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Abstract—In recent years, big data systems have become an active area of research and development. Stream processing is ona of
the potential application scenarios of big data systems where the goal is to process acontinuous, high velocity flow of ifomation
items. Highfrequency trading (HFT) in stock markets or trending topic detection in Twitter are some examples of stream processing
applications. In somecases (like, for instance, in HFT), these applications have end-to-end quality-of-service requirements and may
benefit from the usage of realtime techniques. Taking this into account, the present article analyzes, from the paint of view of real-time
systems, a set of pattems that can be used when implementing a stream processing application. For each pattem, we discuss its
advantages and disadvantages, as well as itsimpactin application performance, measured as response time, maximum input

frequency and changes in utilization demands due to the pattermn.

Index Terms—Real-time pattems, stream processing, bigdata

1 INTRODUCTION

BIC-DATA systems are one of the technologies marking an
important momentum [1], (2], (3], [4], [5). They are char-
acterized by the need of processing huge collections of data
that are difficult to process using traditional techniques
and, thus, require specific processing tools. As indicated in
[8), a variety of data intensive appli cations can be developed
with a big data infrastructure, including applications like
the Hadron Collider, the solar observatory of NASA, or
Facebook. Many of them need to deal with some of the five
V’s of big data systems, which refer to great volumes of
data, ranging from Terabytes to Exabytes, high velocity to
process incoming data, variety in incoming data, and, more
recently, veracity and value requirements.

Around it, several new frameworks have being created,
including Hadoop [9], Storm [10], Spark [11] and Samza
[12], which target different applications needs. Though
many of these frameworks are still maturing, they are con-
tributing new computational paradigms such as map-
reduce [37] and distribu ted-stream processing [2], [4], [7],
[8]. These frameworksé may prop up or give support to the
development of big data applications that reside in a local
cluster hosted in the Internet.

Another characteristic of big data applications is that
they often need to meet real-time requirements [13), [14].

For instance, the Hadron collider produces a 300 Gb/s
stream that has to be filtered to 300 Mb/s for storage and
later processing. This is also the case of high frequency trad-
ing systems, which have sub-second deadlines that have to
be met. Lastly, another case of big data analytics that faces
temporal restrictions is the trending topic detection algo-
rithm used in Twitter to show a dynamic list with the most
popular hashtags. The Twitter trending topic detection
application is the case of a big data scenario characterized
by velocity, with operational deadlines of up to 2 seconds to
outputan updated list of trending topics.

Among the different technologies [2] supporting big data
applications Hadoop [9] and Storm [10] stand out. The for-
mer is targeted at batch computing, that can take minutes,
days or even months to compute. The latter is targeted at
online computing made on machines that have to process
data with sub-second deadlines by means of parallel and
distributed computing techniques in order to increase maxi-
mum input frequencies in application nodes. However,
from the perspective of a real-time system those technolo-
gies are not the most efficient infrastructures to meet dead-
lines, because they lack the support required to assign the
different pieces of a distributed application to a certain
com putational node [12], [13].

Furthermore, from the perspective of a real-time system,
there are important problems such as defining what a real-
time big data system & and what a proper infrastructure to
support the system is. Although some pioneering research
initiatives provide partial approaches [12], [13] [31), [32],
[63], they are far from producing commercial solutions. The
real-time community has not yet defined the bounds and
limitations of these new real-time systems. Some pioneering
work trying to go in that direction includes [14), [15), aiming
at making map-reduce a real-time facility, [16], [17], [18],
[19), [20) developing theoretical models for paralle] and dis-
tributed infrastructures that speed up big data applications,
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and [21], [22], [23], specific studies that relate the cost of an
application to its performance. However, there is still no
mature drawing of what a real-time big data system is.

In the particular case of big data applications aimed at
stream processing, one of the multiple difficulties in their
development is the lack of a general catalog of computational
patterns relating the differences in cost of these patterns to
their response times [36]. Although some work along that line
exists [13], [21], [22], mainly focused on high-performance
computing, they are far from producing operational catalogs
that can be revamped from a real-time systems perspective.
For instance, [21], [22] proposed a series of patterns for data
stream processing. However, these patterns are more focused
on high-performance than on real-time predictability. From
their perspective, our work adapts previous models from the
high-performance computing scene to the real-time scene. In
addition, some authors [13] have used a real-time version of
Storm to analyze different implementation strategies from the
point of view of their impact on application response times.
These strategies are addressed on our work in a more proper
way by analyzing their individual performance in small
benchmarks that determine the impact that a certain type of
pattern has on the response time of the application and the
maximum input frequency of the system.

The work could also be applied to a number of previous
distributed stream technologies: Stream [47], [48], StreaMIT
[49], Aurora [50], Flextream [51] and the novel Spark [11]
and Storm [10] initiatives. These technologies may profit
from the patterns described in order to meet their applica-
tion deadlines in an efficient way. Currently, all of them are
focused on efficient (high-frequency) response times, but
they have set meeting application deadlines aside. From
this perspective, they may benefit from the scheduling
model and the catalog of patterns described in this article.

The rest of this article is focused on developing the cata-
log of patterns for real-time distributed stream processing
applications. Section 2 presents the state-of-the-art, where
different patterns are introduced and their relation with this
work are analyzed; it also describes different techniques
that can be useful to develop real-time stream processing
systems. Section 3 describes the stream model used in the
evaluation of these patterns, as well as the scheduling
model. Section 4 describes the patterns catalog. Section 5
evaluates the performance of each pattern. Section 6 con-
cludes the paper and describes our ongoing work.

2 STATE-OF-THE-ART

2.1 Programming Patterns for Big data
There is a set of programming patterns useful to develop big
data applications [13]. In a technological plane, map-reduce
[37] offers different patterns for different processing stages
including summarizations, filters and data organization,
join, and input and output design patterns. Some authors
[46] have illustrated the performance one may expect from
some map-reduce policies. They show how the use of incre-
mental policies and data placement may be beneficial from
the point of view of the application.

