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h i g h l i g h t s

• We explore the use of ElectroCardioGram (ECG) data to symmetrically encrypt data.
• No previous approach has explored how ECG can produce symmetric encryption keys.
• EbH creates on-the-y, user-specific, time-invariant keys using current ECG values.
• 95.97% of unique keys, with up to 300 bits and 93.51 of min-entropy are produced.
• Experiments are carried out over a dataset of 199 subjects along 24 hours.
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a b s t r a c t

Wearable devices are a part of Internet-of-Things (IoT) that may offer valuable data of their porting user.
This paper explores the use of ElectroCardioGram (ECG) records to encrypt user data. Previous attempts
have shown that ECG can be taken as a basis for key generation. However, these approaches do not
consider time-invariant keys. This feature enables using these so-created keys for symmetrically encrypt-
ing data (e.g. smartphone pictures), enabling their decryption using the key derived from the current
ECG readings. This paper addresses this challenge by proposing EbH, a mechanism for persistent key
generation based on ECG. EbH produces seeds from which encryption keys are generated. Experimental
results over 24 h for 199 users show that EbH, under certain settings, can produce permanent seeds (thus
time-invariant keys) computed on-the-fly and different for each user—up to 95.97% of users produce
unique keys. In addition, EbH can be tuned to produce seeds of different length (up to 300 bits) and with
variable min-entropy (up to 93.51). All this supports the workability of EbH in a real setting.

1. Introduction

Nowadays, wearable devices are a growing trend [1]. Smart 
bracelets that control sleepiness1 or measure the heart pace,2
smartshirts that measure and control the body sweat [2] and 
so on, are examples of the emergence and development of these 
devices. One characteristic of wearables is their short range [3]. 
They measure human characteristics being close or attached to the 
body, thus benefiting security because it is more difficult for an 
attacker to intercept collected data.
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The widespread adoption of wearable devices and Implantable 
Medical Devices (IMDs), along with their wireless connectivity, 
make biosignals to be available for different purposes such as 
enabling smart e-health gateways [4]. However, a critical remark 
is that biological signals must be properly secured. As they convey 
personal information about the subject health status, it is crucial 
that only authorized entities can access that data. To this end, pre-
vious works have proposed different approaches to encrypt [5,6] 
or authenticate [7,8] biological signals.

Beyond the protection of the biosignals themselves, the focus 
of this paper is on their use to protect user personal information 
different from health data. Portable devices, and smartphones in 
particular, are an emerging trend worldwide. Among their uses, 
they serve to locally store private pictures or documents. Beyond 
their local storage, most of user data is stored in cloud services 
(e.g. Dropbox, Google Drive, etc.), thus easing their access every-
time, everywhere. This is a huge benefit which cannot be con-
fronted with security. Users are willing to easily access their data

jfuentes@inf.uc3m.es (J.M. de Fuentes), pperis@inf.uc3m.es,
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1 http://www.wareable.com/withings/best-sleep-trackers-and-monitors, last

access Dec. 2016.

2 http://www.bestfitnesstrackerreviews.com/fitness-trackers-for-heart-

health.html, last access Dec. 2016.
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but without compromising its security [9,10] which is particularly 
relevant in the event of theft or loss. Nobody, except for the owner, 
should be able to access private data.

In order to protect data, encryption mechanisms are typically 
applied. There are two main categories—asymmetric and symmet-
ric encryption [11]. The difference between them is in the applied 
keys. Thus, whereas asymmetric procedures use different keys for 
encryption and decryption, symmetric encryption needs the same 
for both processes.

This paper is focused on symmetric encryption, as it is faster 
and efficient in terms of the consumed resources, while offering 
suitable levels of security. A critical issue for its practical appli-
cation is key management. According to the US National Insti-
tute of Standards and Technology, ‘‘key management provides the 
foundation for the secure generation, storage, distribution, and 
destruction of keys’’ [12]. In the considered setting, one interesting 
approach in this regard is deriving keys from user information. This 
removes the burden of key storage and destruction, as keys can 
be produced upon demand. Moreover, the proposed scenario does 
not need any kind of distribution. Therefore, secure key generation 
remains as the only open issue. To this extent, this paper focuses 
on a particular biosignal called ElectroCardioGram (ECG). Previous 
approaches have already pointed out that ECG signals can be used 
to generate encryption keys that change over time [13]. Other 
authors have explored how different IMDs or body sensors may 
derive a shared key leveraging on their independently perceived 
ECG signal [14,15].

Concerning secure key generation for symmetric encryption, 
there are three essential points. First, it is critical to derive a time-
invariant key, that is, a key that remains the same over time. 
Consider that users are wearing a smart bracelet (or a portable 
medical device like a Holter) which collects their ECG signal. In 
this way, the secret key is derived from the collected signal, which 
can be seamlessly used for encrypting or decrypting sensitive data. 
Therefore, users will only be allowed to access their own data if 
the (current) decryption key is the same as the (initial) encryption 
one. On the other hand, the remaining critical aspects is that keys 
must be different across users and non-predictable. Otherwise, any 
unauthorized user could illegally gain access to private informa-
tion. Both time-invariance and uniqueness ensure that users are 
allowed to access their data, at any time and in a private way. To 
the best of authors’ knowledge, no previous approach based on 
ECG provides these issues. Therefore, this paper aims to address 
the following research questions:

RQ1 Is it possible to create encryption/ decryption keys using the
user’s ECG signal?

RQ2 Is each created key different between users?
RQ3 Does each key remain invariant along the time?
RQ4 Is each key difficult to reproduce?

To address these questions, this paper presents two main con-
tributions. The first one is EbH, a mechanism to create time-
invariant symmetric encryption keys derived from ECG. Users, at
time T1, generate a key using their ECG signal and encrypt their
data. Then, for decryption purposes, at any time T2, users generate
the same key by using their ECG signal—recorded at the precise
time when it is needed. Remarkably, EbH does not need any kind
of key storage. Keys are created on-the-fly, through the collected
ECG signal, andwithout the need of storing any key. To improve the
security of the scheme, encryption keys are not produced directly
by EbH, but they are derived from EbH output. This paradigm is
referred to as key derivation and is a commonly accepted good
security practice [16]. Therefore, EbH produces seeds that serve
to derive encryption keys. The actual key derivation function is
out of the scope of this proposal and, indeed, EbH could work
with any highly non-linear function. The security of EbH is studied

Table 1
Notation.

