s∆ = cos−1 (sin φ ∙sin φ +2 cos φ ∙c1 os φ ∙c2 os∆δ)∙R (2)

where φi represents the latitude in radians of location i, Δδ is the dif-
ference of longitudes in radians and R is the Earth radius.

The errors in the coordinates that the GPS sensor provides will 
propagate when using Eqs. (1) and (2) in order to estimate the instant 
speed. The random errors can be reduced by increasing the size of Δ t. 
However, the resolution in time decreases when Δ t increases. A value of 
5 s has been used as a tradeoff in order to estimate the vehicle's speed.

The instant acceleration can be estimated from the estimated speed 
as shown in Eq. (3).

=
∆

∆
a v

t (3)

The travelling direction in bi-directional road and street segments 
has to be taken into account. The traffic lights affect the traffic crossing 
them in one particular direction. Considering the driving direction in 
roundabouts, on the other side, allows us to detect when the driver is 
entering or leaving it. Data obtained from Eqs. (1), (2) and (3) has to be 
associated to a particular location and a particular travelling direction.

2.2. Outlier detection

A novel outlier detection technique is proposed in this paper in order 
to pre-select candidate locations in which a road element could be most 
likely present. The idea is that road elements such as traffic lights, street 
crossings or roundabouts will generate outliers in speed and ac-
celeration patterns when comparing with adjacent locations in the same 
drive (fast changes in speed and acceleration when approaching the 
particular element) but will not be considered as outliers when gen-
erating the stochastic information from the same location in different 
drives (deceleration patterns will coincide in similar conditions in dif-
ferent drives for example). This particularity will allow us to pre-filter 
outlier driving points due to random traffic conditions such as traffic 
jams from infrastructural road elements which we want to detect.

The proposed algorithm consists on the following steps:

1. A feature vector f = (v, a) is computed every second while driving.
2. A window of 20 s centered at each location while driving of feature 

vectors F = (f1, f2, …, f10, f12, …, f21) is obtained per each location 
LN.

White, Thompson, Turner, Dougherty, and Schmidt (2011) used ac-
celerometers and acoustic data to immediately notify a central emer-
gency dispatch server after an accident, and provide situational 
awareness through photographs, GPS coordinates, VOIP communica-
tion channels, and accident data recording.

Using the camera sensor on a mobile device, several road-infra-
structural information has been obtained in previous research studies. 
Mathibela, Newman, and Posner (2015) addressed the problem of au-
tomatically reading the rules encoded in road markings and inferring 
the semantics of road scenes. Mascetti et al. (2016) and Wu, Watanabe, 
and Ishikawa (2016) detected traffic lights based on image processing 
on mobile devices.

The information about the vehicle's speed (normally derived from 
another sensor such as GPS or accelerometer) has also been used to 
detect driving related events or infrastructural elements. 
Panichpapiboon and Leakkaw (2016) used the driving speed calculated 
from accelerometer data in order to detect traffic levels.

The information gathered from different sensors together can be 
fused to improve detection rates and accuracy levels. Aly, Basalamah, 
and Youssef (2017) automatically detected road related information 
such as tunnels, bumps, bridges, footbridges and crosswalks based on 
the combined use of various sensors on mobile devices including in-
ertial sensors (such as accelerometer, gyroscope and magnetometer) as 
well as cellular network information. They also combined information 
from pedestrians and vehicles and used crowdsensing in order to im-
prove the accuracy of results. Using the information of several users 
provides an additional source of data to validate that a detected ele-
ment is not an outlier (false positive). Dunlop, Roper, Elliot, McCartan, 
and McGregor (2016) also used crowdsensing techniques to detect 
dangerous road sections.

The GPS sensor on mobile devices has also been used for auto-
matically extracting road related information. Wang, Wang, Song, and 
Raghavan (2017) used GPS information to automatically extract road 
network properties such as intersections and traffic rules to facilitate the 
production of high-quality routable maps. D'Andrea and Marcelloni 
(2016) used GPS information while driving for real-time detection of 
road traffic congestions and incidents.

