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The automatic detection of road related information using data from sensors while driving has many potential applications such as
traffic congestion detection or automatic routable map generation. This paper focuses on the automatic detection of road elements
based on GPS data from on-vehicle systems. A new algorithm is developed that uses the total variation distance instead of the
statistical moments to improve the classification accuracy. The algorithm is validated for detecting traffic lights, roundabouts, and
street-crossings in a real scenario and the obtained accuracy (0.75) improves the best results using previous approaches based on
statistical moments based features (0.71). Each road element to be detected is characterized as a vector of speeds measured when
a driver goes through it. We first eliminate the speed samples in congested traffic conditions which are not comparable with clear
traffic conditions and would contaminate the dataset. Then, we calculate the probability mass function for the speed (in 1m/s
intervals) at each point. The total variation distance is then used to find the similarity among different points of interest (which can
contain a similar road element or a different one). Finally, a k-NN approach is used for assigning a class to each unlabelled element.

1. Introduction Other examples of vision based recognition systems can be
found in [10] that addressed the problem of automatically
reading the rules encoded in road markings and inferring the
semantics of road scenes and [4, 5] that detected traffic lights
based on image processing on mobile devices. An example of
a previous research that combines the information gathered
form different sensors in smartphones for automatic road
element detection can be found in [11].

Among the different sensors in smartphones, the
accelerometer (alone or in combination with the gyroscope)
and the GPS receiver are the most commonly found in
previous literature for automatic road related information

The automatic detection of road related information by in-
vehicle systems in general using data from different types of
sensors while driving has many potential applications. Some
major examples from previous research studies are road crash
detection [1], traffic congestion estimation [2], potholes and
bumps detection [3], traffic lights automatic recognition [4,
5], and automatic routable maps generation [6, 7].

Several sensing technologies have been previously used
in order to automatically detect road related information.
These technologies can be categorized into 3 major families:

laser based systems, vision based recognition algorithms, and
smartphone based sensing systems (combining inertial and
GPS information). As an example of a laser based system, the
authors in [8] used a LIDAR based system to automatically
obtain the geometrical inventory of road cross-sections. The
study in [9] provides a review for the different mechanisms
for assessing the visual condition of vertical and horizontal
civil infrastructure based on computer vision algorithms.

detection. The research study in [12] addressed the problem of
detecting different transport modes by using the acceleration
data from a mobile device for accurate and fine-grained
detection. The authors used a set of accelerometer features
that capture key characteristics of vehicular movement
patterns and used a hierarchical decomposition of the
detection task. The accelerometer data from a mobile device
has also been used to detect infrastructural elements on the
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road, when either carried by pedestrians or by vehicles. The
authors in [13] used acceleration based movement pattern
recognition applied to a day-by-day urban street behaviour
to be able to detect the pattern of a pedestrian stopping and
then crossing a street ruled by a traffic light. The research
in [14] made use of on-vehicle inertial measurement units
to detect driving behaviour, pedestrians, and particular
types of road conditions such as bumps on the road. The
sensors in smartphones have also been previously used to
automatically detect traffic accidents [1]. The authors in [15]
used accelerometers (with additional information containing
acoustic data) to immediately notify a central emergency
dispatch server after an automatically detected accident.
The GPS sensor on mobile devices has also been used for
automatically extracting road related information. The GPS
sensor is used sometimes to estimate the information about
the vehicle’s speed which has also been used to detect driving
related events or infrastructural elements. The authors in
[16] used the driving speed calculated from accelerometer
data in order to perform the detection of different traffic
levels. The authors in [7] produced high-quality routable
maps by means of the use of GPS information that allowed
the automatic extraction of road network properties such as
intersections and traffic rules. The research study in [17] also
used information from the GPS sensor while driving in order
to detect road traffic congestions and incidents in real-time.

The information gathered from different sensors together
can be fused to improve detection rates and accuracy levels.
The research study in [11] focused on the automatic detection
of certain road related information such as tunnels, bumps,
bridges, footbridges, and crosswalks based on the combined
use of various sensors on mobile devices. These sensors
included inertial sensors (such as accelerometer, gyroscope,
and magnetometer) as well as cellular network information.
The authors performed a combination of information both
from vehicles and pedestrians. A crowdsensing mechanism
was also introduced in order to improve the accuracy of
results. Using the information of several users provides an
additional source of data to validate that a detected element
is not an outlier (false positive). The authors in [18] also used
crowdsensing techniques in order to detect dangerous road
sections.