Element Description

Ui
RUi

ECGT∗
Ui

ECGT∗
Ui
(k)

Lw

La
Lo
ECGRefUi

ST∗
Ui

sT∗Ui
(k)

ECGModUi
ECGModUi

(k)
DT
TM
Ti
Nfeat
PND
H∞

User i
an entire Electrocardiogram (ECG) of Ui

ECG sample ofUi at time starting at T∗

Feature kth of ECG sample
Minimal partition (window) of ECG data (seconds) 
Length of an ECG sample (seconds)
Observation period of ECG data (seconds)
ECG reference data for Ui

Seed for key generation for Ui at time T∗

Feature kth of seed ST∗ 

Ui

ECG model of Ui

Feature kth of ECG model of Ui

Discard Threshold
Tolerance Margin
Time at instant i
Number of features
Probability of no decryption
Min-entropy [17]

in terms of average number of attempts to decrypt (i.e. actual 
degree of time-invariance), min-entropy (i.e. unpredictability of 
seeds), probability of no decryption (i.e. degree of robustness) and 
difference among users (i.e. user-uniqueness). On the other hand, 
the second contribution of this paper is the implementation of EbH, 
which is made freely available. In this way, we aim to foster further 
research in this area.

The remaining of this paper is as follows. Section 2 describes 
the underlying model. Section 3 describes EbH, the proposed 
mechanism. Section 4 shows the proposal evaluation. Section 5 
introduces the related work. Finally, Section 6 concludes the paper 
and points out future research directions.

2. Model

This section introduces the main concepts needed as well as the 
goals that have to be achieved by the proposed mechanism. Table 1 
summarizes the notation used throughout the paper.

2.1. Definitions

The proposed mechanism receives some data as input and
produces encryption keys as output. Concerning the input, let RUi
be an entire Electrocardiogram (ECG) record of a user Ui. In order
for RUi be the input for EbH, twomain processes have to be carried
out. First, RUi is divided into windows of La seconds, thus leading
to ECG samples. These samples are noted as ECGT∗

Ui
when they refer

to user Ui starting at time T∗. The second process is to extract the
member features of these samples, which will be critical for EbH.
Thus, each sample is formed by a set of Nfeat features, denoted as
ECGT∗

Ui
(k), being k an ordinal value. Details of both processes are

given in Section 3.
Before the key generation itself, it is assumed that the sys-

tem knows the user Ui for some time t . Thus, this knowledge
is referred to as ECG reference data and it is formed by a set
of non-overlapping ECG samples. Thus, this data is denoted as
ECGRefUi

= {ECGT0
Ui

, ECGT1
Ui

, . . . , ECGTt
Ui

}. With respect to the output,
the mechanism must produce seeds ST∗

Ui
that can be applied to

generate encryption keys. The actual key derivation function is
out of the scope of this proposal. Each seed is formed by a set
of Nfeat elements, ST∗

Ui
= {sT∗Ui

(1), sT∗Ui
(2), . . . , sT∗Ui

(Nfeat )}, where T∗

represents the moment in which the seed starts to be computed.
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2.2. Goals

The proposed approach has to meet the following three goals, 
inspired in the features that are needed for any biometric system 
to become an identifier [18] and also pointed out as research ques-
tions. First, seeds ST∗

Ui
must be distinctive per user. This property

is essential to ensure that no other user produces the same seed.
In practice, this ensures that data encrypted by user Ui cannot
be decrypted by any other user Uj. Mathematically, being NS the
population size,

Goal 1 (Uniqueness (Research Questions RQ1, RQ2)).

For each p ̸= q STr
Up ̸= STs

Uq ∀r, s and {Up,Uq} ∈ {Ui}
NS
i=1. (1)

On the other hand, seeds ST∗
Ui

have to be time-invariant, thus
remaining constant over time. This feature enables that Ui can 
encrypt and decrypt her personal information at any point in 
time. This is the basis on top of which all symmetric encryption 
algorithms work—both encryption and decryption is carried out 
using exactly the same key [11,19]. Being Tp and Tq two arbitrary 
instants, this goal can be formalized as follows:

Goal 2 (Time-Invariance (Research Questions RQ1, RQ3)).

For all Tp ̸= Tq S
Tp
Ui

= S
Tq
Ui

∀p, q and Ui ∈ {Ui}
NS
i=1. (2)

Finally, the mechanism must be invulnerable, that is, seeds ST∗
Ui

have to be difficult to reproduce and guess by any third party. This
prevents any attacker from being able to compute ST∗

Ui
thus gaining

access to protected information. Mathematically, the probability
that an adversary (Adv) gains access to the private information of
a legitimate user (Ui), can be expressed as follows:

Goal 3 (Invulnerability (Research questions RQ1, RQ4)).

PAdv(S
Tp
Adv = S

Tq
U∗
i
) = δ ∀p, q and Ui ∈ {Ui}

NS
i=1 (3)

where δ represents a negligible value.

3. ECG-based key generation mechanism

This section introduces EbH, the proposed mechanism as the 
first contribution of this paper. Section 3.1 gives an overview of 
EbH. Afterwards, Section 3.2 describes the core of EbH.

3.1. Overview

The overview of EbH is presented in Fig. 1. EbH requires the user 
wearing a smart device (e.g., a sport bracelet or a medical-external 
heart monitor) that provides ECG values. This device is wirelessly 
connected to a hub (typically a smartphone or even an ad-hoc 
transmitter/receiver), which contains the data to be protected.

Before protecting the user information, the ECG user model
(ECGModUi 

) is built. This process is executed once at the setup phase 
and may be repeated after some years due to variations in the ECG
signal [20]. For this purpose, the smart device provides a set of ECG
values (ECG reference data ECGRefUi 

, recall Section 2.1) which are 
processed by the hub device.

At any time T1 when the user wants to encrypt certain
data, the hub gathers a set of ECG samples ECG(obs(T1))

Ui
=

{ECG
T1−Lo
Ui

, ECG
T1−(Lo+1)
Ui

, . . . , ECGT1
Ui

}, where Lo is the size of the ob-
servation period. The need for this period is motivated below.

Table 2
Example ECGModUi

creation from ECGRefUi
.

ECGRefUi

0.7 0.2 1.2 0.4 −0.1
0.5 0.7 −0.2 1.1 −1.2
1.2 −1 0.4 −0.5 0.8

ECGModUi
0.80 −0.03 0.47 0.33 −0.17

The seed ST1
Ui

is derived by the hub from both ECGModUi
and its

similarity to ECG(obs(T1))
Ui

. In a nutshell, ST1
Ui

is composed by a set of
features, each one being the result of the similarity between the
corresponding features of ECGModUi

and ECG(obs(T∗))
Ui

. For the sake of
robustness, this comparison is only performed in those features of
ECGModUi

that convey enough cardiac information. For the cases in
which it does not happen, the corresponding feature sT1Ui

(k) of ST1
Ui

is given a neutral value.
After obtaining the seed ST1

Ui
, it is taken as input to a random

process (e.g. a Pseudo-Random Number Generator (PRNG) [11,21])
to generate the encryption key KUi . However, the design of such a 
key derivation function is outside the scope of EbH.

Once the user, at any time T2, wants to decrypt previously 
encrypted data, the key generation process is the same as the 
one described. The main difference is that current ECG values
(ECG(obs(T2))

Ui
) are taken for this calculation. As it is a symmetric

decryption, it is only successful if the decryption key is the same 
as the encryption one.

3.2. Mechanism description

The process of key derivation involves two main steps, namely 
user model creation and seed computation. Each one is described 
in a separate section.