The information obtained from embedded sensors on mobile devices 
has to be automatically analyzed in order to detect common patterns 
associated with the particular elements to be detected. Several machine 
learning techniques and approaches have already been used in order to 
detect road related information from data obtained from mobile sen-
sors. Ren and Liu (2016) used K-means to detect potholes based on 
acceleration data while driving. Ferri (2016) used decision trees, lo-
gistic regression, Naïve Bayes, KNN (K-nearest neighbours), SVM 
(support vector machines) and MDA (Mixture Discriminant Analysis) to 
extract information from GPS traces. Corcoba Magaña and Muñoz-
Organero (2016) used several classification techniques applied to on-
vehicle telemetry data to detect traffic incidents. Magaña, Organero, 
Fisteus, and Fernández (2016) made used of deep learning methods to 
detect the driver state while driving based on GPS data from a mobile 
device and a heart rate wearable sensor.

Outlier detection techniques have also been used in previous studies 
applied to sensed data while driving in order to automatically detect traffic 
incidents. Ma, Ngan, and Liu (2016) used a density-based outlier detection 
method by measuring the LOF (Local Outlier Factor) on a projected PCA 
(Principal Component Analysis) domain from real world spatiotemporal 
traffic signals to detect traffic data outliers which are errors in data and 
traffic anomalies in real situations such as accidents and congestions. Tang 
and Ngan (2016) also used an outlier detection algorithm in a traffic 
system to alert the transport department and drivers with abnormal 
traffic situations such as congestion and traffic accidents.

The research presented in this paper combines outlier detection with 
deep learning based pattern recognition and classification from GPS 
derived data while driving. Only GPS data is used in order to minimize 
the deployment requirements and therefore facilitate the use
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3. The Mahalanobis distance is then computed for each location as
MDN = MD(f11, F)

4. If MDN > Th then the location is pre-marked as a candidate loca-
tion to hold a road element to detect (Th is a threshold value).

5. Then, a variable length array of feature vectors F′ = (f1, …, fM) is
created for each location LN previously pre-filtered considering the 
feature vectors generated in the same location in different drives (for 
all the drives).

6. The Mahalanobis distance is then computed for each outlier at each 
location as MDNO = MD(fo, F′); fo being the feature vector for each 
outlier in LN in the previous step (4).

7. If MDNO > Th′ the candidate point is discarded since it represents a
sporadic outlier which is likely to be caused by a non-infrastructural 
road element (Th′ could be chosen to coincide with Th).

2.3. Deep Believe Network based classification

Once the candidate points have been pre-filtered as likely to contain 
road infrastructural elements using the outlier detection algorithm de-
scribed in the previous section, a classifier could be used in order to assess 
which is the most likely element behind that location.

A deep-belief network (DBN) (Hinton, Osindero, & Teh, 2006) is 
defined as a stack of Restricted Boltzmann Machines (RBM), in which 
each RBM layer communicates with both the previous and subsequent 
layers. The nodes of any single layer don't communicate with each other 
laterally. The end of DBN is a classifier.

Restricted Boltzmann Machines are bipartite graphs with a layer of 
“hidden” neurons and a layer of “visible” neurons, without connections 
between neurons in the same layer. Each node represents a random 
variable and each edge a dependency between variables that connects.

An energy function (E) and probability distribution are used to 
describe a RBM. The energy of a configuration (pair of Boolean vectors)
(v, h) is defined as:

i j i j

E ( ,v h) = −  ai iv  −∑ ∑ b hj j −∑ v∑ wi i,jhj
(4)

where ai is the bias weight (offset) for the visible unit vi, bj is the bias 
weight for the hidden unit hj, and wi , j the weight associated with the 
connection between hidden unit hj and visible unit vi.