Another type of big data infrastructure refers to data bases.
In this arena, there are some technologies such as Cassandra
[39] that offer a catalog of patterns that may impact on perfor-
mance. For instance, the type of patterns defined in [39] are

focused on avoiding some types of configurations that may
result in low performance, such as storing an entity in a single
column or mismanaged atomic updates. The performance
results reported in [39] refer to batch processing applications
meanwhile our contribution is focused on stream processing,.
Due to this, the analysis of the state of the art is focused on dis-
tributed stream processing and real-time computing.

2.1.1 Distributed Stream Processing Patterns

The first set of patterns refers to distributed stream process-
ing and some current technologies like Storm [38]. Referen-
ces like [38] explain the different type of semantics, useful
for application development. Unfortunately, it does not pro-
vide a basic catalog of patterns that can be used as a depart-
ing point to develop applications that have to meet
deadlines. This is the contribution of our article, which pro-
vides this basic catalog of patterns to develop big data appli-
cations for stream processing.

There is a large tradition in distributed stream processing
before the launch of Apache Storm, in academic and com-
mercial fields. In the academic arena, there are a number of
systems that support different stream abstractions such as
Stream [47], [48], StreamMIT [49], Aurora [50], Flextream
[51], River [52], Cayuga [53] and Naiad [54]. None of those
academic approaches seems to be focused on meeting dead-
lines, although some of them could be easily extended with
the infrastructure proposed in our article to support end-to-
end deadlines. The main problem in all of them seems to be
that they were not designed to meet end-to-end deadlines.
Commercial systems include Apache Samza [7], Storm [8],
and Spark Streaming [9]. Most of those commercial systems
have been oriented towards low-latency but they have set
aside the definition of end-to-end deadlines in streams.

In the specific case of stream computing [28], [29], [31],
[32], there is a set of techniques that may have an impact on
the application utilization. In [22] a catalog of ten patterns is
proposed. These patterns are analyzed in the context of gen-
eral-purpose applications (not with applications that have
to meet deadlines). For each pattern, the authors analyzed
its impact on the graph of the application (which may be
changed or unchanged), the application semantics, and
their on-line and off-line behavior. Our article includes a
shorter catalog with six patterns; four share commonalties
with [22] and two are specific for the real-time domain. In
order to illustrate and evaluate these patterns, a scalable
real-time trending topic detection application running on a
real-time version of Apache Storm [13] has been developed.
This short catalog refers to the minimum number of pat-
terns required to develop this type of applications.

The relationship with [22] is analyzed in Table 1. In the
definition of a useful catalog, our catalog removed those
optimizations (reordering and redundancy elimination)
that have not been used to develop the trending topics
stream application. From the perspective of a real-time ver-
sion of a distributed stream processing infrastructure, there
are very useful techniques: operator separator, fusion and
fission, which have been reinterpreted from the perspective
of a deadline-based application. In addition, the strategy
defined in placement has been reinterpreted from the per-
spective of worst-case computations, using the pattern to
allocate stages to nodes in an efficient way. 2



TABLE 1
Comparing this Work with Existing Techniques and
Optimizations

Technique . Changes
optimization name This work in DAG
Operator reordering N-I (assumed perfectly Y
ordered streams).
Redundancy elimination N-I (assumed efficient Y
design)
Operator separation Adapted to meet deadlines Y
Fusion Adapted to meet deadlines Y
Fission Adapted to meet deadlines Y
Placement Re-interpreted from the N
point-of-view of a deadline
based system
Load balancing N-I N
State sharing N-I N
Batching N-I N
Algorithm selection N-I N
Single stage Y
(goal of avoiding unneces-
sary distribution and par-
allelism)
Frequency modifier Y

(goal of reducing stream
computational demands)

N I: refers to non integrated.

In addition, our catalog added two new patterns: single
stage, useful to join all the scattered stages of a stream into a
single stage, and frequency modification, which is useful to
reduce unnecessary activations in a stage. The comparison
also draws on changes carried out on the structure that
defines the stream processing stages (called DAG: directed
acyclic graph).

2.2 Real-Time Parallel Computing

Currently, the real-time community is extending the classi-
cal computational models to take advantage of the support
given by multi-core infrastructures to the development of
parallel applications. All these pieces of work have an
important impact on the infrastructure required to run big
data applications because, typically, big data applications
cannot be hosted in a single node, but comprise several
interconnected nodes.

Among the list of available approaches, some remarkable
work are [17], [18], [19], [20], [35], which collectively deal with
the needs of some of the most popular computing paradigms.
In [17] the authors considered the multi-core scenario and
proposed a parallel synchronous model inspired by the primi-
tives of OpenMPI. Each application is composed of segments,
which can be parallel and /or sequential. The model includes
task composition, which divides the input into different
flows, as well as the use of partitioned deadline monotonic
approaches, which enable establishing global utilization pat-
terns using different allocation techniques. Reference [20] pro-
vides a parallel execution model for cyber-physical systems
with low-level scheduling techniques similar to those pro-
posed in this article. However, while their work is more
focused on a lower level programming model (parallel tasks),
our work is focused on a higher-level computation model
based on streams. Finally, [35] offers techniques for system-

on-chip infrastructures to meet deadlines. The relevant differ-
ence with [35] is in the application domain that in [35] seems
to be targeted to low-level tasks, while our approach is for
stream processing.

The computing model described in this article, which has
been extended from [13], [14], is slightly different from [17].
It is based on the stream model offered by Storm, where
each stage of the application may have a different input fre-
quency in order to increase its end-to-end performance. The
patterns proposed in this article are also interesting for [17],
as they use their computational models to process different
streams, like those coming from heavy sources like Twitter.

Another set of work ([18], [19], [23], [60], [61], [62]) are
related to the scheduling of parallel tasks on multi-core pro-
cessors. Their computational models are mainly based on
the fork-join tasks and the authors describe end-to-end
interactions as a set of sequential and parallel steps. The
authors also provide a set of scheduling algorithms in
charge of partitioning the system using fork-join primitives.

In addition, some authors [15], [16] have worked on the
definition of a real-time version of map-reduce from a practi-
cal perspective. For instance, [15] has analyzed the problem
using a constraint satisfaction problem and has introduced
several heuristic strategies for this formulation. By using
their constraint model, an off-line setting for map-reduce
jobs is formulated, which is later on applied in the on-line
scenario. Likewise, [17] deals with the heterogeneity in nodes
and the differences in map-reduce tasks, proposing new
scheduling algorithms that take into account these costs.