3.2.1. ECG user model creation
In this step, the ECG user reference data is considered. In partic-

ular, each ECG sample is transformed so that each sample contains 
a set of features.

Feature extraction of ECG signals can be grouped into two main 
categories. Fiducial-based approaches use characteristics points 
(e.g., amplitude, relative amplitude and time duration between 
peaks PQRS) of an ECG signal to derive the features [22,23]. On 
the other hand, non-fiducial methods use a transform domain like 
Fourier, Hadamard or Wavelet to extract the features [24,25].

After feature extraction, the model ECGModUi
for user Ui is built

by computing the average of each feature in ECGRefUi 
, as shown in 

Table 2. For simplicity, Table 2 shows a reference model formed by
three ECG samples, each one with five features (i.e. Nfeat = 5).

3.3. Seed computation

In order to compute the seed ST∗
Ui
, there are two main data ele-

ments to be considered. On the one hand, the user model ECGModUi 
described in Section 3.2.1. On the other hand, a set of current ECG
samples ECGT∗

Ui
for an observation period starting at time T∗. Over

this set of samples, feature extraction is carried out in the same
way as it was done with the user model.

The rationale behind using an observation period (which may
span across one or more ECG samples) is that the resulting seed
ST∗
Ui

is computed considering the similarity between ECGModUi
and

ECG(obs(T∗))
Ui

. Thus, it is expected that the bigger the observation
period is, the more similar ECG values are as compared to the user
model.

In particular, seeds are formed by the same amount of features
(Nfeat ) that appear in the considered ECG samples. The value of each
feature sT∗Ui

(k) of the seed is determined by the similarity between
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Fig. 1. Overview of EbH using a smartphone as hub and a smart bracelet as ECG data source.

ECGModUi
(k) and ECG(obs(T∗))

Ui
(k), following the procedure described

below.
Similarity analysis is driven by two parameters, namely Discard 

Threshold (DT ) and Tolerance Margin (TM). DT is used to discard 
features whose value is considered significantly small and thus 
unstable to be involved in the seed generation process. For this
purpose, only ECGModUi 

is taken into account, according to Eq. (4).
Thus, feature sT∗Ui

(k) is given a neutral value if the absolute value of
ECGModUi 

(k) is below DT . Note that the absolute value is applied to 
make EbH compatible with feature extraction strategies that may
give negative values. Thus, Eq. (4) is applied to all Nfeat features of
ST∗
Ui
.

sT∗Ui
(k) =

{
if |ECGModUi

(k)| < DTneutral
not neutral (see Eq. (5)) otherwise. (4)

For the cases in which a given feature sT∗Ui
(k) has not been

valued as neutral, parameter TM comes into play. TM indicates the
tolerance margin to consider that a given feature ECGModUi

(k) and
ECG(obs(T∗))

Ui
(k) are close enough. Eq. (5) describes the three possible

cases to assign values to each non-neutral feature sT∗Ui
(k).

sT∗Ui
(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if ECGModUi
(k) < 0 and

ECG(obs(T∗))
Ui

(k) ∈ [ECGModUi
(k) − TM, ECGModUi

(k) + TM]

1 if ECGModUi
(k) > 0 and

ECG(obs(T∗))
Ui

(k) ∈ [ECGModUi
(k) − TM, ECGModUi

(k) + TM]

0 otherwise.

(5)

Both TM and DT can be easily identified in Fig. 2. The histogram
represents features ECGModUi

(k) along with TM (white bars). Fur-
thermore, gray bars show the values of ECG(obs(T∗))

Ui
(k) (assuming

Nfeat = 5). Horizontal lines show the effect of DT—feature 2
is neutralized. At each feature (i.e. pair of bars) and considering
Eqs. (4) and (5), the value for sT∗ Ui(k) is pointed out. Thus, at the

= {0, ×, 1, 0, −1}, wherelight of Fig. 2, the generated seed is ST∗ Ui

× represents a neutral value.

4. Evaluation

This section introduces the assessment carried out over the pro-
posed mechanism. For this purpose, Sections 4.1 and 4.2 describe 
the experimental dataset and how it has been prepared to serve 
as an input for EbH. Feature extraction is described in Section 4.3.

Fig. 2. Seed generation example for Nfeat = 5. White bars represent ECGModUi
(k),

along with their DT (vertical line in the edge). Colored bars represent ECG(obs(T∗))
Ui

(k).
Horizontal lines show TM . Numbers on each bar are the corresponding values for
sT∗Ui

(k), where × represents the neutral value. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Afterwards, Section 4.4 defines the assessment criteria, whereas 
Section 4.5 shows and discusses the experimental results. Our 
prototype implementation is freely available at http://github.com/
jmdefuentes/EbH.

4.1. Dataset description

Experiments have been carried out using dataset E-HOL-03-
0202-003, provided by the Telemetric and ECG Warehouse (THEW) 
of University of Rochester.3 The rationale of using this dataset 
is threefold. On the one hand, it includes long-term recordings 
(around 24 h) of subjects. It is particularly appropriate in this sce-
nario to analyze the time-invariance feature of keys. On the other 
hand, the subjects do not have any significant cardiac disease—
that is, the population is homogeneous without any bias between

3 http://thew-project.org/index.htm, last access Dec. 2016.
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individuals. Finally, the dataset is composed of 199 subjects, which
is very convenient to study the user uniqueness of derived keys—
three subjects have been discarded from the original dataset due
to an insufficient size of the file.

4.2. Data pre-processing

The input of our system consists on ECG values that are continu-
ously (i.e., sampling frequency is set at 200 Hz) obtained from a set
of individuals. Some manipulations of the ECG signal are needed
for the generation of the seed ST∗

Ui
. In Fig. 3, the pre-processing

algorithm is summarized.
First of all the ECG signal must be cleaned before any other 

process. For that, the existing sources (i.e., respiration and power-
line) of noise are eliminated (Fig. 3, step 1). More precisely, first the 
DC component (average value) is eliminated and then a pass-band 
filter is employed. For this filter, the lower-cut frequency and the 
upper-cut-off frequency are set to 0.67 Hz and 45 Hz, respectively. 
The lower stop-band aims to eliminate the noise produced by 
the subject respiration. On the other hand, the upper-stop band 
frequency pursues the elimination of the power-line noise and also 
the preservation of as much information as possible in the pass-
band.

Once the signal is clean, ECG samples ECGT∗
U are obtained. For

i
this purpose, two steps are carried out. First, the ECG record is
split into windows of 2 s (Lw = 2; Fig. 3, step 2). This decision 
is inspired on previous and well-known ECG-based identification 
proposals [26]. Therefore, each portion corresponds to 2–3 heart 
beats since a healthy individual beats 60–100 times per minute. 
Afterwards, a set of windows conforms an ECG sample, which is 
set to a given amount of minutes (parameter La in our experimen-
tation). In other words, each ECG sample ECGT∗

Ui
represents a period

of time of subject Ui, starting at time T∗.