A probability Distribution is associated with the energy function in 
Eq. (4) as shown in Eq. (5):

Z (5)

where Z is a partition function defined as the sum of e−E(v, h) over all 
possible configurations. The aim is to ensure the probability distribu-
tion sums to 1.

Through summation we can get the marginal distribution of visible 
layer??:

(6)

A RBM is trained to maximize the product of probabilities (as de-
scribed by Eq. (6) assigned to a training set V

∏
∈

argmax p (v)
W v V (7)

Training a DBN to maximize Eq. (7) with samples from the same 
class will automatically learn the common patterns in the class. A DBN 
will therefore extract the best features from the samples of a particular 
class in order to describe those samples. After training a DBN for each 
class, a final classifier could be used in order to assess the accuracy of the 
trained DBN to differentiate among the different classes.

2.4. Pattern recognition based on similarities with auto-encoded segments

Using a classifier at the end of a DBN will allow us to separate 
samples in a set of classes. However, for automatically classifying non-
tagged pre-filtered candidate samples while driving based on the outlier 
pre-detection algorithm, the null class has also to be considered. The 
null class will contain the pre-selected samples which do not belong to 
one of the categories that we want to detect (traffic light, street crossing 
and roundabout). The major difficulty in this approach is how to ac-
curately describe the null class since it should include samples from any 
possible situation different from the target classes. In order not to have 
to characterize the null class, a similarity based approach will be used 
when detecting the target road elements while driving.

A method based on training a different auto-encoder per class will be 
performed in order to describe each class. The windows of 20 s of feature 
vectors F = (f1, …, f21) from the input data centered at the outlier 
locations labeled as members of each class are used as the input for each 
auto-encoder. Auto-encoders are designed to minimize the error 
between the input and the reconstructed output according to Eq.(8).

ε x( , x′)  ‖x= − f  (W′(2 1f (Wx  b))+ + b′)‖2 (8)

where x′ is the reconstructed signal which is the concatenation of the 
encoder and decoder functions (f1 and f2 are activation functions such as 
the sigmoid function). A final detection function is required at the end of 
the auto-encoder in order to assess the similarity of the input and the 
reconstructed output. We have used the Pearson's correlation coefficient 
as a similarity function.

The similarity function of each pre-selected outlier location will be 
computed for each class. If the maximum similarity is greater than a 
threshold we will assume that the outlier belongs to that class.

3. Scenarios and datasets

Two datasets have been used in order to validate the proposed al-
gorithm. The first one is a specifically designed dataset that we have 
generated using the driving path shown in Fig. 1 which has been tra-
veled 55 times using 3 different car models (captured in Table 1). The 
journey includes two urban areas and a connecting motorway. The 
overall length is 8.1 km and includes several road elements of interest 
(traffic lights, street crossings and roundabouts). The dataset has been 
generated from one driver driving the 3 different vehicles without being 
aware of the purpose of the experiment. He was asked to drive normally 
while an Android mobile device recorded the GPS traces. A Nexus 6 
Android mobile device was used to record the GPS traces along the way. 
In order to validate the generalization of results, the dataset in 
Schneegass, Pfleging, Broy, Schmidt, and Heinrich (2013) has been used 
as the second dataset. A group of 10 different participants re-corded data 
from different sensors while driving in a circuit in Stuttgart, Germany. 
We have only used the data form the GPS sensor in the Schneegass et al. 
(2013) database, sampled at I Hz for consistency with the sampling rate 
in our database. The driving path also comprised urban areas and 
connecting motorways.