The information obtained from the underlying sensors
has to be automatically analysed to detect common patterns
associated with the particular elements to be detected. Several
machine learning techniques and approaches have already
been used in order to detect road related information from
data obtained from mobile sensors. The authors in [19] used
K-means to solve the problem of pothole detection. The
algorithm was applied to acceleration data while driving.
The research in [20] made use of decision trees, logistic
regression, Naive Bayes, k-NN (k-Nearest Neighbours), SVM
(support vector machines), and MDA (Mixture Discriminant
Analysis) to be able to extract information from GPS traces.
The authors in [21] detected traffic incidents by using several
classification techniques applied to on-vehicle telemetry data.
A related study [22] detected the driver state while driving by
use of deep learning methods applied to GPS data obtained
from a mobile device and a heartrate wearable sensor. These
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machine learning algorithms are applied to either hand-
crafted features or to automatically learned features extracted
from the data sensed. When solving classification problems,
statistical moments based features are commonly used. The
authors in [23] used some statistical central moments based
features such as the mean, variance, skewness, and kurtosis
in order to provide an automatic sleep scoring method based
on the use of single channel electroencephalograms. The
research in [24] made use of statistical moments to extract
features for a Multilayer Neural Network for the prediction
of certain membrane proteins. The authors in [25] used the
higher-order moment statistical features for the silhouette
of the Gait Energy Image for a natural and normal gait
characterization to be used as a biometric cue for human
identification. Statistical central moments have also been
applied to on-board sensors while driving. The authors in
[26] used manually computed features based on the statistical
central moments applied to inertial and GPS data to classify
drivers according to their driving style.

The major drawbacks in previous related research, as
described in the previous paragraphs, can be categorized into
two main aspects. On the one hand, high detection accuracy
tends to be achieved only when multiple sensors are used,
especially in crowdsensing environments. On the other hand,
using statistical descriptors, such as the central moments,
as the input features for the classification algorithms does
not exploit the entire statistical information on the sensed
data. This paper focuses on contributing to the automatic
detection of road elements based only on GPS data from a
smartphone when driving and using the entire probability
mass function from the sensed data as the input feature for
classification. A new algorithm is developed that makes use of
the total variation distance instead of the statistical moments
in order to improve the classification accuracy. The algorithm
is validated for detecting traffic lights, roundabouts, and
street crossings in a real scenario and the obtained accuracy
is compared with previous approaches based on applying
machine learning algorithms to statistical based features. The
total variation is one of the two most popular gauges of the
distinctness between a pair of probability measures together
with the Relative Entropy [27]. A paper presenting a general
framework for multiclass total variation clustering can be
found in [28]. We have characterized each element to be
detected as a vector of speeds measured when a driver goes
through it. We first eliminate the speed samples in congested
traffic conditions which are not comparable with clear traffic
conditions and would contaminate the dataset. Congested
traffic conditions are assessed based on a stochastic distance
to the mean value of the speed distribution when driving
around a particular location of interest. Then, we calculate the
probability mass function for the speed (in 1 m/s intervals) at
each point. The total variation distance is then used in order
to find the similarity among different points of interest (which
can contain a similar road element or a different one). The
total variation distance will provide a measure about how
stochastically similar two locations are based on the entire
speed stochastic patterns. Finally, a k-NN based approach is
used for assigning a class to each unlabelled element. The
k-NN will select the closest locations based on the distance
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F1GURE 1: Flowchart of the proposed method.

provided by the total variation as previously described. The
results show that using the total variation distance, a better
accuracy is obtained as compared to the same values based
on statistical moments based features.

The rest of the paper is organized as follows. Section 2
presents the method proposed in this paper, including the
data gathering process, the filtering of slow traffic segments,
the probability mass function computations, and the similar-
ity based classification algorithm based on the total variation
distance. Section 3 describes the scenario implemented in
order to record the dataset. The locations of the selected
points containing road elements are presented. Section 4
shows the results obtained applying the proposed method to
the recorded data. A comparison with other methods found
in literature is performed in order to validate the achieved
results. Finally, Section 5 captures the conclusions of this
research.

2. Method

This section presents the method proposed in this paper
in order to detect road elements based on the probability
mass function measured at each particular location after
filtering slow traffic conditions. The first subsection presents
the data gathering process. Then, the slow traffic filtering is
presented. The third subsection captures the way in which
the probability mass functions are computed. Finally, the
method based on the total variation distance and the k-NN
classification algorithm is presented. The flowchart of the
proposed method is captured in Figure 1.