4.3. Feature extraction

Once data has been pre-processed, the first step is to extract 
features from ECG samples (recall Section 3.2.1). Among all the 
feature extraction algorithms, the Walsh–Hadamard Transform 
(WHT) is chosen [27] (Fig. 3, step 3). Thus, each coefficient of
this transform becomes a feature ECGT∗

Ui
(k). The choice of WHT

is motivated by two reasons. First, it is very efficient from the 
computational point of view since it can be implemented by a 
matrix multiplication. Second, it works with signal compression, 
keeping the majority of the information at the lower frequency 
coefficients [28,29]. Fig. 4 illustrates this issue by showing 3-beats 
of an ECG signal at the time-domain and at the WHT domain. It can 
be seen that coefficients beyond 250 are less representative.

In our experimentation we started considering the lower 256
coefficients (Nfeat = 256) as a trade-off between the system effi-
ciency and information preservation. Furthermore, a procedure to 
reduce Nfeat has been applied. In particular, selection of attributes 
has been carried out using correlation-based feature subset selec-
tion for the attribute evaluator and best-first search strategy for the 
search method [30]. Experimentally, the best results were achieved 
with an amount of Nfeat = 194 features.

The particular procedure for feature extraction is described be-
low. For each window of 2 s (Lw = 2 s) within an ECG sample ECGT∗ 

Ui

of 180 s (La = 180 s—recall Section 4.2), WHT is computed, thus
obtaining a set of Nfeat WHT coefficients. Afterwards, each feature
of the sample is computed as the average of the corresponding
coefficients (Fig. 3, step 4). Thus, the kth feature ECGT∗ Ui

(k) of the

sample is the average of the kth coefficient of all its windows. This
procedure is repeated for all features.

4.4. Assessment criteria

The evaluation of EbH involves different assessment criteria, 
one for each pursued goal (recall Section 2.2). Each criterion is 
presented in this Section and will be applied in Section 4.5. In the 
following, all criteria will be referred to seeds since EbH makes use 
of a key derivation procedure. Thus, ensuring the achievement of 
goals in respect to seeds is equivalent to doing the same over the 
resulting keys.

Regarding uniqueness (Goal 1), the coincidence of two users
producing the same seed (STr

Up = STs
Uq ) is measured, leading to

unequivocal and non-unequivocal implementations.
With respect to time-invariance (Goal 2), this will be measured 

by two criteria: (1) the average number of attempts to decrypt 
(referred to as AD) and (2) the probability of no decryption (de-
noted as PND). Regarding AD, time-invariance is achieved if AD = 
1. Recall that in EbH data is encrypted first using the first seed,
i.e. ST0

Ui
. Decryption is carried out at any posterior time Td using the

corresponding seed STd
Ui
. Thus, if AD = 1, it means that the user can

decrypt with the said seed with no delay. Otherwise, if AD = 2,
it means that, on average, seed STd

Ui
is not valid to decrypt, but the

following one (i.e. STd+1
Ui

) is valid. Therefore, the user must wait for
some period (in this example, La is 3 min, recall Section 4.2) before 
decrypting.

The worst case of decryption happens if the first seed ST0
Ui

is
different from the remaining ones produced by user Ui. In this
case, AD = ∞. However, the probability of this happening has
to be considered. Let us consider a case with three seeds, two
of them equal. If any of the equal ones are produced first, it is
straightforward to see that AD = (1 + 2)/2 = 1.5 attempts.
However, if the different one is first, then AD = ∞. In order to
consider this issue, AD is formalized as follows.

Seeds {ST1
Ui

, ST2
Ui

, . . . , STn
Ui

} produced by user Ui are divided in
groups according to their values. Thus, let us rewrite this set as
SUi = {{ST∗

Ui
= α}, {ST∗

Ui
= β} . . . {ST∗

Ui
= ω}}. Let m be the number

of seeds, Nss the number of subsets, |Gi| the amount of seeds in 
subset ith and |G ̸= 1| the amount of subsets with more than one 
seed. Thus, AD is defined as shown in Eq. (6).

AD =

∑Nss
i=1|Gi| ·

|Gi|−1
m−1

|G ̸= 1|
. (6)

On the other hand, PND measures the likelihood of not being able 
to decrypt data. Thus, PND is calculated by dividing the amount of 
subsets with only one seed (|G ̸= 1|) by the total number of seeds 
(m), see Eq. (7). It is easy to notice that each subset with only one 
seed leads to undecryptable data.

PND =
Nss − |G ̸= 1|

m
. (7)

Concerning the invulnerability goal (Goal 3), two magnitudes 
are studied. First, the seed length, which determines the size of 
the search space by the adversary. Associated with this issue, 
the brute-force effort to carry out such a search must be consid-
ered. Second, the seed randomness, which is measured by min-
entropy [17]. This magnitude is considered as the most conser-
vative way to measure this issue. Recall that encryption keys are
produced after a key derivation function seeded with ST∗

Ui
. Thus,

seed unpredictability (i.e. entropy) should be calculated to discuss 
the appropriateness of their use.

Min-entropy is defined considering a set of elements E = 
{E1, . . . , En} which have an associated probability distribution P = 
{p1, p2, . . . , pn}. It is calculated according to Eq. (8).

H∞ = −log(max(pi)). (8)
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Fig. 3. Data pre-processing procedure of ECG records.

Fig. 4. ECG signal and Walsh–Hadamard spectrum.

Thus, in EbH, we calculate the total min-entropy as the sum
of the min-entropies for all Nfeat features. Thus, min-entropy is
calculated per each feature sT∗Ui

(k), and a total for all features is

computed. Eq. (9) formalizes the applied min-entropy, where p(i)max 
is the maximum probability of each value (i.e. 1, 0, −1 or neutral, 
recall Section 3.3) in feature ith.

H∞(EbH) =

Nfeat∑
i=1

− log(max(p(i)max)). (9)

4.5. Experimental assessment

This section introduces the results of the experimental assess-
ment. For the sake of clarity, the content is organized according to 
EbH intended goals (Section 2.2). Therefore, time-invariance and 
uniqueness are studied in Section 4.5.1 whereas invulnerability is 
analyzed in Section 4.5.2. Remarks about the practicality of the 
approach are shown in Section 4.5.3. Moreover, other side results 
of the experimentation are presented in Section 4.5.4. Tables A.5, 
A.6, A.7, and A.8 in the Appendix show the numerical results in 
detail.
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In these experiments, there are five parameters to consider.
First, the amount of ECG samples that constitute the ECG reference
data (ECGRefUi

) needed to built the ECG user model (ECGModUi
).

Secondly, parameter La determines how much time each sample
ECGT∗

Ui
represents. This is important as it is the smallest data unit

handled by EbH and, without prejudice of generality, La is a multi-
ple of Lw . Third, Lo defines the amount of time the user is observed
prior to deriving each seed ST∗

Ui
. The two last parameters are the

discard threshold DT and the threshold margin TM introduced in 
Section 3.3.

