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High-SNR Asymptotics of Mutual Information for

Discrete Constellations with Applications to BICM
Alex Alvarado, Fredrik Brännström, Erik Agrell, and Tobias Koch

Abstract—Asymptotic expressions of the mutual information
between any discrete input and the corresponding output of the
scalar additive white Gaussian noise channel are presented in the
limit as the signal-to-noise ratio (SNR) tends to infinity. Asymp-
totic expressions of the symbol-error probability (SEP) and the
minimum mean-square error (MMSE) achieved by estimating
the channel input given the channel output are also developed. It
is shown that for any input distribution, the conditional entropy
of the channel input given the output, MMSE and SEP have an
asymptotic behavior proportional to the Gaussian Q-function.
The argument of the Q-function depends only on the minimum
Euclidean distance (MED) of the constellation and the SNR, and
the proportionality constants are functions of the MED and the
probabilities of the pairs of constellation points at MED. The
developed expressions are then generalized to study the high-
SNR behavior of the generalized mutual information (GMI) for
bit-interleaved coded modulation (BICM). By means of these
asymptotic expressions, the long-standing conjecture that Gray
codes are the binary labelings that maximize the BICM-GMI at
high SNR is proven. It is further shown that for any equally
spaced constellation whose size is a power of two, there always
exists an anti-Gray code giving the lowest BICM-GMI at high
SNR.

Index Terms—Anti-Gray code, additive white Gaussian noise
channel, bit-interleaved coded modulation, discrete constellations,
Gray code, minimum-mean square error, mutual information,
high-SNR asymptotics.

I. INTRODUCTION

WE consider the discrete-time, real-valued, additive

white Gaussian noise (AWGN) channel

Y =
√
ρX + Z (1)

where X is the transmitted symbol; Z is a Gaussian random

variable, independent of X , with zero mean and unit variance;

and ρ > 0 is an arbitrary scale factor. The capacity of

the AWGN channel (1) under an average-power constraint
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ρEX [X2] ≤ γ is given by [1]

Caw(γ) =
1

2
log(1 + γ) (2)

where γ can be viewed as the maximal allowed signal-to-

noise ratio (SNR). Although inputs distributed according to

the Gaussian distribution attain the capacity, they suffer from

several drawbacks which prevent them from being used in

practical systems. Among them, especially relevant are the

unbounded support and the infinite number of bits needed to

represent signal points. In practical systems, discrete distribu-

tions are typically preferred.

The mutual information (MI) between the channel input X
and the channel output Y of (1), where the distribution of

X is constrained to be a probability mass function (PMF)

over a discrete constellation, represents the maximum rate at

which information can be reliably transmitted over (1) using

that particular constellation. While the low-SNR asymptotics

of the MI for discrete constellations are well understood (see

[1]–[4] and references therein), to the best of our knowledge,

only upper and lower bounds are known for the high-SNR

behavior [5]–[7]. It was observed in [6, p. 1073] that for

discrete constellations, maximizing the MI is equivalent to

minimizing either the symbol-error probability (SEP) or the

minimum mean-square error (MMSE) in estimating X from

Y . In [8, App. E], two constellations with different minimum

Euclidean distances (MEDs) are compared, and it is shown

that, for sufficiently large SNR, the constellation with larger

MED gives a higher MI. Upper and lower bounds on the

MI and MMSE for multiple-antenna systems over fading

channels can be found in [9]–[11]. Using the Mellin transform,

asymptotic expansions for the MMSE and MI for scalar and

vectorial coherent fading channels were recently derived in

[12].

In this paper, we study the high-SNR asymptotics of the MI

for discrete constellations. In particular, we consider arbitrary

constellations and input distributions (independent of ρ) and

find exact asymptotic expressions for the MI in the limit

as the SNR tends to infinity. Exact asymptotic expressions

for the MMSE and SEP are also developed. We prove that

for any constellation and input distribution, the conditional

entropy of X given Y , the MMSE, and the SEP have an

asymptotic behavior proportional to Q
(√

ρd/2
)
, where Q(·)

is the Gaussian Q-function and d is the MED of the constel-

lation. While this asymptotic behavior has been demonstrated

for uniform input distributions (e.g., [6, eqs. (36)–(37)], [6,

Sec. II-C], [9, Sec. III], [11, Sec. III]), we show that it holds

for any discrete input distribution that does not depend on the
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SNR. Furthermore, in contrast to previous works, we provide

closed-form expressions for the coefficients in front of the Q-

functions, thereby characterizing the asymptotic behavior of

the MI, MMSE, and SEP more accurately.

While these asymptotic results are general, we use them

to study bit-interleaved coded modulation (BICM) [13]–[15],

which can be viewed as a pragmatic approach for coded

modulation [15, Ch. 1]. The key element in BICM is the use

of a (suboptimal) bit-wise detection rule, which was cast in

[16] as a mismatched decoder. BICM is used in many of the

current wireless communications standards, e.g., HSPA, IEEE

802.11a/g/n, and the DVB standards (DVB-T2/S2/C2).

The BICM generalized mutual information (BICM-GMI) is

an achievable rate for BICM [16] and depends heavily on the

binary labeling of the constellation. The optimality of a Gray

code (GC) in the sense that it maximizes the BICM-GMI was

conjectured in [14, Sec. III-C]; however, it was shown in [17]

that for low and medium SNRs, there exist other labelings that

give a higher BICM-GMI (see also [18, Ch. 3]). For further

results on BICM at low SNR see [19]–[22]. On the other hand,

numerical results presented in [18, Ch. 3] and [23] suggest that

GCs are indeed optimal at high SNR in terms of BICM-GMI.

However, to the best of our knowledge, the optimality of GCs

at high SNR has never been proven.

In this paper, we derive an asymptotic expression for the

BICM-GMI as a function of the constellation, input distribu-

tion, and binary labeling. Using this expression, we then prove

the optimality of GCs at high SNR. Using the MI-MMSE

relationship, an asymptotic expression for the derivative of

the BICM-GMI is also developed. The obtained asymptotic

expressions for the BICM-GMI and its derivative, as well as

the one for the bit-error probability (BEP), are all shown to

converge to their asymptotes proportionally to Q
(√

ρd/2
)
.

This paper is organized as follows. In Sec. II, the notation

convention and system model are presented. The asymptotics

of the MI and MMSE are presented in Sec. III and BICM is

studied in Sec. IV. The conclusions are drawn in Sec. V.

II. PRELIMINARIES

A. Notation Convention

Row vectors are denoted by boldface letters x =
[x1, x2, . . . , xM ] and sets are denoted by calligraphic letters

X . An exception is the set of real numbers, which is denoted

by R. All the logarithms are natural logarithms and all the

MIs are therefore given in nats. Probability density functions

(PDFs) and conditional PDFs are denoted by fY (y) and

fY |X(y|x), respectively. Analogously, PMFs are denoted by

PX(x) and PX|Y (x|y). Expectations over a random variable

X are denoted by EX [·].

B. Model

We consider the discrete-time, real-valued AWGN channel

(1). The transmitted symbols X belong to a real-valued, one-

dimensional constellation X , {x1, x2, . . . , xM} where M =
2m, and they are, without loss of generality, assumed to be

distinct and ordered, i.e., x1 < x2 < · · · < xM . Each symbol

is transmitted with probability pi , PX(xi), 0 < pi < 1, and

the vector of probabilities p , [p1, . . . , pM ] is called the input

distribution. We assume that neither the constellation nor the

input distribution depends on ρ. We denote the set of indices

in X and p with IX , {1, . . . ,M}.

The transmitted average symbol energy is

Es , EX [X2] =
∑

i∈IX

pix
2
i . (3)

It follows that the SNR is γ = ρEs.

An M -ary pulse-amplitude modulation (MPAM) constella-

tion having M equally spaced symbols (separated by 2∆) is

denoted by E , {xi = −(M − 2i + 1)∆ : i = 1, . . . ,M}. A

uniform distribution of X is denoted by P u
X , i.e., pi = 1/M

∀i. A uniform input distribution with X = E is denoted by

P eu
X , where in this case ∆2 = 3Es/(M

2 − 1).

