

This is a postprint version of the following published document:

BasantaVal, Pablo; Fernández García, Norberto; Sánchez-Fernández, Luis.
Patterns for distributed real-time stream processing. IEEE Transactions
Parallel and Distributed Systems (2017), vol. 2, n. 11, pp. 3243 - 3257.
DOI: 10.1109/TPDS.2017.2716929

© 2017 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

https://doi.org/10.1109/TPDS.2017.2716929

Patterns for Distributed Real-Time
Stream Processing

Pablo Basanta Val

Norberto Fernandez Garcfa

Luis Sanchez-Fernandez

Jesus Arias-Fisteus

Abstract-In recent yeais, big data systems have become an active area of research and development. Stream processing is one of
the potential application scenarios of big data systems where the goal is to process aconlinoous, high velochy flow of information
items. High frequencytradirg (HFT) in stock markets ortrendirgtopicdetection in Twitter are some examples of stream processing
applications. In some cases (like, for instance, in HFT), these applications have end-t�nd qualhy-of-service reqlirements and may
benefh from the usage� real-time techniques. Taking this into account, the present articl eanalyzes, from the point� view of real-time
systems, a set of patterns that can be used when implementing a stream processing application. For each pattern, we discuss its
advantages and dsadvanlages, as well as its impact in application performance, measured as response time, maximum ill)Ut
frequency and changes in utilization demands due to the pattern.

Index Terms-Real-time patterns, stream processing, big data

1 INTRODUCTION

B
IG-DATA systems are one of the technologies marking an
important momentum (1), (2), (3), (4), (5). They are char­

acterized by the need of processing huge collections of data
that are difficult to process using traditional techniques
and, thus, require specific processing tools. As indicated in
(81 a variety of data intensive appli cations can be developed
with a big data infrastructure, including applications like
the Hadron Collider, the solar observatory of NASA, or
Facebook. Many of them need to deal with some of the five
V's of big data systems, which refer to great volumes of
data, ranging from Terabytes to Exabytes, high velocity to
process incoming data, variety in incoming data, and, more
recently, veracity and value requirements.

Around it, several new frameworks have being created,
including Hadoop (91 Storm (10), Spirk (11) and Samza
(12), which target different applications needs. Though
many of these frameworks are still maturing, they are con­
tributing new computational paradigms such as map­
reduce (37) and distribu ted-stream pro cessing (2), (4), (7),
(8). These frameworks may prop up or give support to the
development of big data applications that reside in a local
cluster hcsted in the Internet.

Another characteristic of big data applications is that
they often need to meet real-time requirements (13), (14).

For instance, the Hadron collider produces a 300 Gb/s
stream that has to be filtered to 300 Mb/ s for storage and
later processing. This is also the case of high frequency trad­
ing systems, which have sub-second deadlines that have to
be met. Lastly, another case of big data analytics that faces
temporal restrictions is the trending topic detection algo­
rithm used in Twitter to show a dynamic list with the ma;t
popular hashtags. The Twitter trending topic detection
application is the case of a big data scenario character ized
by velocity, with operational deadlines of up to 2 seconds to
output an updated list of trending topics.

Among the different technologies (2) supporting big data
applications Hadoop (9) and Storm (10) stand out. The for­
mer is targeted at batch computing, that can take minutes,
days or even months to compute. The latter is targeted at
online computing made on machines that have to process
data with sub-second deadlines by means of parallel and
distributed corn puting techniques in order to increase maxi­
mum input frequencies in application nodes. However,
from the perspective of a real-time system these technolo­
gies are not the ma;t efficient infrastructures to meet dead­
lines, because they lack the support required to assign the
different pieces of a distributed application to a certain
corn putational node (12), (13).

Furthermore, from the perspective of a real-time system,
there are important problems such as defining what a real­
time big data system i; and what a proper infrastructure to
support the system is. Although some pioneering research
initiatives provide partial approoches (121 (13) (31), (321
(63), they are far from producing commercial solutions. The
real-time community has not yet defined the bounds and
limitations of these new real-time systems. Some pioneering
work trying to go in that direction includes (14), (151 aiming
at making map-reduce a real-time facility, (16), (17), (181
(19), (20) developing theoretical models for parallel and dis­
tributed infrastructures that speed up big data applications,

1

and [21], [22], [23], specific studies that relate the cost of an
application to its performance. However, there is still no
mature drawing of what a real-time big data system is.