In the following, we report the results for different values for 
each parameter. Regarding the amount of samples in the model, 
we have considered 60% of the whole set of samples inspired on 
the value commonly used in machine learning [31] (referred to 
as training samples). For completeness we have also analyzed the 
polarized case when the model is only built with 20% of samples. 
With respect to La, we have considered 3 min. Lo has been set to 
3 · La and 10 · La (i.e. 9 and 30 min, respectively). DT is valued 3%
and 0.5%, whereas TM ranges from 1% to 20%.

All these values have been determined after extensive 
experimentation—they have been selected as they lead to an il-
lustrative discussion. In Section 4.5.3, guidelines are provided to 
parameterize the system in practice. One important remark is that, 
for a real-world scenario, the size of the training set (i.e., 20%
or 60% in our experiments) represents the time needed for the 
system to start working. Thus, in our experiments and considering 
the size of our dataset, EbH needs to be trained for 4.8 h (resp. 
14.4 h). Remarkably, this action should be carried out once during 
the whole system lifetime. We leverage the rest of the dataset 
(i.e., 19.2 h or 9.6 h, respectively) to assess that EbH keeps meeting 
the intended goals for a long time after being trained.

4.5.1. Time-invariance and uniqueness
These two goals are achieved when each user generates the 

same seed over time and when it is different from that of other 
users. Fig. 5 shows the amount of seeds for several settings. Among 
all parameters, the size of the training set has a critical impact 
on the amount of seeds. The system outperforms well when this 
parameter is set to 60%, and in particular, a maximum of 535 seeds 
(i.e. 2.69 seeds/user) are generated. On the contrary, a worsening 
of the system is observed when the training set is reduced to 20%
and this value raises to 2009 (i.e. 10.1 seeds/user).

On the other hand, the tolerance margin TM parameter also has 
a significant impact on the amount of seeds. Thus, the bigger it is, 
the higher the amount of seeds. Again, this trend is also according 
to the expectations—bigger tolerances enable more valid values 
for each single feature, thus leading to different combinations of 
values for each feature.

The remaining settings, discard threshold DT and length of the 
observation period Lo, do not have any consistent effect on this 
matter.

Based on these results, there are some settings in which time-
invariance is significantly achieved. In particular, when Lo = 10 · 
La, DT = 0.03, TM = 0.01 and 60% of samples are taken to
build ECGModUi 

, 208 seeds have been produced for the 199 users 
(Table A.8). This implies 1.04 keys per user on average. This result
supports the time-invariance of the approach, as most of the time 
users will be producing the same seed. Indeed, this happens in up
to 183 users when ECGModUi 

is formed by 20% of samples (Table A.5) 
and 191 when it is formed by 60% of samples (Table A.6).

Apart from the mere amount of seeds, time-invariance is also 
measured by the attempts to decrypt AD and the probability of 
no decryption PND, also presented in Tables A.5 and A.6. Regarding 
AD, the best result (1.13 attempts) is achieved with the said pa-
rameter values. This value is significantly affected by TM —almost 
5 attempts are needed to decrypt a piece of data when TM is

Fig. 5. Amount of seeds ST∗
Ui

depending on TM . Series correspond to different
combinations of the amount of samples in ECGModUi 

(ECG60 and ECG20 refer to 60%

and 20% training set respectively), the value of Lo (in multiples of La) and DT .

raised to 0.05. It can be seen that this magnitude raises faster than 
the growth of TM itself. Concerning PND, it is noticeable that all 
settings lead to a maximum probability of no decryption of 5%. 
Interestingly, when TM = 0.01, there is no probability of this 
undesired situation happening.

With respect to distinctiveness, it must be noted that it is 
achieved if all of them are different. As shown in Tables A.7 and 
A.8, our results show that most configurations lead to unique 
seeds per user (see values without ∗ in the said tables). However, a 
small
amount of settings (only when DT = 0.005 for ECGModUi 

with 60%
of samples) lead to seeds that are shared by at least two users. It
must be noted that the impact is limited thanks to the size of the 
user set. Indeed, in order for a malicious user to benefit from this 
fact, she should guess which are the sharers in order to gain access 
to their personal information.

4.5.2. Invulnerability
The invulnerability of the generated seeds is given by their size 

and randomness. Each issue is studied separately.
Size analysis. Fig. 6 shows the size of seeds for the considered 

settings. It must be noted that the size is measured in amount of 
symbols, each one having values {1, 0, −1, neutral}, as explained 
in Section 3.3. Thus, if each symbol were coded by 2 bits, the actual 
seed size would be doubled. For the sake of generality, we leave 
the actual bit coding out of the discussion.

As it may be seen, seeds range from 115 symbols to 175. 
Interestingly, having DT = 0.03 also causes that under that 
percentage the seed is around 118 symbols. This trend is in line 
with expectations—if DT is bigger, more ECG features are not 
considered for the seed derivation process, thus causing shorter 
values. The size of the training set has also an impact on the seeds 
size. In particular, the size grows when the training set is bigger. 
However, the effect of this variable is limited, as it only causes 
a minor variation. According to our experiments, having a bigger 
training set implies that the ECG reference model is less impacted 
by incidental minimum values that cause that some features fall 
below the DT threshold. On the other hand, neither TM or Lo cause 
any significant effect on this issue.

The seed size also determines the hardness of a potential brute-
force search. To quantify this issue, recall that the seed ST

U
∗ is a

i 

vector of length 1 × Nfeat positions in which p of them can be 
activated with 3 different values {0, 1, −1}. Then, the number of
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Fig. 6. Size of ST∗
Ui

(in number of symbols) depending on TM . Series correspond to
different combinations of the amount of samples in ECGModUi

(ECG60 and ECG20
refer to 60% and 20% training set respectively), the value of Lo (in multiples of La)
and DT .

Table 3
NA (clock cycles) and corresponding years.

p

100 150

NA Years NA Years

Nfeat
194 1.4 · 1058 4.9 · 1041 8.9 · 1043 3.1 · 1027

256 1.2 · 1073 4.2 · 1056 1.3 · 1074 4.5 · 1057

attempts (NA) needed (in the worst case) to find the seed is given 
by Eq. (10). NA corresponds to all combinations of Nfeat values taken 
p at a time multiplied by the amount of permutations of 3 values 
in each of the p positions.

NA =
Nfeat !

p!(Nfeat − p)!
· 3p. (10)

To contextualize the above equation we provide some numer-
ical values regarding the cost for an attacker. We assume that 
each seed can be generated in just one instruction. To estimate the 
amount of time an attacker would need, let consider the use of an 
Intel Core i7 processor which runs 92 billion instructions per sec-
ond.4 Table 3 presents NA (clock cycles) and its associated amount 
of years for Nfeat = {194 attribute selection, 256 all features} and 
p = {100, 150}. We consider these values for p as they are in line 
with the obtained seed sizes.