The Gaussian Q-function is defined as

Q(x) ,
1√
2π

∫ ∞

x

e−
1
2 ξ

2

dξ. (4)

The entropy of the random variable X is defined as

HPX
, −EX [log (PX(X))] (5)

the MI between X and Y , I(X ;Y ), as

IPX
(ρ) , EX,Y

[
log
(
fY |X(Y |X)/fY (Y )

)]
(6)

and the MMSE as

MPX
(ρ) , EX,Y [(X − X̂me(Y ))2] (7)

where X̂me(y) , EX [X |Y = y] is the conditional (posterior)

mean estimator (ME). We further define the SEP as

SPX
(ρ) , Pr{X̂map(Y ) 6= X} (8)

where X is the transmitted symbol and

X̂map(y) , argmax
x∈X

PX|Y (x|y) (9)

is the decision made by a maximum a posteriori probability

(MAP) symbol demapper.

The MED of the constellation is defined as

d , min
i,j∈IX :i6=j

|xi − xj |. (10)

We further define AX as twice the number of pairs of

constellation points at MED, i.e.,

AX ,
∑

i∈IX

∑

j∈IX

|xi−xj |=d

1. (11)

By using the fact that for any real-valued constellation there

are at least one and at most M−1 pairs of constellation points

at MED, we obtain the bound

2 ≤ AX ≤ 2(M − 1). (12)

The upper bound is achieved by an MPAM constellation, for

which

AE = 2(M − 1). (13)
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Finally, for a given PX , we define the constant

BPX
,
∑

i∈IX

∑

j∈IX

|xi−xj|=d

√
pjpi. (14)

For a uniform input distribution, PX = P u
X , and thus,

BPu
X
=

AX
M

. (15)

Example 1: Consider an unequally spaced 4-ary constella-

tion with x1 = −4, x2 = −2, x3 = 2, and x4 = 4, and the

input distribution pi = i/10 with i = 1, 2, 3, 4. The MED in

(10) is d = 2, Es in (3) is Es = 10, AX in (11) is AX = 4
(two pairs of constellation points at MED), and BPX

in (14)

is BPX
= 2

√
p1p2 + 2

√
p3p4 ≈ 0.98.

III. HIGH-SNR ASYMPTOTICS

There exists a fundamental relationship between the MI and

the MMSE for AWGN channels [24] (see also [25, Ch. 2]):

d

dρ
IPX

(ρ) =
1

2
MPX

(ρ). (16)

Exploiting this MI-MMSE relation, bounds on the MI can

be used to derive bounds on the MMSE and vice versa. The

relationship in (16) will be used in the proof of Theorem 1.

Upper and lower bounds on the MI and MMSE for discrete

constellations at high SNR can be found, e.g., in [5]–[7],

[9]–[12]. While these bounds describe the correct asymptotic

behavior, they are, in general, not tight in the sense that the

ratio between them does not tend to one as ρ → ∞. In what

follows, we present exact asymptotic expressions for the MI

and MMSE for any arbitrary PX . We further present exact

asymptotic expressions for the SEP.

A. Asymptotics of the MI, MMSE, and SEP

For any given input distribution PX , the MI tends to HPX

as ρ tends to infinity. In the following we study how fast the

MI converges towards its maximum HPX
by analyzing the

difference HPX
− IPX

(ρ), i.e., by analyzing the conditional

entropy of X given Y . Theorem 1 is the main result of

this paper and characterizes the high-SNR behavior of the

conditional entropy H(X |Y ) = HPX
− IPX

(ρ).
Theorem 1: For any PX

lim
ρ→∞

HPX
− IPX

(ρ)

Q
(√

ρd/2
) = πBPX

(17)

where BPX
is given by (14).

Proof: See Appendix A.

Similar to Theorem 1, we have the following asymptotic

expressions for the MMSE and the SEP.

Theorem 2: For any PX

lim
ρ→∞

MPX
(ρ)

Q
(√

ρd/2
) =

πd2

4
BPX

. (18)

Proof: See Appendix B.

Theorem 3: For any PX

lim
ρ→∞

SPX
(ρ)

Q
(√

ρd/2
) = BPX

. (19)

Proof: See Appendix C.

Theorems 1–3 reveal that, at high SNR, the MI, MMSE,

and SEP behave as

IPX
(ρ) ≈ HPX

− πBPX
Q (

√
ρd/2) (20)

MPX
(ρ) ≈ πd2

4
BPX

Q (
√
ρd/2) (21)

SPX
(ρ) ≈ BPX

Q (
√
ρd/2) . (22)

The results in (20)–(22) show that for any input distribution,

the conditional entropy, MMSE, and SEP have the same high-

SNR behavior: i.e., they are all proportional to a Gaussian

Q-function, where the proportionality constants depend on the

input distribution and, in the case of the MMSE, also on the

MED of the constellation.

Remark 1: While the results presented in this section were

derived only for one-dimensional (real-valued) constellations,

they directly generalize to multidimensional constellations that

are constructed as ordered direct products [21, eq. (1)] of one-

dimensional constellations. For example, the results directly

generalize to rectangular quadrature amplitude modulation

constellations.

B. Discussion and Examples

For a uniform input distribution (PX = P u
X ), Theorems 1–3

particularize to the following result.

Corollary 4: For any X and a uniform input distribution

lim
ρ→∞

logM − IPu
X
(ρ)

Q
(√

ρd/2
) = π

AX
M

(23)

lim
ρ→∞

MPu
X
(ρ)

Q
(√

ρd/2
) =

πd2

4

AX
M

(24)

lim
ρ→∞

SPu
X
(ρ)

Q
(√

ρd/2
) =

AX
M

(25)

where AX is given by (11).

Proof: From Theorems 1–3 and (15).

The expression (25) corresponds to the well-known high-

SNR approximation for the SEP [26, eq. (2.3-29)]. Corollary 4

shows that for a uniform input distribution, the MI, the MMSE,

and the SEP for discrete constellations in the high-SNR regime

are functions of the MED of the constellation and the number

of pairs of constellation points at MED.

For MPAM and a uniform input distribution (PX = P eu
X ),

it follows from Corollary 4 and (13) that

IP eu
X
(ρ) ≈ logM − 2π(M − 1)

M
Q (

√
ρd/2) (26)

MP eu
X
(ρ) ≈ 6πEs

M(M + 1)
Q (

√
ρd/2) (27)

SP eu
X
(ρ) ≈ 2(M − 1)

M
Q (

√
ρd/2) . (28)

Table I summarizes the results obtained in Theorems 1–3,

Corollary 4, and (26)–(28).

Example 2: In Fig. 1, we show logM − IP eu
X
(ρ) for 4PAM

and 16PAM with uniform input distributions1 together with

1Calculated numerically using Gauss–Hermite quadratures [23, Sec. III]
with 300 quadrature points.
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TABLE I
SUMMARY OF ASYMPTOTICS OF MI, MMSE, AND SEP.

Input Distribution PX P u

X P eu

X

lim
ρ→∞

HPX − IPX (ρ)

Q
(√

ρd/2
) πBPX π

AX

M

2π(M − 1)

M

lim
ρ→∞

MPX (ρ)

Q
(√

ρd/2
)

πd2

4
BPX

πd2

4

AX

M

6πEs

M(M + 1)

lim
ρ→∞

SPX (ρ)

Q
(√

ρd/2
) BPX

AX

M

2(M − 1)

M
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Fig. 1. logM − IP eu
X

(ρ) for 4PAM and 16PAM (solid lines) constellations

(normalized to Es = 1) and the asymptotic expression in (26) (thick dashed
lines). The lower and upper bounds [6, eq. (34)–(35)] and [11, eq. (17)–(19)]
are also shown.

the asymptotic expression in (26). We also show the lower and

upper bounds derived in [6, eq. (34)–(35)] and [11, eq. (17)–

(19)]. Observe that (26) approximates IP eu
X
(ρ) accurately for a

large range of SNR. In Fig. 2, analogous results for the MMSE

are presented, where the bounds derived in [6, eq. (30)–(31)]

and [11, eq. (13)–(15)] are also included. Again, the asymp-

totic expression (27) approximates the MMSE accurately for

a large range of SNR. For other examples with unequally

spaced 4-ary constellations and nonuniform input distributions

see [27, Example 3].

Remark 2: It follows from Corollary 4 that the constellation

that maximizes the MI (or equivalently, the constellation that

minimizes the MMSE and the SEP) at high SNR is the

constellation that first maximizes the MED and then minimizes

AX . It is easy to see that the one-dimensional constellation that

maximizes the MED for a given Es is the MPAM constellation

(X = E).