2.1. Data Gathering. We use the GPS sensor embedded in a
mobile device in order to obtain both the vehicle’s location

and the estimated driving speed. The speed can be derived
from the distance travelled per time unit following (1). The
distance travelled between points 1 and 2 can be calculated
from the GPS coordinates as captured in (2):

As
= —, 1
v= - (1)
As

2)

= cos ' (sing, - sin@, + cos @, - cos @, - cos A8) - R,

where ¢ represents the latitude in radians, Ad is the difference
of longitudes in radians, and R is the Earth radius. The
location errors in the coordinates provided by the GPS sensor
will propagate when using (1) and (2) in order to estimate
the instant speed. The random errors can be reduced by
increasing the size of At. The resolution in time, on the other
side, will decrease when At increases. A trade-off between the
compensation of the GPS errors and the time resolution has
been set to a value of 5 seconds to estimate the vehicle’s speed.

Each drive will generate a matrix of (location, speed) sam-
ples (where each location will be defined by its GPS latitude
and longitude coordinates). The samples from all the different
drives for the same location will be used in order to compute
the speed probability mass function (after filtering the slow
traffic data). The sampling rate and the location coincidence
criteria have to be set together so that the distance travelled
at the maximum allowed speed between two consecutive
samples and the inter-adjacent-location distance coincide. In
this way, travelling at the maximum allowed speed will visit
once each adjacent location in the drive (in other words,
all the locations are visited at least once each drive when
travelling under the maximum speed limit). In our case, we



have taken into account only city segments in which the
maximum allowed speed (speed limit) is 50 km/h or around
14m/s. In this way, two adjacent locations will be set 14
meters apart, or similarly, all GPS coordinates in a radius of
7 meters around each target road element will be mapped
onto that location. This location mapping mechanism will
help to compensate GPS errors which will cause that the same
location points may generate similar but different coordinates
each drive.

2.2. Slow Traffic Filtering. 'The speed patterns when travelling
in a clear traffic condition are different from those speed
patterns in congested or heavy traffic conditions. Therefore,
we need to filter the test drives in which the driver was
experiencing speed disturbances due to slow traffic or traffic
congestion. For each particular location, the average speed in
the time interval between 30 seconds before arriving to that
location until 30 seconds after having visited that location is
calculated. The mean and standard deviation values are then
computed for the average speeds for each location of interest.
We will discard the speed data for that location in drives
where the following condition is met

2
N o I 1 _ 1

d(])zvj—ﬁgvi<—(x~ ﬁ;<vl—ﬁgvi> R (3)
where d(j) is the discard criteria at a particular drive j (froma
total of N different drives) and v} is the average speed for drive
j (in the 60-second time span cantered at the target location).
The value for « will be chosen depending on the percentage
of drives in which congestion is expected. For a busy hour,
« should be small. For a test set in which congestion is very
rare, the value of « should be increased. Increasing the value
of o will consider a bigger number of samples and therefore
improve the training of the algorithms (as long as the samples
are taken in clear traffic conditions).

2.3. Probability Mass Functions Computation. After applying
(3) to all target locations, considering the data from all the test
drives in the dataset, the instant speed for each location for
each remaining drive will be considered in order to compute
the probability mass function. The instant speed is discretized
in 1 m/s intervals (from 0 to 14 m/s, being the maximum speed
allowed in the considered driving segments). The probability
mass function (pmf) at each speed will be computed as shown
in

pf(j) = 1Y (Fj<ve<i+l). @
18

where j is the speed in m/s in the range 0:14 m/s, v;, are the
prefiltered speeds for noncongested drives at location i, and
Ns is the number of noncongested speed samples. For each
speed range [j j+ 1), only speeds in that range will be added.
A pmf will be computed for each target location. In
our case, we will select 24 different locations in 4 different
classes and will compute a pmf for each of these 24 locations.
We will select 6 traffic light locations, 6 roundabouts, 6
street crossings, and 6 locations describing the null class
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(containing neither a traffic light nor a roundabout or a street
crossing).

2.4. Total Variation Distance and k-NN Classification. The
total variation is a way to compute a distance between two
distribution functions. For two probability mass functions
(pmf) assigning similar mass to the same regions, the distance
will be small. For pmf functions assigning probability mass to
different regions, the distance will be close to 1. For categorical
distributions, the total variation can be computed as captured
in

1) (pmfi,pmfj) = %Z |pmfi - pmfj (l)| , (5)
1

where pmf;, pmf; are the probability mass functions at
locations i and j and [ gets the values from 0:14 in order to
add all the pmf values.