The distributed stream processing model described in
our article has roots in distributed real-time Java [55], [56],
which have been adapted to the internals of Apache Storm
to produce a real-time version of Storm. The idea of the
scheduling framework is to provide a simple computational
model able run in an Apache Storm engine. It is also based
on [57], taking the idea of independent releases (that have
no release jitter) and on [58] for the idea of a formulism for a
partitioner based on utilization for a multiprocessor system.
Another advantage with respect to previous approaches is
that it is easier to understand and to compute. Other
approaches need the use of iterative and computationally
expensive techniques based on heuristics to obtain response
times (e.g., using [59]) that have to take jitter into account.
Also, the implementation of the techniques as part of an
Apache Storm stack is easier with the proposed framework
than using the parallel techniques ([60], [61]), which do not
map so easily to the programming model of Apache Storm.

The patterns proposed for streams are also feasible for a
map-reduce infrastructure, but their adaptation needs to be
explored in a different piece of work.

3 COMPUTATIONAL MODEL

In the real-time context, a real-time stream is defined as a
continuous sequence of data or items whose processing has
some real-time requirements like a deadline from the input
to the output. This model is a simplification taken from [14],
where the authors produced a programming model based
on a generalized version of Storm. It is also compatible with
the computational model of Storm described in [33], [34],
which is focused on the definition of different scheduling
policies for Storm. 3
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Fig. 1. Three applications with different deadlines.

3.1 Stream Model

The proposed model defines a bundle as a set of applica-
tions, where each application is characterized under the
constraints of a directed acyclic execution graph. The exam-
ple included in Fig. 1 shows different types of applications
with different deadlines.

Formally, an application bundle (Bundle) is defined as a
set of n- applications: APP, to APF, that may run concur-
rently,

Bundle € (APP,, ..., APP,) W)

Likewise each application (APF,) is characterized with its
maximum input frequency (F;), a computational end-to-end
deadline (D;), and a set of stages (5;) arranged as a directed
acyclic graph.

APP, © (F., D;, S) 3]

For each application, there is a graph (S;) composed of a
finite number (stg()) of stages. Each stage of the graph has
a maximum execution time (C?) defining the maximum
demanded execution time for each stage of an application:

Ci
i (3)
C:?iy(%)

The invocation of stages has been enforced to use a maxi-
mum inter-arrival invocation frequency pattern to control
the arrival of different items of a stream. This constraint
avoids the problem of jitter activation, described in [57] and
[59], thus producing simpler scheduling frameworks.

Si=

3.2 Computational Infrastructure
The type of cluster used to deploy this model is based on an
architecture that supports a large number of regular proc-
essing units called CPUs (see Fig. 2). Each execution unit is
connected to others. In addition, it is assumed that the infra-
structure runs a fixed priority scheduling system in charge
of running each stage of the application in a proper execu-
tion unit. This type of support is enough to use multi-pro-
cessor real-time scheduling techniques [25], [26], [27] in
combination with other scheduling policies.

Formally, there are m-interconnected machines each one
providing an execution unit (called CPU in Fig. 2) that may
host different stages of an application:

Cluster & (Tpnitis) 4)

Each machine in the cluster supports a preemptive prior-
ity based scheduler and contributes its utilization (U; < 1.0)
to the total available utilization (Ugir),

XX 1K

CPU CPU CPU CPU

Fig. 2. Execution infrastructure arranged as a cluster.

Ua:.m'f — i U—t (5)
i 0

3.3 Fully Described Real-Time System
To be fully characterized, all stages of all applications
should be assigned to a machine of the cluster (r}), a prior-
ity (Pj ) assigned for its execution, and have a maximum fre-
quency (F?).
(%, 5l =) ®)

Once the application is characterized, we calculate global
application utilization (U,,,) needs as partial contributions
of all the stages in all the applications, each one contributing
its maximum utilization needs (U 4p5),

n stgli)

3.3.1 Schedulability Analysis: Response Time and

Utilization
After allocating (using a worst-fit policy to be compatible with
[58]) each stage to one element of the cluster, the end-to-end
response times may be calculated as arbitrary sequential or
parallel stages that contribute worst-case response time. For
sequential stages, worst-case computations are calculated as a
summation of the different individual contributions,

(i)
(rtj ) (8)

.E

Tt“‘?{ i)

-

J

Likewise, parallel stages derive worst-case computations
as the maximum cost in all parallel stages,

o)

k =max(rt€) with §in 1 .. par(i) 9)

To derive the interference with several tasks (supporting
stages) running on the processing unit (CPU), response time
analysis (RTA) [27] combined with periodic enforcers may be
used. They offer the following recursive equations to calculate
the worst-case computation time () of a task-set:

i 1
i1

RTA enables to compute the response time of a task set
using the demanded computation time (C) of all tasks and
its maximum activation frequency (F) in an incremental
way by adding partial contributions of all other tasks (or
applications). Blockings (B) allow not only the modeling of
local interference but also of the effects of a general purpose
network. Therefore, our previous equation for response
time is transformed into: 4
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Under a constrained scenario, with B+ 1/F = D in all
stages, it is also possible to define a sufficient (but not neces-
sary) bound to the number of computational units (m) nec-
essary in a cluster to support an application (see [55] and
[58]). It is done as a partial demand of the stages which con-
tribute to the total utilization of the bundle (U, .),

Upnae = Y_(C1-Fl) < (m=-1/2)-@) (2

Vi, j

One of the advantages of Eq. 12 is that it may be used to
offer online admission control using a global partitioner.

3.4 Performance Indicators for Patterns
The following performance indicators have to be taken into
account in the evaluation of patterns:

- Application utilization (U,,,). One of the evaluated
indicators is the total utilization carried out at each
stage of the application as well as the whole applica-
tion. The goal of this indicator is to determine the
local and global costs involved in processing an
application. It is also useful to concretize the perfor-
mance one may expect from this type of infrastruc-
ture. The use of different patterns is expected to
have an impact on the utilization of the application.
For instance, some may require extra computations,
which adds extra overhead to the application.