The GPS sensor in both datasets was sampled at 1 Hz (1 sample per 
second). The speed and acceleration were obtained as captured by Eqs.
(1)–(3). Each location was automatically tagged as belonging to a 
particular class (traffic lights, street crossings, roundabouts and null 
class) by calculating the distance to the next road element (using the 
coordinates of the elements in the driving path and Eq. (2)) and com-
paring the distance with a proximity threshold (in our case we have used 
50 m as the area of influence of each infrastructural element in order to 
include the traveled distance needed to stop the vehicle and the number 
of vehicles already waiting at that particular element). The speed and 
acceleration patterns are then used to feed the outlier de-tection 
algorithm proposed in Section 2.2 in order to pre-select
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candidate locations to contain road elements in the target classes. The 
thresholds Th and Th′ described in Section 2.2 control the number of 
samples that are pre-filtered before performing training and detection of 
candidate locations. The bigger the threshold the smaller the number of 
pre-selected points and therefore the faster the computation of re-sults. 
However, when value for the threshold Th is increased, the number of 
training samples decreases and the training of the algorithm could miss 
important information is that threshold is high. We have tried several 
values and finally selected a value of 3 for both thresholds Th and Th′. 
The pre-selected samples tagged as belonging to the traffic lights, street 
crossings and roundabouts classes are then used to train both a DBN and 
an autoencoder. The results are presented in the next section.

4. Results and discussion

4.1. Using a DBN to classify target elements

A DBN and a final classifier have been used to assess if the under-
lying differences in the acceleration and speed patterns in the outlier 
locations associated with each target class are enough in order to se-
parate each sample into its correct class. The schema used is captured in 
Fig. 2. The number of layers and the number of hidden units per layer 
are two parameters that can be adjusted in order to achieve optimal 
results. The output layer in the initial DBN is used to automatically 
compute class dependent features which will be used as the input to the 
final classifier.

Each outlier location associated with a target class (street crossing, 
traffic light and roundabout) will generate an input vector consisting of

Fig. 1. – Driving path.

Table 1
– Vehicles used for the data gathering.

Model Times used

Peugeot 206 7
Citroen Xsara Picasso 28
Opel Zafira 20

Fig. 2. – Classification schema.

a sequence of 21 consecutive pairs (v, a). Part of the input samples will 
be used to train the DBN + classifier and part of them to validate it. We 
will use a 10-fold validation schema in which the samples are divided 
into a 90% training and a 10% validation sets. The process is repeated 
10 times so that all the samples are considered once in the validation set.

A first configuration of a DBN consisting of 2 layers with 10 and 2 
hidden units has been tested with 3 different classifiers (SVM with a 
quadratic kernel, SVN with a Gaussian kernel and KNN). Table 2 cap-
tures the results for the case of SVN with quadratic kernel for the first 
dataset. The recall (fraction of relevant samples that are retrieved) is 
best for the street crossing class (0.95). The precision (fraction of re-
trieved samples that are relevant) is best both for the street crossing and 
roundabout classes (0.87). The traffic light shows the worst results both 
for precision and recall. The 32% of the traffic light associated samples 
are considered as street crossing and 15% as roundabouts. Table 3 
captures similar results for the second dataset. In this case, instead of
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having a single participant driving several times on the same driving 
path, a group of 10 different drivers have been used, each participant 
driving only once. The scenario in this second dataset is therefore more 
demanding and results are expected to worsen if compared to the first 
dataset. However, the results are still acceptable for the street crossing 
class with a 0.83 recall and 0.87 precision. Traffic lights continue to be 
the class showing the worst results. Using a classifier based on SVN with 
a Gaussian kernel achieves similar results (improving the recall for the 
street crossing class and the precision for the traffic light class but de-
creasing the recall in the case of the traffic light class). The results for

True/Predicted ST TL RA Recall

Street crossing (ST) 1186 49 15 0.95
Traffic light (TL) 135 222 63 0.53
Roundabout (RA) 49 59 529 0.83
Precision 0.87 0.67 0.87

Table 3
– Confusion matrix (10,2) SVM quadratic kernel using the second dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 110 4 19 0.83
Traffic light (TL) 13 30 20 0.48
Roundabout (RA) 31 14 73 0.62
Precision 0.71 0.63 0.65

Table 4–
Confusion matrix (10,2) SVM Gaussian kernel using the first dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 1219 25 6 0.98
Traffic light (TL) 186 184 50 0.44
Roundabout (RA) 146 16 475 0.75
Precision 0.79 0.82 0.89

Table 5–
Confusion matrix (10,2) SVM Gaussian kernel using the second dataset.

