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Abstract-In recent yeais, big data systems have become an active area of research and development. Stream processing is one of 
the potential application scenarios of big data systems where the goal is to process aconlinoous, high velochy flow of information 
items. High frequencytradirg (HFT) in stock markets ortrendirgtopicdetection in Twitter are some examples of stream processing 
applications. In some cases (like, for instance, in HFT), these applications have end-t�nd qualhy-of-service reqlirements and may 
benefh from the usage� real-time techniques. Taking this into account, the present articl eanalyzes, from the point� view of real-time 
systems, a set of patterns that can be used when implementing a stream processing application. For each pattern, we discuss its 
advantages and dsadvanlages, as well as its impact in application performance, measured as response time, maximum ill)Ut 
frequency and changes in utilization demands due to the pattern. 

Index Terms-Real-time patterns, stream processing, big data 

1 INTRODUCTION 

B
IG-DATA systems are one of the technologies marking an
important momentum (1), (2), (3), (4), (5). They are char­

acterized by the need of processing huge collections of data 
that are difficult to process using traditional techniques 
and, thus, require specific processing tools. As indicated in 
(81 a variety of data intensive appli cations can be developed 
with a big data infrastructure, including applications like 
the Hadron Collider, the solar observatory of NASA, or 
Facebook. Many of them need to  deal with some of the five 
V's of big data systems, which refer to great volumes of 
data, ranging from Terabytes to Exabytes, high velocity to 
process incoming data, variety in incoming data, and, more 
recently, veracity and value requirements. 

Around it, several new frameworks have being created, 
including Hadoop (91 Storm (10), Spirk (11) and Samza 
(12), which target different applications needs. Though 
many of these frameworks are still maturing, they are con­
tributing new computational paradigms such as map­
reduce (37) and distribu ted-stream pro cessing (2), (4), (7), 
(8). These frameworks may prop up or give support to the 
development of big data applications that reside in a local 
cluster hcsted in the Internet. 

Another characteristic of big data applications is that 
they often need to meet real-time requirements (13), (14). 

For instance, the Hadron collider produces a 300 Gb/s 
stream that has to be filtered to 300 Mb/ s for storage and 
later processing. This is also the case of high frequency trad­
ing systems, which have sub-second deadlines that have to 
be met. Lastly, another case of big data analytics that faces 
temporal restrictions is the trending topic detection algo­
rithm used in Twitter to show a dynamic list with the ma;t 
popular hashtags. The Twitter trending topic detection 
application is the case of a big data scenario character ized 
by velocity, with operational deadlines of up to 2 seconds to 
output an updated list of trending topics. 

Among the different technologies (2) supporting big data 
applications Hadoop (9) and Storm (10) stand out. The for­
mer is targeted at batch computing, that can take minutes, 
days or even months to compute. The latter is targeted at 
online computing made on machines that have to process 
data with sub-second deadlines by means of parallel and 
distributed corn puting techniques in order to increase maxi­
mum input frequencies in application nodes. However, 
from the perspective of a real-time system these technolo­
gies are not the ma;t efficient infrastructures to meet dead­
lines, because they lack the support required to assign the 
different pieces of a distributed application to a certain 
corn putational node (12), (13). 

Furthermore, from the perspective of a real-time system, 
there are important problems such as defining what a real­
time big data system i; and what a proper infrastructure to 
support the system is. Although some pioneering research 
initiatives provide partial approoches (121 (13) (31), (321 
(63), they are far from producing commercial solutions. The 
real-time community has not yet defined the bounds and 
limitations of these new real-time systems. Some pioneering 
work trying to go in that direction includes (14), (151 aiming 
at making map-reduce a real-time facility, (16), (17), (181 
(19), (20) developing theoretical models for parallel and dis­
tributed infrastructures that speed up big data applications, 
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and [21], [22], [23], specific studies that relate the cost of an
application to its performance. However, there is still no
mature drawing of what a real-time big data system is.