- Maximum input frequency for a given application. For
some patterns one may also determine properties
related with the maximum input frequency and the
parameters of the application. This is important,
because many applications need to process inputs
with a frequency a single computational unit is unable
to handle, especially in stream-based applications
with high-frequency input data. In general, the higher
the input frequency the application may deal with,
the better the system is. It is expected that the use of
different patterns enable the possibility of increasing
the input frequency of an application (e.g., by shifting
part of the data from one machine to another).

- Qverhead of the proposed pattern and tradeoffs. Many
patterns have on impact in the application in terms
of overhead. Some patterns are able to reduce the uti-
lization of the application while others increase it.
Unfortunately, not all applications benefit from all
patterns. Therefore, for each pattern, a careful evalu-
ation is needed to determine a range of application
scenarios in which the use of the pattern is just
slightly beneficial or even counterproductive.

- Response-time of the proposed pattern. It refers to the
maximum time required for processing an item of a
stream. The calculation of the worst-case response
time requires solving out an equation in the evalua-
tion scenario.

- Expandability of the proposed pattern. Expandability
(EXP) refers to the maximum number of times an

APP;
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Fig. 3. Single stage application pattern.

application can increase its current input frequency.
For a given application, we define the maximum
expandability (EXP) in frequency as a minimum
local expandability in all stages of an application.

- Utilization of an application (Uapp;))). Tt is defined as
the contribution of each different stages of the appli-
cation to the utilization demanded by the application.

4 CATALOG OF PATTERNS

This section describes the catalog of six patterns for real-
time application processing systems we propose. Each one
is presented in a similar style as those described in the origi-
nal catalog [22]. Each pattern has a dedicated section that
includes a high-level description of the pattern and its for-
malization in terms of the scheduling framework described
in the previous section.

4.1 Single Stage Application Pattern

The first pattern in the list is the single stage application pat-
tern (see Fig. 3). In this pattern all stages of an application are
transformed into a single stage, which contains all the execu-
tion logic of the application. This type of pattern is beneficial
from the perspective of reducing communication overhead,
typically associated to the reception and transmission of mes-
sages. This pattern minimizes communication overhead.

On the other hand, this pattern has a harmful behavior
from the perspective of parallelism, because it limits the
concurrent execution of application stages. Being focused
on its logic, single-stage application applications cannot
benefit either from the effect of pipelines, the parallelism of
the tasks, or the parallelism in the input data.

The pattern is also useful for improving performance
because it reduces the penalties due to communications
(e.g., serialization issues, and message transmissions).

The utilization of all stages (Uspp(;)) of an application
(APP;) is calculated as follows:

stg(i)

Uspp, = Z (Cf;u?a- i F;iPPé)

3k

(13)

After regrouping all stages into a single stage application
(named ), the global utilization associated to the single-
stage application gets reduced because the cost associated
to each stage decreases (no serialization is required for the
communications),

Uapp, = (C}QP&; I ,quP,.r) 14

In this way, the utilization saved by the pattern (Usgyeq) is
defined as the difference between the two previous utiliza-
tions,

Umtled w UA PP; — UA FFy (1 5)
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Each stage has a maximum available utilization
(Uawit(ape(iy)) that can be used to expand local hosted stages,

EXP { mmll:l_A'PP i}) avmlia:E 1},&?’?(1! (16)
min i3 st i (i}
ARR A'P'Pt Y -\'F"P(l} C -\E‘P}u} MS';TIJ’J}

Because of the single stage pattern, the maximum
expandability (EXP) transforms into,

Uavail(1,APP(i")

EXPypp, < an

Cipp) - Fappw)

In principle, the main concern with this pattern is that it
limits the maximum processing frequency of the application
at the cost of removing also some benefits. Nevertheless, it
can be useful for some applications with a reduced utiliza-
tion demand.

4.2 Operator Separation Pattern

The catalog continues with the operator separation pattern
(Fig. 4). This pattern suggests separating a stage into two, in
such a way that the factor of use of each one of them is indi-
vidually reduced. The division of work increases applica-
tion response time, due to the extra transmission costs.
However, on the other hand and in exchange for those costs
of transmission, the application increases its parallelism.

As shown in Fig. 11, the pattern splits one stage into two
(from S! to: S} — S7). Therefore, there is an increase in work
demanded to process the application (Ueyra), which is
described as follows:

Uertra = Uappr — Uapp, = (C:l’ +C+ Cal) : F;IQ.FP'-: (18)

Potentially, there is also an increment in the input fre-
quency because one stage is split into two, increasing paral-
lelism. With respect to maximum expandability (EXP), the
system designer has to remove this expandability constraint
referred to the initial application (APF;),

Uavail(1 APP(i))

EXPypp, < & (19)
JAPP(i

FAPP{1

In addition, two new constraints associated to the divi-
sion phase have to be considered,

Ua.va. !
EXParm, < i, APlP{ i)
Chee ) - Fappg)
and
Uavail(2 APP(i"))
EXPppp, < ro I W (20)
CAPP(H Farp(n

% o8
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Fig. 5. Fission pattemn.

4.3 Fission Pattern
This pattern deals with parallelism. Its mission is to divide
the computation graph into several branches, which are
computed in parallel to be later merged (see Fig. 5). Poten-
tially, the pattern is useful to increase the degree of parallel-
ism of the application when the input frequency of the data
is very high and cannot be processed with a single computa-
tional unit. The advantage is that this type of pattern
enables higher input frequencies and reduces end-to-end
response-times. However, this is done at the cost of adding
extra overhead associated to distributed communication.

The first impact of the pattern is an increase in the utiliza-
tion because it requires several stages. A first stage is in
charge of splitting the application into different branches
(z), each one running part of the application, to be merged
later at a final stage.