IV. APPLICATION: BINARY LABELINGS FOR

BIT-INTERLEAVED CODED MODULATION

BICM can be viewed as a pragmatic approach for coded

modulation. In BICM (see Fig. 3), the encoder is realized as a

serial concatenation of a binary encoder, a bit-level interleaver,

0
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Fig. 2. MP eu
X

(ρ) for 4PAM and 16PAM (solid lines) constellations

(normalized to Es = 1) and the asymptotic expression in (27) (thick dashed
lines). The lower and upper bounds [6, eq. (30)–(31)] and [11, eq. (13)–(15)]
are also shown.

and a memoryless mapper; see [13]–[15] for more details.

A key element in BICM is the memoryless mapper Φ :
{0, 1}m → X , which maps the coded bits Q = [Q1, . . . , Qm]
to constellation symbols. At the receiver side, the demapper

computes a bit metric, typically in the form of a logarithmic

likelihood ratio (LLR)

Λk , log
fY |Qk

(y|1)
fY |Qk

(y|0) (29)

for k = 1, . . . ,m. The vector of LLRs Λ = [Λ1, . . . ,Λm] is

deinterleaved and then decoded.

The BICM-GMI is an achievable rate for BICM, and thus,

is an important quantity for such systems. In this section, we

generalize the results in Sec. III to obtain asymptotic expres-

sions for the BICM-GMI. We further study the relationship

between the BICM-GMI and the BEP as well as the derivative

of the BICM-GMI with respect to ρ. Finally, we show that at

high SNR, GCs maximize BICM-GMI for one-dimensional

constellations and uniform input distributions.

A. BICM Model

A binary labeling for a constellation is defined by the

vector l = [l1, l2, . . . , lM ] where li ∈ {0, 1, . . . ,M − 1} is

the integer representation of the ith length-m binary label

qi = [qi,1, . . . , qi,m] ∈ {0, 1}m associated with the symbol

xi, with qi,1 being the most significant bit. The labeling

defines 2m subconstellations Xk,b ⊂ X for k = 1, . . . ,m
and b ∈ {0, 1}, given by Xk,b , {xi ∈ X : qi,k = b} with

|Xk,b| = M/2. We define IXk,b
⊂ {1, . . . ,M} as the indices

of the symbols in X that belong to Xk,b.

Example 3: In Fig. 4, we show the 6 subconstellations

for an 8PAM constellation labeled by the NBC l =
[0, 1, 2, 3, 4, 5, 6, 7] [21, Sec. II-B], as well as the correspond-

ing values of IXk,b
and AXk,b

(defined below).
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BICM Encoder

Q
ENC Π Φ

X

√
ρ Z

Y
Φ−1 Π−1 DEC

Λ

BICM Decoder

Fig. 3. A BICM scheme: The BICM encoder is formed by a serial concatenation of a binary encoder (ENC), a bit-level interleaver (Π), and a memoryless
mapper (Φ). The BICM decoder is based on a demapper (Φ−1) that computes logarithmic likelihood ratios, a deinterleaver (Π−1), and a channel decoder
(DEC).
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AX3,0 = 0, IX3,0 = {1, 3, 5, 7} AX3,1 = 0, IX3,1 = {2, 4, 6, 8}

Fig. 4. Subconstellations Xk,b (black circles) for 8PAM labeled by the
NBC l = [0, 1, 2, 3, 4, 5, 6, 7], where the values of qi,k for k = 1, 2, 3 are
highlighted in boldface, and where AX = 14 and CX ,l = 22. The values of
AXk,b

and IXk,b
are also shown.

In BICM, the coded bits Q = [Q1, Q2, . . . , Qm] at the input

of the mapper Φ (see Fig. 3) are assumed to be independent

but possibly nonuniformly distributed. Therefore, the vector

of bit probabilities [PQ1(0), PQ2(0), . . . , PQm
(0)] induces a

symbol input distribution PX via the labeling as [28, eq. (8)],

[29, eq. (9)]

PX(xi) = pi =

m∏

k=1

PQk
(qi,k). (30)

Using (30), we obtain the conditional probabilities

PX|Qk
(x|b) =

{
PX (x)
PQk

(b) , if x ∈ Xk,b

0, if x /∈ Xk,b

(31)

for k = 1, . . . ,m and b ∈ {0, 1}. According to

(31), each of the 2m conditional input distributions

[PX|Qk
(x1|b), . . . , PX|Qk

(xM |b)] has M/2 non-zero proba-

bilities, which specify which of the M/2 symbols in X are

included in Xk,b. We shall use Xk,b to denote a random

variable with support Xk,b and PMF PX|Qk
(x|b). To shorten

notation, we denote this PMF by PXk,b
.

We next apply the results of Sec. III to BICM. To this

end, we will often replace X and PX in Sec. III by Xk,b

and PXk,b
, respectively. Note, however, that d as defined in

(10) still denotes the MED of the constellation X . We will

not consider the MED for subconstellations. This implies that

it is possible that no pairs of constellation points in Xk,b are

at MED (see, for example, X3,0 and X3,1 in Fig. 4). It follows

that the bounds (12) on AX modify to

0 ≤ AXk,b
≤ 2 (M/2− 1) . (32)

B. Binary Labelings and Key Quantities for BICM

The NBC [21, Sec. II-B] is defined as the binary labeling l

where li = i−1. It is the only optimal labeling for BICM in the

low-SNR regime for X = E [21, Theorem 14], [22]. A labeling

l is said to be a GC if for all i, j for which |xi − xj| = d, the

binary labels qi and qj are at Hamming distance one. One

of the most popular GCs is the binary reflected Gray code

(BRGC) [30]–[32].

To characterize binary labelings we define the constant

CX ,l ,

m∑

k=1

∑

i∈IXk,0

∑

j∈IXk,1

|xi−xj|=d

2 (33)

which corresponds to twice the total number of different bits

between the labels of constellation symbol pairs at MED. For

every given xi ∈ Xk,0, the inner sum in (33) considers all

the constellation points in the subconstellation Xk,1 at MED

from xi ∈ Xk,0. According to this interpretation, (33) can

alternatively be expressed as

CX ,l =
m∑

k=1

(
AX −AXk,0

−AXk,1

)
(34)

where AX−AXk,0
−AXk,1

corresponds to twice the number of

pairs of constellation points at MED with different labeling at

bit position k. For example, for the constellation and labeling

in Fig. 4, AX = 14 and CX ,l = 22.

For X = E and the NBC, CX ,l can be expressed as

CE,lNBC = 2

m∑

k=1

(2k − 1)

= 2(2M −m− 2) (35)

which is obtained by noting that, for each k, there are 2k − 1
symbols satisfying qi,k 6= qi+1,k, for i = 1, 2, . . . ,M − 1.

Note that, while AX in (11) depends only on the geometry

of the constellation, CX ,l in (33) depends on both the geom-

etry of the constellation and the labeling. Since any pair of

constellation points at MED will differ in at least one bit, we
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have for any X and l

CX ,l ≥ AX . (36)

To state our main results on BICM, and in analogy to (14),

we define the constant

DPX ,l ,

m∑

k=1

∑

i∈IXk,0

∑

j∈IXk,1

|xi−xj |=d

2
√
pjpi. (37)

Analog to (15), for a uniform input distribution

DPu
X
,l =

CX ,l

M
. (38)

C. Asymptotic Characterization of BICM

The BICM-GMI is an achievable rate for BICM [16] and

is one of the key quantities used to analyze BICM systems.

For any PX and l, the BICM-GMI is defined as [16, eq. (10)],

[21, eqs. (32) and (41)]2

Ibicm
PX ,l(ρ) ,

m∑

k=1

I(Qk;Y ) (39)

=

m∑

k=1

(

IPX
(ρ)−

∑

b∈{0,1}
PQk

(b)IPXk,b
(ρ)

)

. (40)

Twice the derivative of Ibicm
PX ,l(ρ) is given by [33, eq. (3)]3

M bicm
PX ,l(ρ) , 2

dIbicm
PX ,l(ρ)

dρ
(41)

=

m∑

k=1

(

MPX
(ρ)−

∑

b∈{0,1}
PQk

(b)MPXk,b
(ρ)

)

.