True/Predicted ST TL RA Recall

Street crossing (ST) 95 1 37 0.71
Traffic light (TL) 15 10 38 0.16
Roundabout (RA) 15 0 103 0.87
Precision 0.76 0.91 0.58

Table 6–
Confusion matrix (10,2) KNN using the first dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 1185 49 16 0.95
Traffic light (TL) 126 241 53 0.57
Roundabout (RA) 68 28 541 0.85
Precision 0.86 0.76 0.89

Table 7–
Confusion matrix (10,2) KNN using the second dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 112 5 16 0.84
Traffic light (TL) 21 26 16 0.41
Roundabout (RA) 32 9 77 0.65
Precision 0.68 0.65 0.71

Table 8
– Confusion matrix (10,5,1) SVM quadratic kernel using the first dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 1178 35 37 0.94
Traffic light (TL) 150 121 149 0.29
Roundabout (RA) 91 20 526 0.83
Precision 0.83 0.69 0.74

Table 9
– Confusion matrix (10,5,1) SVM quadratic kernel using the second dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 95 9 29 0.71
Traffic light (TL) 23 26 14 0.41
Roundabout (RA) 35 12 71 0.60
Precision 0.62 0.55 0.62

the first dataset are captured in Table 4. Table 5 captures similar results 
for the second dataset. Using KNN as the output classifier also achieves 
similar results as shown in Tables 6 and 7.

Using a 3 layer DBN will require more time to compute. We have 
selected an architecture with 10, 5 and 1 hidden units in the DBN so that 
the number of output features is half of the number in the 2 layer DBN 
previously presented and therefore the classifier can run faster 
(compensating the time consumed in the DBN). Results for the first 
dataset using the same classifiers are captured in Tables 8, 10 and 12. In 
this case the results are slightly worse. Results for the second dataset 
using the same classifiers are captured in Tables 9, 11 and 13.

We can try to improve the classification results by considering how 
many times a particular point is detected as an outlier. The idea is that 
traffic lights will be green some of the times and therefore the number of 
outliers associated to them will be smaller than in the case of 
roundabouts and street crossings. Moreover, in some clear traffic con-
ditions it is likely that some roundabouts do not generate outliers so that 
the number of outliers associated with street crossings is expected to be 
even higher than in the case of roundabouts. We define the degree of 
atypicity (da) of a particular location as the relative number of times that 
a location is detected as an outlier. Adding the degree of atypicity (da) as 
an input variable to the output classifier and trying with both 
configurations previously used for the DBN in the case of the KNN 
classifier provides the results captured in Tables 14 and 16 for the first 
dataset. The results improve significantly for the case of traffic light 
classification, more prominently in the case of a 3 layer DBN archi-
tecture. This architecture is able to detect 96% of the street crossings, 
69% of the traffic lights and 89% of the roundabouts. The results for the 
second dataset are presented in Tables 15 and 17. Using the output of the 
3 layer DBN and the degree of atypicity (da) for each location as the 
input to a KNN classifier provides a precision close to 90% for the street 
crossings and close to 80% for the traffic lights and roundabouts for the 
second dataset, which includes information of 10 different drivers fol-
lowing the same path only once. The values achieved for the recall with 
this second dataset are close but a bit under those achieved for the case of 
the first dataset as expected.