The extra computation (I .+r,) needed to implement the
pattern is the following:

Us::tm = UAPR’ == UAPH = (C;P[“J + C‘::“'Q—T:) < Fa' (21)

In addition, the constraints referring to the maximum fre-
quency of the application should not consider the con-
straints associated to the stage that is going to be fissioned,

Uava.i]{x,APP{ i)

EXPapp < (22)

GCAPP(i) 'FiPP(i)

Instead, they should consider the new constraints intro-
duced by the splitter (split), the merger (merge) and each
parallel branch generated for the fission pattern:

Uava.ll (split—x, APP(i"})

lit
EXP;:?DPJ = Csplrt_‘x F?pllt_}. (23)
APP(?) * T APP(i")
Uav il{mrg_x. ¥
EXPIT < g (24)
APP({) " T APP(Y)
Uavail{x,APP(i')) "
EXPlppy < = —— Vaqin[l,7] (25)

CiPP(F) 'Fjpp(if)

4.4 Frequency Modification Pattern
In some cases applications can modify their data rates by
means of a filtering operation, reducing the input rate at the
next stage in the application (see Fig. 6). In this type of cases
the operation frequency can be changed to reduce the num-
ber of activations. With this approach the maximum utiliza-
tion required by the application is reduced.

Formally, the pattern changes the arrival of items to the
processor reducing the input frequency of the@pplication.
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Typically, the change in frequency affects the utilization of
the application, which gets reduced as its input frequency
decreases. It increases also the maximum achievable fre-
quency for an application.

The savings in utilization (Uq.q) demand for a simple
stage are the following:

F=
Usaed = Uspp, — Uapp, = (CF- FF) — (Cff j) (26)

In addition, the constraint for the maximum frequency
gets increased by a factor proportional to the reductions in
frequency:

EXPAPF;-; “_: w - EXPAPP-, (27)

4.5 Fusion Pattern
The fusion pattern (Fig. 7) is similar to the single stage pat-
tern seen previously, and shares many of its problems and
advantages. Basically, this pattern groups two adjacent
stages to create a new one. The rationale of this pattern is
that, by grouping two stages the latencies are reduced,
because communication costs are minimized. Furthermore,
by having several of these elements in the same machine the
individual utilization of the node can be increased.

The fusion pattern tends to reduce the amount of
required resources. The utilization saved (Usgyeq) is:

Usaved = Uarp, — Uapp, = (CT+CT*') -Ff —C5 - Fy
(28)
Potentially, it also decreases maximum application fre-
quencies, because merging items may be a heavy process.

The system introduces this single constraint on the maxi-
mum frequency,

Ulvail(x APP(?))

EXPgpp1 < (29)
CiI-’P(i’) 'FiPP(i")
1t also removes the two sequential stages constraints,
Uava' ¥ i
EX By, &R (30)
C:\PP(i) - Flreg)
and
EXPapp < Usvail(x+1,APP()) 31)
P = 1 1
C]K;P{i) 'FTI;P{E)
APP, APP;
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Fig. 7. Fusion pattern.
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4.6 Placement Pattern

The last pattern of the catalog is in charge of location. In par-
ticular, it enables the application to use information about
temporal properties of the application and the cluster infra-
structure to allocate different processing stages of the appli-
cation (see Fig. 8). In order to choose the right location for
each stage, this pattern takes into consideration irregulari-
ties of the system. In the terminology used in this article, an
irregularity refers to a change in the conditions of the sys-
tem in charge of processing the application. In the particular
case of this scenario, it refers to differences in the perfor-
mance of processors and the networks that interconnect
them. The greater this asymmetry, the greater the costs of
execution in this type of systems, because they have to be
dimensioned for the worst-case.

The logical suggestion is to give explicit instructions on
where to place the different stages that compose a stream
processing application. The goal is to avoid sending over the
network portions of state that are in the same computational
unit. The cost of this type of strategy is the need of additional
information about the type of application that is being devel-
oped. This information has to be combined with the infra-
structure scheme to produce a proper configuration.

To model irregularities, the concept of asymmetry utili-
zation (U,,,) measures the percentage of CPU time lost
due to the lack of an ideal infrastructure. It is defined as the
difference between the ideal and the available utilization,

- Umn‘a'f (32)

Uasym = Ureal

Each computational unit contributes to increase global
asymmet‘y (Uemtra);

Ueztra = z Uasym (3) (33)
i 0

Asymmetry reduces with the maximum frequency of an
application, which gets reduced by the asymmetry coefficients
in all nodes where the infrastructure presents asymmetry:

EXPupp, < EXPuapp. Uy iy with j in 1 .stg(i)  (34)

(8.7

5 EVALUATION OF THE PATTERNS

This section includes the evaluation of patterns previously
formalized in Section 4. For each pattern, this section
describes the main performance changes and the main char-
acteristics of the applications.

5.1 Evaluation Infrastructure

The evaluation was based on an application that processes
application micro-blogging messages coming from Twitter.
The application is able to generate a trending topics list in less
than one second for different input data frequencies ranging
from 0 Hz to 10 kHz. The used infrastructure showed that the
patterns validate an application processing 107millions of
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Fig. 9. Architecture used for the evaluation of applications.

data per second in a cluster with 40 machines. In this scenario,
it may offer sub-second end-to-end performance using Eq. 12
to determine the number of machines required to meet a
deadline. This application processes strings with variable
length to carry out variable size computations. The applica-
tion benchmarked receives strings, processes them and sends
results forward. This type of application is common in many
information systems in charge of counting word occurrences
or detecting patterns in text (see [41]).

In the case of the trending topics application we use as
case study, the main difference between a stream based
algorithm and an algorithm based on static data is their pro-
gramming model. With static data, the algorithm has access
to all the tweets. It needs to query the ones it needs (e.g.,
those tweets that were published in the last 30 minutes) and
construct the word counting tables from them. In the stream
based case, new tweets arrive dynamically and their words
need to be counted as soon as they arrive. In addition, mech-
anisms are needed to subtract the words of the oldest tweets
from the counting table (e.g., those older than 30 minutes).

The software stack used for the evaluation refers to a
COTS infrastructure with a reduced version of Apache
Storm 0.9.3 installed (see Fig. 9). Although the costs are
referred to Apache Storm, the proposed pattern catalog is
general enough to be implemented in other frameworks
(e.g., Spark) or ad-hoc infrastructures supporting the pro-
posed communication facilities.