In order to assign an unlabelled new location to one of the
classes (to decide if the candidate location is a traffic light,
a roundabout, a street crossing, or none of them), the total
variation between the pmf for the candidate point and the
pmf functions calculated at the 24 locations in the training
set will be compared. The k-NN algorithm will assign the class
in which the total variation distance is smaller for one of the
class member locations in k = 1. A k value of k = 6 will assign
the candidate location to the closest class taking into account
up to all the members of the class. An intermediate value for
k = 3 will be used as a trade-off solution in the case of our
research.

3. Scenario and Dataset Generation

The implemented scenario to build a driving dataset, which
will be used in order to validate the proposed method in
this paper, comprises two intracity segments connected by a
highway segment. Only the intracity paths have been taken
into account since all the road elements to be detected are
found in them. Figure 2 shows the two driving segments
considered in the experiment in one direction. The first one
(left part in Figure 2), 2.9 km long, crosses the city of Leganes
in the Madrid area in Spain. The second one (right part in
Figure 2),1.2km long, is located in the adjacent city of Getafe.
Figure 3 shows the corresponding driving segments in the
opposite direction. The driving path has been travelled 55
times (26 following the path in Figures 2 and 29 following
the path in Figure 3) using 3 different car models (captured
in Table 1). A number of 6 different locations for each road
element (traffic lights, street crossings, and roundabouts, as
well as 6 locations for the null class) have been selected to
train and validate our approach.

We have used a Nexus 6 Android mobile device in order
to record the GPS traces along the way (as it has been captured
in Figure1). As we have previously mentioned, the GPS sensor
was sampled at 1 Hz (1 sample per second). This sampling rate
allowed us to take samples which will be separated less than
14 meters when travelling under the maximum allowed speed
of 50 km/h (or around 14 m/s). Each target location will be
therefore defined with all the points in a radius of 7 meters
centred at the target location.
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TABLE 1: Vehicles used for gathering data.

Model Diesel Times used

Peugeot 206 No 7

Citroen Xsara Picasso Yes 28

Opel Zafira Yes 20

ial
ife

laza de
os Tilos

QO Colis

Los Espartales € <
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FIGURE 2: Driving path travelled in one direction.
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FIGURE 3: Driving path travelled in the opposite direction.

The table with the 6 selected locations for traffic lights is
captured in Table 2. Figure 4 shows the 6 locations in a map.
The information for the specific locations for the selected
roundabouts, street crossings, and the null class is shown in
Tables 3, 4, and 5.

4. Validation Results

The method described in Section 2 has been applied to the
dataset generated according to the description in Section 3.
In order to validate the results, a comparison of the proposed

method based on the use of the total variation distance has
been compared with methods based on features obtained
from the moments of the pmf functions as proposed by other
previous research studies.

4.1. pmf Functions. A pmf function has been generated as
described in Section 2 for each of the 24 selected locations
using the dataset generated as described in Section 3. The
average results for all the elements for each class are captured
in Figures 5, 6, 7, and 8.
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TaBLE 2: Traffic lights locations.

Traffic lights Latitude Longitude
1 40.337495 -3.756176
2 40.334676 —-3.757981
3 40.336179 —3.758749
4 40.333329 -3.761056
5 40.332658 —-3.761433
6 40.336871 —-3.757811

TaBLE 3: Roundabouts locations.

Roundabouts Latitude Longitude
1 40.342896 —3.756548
2 40.347349 —-3.755183
3 40.334535 —-3.760159
4 40.335031 -3.760151
5 40.322657 -3.716250
6 40.327287 —-3.717826

TABLE 4: Street crossing locations.

Street crossings Latitude Longitude
1 40.324266 —3.714687
2 40.322100 -3.716716
3 40.332153 -3.762075
4 40.326559 -3.718480
5 40.332369 -3.762926
6 40.321107 —-3.717869

TABLE 5: Locations for characterizing the null class.

Null class Latitude Longitude
1 40.324589 —-3.715099
2 40.338980 —3.755624
3 40.337382 -3.757131
4 40.335848 —-3.759195
5 40.334031 —-3.760639
6 40.334733 —-3.759064
®. .9
s Q)

Restaleanse Lo Chopeta

\4
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FIGURE 4: Traffic lights locations.
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FIGURE 8: Average pmf for the speed at the null class locations.