(42)

In these expressions, IPXk,b
(ρ) and MPXk,b

(ρ) are defined, in

analogy to (6)–(7), as

IPXk,b
(ρ) , EXk,b,Y

[
log
(
fY |Xk,b

(Y |Xk,b)/fY (Y )
)]

(43)

and

MPXk,b
(ρ) , EXk,b,Y [(Xk,b − X̂me

PXk,b
(Y ))2] (44)

X̂me
PXk,b

(y) , EXk,b
[Xk,b|Y = y] (45)

where Y is the random variable resulting from transmitting

Xk,b ∈ Xk,b over the AWGN channel (1).

We define the BEP as4

BPX ,l(ρ) ,
1

m

m∑

k=1

Pr{Q̂map
k (Y ) 6= Qk} (46)

where Qk is the transmitted bit and Q̂map
k (Y ) is a hard-decision

on the bit, i.e., [Q̂map
1 (y), . . . , Q̂map

m (y)] = Φ−1(X̂map(y)) with

2Even though the BICM-GMI is fully determined by the bit probabilities
[PQ1

(0), PQ2
(0), . . . , PQm(0)], we express it as a function of the input

distribution PX in (30).
3Since the BICM-GMI is not an MI, its derivative is not an MMSE [33].

We thus avoid using the name MMSE, although we do use the MMSE-like
notation Mbicm

PX ,l
(ρ).

4Note that (46) is the BEP averaged over the m bit positions, in contrast
to the BICM-GMI in (40), which is a sum of m bit-wise MIs.

TABLE II
DIFFERENT PARAMETERS FOR THE CONSTELLATION AND INPUT

DISTRIBUTIONS IN EXAMPLE 4.

p PQ1(0), PQ2(0) HPX DPX ,l d

p
′ 1/2, 1/2 1.3863 1.0000 0.6325

p
′′ 1/2, 1/4 1.2555 0.8660 0.7559

p
′′′ 4/5, 4/5 1.0008 0.8000 0.5423

X̂map(y) given by (9).5

The BICM-GMI tends to HPX
as ρ tends to infinity. The

following theorem shows how fast Ibicm
PX ,l(ρ) converges to HPX

.

Theorem 5: For any PX and l

lim
ρ→∞

HPX
− Ibicm

PX ,l(ρ)

Q
(√

ρd/2
) = πDPX ,l (47)

where DPX ,l is given by (37).

Proof: See Appendix D.

Similar to Theorems 2 and 3, we have following asymptotic

expressions for M bicm
PX ,l(ρ) and the BEP.

Theorem 6: For any PX and l

lim
ρ→∞

M bicm
PX ,l(ρ)

Q
(√

ρd/2
) =

πd2

4
DPX ,l. (48)

Proof: See Appendix E.

Theorem 7: For any PX and l

lim
ρ→∞

BPX ,l(ρ)

Q
(√

ρd/2
) =

DPX ,l

m
. (49)

Proof: See Appendix F.

It follows from Theorems 5–7 that, at high SNR, the BICM-

GMI, M bicm
PX ,l(ρ), and the BEP behave as

Ibicm
PX ,l(ρ) ≈ HPX

− πDPX ,lQ (
√
ρd/2) (50)

M bicm
PX ,l(ρ) ≈

πd2

4
DPX ,lQ (

√
ρd/2) (51)

BPX ,l(ρ) ≈
DPX ,l

m
Q (

√
ρd/2) . (52)

For a given constellation and input distribution, the results

in (50)–(52) indicate that, at high SNR, a maximization

of the BICM-GMI over binary labelings is equivalent to a

minimization of both its derivative and the BEP.

Example 4: Consider the constellation X = {±4,±2} in

Example 1 and the labeling lGC = [0, 1, 3, 2], which gives

AX = CX ,l = 4. Furthermore, consider the three input

distributions

p′ = [1/4, 1/4, 1/4, 1/4]

p′′ = [1/8, 3/8, 3/8, 1/8]

p′′′ = [16/25, 4/25, 1/25, 4/25]

which are induced by the bit probabilities listed in the second

column of Table II. Table II further lists HPX
, DPX ,l, and d

5The BEP in (46) is based on hard-decisions made by the symbol-wise

MAP demapper. Alternatively, one could study a bit-wise MAP demapper for
which Q̂map

k
(y) = argmaxb∈{0,1} PQk|Y

(b|y). This demapper minimizes
the BEP [34] (see also [35]), but its analysis is much more involved.
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i.e., HPX

− Ibicm
PX ,l
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)

.

when the constellation is normalized to Es = 1. Fig. 5 shows

the BICM-GMI curves and Fig. 6 shows the corresponding

curves for HPX
− Ibicm

PX ,l(ρ). The asymptotic expression (50) is

also shown. Observe how this asymptotic expression approx-

imates well the BICM-GMI for a large range of SNR.

For a uniform input distribution, Theorems 5–7 particularize

to the following result.

Corollary 8: For any X and l and a uniform input distri-

TABLE III
SUMMARY OF ASYMPTOTICS OF THE BICM-GMI, TWICE ITS

DERIVATIVE, AND THE BEP.

Input Distribution PX P u

X

lim
ρ→∞

HPX − Ibicm
PX ,l(ρ)

Q
(√

ρd/2
) πDPX ,l π

CX ,l

M

lim
ρ→∞

M bicm
PX ,l(ρ)

Q
(√

ρd/2
)

πd2

4
DPX ,l

πd2

4

CX ,l

M

lim
ρ→∞

BPX ,l(ρ)

Q
(√

ρd/2
)

DPX ,l

m

CX ,l

mM

bution

lim
ρ→∞

logM − Ibicm
Pu

X
,l(ρ)

Q
(√

ρd/2
) = π

CX ,l

M
(53)

lim
ρ→∞

M bicm
Pu

X
,l(ρ)

Q
(√

ρd/2
) =

πd2

4

CX ,l

M
(54)

lim
ρ→∞

BPu
X
,l(ρ)

Q
(√

ρd/2
) =

CX ,l

mM
(55)

where CX ,l is given by (33).

Proof: From Theorems 5–7 and (38).

The expression in (55) for the BEP is well-known, see, e.g.,

[36, p. 130]. The asymptotic results for BICM are summarized

in Table III.

D. Classification of Labelings at high SNR

To study the asymptotic behavior of the BICM-GMI for

different labelings l, we introduce the two functions

Kmi
PX ,l(ρ) ,

HPX
− Ibicm

PX ,l(ρ)

HPX
− IPX

(ρ)
(56)

Kmmse
PX ,l(ρ) ,

M bicm
PX ,l(ρ)

MPX
(ρ)

. (57)

Noting that Ibicm
PX ,l(ρ) ≤ IPX

(ρ) [14, eq. (16)], [21, Theorem 5],

we have

Kmi
PX ,l(ρ) ≥ 1. (58)

We further define

TPX ,l , lim
ρ→∞

Kmi
PX ,l(ρ) (59)

= lim
ρ→∞

Kmmse
PX ,l (ρ) (60)

where (60) follows from L’Hôpital’s rule. Theorems 1 and 5

yield

TPX ,l =
DPX ,l

BPX

. (61)

Furthermore, by (58),

TPX ,l ≥ 1. (62)

We next study TPX ,l for a uniform input distribution P u
X .

With a slight abuse of notation, we will refer to TPu
X
,l as TX ,l.
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Corollary 9: For any labeling l and constellation X ,

TX ,l =
CX ,l

AX
. (63)

Proof: Follows by using (38) and (15) in (61).

By Corollary 9, an upper bound on CX ,l yields an upper

bound on TX ,l.

Theorem 10: For any one-dimensional constellation X and

any labeling l

CX ,l ≤ min (mAX , (m− 1)AX +M) (64)

and hence

TX ,l ≤
min (mAX , (m− 1)AX +M)

AX
. (65)

Proof: By definition, we have AXk,0
≥ 0 and AXk,1

≥ 0
which by (34) yields

CX ,l ≤ mAX . (66)

This bound holds with equality if the labels of all AX /2
pairs of constellation points at MED differ in exactly m bits.