It is noteworthy the huge number of attempts and years re-
quired to get the necessary seed applying brute force, for instance 
for Nfeat = 194 and p = 150, up to 3.1·1027 years would be needed. 
Besides, an attacker should also consider the fact that p is not static 
and then, much more attempts should be performed with different 
p. Consequently, this study guarantees the infeasibility of applying 
a brute force attack against our proposed method EbH. Taking into 
account Eq. (10), the security level of our proposal EbH is lower
bounded by δ =

1
2log2(NA)

.
Seed unpredictability. With respect to unpredictability, Fig. 7 

shows the evolution of the min-entropy of generated seeds under 
the considered settings.

4 http://download.intel.com/newsroom/kits/40thanniversary/pdfs/Intel_40th_ 

infographic_sm.pdf, last access Dec. 2016.

Fig. 7. Min_Entropy per seed ST∗
Ui

depending on TM . Series correspond to different
combinations of the amount of samples in ECGModUi 

(ECG60 and ECG20 refer to 60%

and 20% training set respectively), the value of Lo (in multiples of La) and DT .

All parameters in these experiments have some effect on the 
min-entropy, being DT the one with higher impact. Surprisingly, 
having higher values of DT cause achieving better min-entropy. Ac-
cording to our experiments, the reason behind is that DT removes 
some features that are consistently having the same value in the 
resulting seeds, thus becoming predictable.

Another interesting finding is that the min-entropy benefits 
from having smaller training sets. This is due to the fact that a 
smaller training set leads to an ECG reference model that is not 
always that consistent with posterior observations. This causes 
more variability among seeds, thus achieving higher min-entropy. 
In a similar way, having larger Lo cause lower entropy—this implies 
having more data from the user, thus making ECG features to 
be more predictable. Last but not least, the tolerance margin has 
also a limited impact on the min-entropy. In particular, higher 
tolerance values typically cause a small increase on min-entropy. 
Nevertheless, this increase is not representative and it does not 
hold for all experiments.

4.5.3. Practical remarks
In order for EbH to be practical, keys have to be produced in a 

short period of time. Otherwise, the user would be forced to wait 
for protecting her data or for accessing to them. Moreover, EbH 
storage needs have to be affordable for state-of-the-art devices. 
Both issues are studied first. On the other hand, when EbH is going 
to be applied in practice, some guidelines must be given to tune the 
system, beyond the per-goal analysis shown in Section 4.5. These 
guidelines are provided at the end of this Section.

Time and storage considerations. There are two issues that 
have to be taken into account. On the one hand, the user has to be 
observed for a period determined by parameter Lo. However, re-
calling the definition of ECG(obs(Ti))

Ui
given in Section 3.1, at any time

Ti that the user wants to generate a key (either for encryption or
decryption), the ECG data comes from the immediately precedent
Lo seconds. The only exception happens if the user tries to encrypt
information in the very first Lo seconds of operation of EbH, right
after the creation of ECGModUi

. Disregarding this singular case, the
user does not need towait Lo seconds until the key is created. From
the practical viewpoint, this is feasible since the smart device and
the hub are assumed to be carried together.
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The second issue that may have practical impact for immediacy 
is the time needed for data preprocessing. Recalling Section 4.2, 
there are several steps to be carried out—filtering, segmentation 
and feature extraction (WHT and mean calculation). Eq. (11) gives 
the expression for this time, by adding the contributions of each of 
the aforementioned steps.

Tpreproc = Tfilter + Tsegment + TWHT + Tcalcmean. (11)

For any state-of-the-art device, Tsegment and Tcalcmean can be 
considered negligible since they are basic file and mathematical 
operations. However, the remaining steps are relevant in terms 
of computation. For our experiments, both operations have been 
carried out using Matlab in a 16 Gb RAM 2.8 GHz Intel Core 
i7 computer. Although these settings slightly exceed the current 
capabilities of an average smartphone, we believe that this tech-
nology may be available in the short term—new smartphones are 
already equipped with powerful 64-bit quad-core processors and a 
good amount of RAM.5 Under these settings, according to Eq. (11), 
in the worst case, e.g. Lo = 1800 s, Tpreproc = 81.1 ms for every key. 
This time is not only affordable, but also could be done in parallel 
in the Lo seconds of gathering ECG data.

Once data is preprocessed, the own key computation has to 
be carried out. Therefore, the actual time taken to derive a key is 
formed by the preprocessing time and the key computation one 
(Eq. (12)). According to our experiments, TcompKey = 0.23 ms, thus 
resulting in an overall time Tkey = 81.33 ms

Tkey = Tpreproc + TcompKey. (12)

Last but not least, in order for EbH to be feasible it is necessary to 
verify if the storage space is reasonable for current devices. Consid-
ering the previous explanation on how ECG values are collected, 
Lo determines the upper limit of the storage needed in the hub 
to compute keys. Eq. (13) gives the expression for the required 
storage, where sizeof (feat) gives the size in bytes of an ECG features 
vector. Note that the division Lo/La gives the actual amount of ECG 
samples needed to collect in the period Lo, but one additional ECG
sample is needed to store ECGModUi 

.

Storagehub(bytes) =

(
Lo
La

+ 1
)

× Nfeat × sizeof (feat). (13)

Considering our experiments, in the worst case (i.e., Lo = 1800 
s.), the storage needed is Storagehub = (1800/180 + 1) × 194 × 
4 ≃ 8.6 kb. Clearly, this space is affordable for any regular-class 
smartphone being used as hub.

Guidelines for tuning EbH. In general terms, EbH benefits from 
the size of the training set. Our results show that most indica-
tors improve significantly when the system is trained for 14.4 h 
(i.e., 60% of the dataset) as compared to when the training lasts for 
4.8 h (i.e.,20% of the dataset). The only exception is min-entropy, 
which only improves for the bigger value of DT (DT = 0.05).

Apart from this general advice, in practice there are two dimen-
sions that are usually confronted—security and usability [32]. In 
the following, we discuss how the system parameters should be 
chosen to prioritize each of these dimensions.

If security is the main concern, seeds must be as unique, long 
and unpredictable as possible. As it has been previously shown, 
there is no single setting that improves these three aspects at a 
time. However, a suitable balance among them can be found for 
bigger values of the training set and the period of observation Lo, 
combined with middle values of TM and DT. Under these settings, 
EbH produces a reasonable amount of unique seeds, of intermedi-
ate size and entropy.

5 https://www.qualcomm.com/news/onq/2017/05/23/powered-snapdragon-
835-htc-u11-takes-touch-next-level.

On the contrary, if ease of use is at stake, the user must face
the lowest amount of issues when trying to access personal data.
In this case, combining the smallest value of TM and the biggest
one of DT leads to the best results in both the amount of attempts
to decrypt and the probability of no decryption. Indeed, the user
only needs 1.13 attempts to decrypt whereas the said probability
is dramatically low (0.3%). Interestingly, the size of the observation
period can be small (9 min in our experiments) while keeping
both properties largely unaltered. The balance between both issues
remain since the amount of attempts to decryptwould raise to 1.22
while the probability of no decryption would lower to 0.1%.