In addition, notice that all benchmarks are referred to a
single application in isolation. This type of approach can be
also useful for computational nodes sharing data coming
from different inputs, especially in those strategies based on
CPU reservation techniques that guarantee a minimum
available time [24], [27]. Our test refers to a scenario with
machines connected with a network (see Table 2). The mini-
mum latency of this stack is 300 microseconds and accounts
for serialization overheads which are included as a commu-
nication cost. The measure takes into account the time
required to switch the context and part of the execution of
processing overheads. Due to the use of a middleware such
as Storm, one has to deal with this type of worst-case com-
munication overheads. Low-level approaches based on mod-
ifying the operating system reduce those times remarkably.
However, many of the facilities offered by Storm (such as
automatic acknowledgement of messages and other recov-
ery mechanisms) would not be available for programming.

TABLE 2
Test Application Characterization, Software-Stack
and Infrastructure

Test Application Characteristics

Application Processing From (0.3 to 100 ms
(worst-case) Costs
Input Frequencies

End-to-end Deadlines

From 1 to 10 kHz
Strict end-to-end deadlines
from 100 ms to 10 s.

Messages: Strings from 10 bytes to 10k Bytes

Characterization and Communication costs from 0.3

worst-case costs to 2 X ms (network +
infrastructure overhead).

Software Stack

RT-Storm rt-storm-0.9.3.10

0.5S. rt-linux kernel.3.2

Infrastructure

Nodes 40

Cores per CPU 1

Core speed 1,197 Mhz

Memory 8 Gbytes

Network 1 Gigabit/s

The application also benefits from many of the mechanisms
included to synchronize streams available in Apache Storm
such as its bolt and spot programming model.

In addition to the trending topic application there is also
a synthetic benchmark derived from the trending topics
application. In the synthetic benchmark, input frequencies
moves from 1 to 10 kHz and the cost of processing data
moves from (.3 to 100 ms. In addition, the communication
model introduces communication blockings that are in the
range of 0.3 to 3 ms.

5.2 Single Stage Application Pattern
5.2.1 Profitability

To show the benefit of the single stage application pattern, the
case of a simple application with a set of n-sequential stages
(Fig. 10) is analyzed. This application is running on a unique
computational unit, which executes all the stages in the pipe-
line. The application has a total application cost of 0.8 ms,
which may be split into several computational units. This
value is representative for the characteristics of the applica-
tion we want to model (see Table 2), which is part of the
benchmark.

In addition, the messages required to communicate each
node have maximum response time costs of 0.7 ms. The
potential maximum frequency of the input data ranges
from 0.1 Hz to 100 kHz. This type of application is compati-
ble with the application requirements described in Table 2.

@

——
Com. time= 0,7 ms
Splittable work= 0,8 ms X
Single Computational Unit CPU
Fig. 10. Single stage pattern evaluation scenario. 8
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In this scenario, if the different application stages are
grouped, computation time will be saved. This is mainly due
to the serialization/deserialization costs of communications,
which disappear, resulting in shorter response times. This is
shown in Fig. 11, which analyzes the utilization of the appli-
cation for different input frequencies when different types of
setups are used (1, 3 or 5 processing stages). Utilization time
grows when the number of stages that compose the applica-
tion diminishes, because communication between two adja-
cent stages is not longer required. Thus, the performance is
degraded as the number of stages that compose an applica-
tion is increased. In the example, the maximum input appli-
cation frequency is 1 kHz for the single stage setup.

Complementing the previous results, Fig. 12 shows the
reductions in response times that can be obtained by group-
ing the different stages that compose an application. The
figure shows that the benefits of this pattern on the cost of
the application are bigger for higher number of stages
because their associated communication overheads are
higher. For example, in the analyzed scenario, response
times will be reduced to 58 percent when the application is
composed by 5 stages.

5.2.2 Unprofitability

Unfortunately, a monolithic application does not turn out to
be the best for all cases, especially when the application
requires more than one computational unit. In that case,
applications cannot be processed properly and, thus, some
mechanism to harness parallelism is necessary. The main
source of unprofitability is that maximum frequencies
achievable for the application get typically reduced when
the application runs on single model (reducing the maxi-
mum speed required for the processing of an application).

Utilization in different scenarios
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Fig. 14. Single stage unprofitable scenario: Application utilization. U(1)
refers to the utilization taken in the first CPU for the application alloca-
tion, U(2) to the second CPU and U(T) (U4 + U2) to the total utilization
that takes into account both CPUs.
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Fig. 15. Single stage unprofitable scenario. Dependency of the maxi-
mum response time with the input frequency of the application.

Reusing the previous example, Fig. 13 explores what
happens when a new computational unit is added to the
infrastructure. In this case, the monolithic application (S})
will not be able to use two computational units, but if the
monolithic application were split into two pieces (namely
S{- and S} its processing speed would increase in scenarios
with two or more processors.

Complementing the scenario described in Figs. 13 and 14
shows the utilization of each one of the parts that compose
the application and its contribution to the utilization in each
computational unit. These results are obtained for different
operation frequencies ranging from 1 Hz to frequencies
higher than 1 kHz. The first thing to note is that it is not possi-
ble to work with a single computational unit at frequencies
higher than 1.3 kHz. From that frequency on, it is not possi-
ble to continue and one must resort to two computational
units and to a proper application partitioning that assigns
different application stages to different computational units,
thus incurring in overheads associated to unit-to-unit intra
communications. Fig. 14 shows the results in terms of utiliza-
tion of the different computational units (U(1),U(2))
described in the scenario of Fig. 7 and the global utilization
for the application (U(T) = U(1)+ U(2)). Results are
described for the original scenario, which consists of 2-
stages, and the proposed one with a single stage pattern.

Fig. 15 shows the evolution of response time for different
frequencies. These results indicate how response time
increases due to the cost of communication. The maximum
overhead is constant as the frequency of the application
increases, until the system is no longer feasible. Results
show also the frequencies at which the system disappeared
for the different setups (single stage, two stages). From that
frequency on, the system is not feasible with that setup.

5.3 Operator Separation Pattern
5.3.1 Profitability

In order to illustrate a scenario where this type of policy has
positive effects, the evaluation assumes that the computa-
tion of each datum takes 2 ms and its transmission requires
0.7 ms (see Fig. 16). In this context, the idea of dgstributing a
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stage into two helps to reduce the utilization requested from
the application locally in each node, enabling higher fre-
quencies at the input of the application.