In the particular case of big data applications aimed at
stream processing, one of the multiple difficulties in their
development is the lack of a general catalog of computational
patterns relating the differences in cost of these patterns to
their response times [36]. Although somework along that line
exists [13], [21], [22], mainly focused on high-performance
computing, they are far from producing operational catalogs
that can be revamped from a real-time systems perspective.
For instance, [21], [22] proposed a series of patterns for data
stream processing. However, these patterns are more focused
on high-performance than on real-time predictability. From
their perspective, our work adapts previous models from the
high-performance computing scene to the real-time scene. In
addition, some authors [13] have used a real-time version of
Storm to analyze different implementation strategies from the
point of view of their impact on application response times.
These strategies are addressed on our work in a more proper
way by analyzing their individual performance in small
benchmarks that determine the impact that a certain type of
pattern has on the response time of the application and the
maximum input frequency of the system.

The work could also be applied to a number of previous
distributed stream technologies: Stream [47], [48], StreaMIT
[49], Aurora [50], Flextream [51] and the novel Spark [11]
and Storm [10] initiatives. These technologies may profit
from the patterns described in order to meet their applica-
tion deadlines in an efficient way. Currently, all of them are
focused on efficient (high-frequency) response times, but
they have set meeting application deadlines aside. From
this perspective, they may benefit from the scheduling
model and the catalog of patterns described in this article.

The rest of this article is focused on developing the cata-
log of patterns for real-time distributed stream processing
applications. Section 2 presents the state-of-the-art, where
different patterns are introduced and their relation with this
work are analyzed; it also describes different techniques
that can be useful to develop real-time stream processing
systems. Section 3 describes the stream model used in the
evaluation of these patterns, as well as the scheduling
model. Section 4 describes the patterns catalog. Section 5
evaluates the performance of each pattern. Section 6 con-
cludes the paper and describes our ongoing work.

2 STATE-OF-THE-ART

2.1 Programming Patterns for Big data

There is a set of programming patterns useful to develop big
data applications [13]. In a technological plane, map-reduce
[37] offers different patterns for different processing stages
including summarizations, filters and data organization,
join, and input and output design patterns. Some authors
[46] have illustrated the performance one may expect from
some map-reduce policies. They show how the use of incre-
mental policies and data placement may be beneficial from
the point of view of the application.

Another type of big data infrastructure refers to data bases.
In this arena, there are some technologies such as Cassandra
[39] that offer a catalog of patterns that may impact on perfor-
mance. For instance, the type of patterns defined in [39] are

focused on avoiding some types of configurations that may
result in low performance, such as storing an entity in a single
column or mismanaged atomic updates. The performance
results reported in [39] refer to batch processing applications
meanwhile our contribution is focused on stream processing.
Due to this, the analysis of the state of the art is focused on dis-
tributed streamprocessing and real-time computing.

2.1.1 Distributed Stream Processing Patterns

The first set of patterns refers to distributed stream process-
ing and some current technologies like Storm [38]. Referen-
ces like [38] explain the different type of semantics, useful
for application development. Unfortunately, it does not pro-
vide a basic catalog of patterns that can be used as a depart-
ing point to develop applications that have to meet
deadlines. This is the contribution of our article, which pro-
vides this basic catalog of patterns to develop big data appli-
cations for stream processing.

There is a large tradition in distributed stream processing
before the launch of Apache Storm, in academic and com-
mercial fields. In the academic arena, there are a number of
systems that support different stream abstractions such as
Stream [47], [48], StreamMIT [49], Aurora [50], Flextream
[51], River [52], Cayuga [53] and Naiad [54]. None of those
academic approaches seems to be focused on meeting dead-
lines, although some of them could be easily extended with
the infrastructure proposed in our article to support end-to-
end deadlines. The main problem in all of them seems to be
that they were not designed to meet end-to-end deadlines.
Commercial systems include Apache Samza [7], Storm [8],
and Spark Streaming [9]. Most of those commercial systems
have been oriented towards low-latency but they have set
aside the definition of end-to-end deadlines in streams.

In the specific case of stream computing [28], [29], [31],
[32], there is a set of techniques that may have an impact on
the application utilization. In [22] a catalog of ten patterns is
proposed. These patterns are analyzed in the context of gen-
eral-purpose applications (not with applications that have
to meet deadlines). For each pattern, the authors analyzed
its impact on the graph of the application (which may be
changed or unchanged), the application semantics, and
their on-line and off-line behavior. Our article includes a
shorter catalog with six patterns; four share commonalties
with [22] and two are specific for the real-time domain. In
order to illustrate and evaluate these patterns, a scalable
real-time trending topic detection application running on a
real-time version of Apache Storm [13] has been developed.
This short catalog refers to the minimum number of pat-
terns required to develop this type of applications.