In the particular case of big data applications aimed at
stream processing, one of the multiple difficulties in their
development is the lack of a general catalog of computational
patterns relating the differences in cost of these patterns to
their response times [36]. Although somework along that line
exists [13], [21], [22], mainly focused on high-performance
computing, they are far from producing operational catalogs
that can be revamped from a real-time systems perspective.
For instance, [21], [22] proposed a series of patterns for data
stream processing. However, these patterns are more focused
on high-performance than on real-time predictability. From
their perspective, our work adapts previous models from the
high-performance computing scene to the real-time scene. In
addition, some authors [13] have used a real-time version of
Storm to analyze different implementation strategies from the
point of view of their impact on application response times.
These strategies are addressed on our work in a more proper
way by analyzing their individual performance in small
benchmarks that determine the impact that a certain type of
pattern has on the response time of the application and the
maximum input frequency of the system.

The work could also be applied to a number of previous
distributed stream technologies: Stream [47], [48], StreaMIT
[49], Aurora [50], Flextream [51] and the novel Spark [11]
and Storm [10] initiatives. These technologies may profit
from the patterns described in order to meet their applica-
tion deadlines in an efficient way. Currently, all of them are
focused on efficient (high-frequency) response times, but
they have set meeting application deadlines aside. From
this perspective, they may benefit from the scheduling
model and the catalog of patterns described in this article.

The rest of this article is focused on developing the cata-
log of patterns for real-time distributed stream processing
applications. Section 2 presents the state-of-the-art, where
different patterns are introduced and their relation with this
work are analyzed; it also describes different techniques
that can be useful to develop real-time stream processing
systems. Section 3 describes the stream model used in the
evaluation of these patterns, as well as the scheduling
model. Section 4 describes the patterns catalog. Section 5
evaluates the performance of each pattern. Section 6 con-
cludes the paper and describes our ongoing work.

2 STATE-OF-THE-ART

2.1 Programming Patterns for Big data

There is a set of programming patterns useful to develop big
data applications [13]. In a technological plane, map-reduce
[37] offers different patterns for different processing stages
including summarizations, filters and data organization,
join, and input and output design patterns. Some authors
[46] have illustrated the performance one may expect from
some map-reduce policies. They show how the use of incre-
mental policies and data placement may be beneficial from
the point of view of the application.

Another type of big data infrastructure refers to data bases.
In this arena, there are some technologies such as Cassandra
[39] that offer a catalog of patterns that may impact on perfor-
mance. For instance, the type of patterns defined in [39] are

focused on avoiding some types of configurations that may
result in low performance, such as storing an entity in a single
column or mismanaged atomic updates. The performance
results reported in [39] refer to batch processing applications
meanwhile our contribution is focused on stream processing.
Due to this, the analysis of the state of the art is focused on dis-
tributed streamprocessing and real-time computing.

2.1.1 Distributed Stream Processing Patterns

The first set of patterns refers to distributed stream process-
ing and some current technologies like Storm [38]. Referen-
ces like [38] explain the different type of semantics, useful
for application development. Unfortunately, it does not pro-
vide a basic catalog of patterns that can be used as a depart-
ing point to develop applications that have to meet
deadlines. This is the contribution of our article, which pro-
vides this basic catalog of patterns to develop big data appli-
cations for stream processing.

There is a large tradition in distributed stream processing
before the launch of Apache Storm, in academic and com-
mercial fields. In the academic arena, there are a number of
systems that support different stream abstractions such as
Stream [47], [48], StreamMIT [49], Aurora [50], Flextream
[51], River [52], Cayuga [53] and Naiad [54]. None of those
academic approaches seems to be focused on meeting dead-
lines, although some of them could be easily extended with
the infrastructure proposed in our article to support end-to-
end deadlines. The main problem in all of them seems to be
that they were not designed to meet end-to-end deadlines.
Commercial systems include Apache Samza [7], Storm [8],
and Spark Streaming [9]. Most of those commercial systems
have been oriented towards low-latency but they have set
aside the definition of end-to-end deadlines in streams.

In the specific case of stream computing [28], [29], [31],
[32], there is a set of techniques that may have an impact on
the application utilization. In [22] a catalog of ten patterns is
proposed. These patterns are analyzed in the context of gen-
eral-purpose applications (not with applications that have
to meet deadlines). For each pattern, the authors analyzed
its impact on the graph of the application (which may be
changed or unchanged), the application semantics, and
their on-line and off-line behavior. Our article includes a
shorter catalog with six patterns; four share commonalties
with [22] and two are specific for the real-time domain. In
order to illustrate and evaluate these patterns, a scalable
real-time trending topic detection application running on a
real-time version of Apache Storm [13] has been developed.
This short catalog refers to the minimum number of pat-
terns required to develop this type of applications.