Conversely, (66) can only hold with equality if AX ≤ M ,

since there are only M/2 pairs of labels at Hamming distance

m. For AX > M , the quantity CX ,l is maximized if the labels

of M/2 constellation pairs differ in m bits and the labels of

the remaining (AX −M)/2 pairs differ in m− 1 bits, which

gives

CX ,l ≤ mM + (m− 1)(AX −M) (67)

= (m− 1)AX +M, AX > M. (68)

Combining (66) and (68) proves (64), which together with (63)

proves (65).

For an MPAM constellation, Theorem 10 specializes to

CE,l ≤ 2mM − 2m−M + 2 (69)

TE,l ≤ m− M − 2

2M − 2
. (70)

Furthermore, if the MPAM constellation is labeled with the

NBC, we obtain from (35)

TE,lNBC =
2M −m− 2

M − 1
. (71)

Example 5: In Fig. 7, we show the functions Kmi
P eu

X
,l(ρ)

and Kmmse
P eu

X
,l(ρ) in (56) and (57), respectively, for a 4PAM

constellation with a uniform input distribution (PX = P eu
X ,

AX = 6) and the three labelings that give a different BICM-

GMI: lGC = [0, 1, 3, 2], lNBC = [0, 1, 2, 3], and lAGC =
[0, 3, 2, 1].6 The values of TE,l are also shown. In contrast

to the BICM-GMI curves plotted, e.g., in [17, Fig. 3] and

[33, Fig. 1], the functions Kmi
P eu

X
,l(ρ) and Kmmse

P eu
X

,l(ρ) allow us

to study different labelings at high SNR. Observe that the

GC gives TE,lGC = 1, and that the AGC achieves the upper

bound in (70), i.e., TE,lAGC = 5/3. The function Kmmse
P eu

X ,l(ρ)
also allows us to study different labelings at low SNR: Fig. 7

shows that the NBC is the binary labeling for 4PAM that gives

the largest value for M bicm
Pu

X ,l(ρ) as ρ tends to zero, which agrees

6The anti-Gray code (AGC) will be formally introduced in Sec. IV-E.
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with [20], [21, Theorem 14].7

Example 6: In Fig. 8, we show the function Kmmse
P eu

X
,l(ρ) for

8PAM (PX = P eu
X , AX = 14) and all the 458 labelings

that give a different BICM-GMI [23]. The value TE,lNBC

obtained using (71) is also shown. We further highlight the

three nonequivalent GCs (in terms of BEP) [31, Table I]: the

BRGC l = [0, 1, 3, 2, 6, 7, 5, 4], l = [0, 1, 3, 2, 6, 4, 5, 7], and

l = [0, 1, 3, 7, 5, 4, 6, 2]. All these GCs give TE,l = 1. Observe

that there are 12 possible values of TE,l, which is consistent

7The relationship between the coefficient α determining the low-SNR
behavior of a zero-mean constellation with a uniform input distribution [21,
eq. (47)] and Kmmse

P eu
X

,l
(ρ) is α log 2 = limρ→0 Kmmse

P eu
X

,l
(ρ) (see also [24,

eq. (86)]).
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with [23, Fig. 3].8 Using (55), the 12 values of TE,l in Fig. 8

translate into 12 different asymptotic BEP curves, which were

recently reported in [35, Fig. 4].

Example 7: Motivated by [21, Fig. 6], we study the relative

occurrence of labelings with a given TX ,l, i.e.,

OTX,l
(t) ,

number of labelings with TX ,l = t

total number of labelings
. (72)

In Fig. 9, we present an approximation of OTX,l
(t) for 16PAM,

obtained by randomly generating 109 labelings. We highlight

TE,lGC and TE,lNBC . The upper bound (70) is also shown.

Observe that most of the possible labelings are not Gray.

E. Gray Codes, Anti-Gray Codes, and Asymptotic Optimality

In view of the lower bound (62), we say that a labeling l

is asymptotically optimal (AO) in terms of BICM-GMI for a

constellation X and a uniform input distribution if it satisfies

TX ,l = 1. Intuitively, an AO labeling is a binary labeling for

which the BICM-GMI approaches HPX
as fast as the MI does

for the same constellation X .

By inspection of (71), we see that the NBC for MPAM

is not an AO labeling for m ≥ 2. The following theorem

demonstrates that GCs are AO at high SNR. Thus, it proves

the conjecture of the optimality of GCs at high SNR in terms

of BICM-GMI [14, Sec. III-C].

Theorem 11: For any constellation X and a uniform input

distribution, a labeling is AO if and only if it is a GC.

Proof: By definition, for a GC, all pairs of labelings of

constellation points at MED are at Hamming distance one.

Thus, AX = CX ,l, and by (63), TX ,l = 1, demonstrating that

every GC is AO. Conversely, for every non-GC, there is at

least one pair of constellation points at MED with Hamming

distance larger than one. Consequently, every non-GC gives

CX ,l > AX , and therefore, TX ,l > 1.

8Further note that limρ→0 Kmmse
P eu
X

,l
(ρ) reveals the 72 classes of labelings

reported in [21, Fig. 6 (a)].

Remark 3: The optimality of GCs directly extends to mul-

tidimensional constellations that are constructed as direct

products of one-dimensional constellations, provided that the

labeling is generated via an ordered direct product of GCs.

This construction of constellation and labelings was formally

studied e.g., in [21, Theorem 15].

Remark 4: While the NBC is not AO for an MPAM con-

stellation, it may be AO for an unequally spaced constellation.

For example, this is the case if the NBC is used with the

constellation in Example 1, in which case the NBC is a GC.

Theorem 11 shows that GCs minimize TX ,l. In what fol-

lows, we show that, for MPAM constellations, it is always

possible to construct a labeling that maximizes TE,l, i.e., a

labeling that achieves the upper bound (70).

Let CX denote the set of all possible values that CX ,l can

take. Noting that CX ,l is an even integer bounded by (36) and

(64), it follows that, for any constellation X , the cardinality

of CX satisfies

|CX | ≤ 1

2
min {(m− 1)AX + 2, (m− 2)AX +M + 2} .

(73)

The expression (73) is an upper bound on the number of

classes of labelings with different high-SNR behavior in terms

of BICM-GMI (or equivalently BEP). For the particular case

of X = E , we obtain from (13) and (73)

|CE | ≤ mM − 3M

2
−m+ 3. (74)

For example, for 4PAM we have |CE | ≤ 3 and for 8PAM

we have |CE | ≤ 12, which is consistent with the 3 and 12
classes at high SNR shown in Fig. 7 and Fig. 8, respectively.

For 16PAM, the upper bound (74) indicates that there are at

most 39 classes. However, Fig. 9 shows only 37 classes, all

giving rise to a TE,l strictly smaller than (70). This raises the

question of whether to produce Fig. 9 we were drawing not

enough labelings9 or whether the upper bounds (70) and (74)

are loose. As we shall show next, (70) is achieved by an AGC.

The AGC of order m ≥ 2 is defined by the M ×m binary

matrix Wm (the ith row is the binary label for xi) where Wm

is constructed according to the following recursive procedure:

Let W1 = [0, 1]T. Construct Wm from Wm−1 following

the next three steps:

Step 1 Reverse the order of the M/2 rows in Wm−1, and

append them below Wm−1 to construct a new matrix

W
′
m with M rows and m− 1 columns.

Step 2 Append the length M column vector

[0, 1, 0, 1, . . . , 0, 1]T to the left of W
′
m to create

W
′′
m, with M rows and m columns.

Step 3 Negate all bits in the lower half of W′′
m to obtain Wm.

This recursive construction is illustrated in Fig. 10 for m =
2 and m = 3. The following lemma shows that it indeed leads

to a valid labeling.

Lemma 12: All the rows in Wm are unique and every odd

row differs in m bits compared to its subsequent row.

9Without discarding trivial operations, there are 16! ≈ 2.1 ·1013 labelings,
so randomly generating 109 labelings covers only a small fraction of all
possible labelings.
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repeat repeat

repeat

negate

negate reverse

reverse

Fig. 10. Proposed recursive construction of an AGC for m = 2 and m = 3.

Proof: We shall prove Lemma 12 by induction. Let all

rows in Wm−1 be unique and every odd row differ in m− 1
bits compared to its subsequent row. W1 clearly fulfills both

criteria. Since the number of rows in Wm−1 is even, it follows

by Step 1 that every odd row in the upper half of W
′
m is

identical to an even row in the lower half of W
′
m, which

directly implies that all rows of W
′′
m in Step 2 are unique.