4.5.4. Additional considerations
For completeness, two considerations are included regard-

ing our experiments. First, the dataset was acquired using the
SpaceLab-Burdick digital Holter recorder (SpaceLab-Burdick, Inc.,
Deerfield, WI). Thus, ECG signals were recorded using three
pseudo-orthogonal lead configuration (X, Y , Z). The results shown
in this paper correspond to one of the leads. Once the lead is
arbitrarily chosen, this must be used for all the encryption and
decryption operations.

On the other hand, we have also carried out experiments with-
out feature selection (Nfeat = 256 instead of Nfeat = 194). Our
findings show that the results are affected to some extent by
feature selection. When all features are considered, the amount of
seeds produced by each user is very similar. Each seed is signifi-
cantly larger than the one obtained with the same configuration
(e.g. 95.83 vs. 51.33 symbols), also with better minimum entropy
(82.51 vs. 33.5). The increase in the seed randomness is linear to the
increase in the amount of features. Thus, the amount of features
is almost tripled (256/93 = 2.75), in a very similar factor to the
increase of entropy (82.51/33.5 = 2.46). However, this increase
does not scale well when the optimal minimum entropy is taken
into account. For 93 (resp. 256) features, the optimal minimum
entropy is 55.99 (resp. 154.13). Therefore, in the selected features
dataset the achieved entropy represented 59.83% of its optimum
value. On the contrary, in the dataset with all features it only ac-
counts for 53.53%. Considering all these issues, it can be concluded
that using all features leads to greater and less predictable seeds,
but the improvement is not linear with the increase in the amount
of features.

4.5.5. Overall discussion
Results obtained for EbH show that the proposed approach is

promising for seed generation. However, this general finding can
be refined into specific remarks.

The system needs a representative number of ECG samples
to build ECGModUi

. A percentage of 60%, which is a commonly
employed value, seems an appropriate value for the workability
of the system. In practice, this is not a practical shortcoming, as the
proposed setting (i.e. user porting a bracelet and a smartphone)
does not impose any time-related restriction. Indeed, for our ex-
periments we consider 60% of one day, i.e. around 16 h. Thus, in
practice every user could be working with EbH after the first day
of training.

Most settings lead to distinctive keys among users. This is quite
beneficial, as every user has data that can only be decrypted by
herself. Even in those situations in which two user seeds coincide,
the population is big enough (i.e. 196 users) to render this kind of
attack impractical. Recall that the attacker would need to steal the
hub (i.e. the smartphone) and connect it to her own bracelet for
this attack to be successful.

Time-invariance is reasonably achieved under some settings.
The optimal outcome is to have all users to produce a unique
seed. EbH does not achieve this goal, but it achieves a close one.
Results have shown that a vastmajority of users (up to 95.97%)may
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Table 4
Comparison table of reviewed works.

Time-invariant keys Different keys among users Keys difficult to reproduce Biometric trait

EbH
√ √ √

ECG
[34] ×

√ √
Face

[35] ×
√

× Face
[36] ×

√
× Face

[37] × ×
√

Iris
[38] × ×

√
Iris, fingerprint

[39] × ×
√

Fingerprint
[42] × ×

√
Palm of the hand

[43] ×
√ √

Voice
[44] × ×

√
Digital audio watermarking

[48] ×
√ √

Signaturesa
[49] × ×

√
Handwritinga

[50] × ×
√

Fingerprint veina

[51] ×
√ √

–
[45] × ×

√
ECG

[46] ×
√ √

ECG
[47] ×

√ √
ECG, PPG

–Not specified.
a Just for the evaluation process but the approach is general.

produce unique keys. Moreover, the amount of attempts to decrypt 
is significantly low. Another critical remark is that the probability 
of no decryption (which is paramount to ensure acceptance among 
users) is in most cases non-representative (as it is lower than 3%).

In sum, the feasibility of the proposed mechanism is supported 
by the previous facts as long as the dataset size is representative 
in both amount of users (199 subjects) and timespan (24 h). It is 
worth noting that the used dataset belongs to one of biggest and 
publicly available databases. However, this system could be im-
proved considering the following pair of issues. On the one hand, a 
bigger database with more long-term recordings, e.g., years, could 
be used. In this way, we could analyze the changes produced in a 
very long time period for encryption/decryption keys, and this then 
would help to identify when these keys should be updated. Then, 
having very long ECG recordings, data stream mining techniques 
could be applied as on similar problems [33]. On the other hand, a 
database with tagged activities would be desirable. It will help us 
to study when users have more chances to successfully encrypt and 
decrypt. For instance, it is expected that if you encrypt something 
just after being running, its decryption would be quite challenging.

5. Related work

Multiple biometric traits have been used for key generation. 
Face images have been extensively applied. Teoh et al. [34] gener-
ate keys from facehashes, that is hashes created from facial images. 
The same goal is addressed by [35]. Applying 3-D face images, Chen 
et al. [36] present an entropy-based method to create deterministic 
bit sequences. The creation of keys not just by face images but by 
the iris ones is quite well-known. Rathgeb et al. [37] propose the 
binary codification of the iris, creating iris codes where context-
based information helps to detect reliable bits. In [38] authors go 
a step further applying the iris and a second biometric trait, the 
fingerprint. Extracted features are fused to create a 256-bit key 
constructed under the problem of large numbers factorization. By 
contrast [39] only considers fingerprints and applies distortion. 
Generated keys are used when previous ones are lost or stolen, thus 
being these latter ones cancellable.

Other proposals generate keys from assorted biometric traits 
such as creating hashes from the palm of the hand [40], using 
handwritten signatures [41], moving a pair of devices simultane-
ously trying to get the same key [42], analyzing voice signals [43] 
or even studying a method to generate a key for digital audio 
watermarking [44].

The use of cardiovascular signals and ECG in particular, for key 
generation is the main issue to consider herein. This research line

has received limited research attention. An encryption algorithm 
based on chaotic functions is proposed in [45]. In this scheme 
a secret key is generated from ECG signals using the Lyapunov 
exponent’s spectrum to extract signal features. The key is directly 
constructed from the signal but for decryption purposes a secure 
channel is required to send the secret key. In the context of body 
sensor networks (BSNs), Zhang et al. [46,47] propose a fast biomet-
ric approach to generate 128-bit keys from ECG signals for ensuring 
confidentiality and authentication in BSNs communications. Keys 
are generated from Inter-Pulse Intervals (IPIs) extracted from car-
diovascular signals (i.e. ECG or PPG), such that each bit is generated 
comparing two IPIs. The main difference with our approach is that 
Zhang et al. proposal do not aim to generate time-invariant keys, 
which makes their approach to be unsuitable for the considered 
scenario.

But not all proposals focus on a particular biometric trait, some 
of them propose a general approach. Sheng et al. [48] apply a 
semi-supervised clustering algorithm to identity consistent and 
discriminative biometric signals which are later used to generate 
keys. Ballard et al. [49] propose the use of biometric samples and 
a key as input of their system to get a cryptographic key. The main 
drawback is that users need to include a password together with 
the biometric samples. M. Khalil-Hani et al. [50] propose the use 
of a fuzzy vault scheme in which a biometric trait together with a 
secret key is used for encryption purposes. Again, the main weak-
ness in comparison with the proposed approach is that a secret 
key is involved in the process. In addition, some other proposals, 
though not directly focused on creating keys through biometric 
traits, use them to achieve a final goal. In this regard, [51] presents a 
scheme in which biometric traits are used to generate keys applied 
for authentication purposes.