The relationship with [22] is analyzed in Table 1. In the
definition of a useful catalog, our catalog removed those
optimizations (reordering and redundancy elimination)
that have not been used to develop the trending topics
stream application. From the perspective of a real-time ver-
sion of a distributed stream processing infrastructure, there
are very useful techniques: operator separator, fusion and
fission, which have been reinterpreted from the perspective
of a deadline-based application. In addition, the strategy
defined in placement has been reinterpreted from the per-
spective of worst-case computations, using the pattern to
allocate stages to nodes in an efficient way. 2



In addition, our catalog added two new patterns: single
stage, useful to join all the scattered stages of a stream into a
single stage, and frequency modification, which is useful to
reduce unnecessary activations in a stage. The comparison
also draws on changes carried out on the structure that
defines the stream processing stages (called DAG: directed
acyclic graph).

2.2 Real-Time Parallel Computing

Currently, the real-time community is extending the classi-
cal computational models to take advantage of the support
given by multi-core infrastructures to the development of
parallel applications. All these pieces of work have an
important impact on the infrastructure required to run big
data applications because, typically, big data applications
cannot be hosted in a single node, but comprise several
interconnected nodes.

Among the list of available approaches, some remarkable
work are [17], [18], [19], [20], [35], which collectively deal with
the needs of some of the most popular computing paradigms.
In [17] the authors considered the multi-core scenario and
proposed a parallel synchronousmodel inspired by the primi-
tives of OpenMPI. Each application is composed of segments,
which can be parallel and/or sequential. The model includes
task composition, which divides the input into different
flows, as well as the use of partitioned deadline monotonic
approaches, which enable establishing global utilization pat-
terns using different allocation techniques. Reference [20] pro-
vides a parallel execution model for cyber-physical systems
with low-level scheduling techniques similar to those pro-
posed in this article. However, while their work is more
focused on a lower level programmingmodel (parallel tasks),
our work is focused on a higher-level computation model
based on streams. Finally, [35] offers techniques for system-

on-chip infrastructures tomeet deadlines. The relevant differ-
ence with [35] is in the application domain that in [35] seems
to be targeted to low-level tasks, while our approach is for
stream processing.

The computing model described in this article, which has
been extended from [13], [14], is slightly different from [17].
It is based on the stream model offered by Storm, where
each stage of the application may have a different input fre-
quency in order to increase its end-to-end performance. The
patterns proposed in this article are also interesting for [17],
as they use their computational models to process different
streams, like those coming from heavy sources like Twitter.

Another set of work ([18], [19], [23], [60], [61], [62]) are
related to the scheduling of parallel tasks on multi-core pro-
cessors. Their computational models are mainly based on
the fork-join tasks and the authors describe end-to-end
interactions as a set of sequential and parallel steps. The
authors also provide a set of scheduling algorithms in
charge of partitioning the system using fork-join primitives.

In addition, some authors [15], [16] have worked on the
definition of a real-time version of map-reduce from a practi-
cal perspective. For instance, [15] has analyzed the problem
using a constraint satisfaction problem and has introduced
several heuristic strategies for this formulation. By using
their constraint model, an off-line setting for map-reduce
jobs is formulated, which is later on applied in the on-line
scenario. Likewise, [17] dealswith the heterogeneity in nodes
and the differences in map-reduce tasks, proposing new
scheduling algorithms that take into account these costs.

The distributed stream processing model described in
our article has roots in distributed real-time Java [55], [56],
which have been adapted to the internals of Apache Storm
to produce a real-time version of Storm. The idea of the
scheduling framework is to provide a simple computational
model able run in an Apache Storm engine. It is also based
on [57], taking the idea of independent releases (that have
no release jitter) and on [58] for the idea of a formulism for a
partitioner based on utilization for a multiprocessor system.
Another advantage with respect to previous approaches is
that it is easier to understand and to compute. Other
approaches need the use of iterative and computationally
expensive techniques based on heuristics to obtain response
times (e.g., using [59]) that have to take jitter into account.
Also, the implementation of the techniques as part of an
Apache Storm stack is easier with the proposed framework
than using the parallel techniques ([60], [61]), which do not
map so easily to the programming model of Apache Storm.

The patterns proposed for streams are also feasible for a
map-reduce infrastructure, but their adaptation needs to be
explored in a different piece of work.