The relationship with [22] is analyzed in Table 1. In the
definition of a useful catalog, our catalog removed those
optimizations (reordering and redundancy elimination)
that have not been used to develop the trending topics
stream application. From the perspective of a real-time ver-
sion of a distributed stream processing infrastructure, there
are very useful techniques: operator separator, fusion and
fission, which have been reinterpreted from the perspective
of a deadline-based application. In addition, the strategy
defined in placement has been reinterpreted from the per-
spective of worst-case computations, using the pattern to
allocate stages to nodes in an efficient way. 2

In addition, our catalog added two new patterns: single
stage, useful to join all the scattered stages of a stream into a
single stage, and frequency modification, which is useful to
reduce unnecessary activations in a stage. The comparison
also draws on changes carried out on the structure that
defines the stream processing stages (called DAG: directed
acyclic graph).

2.2 Real-Time Parallel Computing

Currently, the real-time community is extending the classi-
cal computational models to take advantage of the support
given by multi-core infrastructures to the development of
parallel applications. All these pieces of work have an
important impact on the infrastructure required to run big
data applications because, typically, big data applications
cannot be hosted in a single node, but comprise several
interconnected nodes.

Among the list of available approaches, some remarkable
work are [17], [18], [19], [20], [35], which collectively deal with
the needs of some of the most popular computing paradigms.
In [17] the authors considered the multi-core scenario and
proposed a parallel synchronousmodel inspired by the primi-
tives of OpenMPI. Each application is composed of segments,
which can be parallel and/or sequential. The model includes
task composition, which divides the input into different
flows, as well as the use of partitioned deadline monotonic
approaches, which enable establishing global utilization pat-
terns using different allocation techniques. Reference [20] pro-
vides a parallel execution model for cyber-physical systems
with low-level scheduling techniques similar to those pro-
posed in this article. However, while their work is more
focused on a lower level programmingmodel (parallel tasks),
our work is focused on a higher-level computation model
based on streams. Finally, [35] offers techniques for system-

on-chip infrastructures tomeet deadlines. The relevant differ-
ence with [35] is in the application domain that in [35] seems
to be targeted to low-level tasks, while our approach is for
stream processing.

The computing model described in this article, which has
been extended from [13], [14], is slightly different from [17].
It is based on the stream model offered by Storm, where
each stage of the application may have a different input fre-
quency in order to increase its end-to-end performance. The
patterns proposed in this article are also interesting for [17],
as they use their computational models to process different
streams, like those coming from heavy sources like Twitter.

Another set of work ([18], [19], [23], [60], [61], [62]) are
related to the scheduling of parallel tasks on multi-core pro-
cessors. Their computational models are mainly based on
the fork-join tasks and the authors describe end-to-end
interactions as a set of sequential and parallel steps. The
authors also provide a set of scheduling algorithms in
charge of partitioning the system using fork-join primitives.

In addition, some authors [15], [16] have worked on the
definition of a real-time version of map-reduce from a practi-
cal perspective. For instance, [15] has analyzed the problem
using a constraint satisfaction problem and has introduced
several heuristic strategies for this formulation. By using
their constraint model, an off-line setting for map-reduce
jobs is formulated, which is later on applied in the on-line
scenario. Likewise, [17] dealswith the heterogeneity in nodes
and the differences in map-reduce tasks, proposing new
scheduling algorithms that take into account these costs.

The distributed stream processing model described in
our article has roots in distributed real-time Java [55], [56],
which have been adapted to the internals of Apache Storm
to produce a real-time version of Storm. The idea of the
scheduling framework is to provide a simple computational
model able run in an Apache Storm engine. It is also based
on [57], taking the idea of independent releases (that have
no release jitter) and on [58] for the idea of a formulism for a
partitioner based on utilization for a multiprocessor system.
Another advantage with respect to previous approaches is
that it is easier to understand and to compute. Other
approaches need the use of iterative and computationally
expensive techniques based on heuristics to obtain response
times (e.g., using [59]) that have to take jitter into account.
Also, the implementation of the techniques as part of an
Apache Storm stack is easier with the proposed framework
than using the parallel techniques ([60], [61]), which do not
map so easily to the programming model of Apache Storm.