Fig. 17 shows the relationship between the response time
and input frequency of each application before and after
applying the pattern. Without the operator separation pat-
tern, response time is lower, until a maximum input fre-
quency reaches 400 Hz. From this frequency on, the system is
no longer feasible and its response time increases dramati-
cally. The configuration with two sequential stages may reach
600 Hz, although its response time is higher (2.7 versus 2 ms).

With respect to CPU utilizations, as shown in Fig. 18, it
increases with the input frequency until the system is unfea-
sible. Results also show how the two computational units
take more time than the single computational unit configura-
tion. This difference in time is attributed to the cost of sending
the information from one stage of the application to the next.

There is another crucial factor to take into account when
working with this pattern: the ratio between the amount of
work split and the cost of the extra communication required
to transmit this information. From the point of view of total
system utilization, the divided application is always more
expensive than a non- divided equivalent. Empirically, this
fact is shown in Fig. 19. From the ratio of equality, where
the cost of communication equals that of data processing,
an effective unloading is observed as application cost domi-
nates transmission costs. Even for low ratios, like those
shown in Fig. 19, the appreciable gap may be high and close
to 40 percent.

5.3.2 Unprofitability

Fig. 19 also helps to show the limits from which partition-
ing stops being profitable, in terms of maximum CPU

Ratio App. vs Comm. costs U ARP Horg

enlfffes |J(T)_APP_i'(split}

e U{1)_APP_i(split)=
U(2)_APP_i'(split)

Utilization

Wounun
[ S
- -

Ratio (App/Coms)
Fig. 19. Impact on the utilization of the application. In the experiment,

origrefers to the non split scenario utilization total demanded utilization,
and U(1) an U(2) to the individual utilization on the split scenario.
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Fig. 21. Different application response time for fission pattern evaluation
scenario.

utilization terms. Typically, those limits appear when
applications are divided and the time necessary to execute
the logic of the application is less than the time of trans-
mission of the data from the first to the second node. In
the empirical evidence of Fig. 19, that breaking point cor-
responds to a 1.0 ratio. In the benchmarked application,
the worst-case happens at the origin, when there is an
increase of four times the total cost which corresponds
to a 0.25 ratio.

5.4 Fission Pattern
5.4.1 Profitability

An evaluation scenario has been developed to show the
properties of this type of pattern (see Fig. 20). The initial sce-
nario consists of a single application, whose load of 100 ms
is distributed between the different processors available in
the infrastructure. This load is distributed with a division
process and is grouped with a merge process, whose cost is
bounded by the communication costs (0.7 ms).

The results show the positive effect of this technique
when the appropriate circumstances are given. They occur
when the cost of processing data is higher than the cost of
sending data from one node to another. They indicate the
possibility of processing a greater number of input applica-
tion items at a low-cost in terms of overhead (see Fig. 21). In
the example, where communication costs are less than
0.7 ms, an additional 2 percent delay is added1dn exchange
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of this delay, there is a potential increase in the maximum
input frequency of more than 100 times.

These utilization results show that, for the given sce-
nario, both original and fissioned approaches have close uti-
lization figures. Results included in Fig. 22 show an
overhead under 3 percent in terms of extra computation
times required to process data.

This good behavior is in part due to the small cost of the
splitting and merging operations. Fig. 22 shows that the time
needed for splitting and merging is hundreds of times lower
than the total time required to process the application. The
configuration shows a very profitable scenario, where the
work carried out (U(T) ) surpasses the work demanded
by the splitter (U(T),,;,,) and the merger (U(T), ), with
utilizations closer for the fissioned (U(T);;,,) and the initial
(U(T) 5) configurations.

5.4.2  Unprofitability

In order to illustrate a situation that hinders the perfor-
mance of the fission pattern, the evaluation scenario is
changed to one where the communication cost is greater
than the application execution cost. In this type of applica-
tion, the fission pattern introduces a high computational
overhead, near 400 percent of the net time required to pro-
cess the whole application. As shown in Fig. 23, the results
of the scenario indicate that using a non-splitting policy
may be better than splitting. That is because communication
costs dominate the cost of processing the stream.

If the maximum input frequency of the application is
analyzed, it can be seen that the distributed configuration
produces shorter response times with higher frequency
inputs (Fig. 24), increasing global utilization.
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5.5 Frequency Modification Pattern
5.5.1 Profitability

In order to show the profitability of the pattern, a two-stage
application has been set up (Fig. 25). The first stage feeds the
second with information directly coming from its input, but
with a reduced output frequency. In this scenario, the maxi-
mum demanded work is 2 ms for the first stage and 10 ms for
the second, with communication costs always under 0.7 ms.
As aforementioned, this pattern has a positive effect in the
utilization factor, which decreases. Fig. 26 shows this fact
empirically. The results displayed show the system utiliza-
tion before the optimization is applied and after applying it.
This evaluation is defined for different frequencies and with
different decimation values. The results show reductions of
40, 60 to 80 percent of the total utilization when the input fre-
quency is decimated by 2, 4, and 8, respectively. They also
show how the technique is able to support a greater input
application frequency. In the cases studied, the maximum
application frequency increases from 100 to 400 Hz.

5.5.2 Unprofitability

One of the pernicious effects associated to this pattern is
that the maximum latency of the application increases
(Fig. 27). The observed delays range from 1 to 7 seconds
when the input frequency is low. In the cases of a higher fre-
quency, the absolute delay diminishes remarkably, increas-
ing the global utilization instead. For example, it can be
seen in those results that when the frequency is increased in
100 Hz the delays introduced by the technique are of 10, 40,
and 50 ms for different decimation factors.

Another interesting indicator to measure is the overhead
introduced by the pattern in the application response times
(Fig. 28). This increase in overhead diminishes as the
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frequency increases, because the application waits for the
arrival of an item of a stream to produce an output. From
the perspective of the computational overload, this result
implies that, as the input frequencies go up to around 1 Hz,
response times increase by 78 percent for light decimating
(1 of each 2), 236 percent for moderate (1 of each 4), and 556
percent for higher decimation (1 of each 8).

5.6 Fusion Pattern
5.6.1  Profitability and Unprofitability

In order to analyze a profitable and a non-profitable use-
case, a new scenario has been created. It is shown in Fig. 29.
Basically, it consists of a hardware infrastructure with two
computational units that process an application whose total
execution cost is 10 ms, whereas the communication cost is
0.7 ms. On this scenario, we analyze the variation of the
response time with the input frequency of the application.