3 COMPUTATIONAL MODEL

In the real-time context, a real-time stream is defined as a
continuous sequence of data or items whose processing has
some real-time requirements like a deadline from the input
to the output. This model is a simplification taken from [14],
where the authors produced a programming model based
on a generalized version of Storm. It is also compatible with
the computational model of Storm described in [33], [34],
which is focused on the definition of different scheduling
policies for Storm.

TABLE 1
Comparing this Work with Existing Techniques and

Optimizations

Technique
optimization name

This work
Changes
in DAG

Operator reordering N-I (assumed perfectly
ordered streams).

Y

Redundancy elimination N-I (assumed efficient
design)

Y

Operator separation Adapted to meet deadlines Y
Fusion Adapted to meet deadlines Y
Fission Adapted to meet deadlines Y
Placement Re-interpreted from the

point-of-view of a deadline
based system

N

Load balancing N-I N
State sharing N-I N
Batching N-I N
Algorithm selection N-I N

Single stage
(goal of avoiding unneces-
sary distribution and par-
allelism)

Y

Frequency modifier
(goal of reducing stream
computational demands)

Y

N I: refers to non integrated.
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The single stage application pattern groups all stages of an
application into a single stage, decreasing the overall costs in
terms of demanded utilization. Typically, it also decreases the
maximum achievable computational frequency for the appli-
cation because it does not take advantage of the existence of a
network and/or serialization processes communicating
machines, thus limiting maximum operational frequencies.
Regarding response time, the pattern is able to reduce the
overhead due to existence of a network communication.
However, it also suffers from the lack of a parallel infrastruc-
ture able to reduce the response time of applications.

The operator separation pattern increases the maximum
input frequency of the application, by splitting work into
several sequential stages. As a result, the overhead due to
the application increases, requiring additional machines
that have to serialize/deserialize further messages. Another
positive consequence of the pattern is that it increases the
maximum operational frequency because the load gets split
among different nodes. The response time gets reduced by
the fact of using parallel computation, but the application
also suffers an increase in overhead associated to the extra
serialization/deserialization work.

The fission pattern increases the maximum input fre-
quency of an application by parallelizing heavy stages of an
application, which are split to several nodes to be merged
later. However, this is done at the cost of adding extra compu-
tational overhead that requires extra utilization. On the other
hand, the response time gets reduced by use of a parallel
infrastructure and only gets increased by serialization/
deserializationmechanisms.

The frequency modifier pattern filters inputs and/or out-
puts, thus decreasing application costs. However, it may
also increase response time due to unexpected latencies that
might happen during filtering. The pattern has benefits in
terms of utilization, which gets reduced, and maximum
input frequency, which gets increased.

The fusion pattern groups processing stages by decreas-
ing maximum input frequencies. A positive effect is that it

decreases utilization costs and response time, because seri-
alization and network overheads disappear.

Lastly, the placement pattern uses information about the
cluster and the application to select in which computational
unit each processing stage is going to be hosted. The main
advantages of the pattern are that it is able to increase the
maximum input frequency supported by the system reduce
response times. Another positive aspect of the pattern is
that demanded utilization is decreased.

6 CONCLUSIONS AND ONGOING WORK

Distributed application processors allow the implementa-
tion of big data applications that require a continuous
application of information to be analyzed. Part of these
applications (like, for instance, HFT systems) have end-to-
end quality-of-service requirements and may benefit from
the use of real-time techniques. Taking this into account,
in this paper a catalog of six patterns to develop real-time
stream processing applications has been defined. The pros
and cons of the different patterns have been exposed, as
well as an analysis of the impact in performance that can
be expected due to their usage. Results show that these
patterns may have an important impact on some critical
performance indicators of applications such as maximum
input frequency, total processing cost and local or global
utilizations. All patterns have shown a great potential
and, therefore, are in our opinion relevant for application
developers.

Our ongoing work comprises three interrelated research
lines. The first one is the adaptation of these patterns to the
context of RDF application processors, analyzing the over-
head of semantic-web technologies [42]. Our second active
research line turns on the applicability of these patterns in
industrial environments [30], [44] that could benefit from
the use of distributed processors. Finally, we also plan to
deploy these patterns in complex distributed applications to
analyze their mutual inter-relationships in depth.
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