Table 10
– Confusion matrix (10,5,1) SVM Gaussian kernel using the first dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 1192 28 30 0.95
Traffic light (TL) 155 150 115 0.36
Roundabout (RA) 99 17 521 0.82
Precision 0.82 0.77 0.78

Table 2
– Confusion matrix (10,2) SVM quadratic kernel using the first dataset.
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4.2. Detecting road elements while driving

In order to detect road elements in the target classes while driving, 
and avoid characterizing the null class, a different schema has been used 
as described in Section 2.4. The driving samples associated with 2 
particular instances of each class (2 traffic lights, 2 street crossings and 2 
roundabouts) have been used to train 3 autoencoders with 10 hidden 
units each. The detection process uses the output of the outlier detec-
tion schema in order to pre-select candidate points which could be 
associated with one of the target classes. The preselected samples are 
then encoded and decoded with the previously trained autoencoders and 
the Pearson's correlation coefficient is used to assess how similar the 
reconstructed output is to the pre-selected input. A threshold is used in 
order to consider the pre-selected sample a potential member of the 
class. If the similarity with more than 1 class is above the threshold, the 
sample is assigned to the class with a higher similarity. If the similarity 
with all the 3 classes is below the threshold, the sample is considered to 
belong to the null class. The results for the first dataset are captured in 
Tables 18 and 19. Table 18 captures the detection results for the case of 
a threshold value of r = 0.97. In this case 7 locations are considered to 
be street crossings (2 of them being false positives), 1 location is cor-
rectly detected as being a traffic light and 6 locations (1 being a false 
positive) are detected as roundabouts. The precision is also captured in 
the table. However, only a limited number of elements are detected. In

True/predicted ST TL RA Recall

Street crossing (ST) 107 2 24 0.80
Traffic light (TL) 50 8 5 0.13
Roundabout (RA) 45 0 73 0.62
Precision 0.53 0.80 0.72

Table 12
– Confusion matrix (10,5,1) KNN using the first dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 1163 53 34 0.93
Traffic light (TL) 141 190 89 0.45
Roundabout (RA) 113 30 494 0.78
Precision 0.82 0.70 0.80

Table 13
– Confusion matrix (10,5,1) KNN using the second dataset.

True/predicted ST TL RA Recall

Street crossing (ST) 99 4 30 0.74
Traffic light (TL) 36 20 7 0.32
Roundabout (RA) 37 5 76 0.64
Precision 0.58 0.69 0.67

Table 14
– Confusion matrix (10,2 + da) KNN using the first dataset.

True/Predicted ST TL RA Recall

Street crossing (ST) 1193 46 11 0.95
Traffic light (TL) 59 291 70 0.69
Roundabout (RA) 35 46 556 0.87
Precision 0.93 0.76 0.87

Table 15
– Confusion matrix (10,2 + da) KNN using the second dataset.

True/Predicted ST TL RA Recall

Street crossing (ST) 119 4 12 0.88
Traffic light (TL) 9 41 13 0.65
Roundabout (RA) 13 14 91 0.77
Precision 0.84 0.69 0.78

Table 16
– Confusion matrix (10,5,1 + da) KNN using the first dataset.

True/Predicted ST TL RA Recall

Street crossing (ST) 1198 41 11 0.96
Traffic light (TL) 53 288 79 0.69
Roundabout (RA) 31 42 564 0.89
Precision 0.93 0.78 0.86

Table 17
– Confusion matrix (10,5,1 + da) KNN using the second dataset.

True/Predicted ST TL RA Recall

Street crossing (ST) 119 3 11 0.89
Traffic light (TL) 5 42 16 0.67
Roundabout (RA) 12 9 97 0.82
Precision 0.88 0.78 0.78

Table 18–
Confusion matrix. Threshold rth = 0.97 using the first dataset.

Detected as TP FP Precision

Street crossing (ST) 5 2 0.71
Traffic light (TL) 1 0 1
Roundabout (RA) 5 1 0.83

Table 19
– Confusion matrix. Threshold rth = 0.96 using the first dataset.