This also implies that every odd row of W′′
m differs in m bits

compared to the row below, since the corresponding rows of

W
′
m differ in m−1 bits. Negating all the bits in the lower half

of W′′
m is therefore equivalent to swapping every odd row in

the lower half of W′′
m with the row below. Consequently, all

rows in Wm are unique and every odd row differs in m bits

compared to its subsequent row.

We next show that, for MPAM constellations, the AGC

maximizes TE,l.
Theorem 13: For X = E , the AGC achieves the upper

bounds in (69) and (70), i.e.,

CE,lAGC = 2mM − 2m−M + 2 (75)

TE,lAGC = m− M − 2

2M − 2
. (76)

Proof: Let Hm denote twice the sum of the Hamming

distances between all adjacent rows in Wm, and let H ′
m and

H ′′
m denote the same quantity for W′

m and W
′′
m, respectively.

Recall that every MPAM constellation satisfies Hm = CE,l.
Steps 1 and 2 give H ′

m = 2Hm−1 and H ′′
m = H ′

m+2(M−1).
It then follows that Hm = H ′′

m − 2 + 2(m − 1), since row

M/2 and row M/2 + 1 in W
′′
m differ in only one bit and

therefore the same rows in Wm differ in m − 1 bits. This

gives Hm = 2Hm−1 + 2(M +m− 3), which combined with

H1 = 2 gives Hm = 2 (mM −m−M/2 + 1), which proves

(75). Together with (63) and (13), this proves Theorem 13.

The labeling lAGC = [0, 3, 2, 1] in Example 5 and Fig. 7

(i.e., W2 in Fig. 10) is the AGC for 4PAM and gives TE,l =
5/3. For 8PAM, the AGC is lAGC = [0, 7, 2, 5, 6, 1, 4, 3] (W3

in Fig. 10) and gives TE,l = 18/7 as shown in Fig. 8.

Revisiting Example 7, we note that, by Theorem 13, the

labeling that achieves the upper bound (70) is the AGC W4.

It can be further shown that the labeling with the second largest

TE,l can be constructed by reversing the order of the three first

rows of the AGC W4. This demonstrates that for 16PAM there

exist indeed 39 classes of labelings with different high-SNR

behaviors and hence the bound in (74) is tight for this case.

V. CONCLUSIONS

We studied the discrete-time, scalar (real-valued) AWGN

channel when the input takes value in a finite constellation and

derived high-SNR asymptotic expressions for the MI, MMSE,

SEP, the BICM-GMI, its derivative, and the BEP. Our results

show that, as the SNR tends to infinity, all these quantities

converge to their asymptotes proportionally to Q
(√

ρd/2
)
,

where d is the MED of the constellation.

For a uniform input distribution, the proportionality con-

stants for the MI, SEP, and MMSE were found to be a

function of the MED of the constellation and the number of

pairs of constellation points at MED only. Consequently, the

constellation that maximizes the MI in the high-SNR regime

is the same that minimizes both the SEP and the MMSE.

We then applied our results to study binary labelings for

BICM. By characterizing the high-SNR behavior of the BICM-

GMI, we proved the long-standing conjecture that Gray codes

are optimal at high SNR. We also proved that there always

exists an anti-Gray code for MPAM constellations, which is

the labeling that has the lowest BICM-GMI and the highest

BEP at high SNR.

APPENDIX A

PROOF OF THEOREM 1

Both the numerator and the denominator on the left-hand

side (l.h.s.) of (17) tend to zero as ρ tends to infinity. Thus, it
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follows from L’Hôpital’s rule that

lim
ρ→∞

HPX
− IPX

(ρ)

Q
(√

ρd/2
) = lim

ρ→∞

d
dρ (HPX

− IPX
(ρ))

d
dρQ

(√
ρd/2

) (77)

=
4

d2
lim
ρ→∞

MPX
(ρ)

G
(√

ρd/2
) (78)

=
4

d2
lim
ρ→∞

MPX
(ρ)

Q
(√

ρd/2
) (79)

= πBPX
(80)

where G(x) is defined as

G(x) ,
1

x

1√
2π

e−
x2

2 . (81)

Here the last step follows from Theorem 2 (proved in Ap-

pendix B), which also demonstrates that the limit on the right-

hand side (r.h.s.) of (77) exists. To pass from (77) to (78) we

used (16) and

d

dρ
Q (

√
ρd/2) = −d2

8
G (

√
ρd/2) . (82)

To pass from (78) to (79) we used [37, Prop. 19.4.2] to obtain

lim
x→∞

G(x)

Q(x)
= 1. (83)

This proves Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

For the AWGN channel in (1), the conditional ME is given

by [5, eq. (22)]

X̂me(y) =

∑

j∈IX
pjxje

− 1
2 (y−

√
ρxj)

2

∑

j∈IX
pje−

1
2 (y−

√
ρxj)2

. (84)

By using (84) in (7), we obtain

MPX
(ρ) =

∑

i∈IX

pi

∫ ∞

−∞

1√
2π

e−
1
2 (y−

√
ρxi)

2

·
(∑

j∈IX
pj(xi − xj)e

− 1
2 (y−

√
ρxj)

2

∑

j∈IX
pje−

1
2
(y−√

ρxj)2

)2

dy (85)

=
∑

i∈IX

piVi(ρ) (86)

where

Vi(ρ) ,

∫ ∞

−∞

e−t2

√
π





∑

δ∈D(i)
X

δR
(i)
PX

(δ) · e−
√
2ρtδ− ρδ2

2

∑

δ∈D(i)
X

R
(i)
PX

(δ) · e−
√
2ρtδ− ρδ2

2





2

dt

(87)

with D(i)
X , {δ : δ = xi − x, x ∈ X} and

R
(i)
PX

(δ) ,

{
pj

pi
, if ∃xj ∈ X : xi − xj = δ

0, otherwise
(88)

and where to pass from (85) to (86) we used the substitution

y −√
ρxi =

√
2t.

Combining (83) and (86), we obtain

lim
ρ→∞

MPX
(ρ)

Q
(√

ρd/2
) =

∑

i∈IX

pi lim
ρ→∞

Vi(ρ)

G
(√

ρd/2
) . (89)

As will become apparent later, the limit on the r.h.s. of (89)

exists and, hence, so does the limit on the l.h.s.

Using (87) and (81), and the substitution r = d
√

ρ/8, we

obtain

lim
ρ→∞

Vi(ρ)

G
(√

ρd/2
) = 2

(

lim
r→∞

F−
i (r) + lim

r→∞
F+
i (r)

)

(90)

where

F−
i (r) ,

∫ 0

−∞
rer

2−t2






∑

δ∈D(i)
X

δR
(i)
PX

(δ)e−4rt δ
d
−4r2 δ2

d2

∑

δ∈D(i)
X

R
(i)
PX

(δ)e−4rt δ
d
−4r2 δ2

d2






2

dt (91)

and

F+
i (r) ,

∫ ∞

0

rer
2−t2






∑

δ∈D(i)
X

δR
(i)
PX

(δ)e−4rt δ
d
−4r2 δ2

d2

∑

δ∈D(i)
X

R
(i)
PX

(δ)e−4rt δ
d
−4r2 δ2

d2






2

dt. (92)

We will next calculate the first limit in (90). Using the

substitution t = u/r − r we express F−
i (r) as

F−
i (r) =

∫ ∞

−∞
f−
i (r, u) du (93)

where

f−
i (r, u) , h(r2 − u) · e2u−u2

r2

·





∑

δ∈D∗

i
δR

(i)
PX

(δ)e−4u δ
d
−4r2U(δ)

1 +
∑

δ∈D∗

i
R

(i)
PX

(δ)e−4u δ
d
−4r2U(δ)





2

(94)

with D∗
i , D(i)

X \ {0},

U(δ) ,
δ

d

(
δ

d
− 1

)

(95)

and h(x) being Heaviside’s step function (i.e., h(x) = 1 if

x ≥ 0 and h(x) = 0 if x < 0). Using the fact that U(δ) ≥
0, ∀δ ∈ D∗

i and U(d) = 0, we obtain

lim
r→∞

f−
i (r, u) = d2e2u

(

R
(i)
PX

(d)e−4u

1 +R
(i)
PX

(d)e−4u

)2

. (96)

As we shall prove in Lemma 14 ahead, u 7→ f−
i (r, u) is

uniformly bounded by some integrable function u 7→ g−i (u)
that is independent of r. It thus follows from Lebesgue’s
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Dominated Convergence Theorem [38, Theorem 1.34] that

lim
r→∞

F−
i (r) =

∫ ∞

−∞
lim
r→∞

f−
i (r, u) du (97)

=
d2
√

R
(i)
PX

(d)

2

∫ ∞

0

ξ2

(1 + ξ2)2
dξ (98)

=
d2π
√

R
(i)
PX

(d)

8
(99)

where (98) follows from (96) and the substitution√

R
(i)
PX

(d)e−2u = ξ, and (99) follows from [39, eq. (3.241.5)].