The obtained results, depicted in Fig. 30, show the afore-
mentioned effects. At a first glance, the merged configura-
tion reduces application response time, but also the
maximum input frequencies offered by the system. Without
applying the fusion pattern, the maximum response time of
the application increases from 10 to 10.7 ms. However, it
also increases the maximum frequency that can be proc-
essed by the system from 80 to 180 Hz.

5.7 Placement Pattern
5.7.1 Profitability

Like in previous cases, a scenario was developed to illus-
trate the potential benefits of this pattern (see Fig. 31). In
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this case, the application consists of an application with two
stages whose cost totalizes 10 ms. The overhead introduced
by communication mechanisms is close to 0.7 ms. Therefore,
with an asymmetry of 0 all CPUs provide similar perfor-
mance. Likewise, with an asymmetry coefficient of 0.2, the
difference between the best and the worst scenarios, differ-
ence between the use of one CPU and another one is around
20 percent of the utilization available for the application.

The results of the scenario illustrate how a proper place-
ment of the application processing stages may be beneficial
because it takes advantage of the knowledge from the topol-
ogy of the infrastructure (see Fig. 32). In this particular sce-
nario, choosing the type of processor may imply differences
in response time from a minimal 5 percent for small asym-
metry to 25 percent in the most asymmetrical case. Further-
more, the scenario also shows that, by properly choosing
the computational unit to execute a processing stage, the
maximum input frequency to which the system may be
increased from 140 Hz to 180 Hz. The results shown in
Fig. 32 illustrate how the placement pattern is beneficial for
the response time of the application.

5.8 Discussion

Our proposed catalog defined six patterns, which can be
considered a basic collection of design recommendations
for developing real-time application processing applica-
tions. For each pattern, namely: single stage application, opera-
tor separation, fission, frequency modifier, fusion, and placement
pattern, Table 3 summarizes its expected impact in terms of
utilization demands, expected response time and maximum
input frequency. The results of the table summarize the
main performance indicators associated to each pattern and
refer to the scheduling framework described in Sections 3
and 4, and the test-bed described in this section. Many of
the results are also valid for other stream processing frame-
works, but they have to be properly adapted for each sched-
uling framework and application combination.12



TABLE 3
Dominant Performance Patterns Tradeoffs

Pattern Utilization Max input Response time
Demanded frequency
Single Stage  Decreases (+) Decreases  Decreases (less abstraction
Application () overhead) (+)
Increases (lack of
parallel execution) ()
Separator Increases Increases  Decreases (parallel
Operator () (-0 execution) (+)
Increases (extra communications
overhead) ()
Fission Increases Increases  Decreases (parallel
) (+) execution) (+)
Increases (extra communications
overhead) ()
Frequency Decreases Increases  Increases (adds latency) ( )
Modifier +) (+)
Fusion Decreases Decreases  Decreases (less overhead
(+) ) from infrastructure) (+)
Placement Decreases Increases  Decreases (avoids asymmetric
() (+) nodes) (+)

(+ means desired characteristic and  means undesired)

The single stage application pattern groups all stages of an
application into a single stage, decreasing the overall costs in
terms of demanded utilization. Typically, it also decreases the
maximum achievable computational frequency for the appli-
cation because it does not take advantage of the existence of a
network and/or serialization processes communicating
machines, thus limiting maximum operational frequencies.
Regarding response time, the pattern is able to reduce the
overhead due to existence of a network communication.
However, it also suffers from the lack of a parallel infrastruc-
ture able to reduce the response time of applications.

The operator separation pattern increases the maximum
input frequency of the application, by splitting work into
several sequential stages. As a result, the overhead due to
the application increases, requiring additional machines
that have to serialize/deserialize further messages. Another
positive consequence of the pattern is that it increases the
maximum operational frequency because the load gets split
among different nodes. The response time gets reduced by
the fact of using parallel computation, but the application
also suffers an increase in overhead associated to the extra
serialization/deserialization work.

The fission pattern increases the maximum input fre-
quency of an application by parallelizing heavy stages of an
application, which are split to several nodes to be merged
later. However, this is done at the cost of adding extra compu-
tational overhead that requires extra utilization. On the other
hand, the response time gets reduced by use of a parallel
infrastructure and only gets increased by serialization/
deserialization mechanisms.

The frequency modifier pattern filters inputs and/or out-
puts, thus decreasing application costs. However, it may
also increase response time due to unexpected latencies that
might happen during filtering. The pattern has benefits in
terms of utilization, which gets reduced, and maximum
input frequency, which gets increased.

The fusion pattern groups processing stages by decreas-
ing maximum input frequencies. A positive effect is that it

decreases utilization costs and response time, because seri-
alization and network overheads disappear.

Lastly, the placement pattern uses information about the
cluster and the application to select in which computational
unit each processing stage is going to be hosted. The main
advantages of the pattern are that it is able to increase the
maximum input frequency supported by the system reduce
response times. Another positive aspect of the pattern is
that demanded utilization is decreased.

6 CONCLUSIONS AND ONGOING WORK

Distributed application processors allow the implementa-
tion of big data applications that require a continuous
application of information to be analyzed. Part of these
applications (like, for instance, HFT systems) have end-to-
end quality-of-service requirements and may benefit from
the use of real-time techniques. Taking this into account,
in this paper a catalog of six patterns to develop real-time
stream processing applications has been defined. The pros
and cons of the different patterns have been exposed, as
well as an analysis of the impact in performance that can
be expected due to their usage. Results show that these
patterns may have an important impact on some critical
performance indicators of applications such as maximum
input frequency, total processing cost and local or global
utilizations. All patterns have shown a great potential
and, therefore, are in our opinion relevant for application
developers.

Our ongoing work comprises three interrelated research
lines. The first one is the adaptation of these patterns to the
context of RDF application processors, analyzing the over-
head of semantic-web technologies [42]. Our second active
research line turns on the applicability of these patterns in
industrial environments [30], [44] that could benefit from
the use of distributed processors. Finally, we also plan to
deploy these patterns in complex distributed applications to
analyze their mutual inter-relationships in depth.
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