Detected as TP FP Precision

Street crossing (ST) 15 8 0.65
Traffic light (TL) 4 4 0.50
Roundabout (RA) 7 3 0.70

Table 20–
Confusion matrix. Threshold rth = 0.97 using the second dataset.

Detected as TP FP Precision

Street crossing (ST) 0 0
Traffic light (TL) 2 0 1
Roundabout (RA) 2 0 1

Table 21
– Confusion matrix. Threshold rth = 0.96 using the second dataset.

Detected as TP FP Precision

Street crossing (ST) 3 0 1
Traffic light (TL) 2 0 1
Roundabout (RA) 2 2 0.5

Table 22
– Confusion matrix. Threshold rth = 0.95 using the second dataset.

Detected as TP FP Precision

Street crossing (ST) 5 0 1
Traffic light (TL) 2 0 1
Roundabout (RA) 2 3 0.4

Table 11
– Confusion matrix (10,5,1) SVM Gaussian kernel using the second dataset.
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Aly et al., 2017, proposed the use of several sensors on mobile de-
vices and the combination of the information extracted from multiple 
users together (crowdsensing) in order to detect several road elements 
such as bumps and rail crossings. The proposed algorithm used GPS, 
accelerometer, gyroscope, magnetometer, and cellular network in-
formation to feed a probabilistic model. Several road elements such as 
bumps (recall = 0.90, precision = 0.97) and rail crossings (re-call = 
0.92, precision = 0.76) were automatically classified. Despite the fact of 
using several sensors and several users together, the per-formance 
achieved for detecting elements such as bumps and rails-crossings is 
worse compared to the results obtained using the method proposed in 
this paper for classifying street crossing and roundabouts.

5. Conclusions

In this paper, a novel mechanism to automatically detect road-in-
frastructural elements based on the use of GPS sensor data while driving 
is presented. The results focus on three particular classes of elements: 
traffic lights, street crossings and roundabouts. The mechanism is va-
lidated using two different datasets. A first dataset with several drives 
following the same circuit by a single driver and a second dataset in 
which 10 different drivers follow a particular circuit once each. 
Infrastructural information such as the location of traffic lights and their 
red/green periods, the location of roundabouts or street crossings and 
the common speed patterns while traversing those elements can be used 
to provide better estimations of the travel time to reach a parti-cular 
destination using a routable map. The travel time estimates could be 
personalized to a particular user, the time of the day and the day of the 
week.

The proposed mechanism combines a pre-selection process based on 
a novel outlier detection algorithm and a DBN + output classifier. The 
outlier detection algorithm uses the speed and acceleration patterns 
both in intra-drive and inter-drive data in order to detect candidate 
locations that could contain a relevant infrastructural element. Intra-
drive data is used to detect abnormalities in speed and acceleration 
patterns that can be due either to infrastructural elements as well as 
traffic conditions. Inter-drive outlier detection is aimed at separating 
sporadic traffic related conditions to fix infrastructural elements. Using a 
DBN, automatic features are extracted from speed and acceleration 
patterns that capture the particularities of each road element. A final 
classifier, based on KNN and SVM (with both a quadratic and a Gaussian 
kernel) algorithms, is used achieving a combined recall and precision of 
0.89 for the first dataset and a combined recall and pre-cision of 0.82 for 
the second dataset. The results are enhanced by cal-culating the 
percentage of times that a particular candidate location is pre-selected as 
an outlier in similar drives and feeding this information into the output 
classifier together with the DBN automatic features.