It thus remains to show that u 7→ f−
i (r, u) is uniformly

bounded by some integrable function u 7→ g−i (u) that is

independent of r. We do this in the following lemma.

Lemma 14: For any r > 0

0 ≤ f−
i (r, u) ≤ g−i (u), u ∈ R (100)

where

g−i (u) ,
d̂2(M − 1)2

p2i
e−2|u| (101)

and d̂ is the maximum Euclidean distance of the constellation,

i.e., d̂ , maxi,j∈IX
|xi − xj |. Furthermore,

∫ ∞

−∞
g−i (u) du =

d̂2(M − 1)2

p2i
< ∞. (102)

Proof: We first note that f−
i (r, u) ≥ 0, r > 0, u ∈ R.

It thus remains to show the second inequality in (100). To

this end, we use h(r2 − u) ≤ 1, e−
u2

r2 ≤ 1, and δ ≤ d̂ to

upper-bound (94) as

f−
i (r, u) ≤ d̂2e2u





∑

δ∈D∗

i
R

(i)
PX

(δ)e−4u δ
d
−4r2U(δ)

1 +
∑

δ∈D∗

i
R

(i)
PX

(δ)e−4u δ
d
−4r2U(δ)





2

(103)

= d̂2e2u



1 +
1

∑

δ∈D∗

i
R

(i)
PX

(δ)e−4u δ
d
−4r2U(δ)





−2

.

(104)

Since R
(i)
PX

(δ) < 1/pi and e−4r2U(δ) ≤ 1, we can further

upper-bound (104) as

f−
i (r, u) < d̂2e2u

(

1 +
pi

∑

δ∈D∗

i
e−4u δ

d

)−2

(105)

<
d̂2e2u

p2i

(

1 +
1

∑

δ∈D∗

i
e−4u δ

d

)−2

(106)

where to pass from (105) to (106) we used pi < 1.

For u ≥ 0, we have

f−
i (r, u) <

d̂2e2u

p2i

(

1 +
1

(M − 1)e−4u

)−2

(107)

<
d̂2(M − 1)2

p2i
e−6u (108)

<
d̂2(M − 1)2

p2i
e−2|u| (109)

where to pass from (106) to (107) we upper-bounded the (M−
1) exponentials in the summation by e−4u.

For u ≤ 0, we have

f−
i (r, u) <

d̂2e2u

p2i
(110)

≤ d̂2(M − 1)2

p2i
e−2|u| (111)

where (110) follows from discarding the sum of exponentials

in (106). Combining (109) and (111) gives (101). This proves

Lemma 14.

Returning to the proof of Theorem 2, the second limit on

the r.h.s. of (90) can be computed along the same lines by

using the substitution t = u/r + r in (92):

lim
r→∞

F+
i (r) =

d2π
√

R
(i)
PX

(−d)

8
. (112)

Using (99) and (112) in (90), and combining the result with

(89) yields

lim
ρ→∞

MPX
(ρ)

Q
(√

ρd/2
) =

∑

i∈IX

pi
πd2

4

(√

R
(i)
PX

(d) +

√

R
(i)
PX

(−d)

)

(113)

which in view of (88) and (14) is equal to πd2BPX
/4. This

proves Theorem 2.

APPENDIX C

PROOF OF THEOREM 3

Using Bayes’ rule, X̂map(y) in (9) can be expressed as

X̂map(y) = argmax
x∈X

{
fY |X(y|x)PX(x)

}
(114)

= xj , if y ∈ Yj(ρ) (115)

where Yj(ρ) is the decision region for the symbol xj with

j = 1, . . . ,M . For sufficiently large ρ, these decision regions

can be written as

Yj(ρ) , {y ∈ R : βj−1(ρ) ≤ y < βj(ρ)} (116)

where βℓ(ρ) with ℓ = 0, . . . ,M are the M + 1 thresholds

defining the M regions, i.e.,

βℓ(ρ) =







−∞, ℓ = 0
log(pℓ/pℓ+1)√
ρ(xℓ+1−xℓ)

+
√
ρ(xℓ+1+xℓ)

2 , ℓ = 1, . . . ,M − 1

+∞, ℓ = M

(117)

which are obtained by solving

pℓfY |X(βℓ(ρ)|xℓ) = pℓ+1fY |X(βℓ(ρ)|xℓ+1). (118)
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The following lemma will be used in this proof as well as

in the proof of Theorem 7 (Appendix F).

Lemma 15: For any PX and i ∈ IX

lim
ρ→∞

Q
(
|βℓ(ρ)−

√
ρxi|

)

Q
(√

ρd/2
)

=







√

R
(i)
PX

(d), if ℓ = i − 1
√

R
(i)
PX

(−d), if ℓ = i

0, if ℓ /∈ {i− 1, i}

(119)

where βℓ(ρ) is given by (117) and R
(i)
PX

(δ) by (88).

Proof: We use (117) to obtain

βℓ(ρ)−
√
ρxi =

log(pℓ/pℓ+1)√
ρ(xℓ+1 − xℓ)

+

√
ρǫi,ℓ

2
(120)

where for any i, ℓ

ǫi,ℓ , xℓ+1 + xℓ − 2xi. (121)

We form the ratio

G
(
|βℓ(ρ)−

√
ρxi|

)

G
(√

ρd/2
) =

ρd(xℓ+1 − xℓ)

|2 log(pℓ/pℓ+1) + ρǫi,ℓ(xℓ+1 − xℓ)|

· exp



−
(
log pℓ

pℓ+1

)2

2ρ(xℓ+1 − xℓ)2
−

ǫi,ℓ log
pℓ

pℓ+1

2(xℓ+1 − xℓ)
−

ρ(ǫ2i,ℓ − d2)

8





(122)

and study the limit

lim
ρ→∞

G
(
|βℓ(ρ)−

√
ρxi|

)

G
(√

ρd/2
) . (123)

To this end, we distinguish between three cases:

(i) If i = ℓ and xℓ+1 − xℓ = d, then ǫi,ℓ = xℓ+1 − xℓ = d
and the limit in (123) is e− log (pℓ/pℓ+1)/2 =

√

pℓ+1/pℓ.
(ii) If i = ℓ+1 and xℓ+1 −xℓ = d, then ǫi,ℓ = xℓ −xℓ+1 =

−d and the limit in (123) is
√

pℓ/pℓ+1.

(iii) In all other cases, |ǫi,ℓ| > d and the limit in (123) is

zero.

A slight change in notation then yields

lim
ρ→∞

G
(
|βℓ(ρ)−

√
ρxi|

)

G
(√

ρd/2
)

=







√
pi+1

pi
, if ℓ = i and xℓ+1 − xℓ = d

√
pi−1

pi
, if ℓ = i− 1 and xℓ+1 − xℓ = d

0, otherwise

. (124)

Combining (124) with (88) and (83) proves Lemma 15.

Returning to the proof of Theorem 3, using (115) and (116),

the SEP in (8) can be written as

SPX
(ρ) =

∑

i∈IX

pi Pr{Y /∈ Yi(ρ)|X = xi} (125)

=
∑

i∈IX

pi

(

Q (βi(ρ)−
√
ρxi)

+Q (
√
ρxi − βi−1(ρ))

)

(126)

which gives

lim
ρ→∞

SPX
(ρ)

Q(
√
ρd/2)

=
∑

i∈IX

pi

(

lim
ρ→∞

Q
(
βi(ρ)−

√
ρxi

)

Q(
√
ρd/2)

+ lim
ρ→∞

Q
(√

ρxi − βi−1(ρ)
)

Q(
√
ρd/2)

)

(127)

=
∑

i∈IX

pi

(√

R
(i)
PX

(−d) +

√

R
(i)
PX

(d)

)

(128)

where to pass from (127) to (128) we used Lemma 15 twice,

observing that the arguments of both Q-functions are positive

for large enough ρ. The proof of Theorem 3 is completed by

combining (128) with (14) and (88).