The patterns proposed for streams are also feasible for a
map-reduce infrastructure, but their adaptation needs to be
explored in a different piece of work.

3 COMPUTATIONAL MODEL

In the real-time context, a real-time stream is defined as a
continuous sequence of data or items whose processing has
some real-time requirements like a deadline from the input
to the output. This model is a simplification taken from [14],
where the authors produced a programming model based
on a generalized version of Storm. It is also compatible with
the computational model of Storm described in [33], [34],
which is focused on the definition of different scheduling
policies for Storm.

TABLE 1
Comparing this Work with Existing Techniques and

Optimizations

Technique
optimization name

This work
Changes
in DAG

Operator reordering N-I (assumed perfectly
ordered streams).

Y

Redundancy elimination N-I (assumed efficient
design)

Y

Operator separation Adapted to meet deadlines Y
Fusion Adapted to meet deadlines Y
Fission Adapted to meet deadlines Y
Placement Re-interpreted from the

point-of-view of a deadline
based system

N

Load balancing N-I N
State sharing N-I N
Batching N-I N
Algorithm selection N-I N

Single stage
(goal of avoiding unneces-
sary distribution and par-
allelism)

Y

Frequency modifier
(goal of reducing stream
computational demands)

Y

N I: refers to non integrated.

3

4

5

6

7

8

9

10

11

12

The single stage application pattern groups all stages of an
application into a single stage, decreasing the overall costs in
terms of demanded utilization. Typically, it also decreases the
maximum achievable computational frequency for the appli-
cation because it does not take advantage of the existence of a
network and/or serialization processes communicating
machines, thus limiting maximum operational frequencies.
Regarding response time, the pattern is able to reduce the
overhead due to existence of a network communication.
However, it also suffers from the lack of a parallel infrastruc-
ture able to reduce the response time of applications.

The operator separation pattern increases the maximum
input frequency of the application, by splitting work into
several sequential stages. As a result, the overhead due to
the application increases, requiring additional machines
that have to serialize/deserialize further messages. Another
positive consequence of the pattern is that it increases the
maximum operational frequency because the load gets split
among different nodes. The response time gets reduced by
the fact of using parallel computation, but the application
also suffers an increase in overhead associated to the extra
serialization/deserialization work.

The fission pattern increases the maximum input fre-
quency of an application by parallelizing heavy stages of an
application, which are split to several nodes to be merged
later. However, this is done at the cost of adding extra compu-
tational overhead that requires extra utilization. On the other
hand, the response time gets reduced by use of a parallel
infrastructure and only gets increased by serialization/
deserializationmechanisms.

The frequency modifier pattern filters inputs and/or out-
puts, thus decreasing application costs. However, it may
also increase response time due to unexpected latencies that
might happen during filtering. The pattern has benefits in
terms of utilization, which gets reduced, and maximum
input frequency, which gets increased.

The fusion pattern groups processing stages by decreas-
ing maximum input frequencies. A positive effect is that it

decreases utilization costs and response time, because seri-
alization and network overheads disappear.

Lastly, the placement pattern uses information about the
cluster and the application to select in which computational
unit each processing stage is going to be hosted. The main
advantages of the pattern are that it is able to increase the
maximum input frequency supported by the system reduce
response times. Another positive aspect of the pattern is
that demanded utilization is decreased.

6 CONCLUSIONS AND ONGOING WORK

Distributed application processors allow the implementa-
tion of big data applications that require a continuous
application of information to be analyzed. Part of these
applications (like, for instance, HFT systems) have end-to-
end quality-of-service requirements and may benefit from
the use of real-time techniques. Taking this into account,
in this paper a catalog of six patterns to develop real-time
stream processing applications has been defined. The pros
and cons of the different patterns have been exposed, as
well as an analysis of the impact in performance that can
be expected due to their usage. Results show that these
patterns may have an important impact on some critical
performance indicators of applications such as maximum
input frequency, total processing cost and local or global
utilizations. All patterns have shown a great potential
and, therefore, are in our opinion relevant for application
developers.

Our ongoing work comprises three interrelated research
lines. The first one is the adaptation of these patterns to the
context of RDF application processors, analyzing the over-
head of semantic-web technologies [42]. Our second active
research line turns on the applicability of these patterns in
industrial environments [30], [44] that could benefit from
the use of distributed processors. Finally, we also plan to
deploy these patterns in complex distributed applications to
analyze their mutual inter-relationships in depth.