In order to apply the detection algorithm to real-time scenarios and 
avoiding to have to characterize the null class, a variation has also been 
introduced into the proposed architecture based on a similarity mea-
sure. Instead of a DBN, a schema based on the use of auto-encoders 
together with a similarity measure based on the Pearson's correlation 
coefficient is used. The results show acceptable values in the precision if 
the recall is accepted to be low but degrade when the number of de-
tected elements increases. These results could be improved using a 
crowdsensing approach as other related studies have previously pre-
sented. As a future work, an improved version of the proposed algo-
rithm enhanced by combining the elements detected by multiple users 
will be generated. Another improvement of the algorithm will include 
the information from other sensors such as the accelerometer available 
in most mobile devices together with the GPS information.
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order to increase the number of elements detected, the threshold value 
can be lowered. Table 19 captures the results for a threshold value of r 
= 0.96. In this case 15 street crossings, 4 traffic lights and 7 round-
abouts are correctly detected but at the cost of decreasing the values for 
the precision to 0.65, 0.50 and 0.70 respectively.

The results for the second dataset are captured in Tables 20, 21 and 
22. In this case, a threshold value of 0.97 does not provide any false 
positive but is not able to provide true positive samples for the case of 
street crossings. We have therefore used the values of 0.96 (Table 21) 
and 0.95 (Table 22) in order to assess the performance of the algorithm. 
Using a threshold of 0.96 for the Pearson's correlation index is able to 
detect 3 street crossings and 2 traffic lights with no false positive. 
Lowering the threshold to 0.95, a total of 5 street crossings are detected 
with no false positives. However, the number of false positives in the 
case of roundabouts worsens as the threshold is decreased.

As captured in Section 1, previous studies have used crowdsensing 
techniques in order to improve results. As a future work, we plan to 
increase the number of drivers and test drives to be able to filter the 
results from the detection process based on the number of times that a 
particular location is detected as such.

4.3. Comparing results with previous studies

In the comparison of results of the algorithms presented in this 
section, the recall, precision, the type of sensors and machine learning 
techniques used, together with the scope of each research study are 
included in order to provide an overall picture.

The results presented in Table 16 show a combined recall and 
precision of 0.89 for the first dataset when classifying elements be-
longing to any of the 3 target classes in this study: traffic lights, road 
crossings and roundabouts. The results presented in Table 17 show a 
combined recall and precision of 0.82 for the second dataset when 
classifying elements belonging to any of the 3 target classes in this study: 
traffic lights, road crossings and roundabouts. We have used an 
automatic feature extraction mechanism based on a DBN (enhanced by 
the degree of atypicity (da) computed for each candidate location) to-
gether with a final classifier based on KNN and SVN with two different 
kernels. The proposed algorithm uses the GPS sensor sampled at 1 Hz as 
the input information in order to generate patterns of speed and ac-
celeration at points classified as outliers using both an intra-drive and 
inter-drive sample selection process. The algorithm has been extended in 
order to provide real-time detection while driving without the need to 
characterize the null class.

Ren & Liu, 2016, proposed a related system that tries to detect road 
potholes while driving. They used the GPS sensor to perform a pre-
clustering of samples based on the travelling speed and the accel-
erometer to perform actual pothole detection. 2 axis of the accel-
erometer sensors are taken into account. The k-means clustering algo-
rithm is used to automatically detect the samples belonging to the 
pothole cluster. The authors state that their algorithm improves pre-
viously existing ones but recognize that they were not able to isolate 
potholes form certain abnormal traffic conditions.

D'Andrea & Marcelloni, 2016, detected traffic congestion and in-
cidents from GPS trace analysis. They only used GPS information (both 
location and speed) in order to feed a heuristic algorithm for traffic 
congestion detection. The algorithm achieved a recall of 0.916, but the 
scope was limited to detecting traffic congestion cases.

Ghosh & Smith, 2014, proposed a mechanism for automatic incident 
detection adapted to the scenario of signalized urban arterials. A traffic 
volume database generated based on the use of inductive loop detectors 
was used. Several machine learning algorithms were used. Best results 
were achieved when using SVM. A recall of 0.87 was achieved.

Mascetti et al. (2016), proposed a vision recognition based system to 
detect traffic lights based on mobile devices for pedestrians with visual 
impairment. The authors achieved a 0.85 recall and the scope was 
limited to traffic light detection.
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