The pmf for the speed at the traffic lights (Figure 5) shows
that around 41% of the times the vehicle stops at the traffic
light. For the rest of the occasions, either the vehicle stops a
bit earlier (if there are some other vehicles already waiting at
the traffic light), and therefore the speed is low when crossing

the traffic light location, or the traffic light shows the green
light and therefore the vehicle crosses at a normal speed.
The pmf for the speed at the roundabouts show that
the vehicle slows the travelling speed in all the cases (the
speed is always lower than 10m/s in a 14 m/s speed limit
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TaBLE 6: Confusion matrix using the SVM with a Gaussian Kernel classifier.

True class/classified as Traffic light Roundabout Street crossing Null class

Traffic light 3 3

Roundabout 5 1

Street crossing 2 4

Null class >

TaBLE 7: Confusion matrix using the linear SVM classifier.

True class/classified as Traffic light Roundabout Street crossing Null class

Traffic light 2 3 1

Roundabout 4

Street crossing 3

Null class 4
TaBLE 8: Confusion matrix using the k-NN (k = 1) classifier.

True class/classified as Traffic light Roundabout Street crossing Null class

Traffic light 1 3 1 1

Roundabout 5 1

Street crossing 2 4

Null class 2 4

environment). There are some cases (around 13% of the times)
in which the vehicle has to come to a stop, but in clear traffic
conditions, it is most likely that the driver approaches the
roundabout slowing the travelling speed.

The pmf for the speed at the street crossings again shows
that the driver has to reduce the travelling speed. Compared
to the roundabout case, the speed reduction is bigger (the
visibility conditions in order to assess if there is a coming
vehicle to which to give way are worse than in the case of
the roundabouts and therefore the speed should be further
reduced).

Finally, the pmf for the speed at the null class locations
show that the speed in clear traffic conditions is rarely slow
and the vehicle tends to travel at a speed above half of the
maximum allowed value.

4.2. Classification Results Using Statistical Moment Based Fea-
tures. 'The mean, standard deviation, skewness, and kurtosis
have been computed from each pmf function for all the 24
preselected locations. The normalized nth central moment is
calculated according to

& _ E [(X - /")n] (6)

o o >
where p,, is the nth central moment, p is the mean value, and
o is the standard deviation.

The results when using a 20-fold cross-validation tech-
nique for all the 4 features (mean, standard deviation,
skewness, and kurtosis) for different classification algorithms
are presented in Tables 6, 7, and 8. A k-fold cross-validation

technique divides the dataset into k subsets of equal size and
uses k — 1 subsets for training the classification algorithm
and 1 subset for validation. The procedure is repeated k
times so that all subsets are used once for validation. Table 6
captures the best achieved results, which have been obtained
when using a support vector machine (SVM) with a Gaussian
Kernel classifier. The accuracy in this case is 0.708. There are
3 traffic light locations which are considered as roundabouts,
1 roundabout which is considered to be a street crossing,
2 street crossings which are considered to be roundabouts,
and 1 location in the null class which is classified as a street
crossing. The results for the linear SVM classifier are shown
in Table 7. In this case, the accuracy worsens to 0.542. Table 8
captures the results for the k-NN (k = 1) classifier with an
accuracy of 0.583.

4.3. Classification Results Using the Total Variation Distance
and the k-NN Classifier. Instead of capturing the statistical
information in the pmf functions as a set of features such
as the central moments, and then using these features to
execute classification decisions based on computed distances
such an in the k-NN and SVM classifiers, the method
proposed in this paper uses the entire pmf function in
order to compute stochastic distances based on the total
variation and uses them in order to classify each location.
The flowchart described in Figure 1 is followed. The samples
in the generated dataset as described in the previous section
are used to generate the pmf functions as described in
Section 2. For each particular location of interest, the speed
when crossing that location for each drive when not suffering
traffic congestion is considered. The pmf for each location is
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TaBLE 9: Confusion matrix using total variation distances and k-NN (k = 3).

True class/classified as Traffic light Roundabout Street crossing Null class

Traffic light 4 1 1

Roundabout 4 2

Street crossing 1 5

Null class 1 5

TaBLE 10: Total variation distances for comparing each pair of traffic lights.