Table 4 shows a comparison analysis with previous proposals. 
We consider whether keys are equal along time (time-invariant), 
different amount users (uniqueness) and difficult to reproduce 
(invulnerable). The type of managed biometric trait is also pointed

out. Symbol 
√ 

means that a feature is considered and symbol ×means the opposite. From the table is noticed that the generation 
of keys through biometric traits has been extensively explored. 
Nonetheless, as far as we are concerned, just the proposed ap-
proach achieves a time-invariant key generation ensuring the dif-
ference among users and being resilient to guessing attacks, that 
is, keys are difficult to reproduce by attackers. Indeed, the fact of 
creating keys invariant along time is a clear benefit in system in 
which a continuous variable, e.g. an ECG signal, is at stake.
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Table A.5
EbH experimental results with 20% of samples for ECGModUi

. AD, PND and amount of users producing fully time-invariant seeds.

AD PND Time-invariant seeds

TM

DT 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Lo = 3 · La

0.005 11.26 62.66 85.01 89.05 0.006 0.026 0.049 0.092 134 39 10 1
0.01 10.97 61.29 84.35 89.19 0.005 0.024 0.045 0.084 135 41 11 1
0.03 8.08 56.51 78.35 90.26 0.004 0.018 0.034 0.065 145 48 19 2
0.05 5.05 44.81 71.11 85.26 0.003 0.013 0.025 0.049 158 65 28 9

Lo = 10 · La

0.005 4.38 34.17 61.07 75.25 0.008 0.037 0.071 0.139 161 80 37 14
0.01 4.03 30.99 57.11 74.46 0.008 0.033 0.064 0.128 163 86 43 16
0.03 2.11 20.08 44.02 68.12 0.005 0.025 0.048 0.095 177 109 63 27
0.05 1.57 13.86 35.30 59.96 0.003 0.019 0.037 0.074 183 125 78 38

Table A.6
EbH experimental results with 60% of samples for ECGModUi

. AD, PND and amount of users producing fully time-invariant seeds.

AD PND Time-invariant seeds

TM

DT 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Lo = 3 · La

0.005 1.66 9.88 24.83 52.03 0.002 0.009 0.018 0.035 182 138 99 52
0.01 1.44 9.03 24.00 49.45 0.002 0.008 0.016 0.031 185 141 101 56
0.03 1.22 5.60 16.38 39.45 0.001 0.005 0.012 0.024 189 155 119 72
0.05 1.22 4.24 12.73 30.35 0.001 0.004 0.009 0.019 189 162 129 88

Lo = 10 · La

0.005 1.25 6.24 13.23 32.31 0.004 0.019 0.035 0.067 188 151 125 80
0.01 1.25 6.02 11.65 30.46 0.004 0.018 0.032 0.062 188 152 130 84
0.03 1.13 4.99 9.60 25.28 0.003 0.016 0.026 0.050 191 157 137 95
0.05 1.13 3.91 7.00 17.49 0.003 0.013 0.020 0.039 191 163 147 113

Table A.7
EbH experimental results with 20% of samples for ECGModUi

. Amount of seeds, seed size (in number of symbols) and min-entropy.

Amount of seeds Seed size (symbols) H∞(EbH)

TM

DT 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Lo = 3 · La

0.005 306 714 1164 2009 164.67 159.97 160.09 161.59 33.30 40.26 40.44 38.74
0.01 296 663 1075 1858 150.37 145.19 145.31 146.52 51.68 60.08 60.27 58.81
0.03 273 546 873 1485 112.84 112.13 112.22 113.67 95.74 96.82 97.03 96.45
0.05 251 448 697 1173 90.79 95.96 97.61 98.89 96.54 98.80 99.16 98.70

Lo = 10 · La

0.005 244 405 602 985 170.84 167.33 166.55 166.47 25.49 30.48 31.86 32.37
0.01 241 385 564 920 155.26 152.97 152.23 152.31 44.74 48.60 50.08 50.44
0.03 226 339 472 741 115.50 116.48 117.18 117.93 94.33 94.87 94.32 94.08
0.05 217 307 406 618 89.73 94.40 96.99 99.01 95.89 98.47 98.55 98.34

Table A.8
EbH experimental results with 60% of samples for ECGModUi

. Amount of seeds, seed size (in number of symbols) and min-entropy. Values marked with (*) means that seeds
are repeated among users.

Amount of seeds Seed size (symbols) H∞(EbH)

TM

DT 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Lo = 3 · La

0.005 219* 285* 369* 535* 173.15 169.49 168.95 167.18 22.61 27.42 28.45 31.04
0.01 216 272 349 495 157.34 155.69 155.34 153.62 41.79 44.44 45.36 48.09
0.03 211 252 310 429 117.51 118.08 118.60 117.79 93.51 94.30 94.21 94.41
0.05 210 241 289 381 93.09 96.19 97.86 99.66 98.83 99.73 99.99 100.09

Lo = 10 · La

0.005 211* 252* 298* 387* 175.44 173.33 170.70 171.67 19.92 22.69 26.07 25.32
0.01 211 250 290 373 160.63 158.10 156.13 157.40 37.55 41.14 43.99 42.76
0.03 208 244 272 339 120.68 118.77 118.94 121.60 91.38 92.98 92.81 91.13
0.05 207 235 257 308 95.87 96.00 97.85 101.57 99.05 99.01 99.24 99.87

6. Conclusion. Future work

The use of ElectroCardioGram (ECG) biosignals have already
been applied into the cryptographic arena. Thus, previous efforts
have explored its application to protect health information or to
authenticate users.

This paper has addressed the potential of ECG to derive time-
invariant encryption keys. Thanks to this property, it is possible
for an external data storage (e.g. a smartphones) to symmetrically
encrypt its data, allowing the user to decrypt it at any time just

by deriving the key from its current ECG value. The proposed
mechanism, EbH, has been shown to provide with keys featuring
high degree of time-invariance over a 24 h period. Remarkably,
these keys are different for every user (in a set of 199 individuals)
and they have suitable levels of min-Entropy and length so as to
resist guessing attacks.

Future research works will be focused on expanding this ap-
proach to other biosignals (such as PPG) and exploring other set-
tings that may allow smaller training times. Furthermore, another
aspect that deserves attention is how to handle data re-encryption.
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In particular, it is convenient that EbH seeds may become different
(but time-invariant for a period) for a given user. Such periodical
key renewal needs to be researched. The extension of the evalua-
tion considering large-scale datasets (i.e., several months/years of
a significant amount of users) is also interesting to ensure the goal
assessment in long periods. Finally, the application of data stream
mining techniques is also relevant to enable EbH handling changes
(concept drift study) in ECG signals throughout the subject’s life-
time also considering performed activities.
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