APPENDIX D

PROOF OF THEOREM 5

Using the expression for the BICM-GMI (40), we have

HPX
− Ibicm

PX ,l(ρ)

=

m∑

k=1

(HPX
− IPX

(ρ))

−
m∑

k=1

∑

b∈{0,1}
PQk

(b)(HPXk,b
− IPXk,b

(ρ))

− (m− 1)HPX
+

m∑

k=1

∑

b∈{0,1}
PQk

(b)HPXk,b
. (129)

The last two terms on the r.h.s. of (129) cancel because

m∑

k=1

∑

b∈{0,1}
PQk

(b)HPXk,b

= −
m∑

k=1

∑

b∈{0,1}

∑

i∈IXk,b

PQk
(b)PXk,b

(xi) logPXk,b
(xi)

(130)

= −
m∑

k=1

∑

i∈IX

pi log
pi

PQk
(qi,k)

(131)

= mHPX
+
∑

i∈IX

pi

m∑

k=1

logPQk
(qi,k) (132)

= mHPX
+
∑

i∈IX

pi log
m∏

k=1

PQk
(qi,k) (133)

= mHPX
−HPX

(134)

where to pass from (130) to (131) we used (31), and to pass

from (133) to (134) we used (30).

We divide both sides of (129) by Q(
√
ρd/2) and take the

limit as ρ → ∞. For the first two terms, we change the order

of summation and limit and apply Theorem 1 to each term.
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This gives

lim
ρ→∞

HPX
− Ibicm

PX ,l(ρ)

Q
(√

ρd/2
)

= π

m∑

k=1

(

BPX
−

∑

b∈{0,1}
PQk

(b)BPXk,b

)

. (135)

Theorem 5 follows by showing that the r.h.s. of (135) is equal

to πDPX ,l. We shall do this in the following lemma, which

will also be used in the proof of Theorem 6.

Lemma 16: We have

m∑

k=1

(

BPX
−

∑

b∈{0,1}
PQk

(b)BPXk,b

)

= DPX ,l (136)

where BPX
is given by (14), DPX ,l by (37),

BPXk,b
,

∑

i∈IXk,b

∑

j∈IXk,b

|xi−xj|=d

√

PXk,b
(xi)PXk,b

(xj) (137)

and PXk,b
(x) is given by (31).

Proof: Express the inner sum on the l.h.s. of (136) using

(31) and (137) as
∑

b∈{0,1}
PQk

(b)BPXk,b
=

∑

b∈{0,1}

∑

i∈IXk,b

∑

j∈IXk,b

|xi−xj |=d

√
pjpi.

(138)

Expanding the sum in (14) using X = Xk,0 ∪Xk,1, we obtain

BPX
=

∑

b∈{0,1}

∑

i∈IXk,b

∑

j∈IXk,b

|xi−xj|=d

√
pjpi

+ 2
∑

i∈IXk,0

∑

j∈IXk,1

|xi−xj |=d

√
pjpi. (139)

Lemma 16 follows by applying (138) and (139) to the l.h.s.

of (136) and by using the definition of DPX ,l in (37).

APPENDIX E

PROOF OF THEOREM 6

We divide the l.h.s. of (41) and (42) by Q(
√
ρd/2) and take

the limit as ρ → ∞ to obtain

lim
ρ→∞

M bicm
PX ,l(ρ)

Q
(√

ρd/2
)

= lim
ρ→∞

m∑

k=1

(

MPX
(ρ)

Q
(√

ρd/2
) −

∑

b∈{0,1}
PQk

(b)
MPXk,b

(ρ)

Q
(√

ρd/2
)

)

.

(140)

Changing the order of summation and limit, and applying

Theorem 2 yields

lim
ρ→∞

M bicm
PX ,l(ρ)

Q
(√

ρd/2
) =

πd2

4

m∑

k=1

(

BPX
−

∑

b∈{0,1}
PQk

(b)BPXk,b

)

(141)

where BPXk,b
is given by (137). Theorem 6 follows by noting

that, by Lemma 16, the r.h.s. of (141) is equal to πd2

4 DPX ,l.

APPENDIX F

PROOF OF THEOREM 7

Using the law of total probability, the BEP in (46) can be

written as

BPX ,l(ρ)

=
1

m

m∑

k=1

∑

b∈{0,1}

∑

i∈IXk,b

pi Pr{Q̂map
k (Y ) 6= qk,i|X = xi}

(142)

=
1

m

m∑

k=1

∑

b∈{0,1}

∑

i∈IXk,b

pi Pr

{

Y ∈
⋃

j∈IX
k,b

Yj(ρ)

∣
∣
∣
∣
∣
X = xi

}

(143)

with Yj(ρ) given by (116) and were we use b to denote the

negation of a bit b. Using the fact that Yj(ρ) are disjoint, we

rewrite (143) as

BPX ,l(ρ)

=
1

m

m∑

k=1

∑

b∈{0,1}

∑

i∈IXk,b

pi
∑

j∈IX
k,b

Pr
{
Y ∈ Yj(ρ)|X = xi

}

(144)

=
1

m

m∑

k=1

∑

b∈{0,1}

∑

i∈IXk,b

pi
∑

j∈IX
k,b

Γi,j(ρ) (145)

=
1

m

m∑

k=1

∑

b∈{0,1}

∑

i∈IXk,b

pi

(
∑

j∈IX
k,b

:j<i

Γi,j(ρ)

+
∑

j∈IX
k,b

:j>i

Γi,j(ρ)

)

(146)

where

Γi,j(ρ) , Q (βj−1(ρ)−
√
ρxi)−Q (βj(ρ)−

√
ρxi) (147)

= Q (
√
ρxi − βj(ρ)) −Q (

√
ρxi − βj−1(ρ)) (148)

and where we have used that Q(−x) = 1−Q(x).

By using (147) and (148) in (146), dividing both sides of

(146) by Q
(√

ρd/2
)
, and taking the limit as ρ → ∞, we

obtain

lim
ρ→∞

BPX ,l(ρ)

Q
(√

ρd/2
) =

1

m

m∑

k=1

∑

b∈{0,1}

∑

i∈IXk,b

pi

4∑

ℓ=1

sℓ (149)
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where

s1 =
∑

j∈IX
k,b

:j<i

lim
ρ→∞

Q
(√

ρxi − βj(ρ)
)

Q
(√

ρd/2
) (150)

s2 = −
∑

j∈IX
k,b

:j<i

lim
ρ→∞

Q
(√

ρxi − βj−1(ρ)
)

Q
(√

ρd/2
) (151)

s3 =
∑

j∈IX
k,b

:j>i

lim
ρ→∞

Q
(
βj−1(ρ)−

√
ρxi

)

Q
(√

ρd/2
) (152)

s4 = −
∑

j∈IX
k,b

:j>i

lim
ρ→∞

Q
(
βj(ρ)−

√
ρxi

)

Q
(√

ρd/2
) . (153)

Note that, for sufficiently large ρ, the arguments of the Q-

functions in (150)–(153) are positive.

By Lemma 15, s2 = s4 = 0. Furthermore, applying

Lemma 15 to (150) and (152), we conclude that the only

nonzero contribution to s1 and s3 can come from the terms

j = i− 1 and j = i+1, respectively. We therefore express s1
as

s1 =

{√
pi−1

pi
, if ∃xi−1 ∈ Xk,b : xi − xi−1 = d

0, otherwise
(154)

and s3 as

s3 =

{√
pi+1

pi
, if ∃xi+1 ∈ Xk,b : xi+1 − xi = d

0, otherwise
. (155)

Using (154) and (155) in (149), we obtain

lim
ρ→∞

BPX ,l(ρ)

Q
(√

ρd/2
)

=
1

m

m∑

k=1

∑

b∈{0,1}

∑

i∈IXk,b

pi
∑

j∈IX
k,b

|xi−xj |=d

√
pj
pi
. (156)

The proof is completed by moving pi to the inner sum in (156)

and by comparing the resulting expression with (37).
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