Traffic light id 1 2 4 5 6 3

1 0.00 0.21 0.34 0.42 0.83 0.82

2 0.21 0.00 0.48 0.43 0.89 0.94

4 0.34 0.48 0.00 0.31 0.80 0.55

5 0.42 0.43 0.31 0.00 0.54 0.70

6 0.83 0.89 0.80 0.54 0.00 0.77

3 0.82 0.94 0.55 0.70 0.77 0.00

generated by computing the percentage of drives circulating
at each speed interval (in 1 m/s increments) for that location.
The speed limit is 50 km/h (around 14 m/s). The pmf will
contain probability mass from 0 m/s up to that speed limit
in 1 m/s intervals. The total variation will provide a distance
between the pmf functions among different locations. The
smaller the distance, the more similar the points which could
be considered. In order to classify a particular location into
one of the 4 target classes (traffic lights, roundabouts, street
crossings, and the null class), the total variation distances
with all the other locations are computed. An unlabeled new
location of interest will be assigned to one of the four classes
depending on the number of closest locations (as for the
total variation distance) which are found belonging to that
particular class. The k-NN classification algorithm is used
to perform the assignment of each location to each class
according to the biggest number of closest locations of that
class (as for the total variation distance). The value of k is
important in order to use more or less neighbours in the
class assignment process. The k-NN (k = 1) applied to the
total variations will assign each location to the class having
a training sample with the smallest total variation to the
point to be classified. Increasing the value of k will allow
compensating errors due to similarities with outliers in the
training set. In our case, we have chosen a value of k = 3.

The total variation of each target location with all the rest
of locations is first calculated. The 3 location points with the
smallest total variation distances (excluding the self-distance
which is always 0) are then selected. The class with more
representatives in the 3 locations with smaller total variation
distances is finally selected for classification. The process is
repeated for all the 24 locations in the dataset. The results for
the confusion matrix are presented in Table 9. The accuracy
in this case is 0.75, which is 4% better than the best case in the
previous section.

There are 2 traffic lights that are classified wrongly. One
of them is classified as a street crossing and the other as a
member of the null class. This is due to the fact that there

are 2 traffic lights (ids 3 and 6 in Figure 4) which only turn
red if requested by a pedestrian in order to cross the street
and therefore tend to show the green light most of the times.
Figure 9 shows the pmf computed for one of these traffic
lights showing that none stop was registered in the recorded
dataset for this particular traffic light. Table 10 captures the
distances as for the total variation distance for all the traffic
lights. Traffic lights with ids 3 and 6 in Figure 4 are captured
at the end of the table. All the distances among traffic lights
1, 2, 4, and 5 are smaller than 0.5. All the distances between
traffic lights 3 and 6 and each of the other traffic lights are
bigger than 0.5 As a further study, we plan to increase the size
of the dataset in order to be able to better capture examples
in which the user has to stop at all the traffic lights. Moreover,
we plan to further subclassify different types of traffic lights
and different types of street crossings as well.

5. Conclusions

We have proposed a new method to automatically detect road
elements while driving based on the use of GPS estimated
locations and instant speeds. The method is based on calculat-
ing the total variation distance between the speed probability
mass functions (pmf) at each candidate location. The class
with representative locations with the smallest total variation
distances to the point to be classified will be selected.

We have generated a new dataset from driving tests in
an urban environment and used it to validate the results.
We have selected 24 locations in the dataset, 6 for each of
the target classes (traffic lights, roundabouts, street crossings,
and the null class). The speed information when crossing
each point at each drive, for those drives with clear traffic
conditions, has been used in order to generate the speed pmf
function for each target location. A classical classification
approach based on the use of features based on the central
statistical moments has also been implemented in order to
compare the best achieved results with our approach.
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FIGURE 9: pmf for the speed at the traffic light id = 3 in Figure 4.

The results show that, using our approach, a classification
accuracy of 0.75 is achieved. Moreover, some of the misclas-
sified locations are in fact singular locations not sharing the
same statistical information as other locations in the same
class. A further subclassification study will be done in future
studies. The results also show that, using our approach based
on the total variation distance, the best results based on
central statistical moments are outperformed by 4%.

The pmf functions for the speed computed at each
location, as proposed in this paper, could also have a direct
application in order to estimate a stochastic penalty that each
road element adds to the total travel time for the journey as
opposed to travelling at the maximum allowed speed in clear
road conditions. This information could be fed into applica-
tions such as Google Maps (https://www.google.com/maps)
in order to better estimate the required travel time for a
particular journey. As a future work, we also plan to explore
and validate this approach.
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