ACKNOWLEDGMENTS

This work been partially supported by Distributed Java
Infrastructure for Real-Time Big Data (CAS14/00118). It has
been also partially funded by eMadrid (S2013/ICE-2715),
HERMES-SMARTDRIVER (TIN2013-46801-C4-2-R) and
AUDACity (TIN2016-77158-C4-1-R); and also by European
Union’s 7th Framework Program under Grant Agreement
FP7-IC6-318763. We are also in debt with our anonymous
reviewers that improved the quality of the article.

REFERENCES

[1] P. Zikopoulos and C. Eaton, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data. New York, NY, USA:
McGraw Hill, 2011.

[2] N. Marz and J. Warren, Big Data: Principles and Best Practices of
Scalable Realtime Data Systems. Greenwich, U.K.: Manning Publica
tion Co., 2015.

[3] J. Forsyth and L. Boucher, “Why big data is not enough,” Res.
World, vol. 50, pp. 26 27, 2015.

[4] R. Cort�es, et al., “Sport Trackers and Big Data: Studying user
traces to identify opportunities and challenges,” INRIA Paris,
Paris, France, Tech. Rep. RR 8636, 2014.

[5] M. Chen, M. Shiwen, and L. Yunhao, “Big data: A survey,” Mobile
Netw. Appl., vol. 19, no. 2, pp. 171 209, 2014.

TABLE 3
Dominant Performance Patterns Tradeoffs

Pattern Utilization

Demanded

Max input

frequency

Response time

Single Stage

Application

Decreases (þ) Decreases

()

Decreases (less abstraction

overhead) (þ)

Increases (lack of

parallel execution) ()

Separator

Operator

Increases

()

Increases

(þ)

Decreases (parallel

execution) (þ)

Increases (extra communications

overhead) ()

Fission Increases

()

Increases

(þ)

Decreases (parallel

execution) (þ)

Increases (extra communications

overhead) ()

Frequency

Modifier

Decreases

(þ)

Increases

(þ)

Increases (adds latency) ()

Fusion Decreases

(þ)

Decreases

()

Decreases (less overhead

from infrastructure) (þ)

Placement Decreases

(þ)

Increases

(þ)

Decreases (avoids asymmetric

nodes) (þ)

(þ means desired characteristic and means undesired)

13

[6] K. Gang Hoon, S. Trimi, and C. Ji Hyong, “Big data applications
in the government sector,” Commun. ACM, vol. 57, no. 3, pp. 78
85, 2014.

[7] H. V. Jagadish, et al., “Big data and its technical challenges,” Com
mun. ACM, vol. 57, no. 7, pp. 86 94, 2014.

[8] V. N. Gudivada, R. Baeza Yates, and V. V. Raghavan, “Big data:
Promises and problems,” Comput., vol. 48, no. 3, pp. 20 23,
Mar. 2015.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1 10.

[10] Storm, “Distributed and fault tolerant real time computation,”
2015. [Online]. Available: https://storm.incubator.apache.org/

[11] Spark, “Lightning fast cluster computing,” 2014. [Online]. Avail
able: https://spark.apache.org

[12] Samza, “Apache Samza distributed computing framework,” 2015.
[Online]. Available: http://samza.apache.org/

[13] I. Gray, Y. Chan, N. C. Audsley, and A. J. Wellings, “Architecture
awareness for real time big data systems,” in Proc. 21st Eur. MPI
Users’ Group Meet., 2014, Art. no. 151.

[14] P. Basanta Val, N. Fernandez Garc�ıa, A. J. Wellings, and N. C.
Audsley, “Improving the predictability of distributed stream pro
cessors,” Future Generation Comp. Syst., vol. 52, pp. 22 36, 2015.

[15] L. T. X. Phan, Z. Zhang, B. T. Loo, and I. Lee, “Real time MapRe
duce scheduling,” University of Pennsylvania, Philadelphia, PA,
USA, Tech. Rep. N. MS CIS 10 32, 2010.

[16] Z. Tang, Z. Junqing, L Kenli, and L. Ruixuan, “A MapReduce task
scheduling algorithm for deadline constraints,” Cluster Comput.,
vol. 16, no. 4, pp. 651 662, 2013.

[17] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real time scheduling of DAGs,” IEEE Trans. Parallel Dis
trib. Syst., vol. 25, no. 12, pp. 3242 3252, Dec. 2014.

[18] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Multi core
real time scheduling for generalized parallel task models,” Real
Time Syst., vol. 49, no. 4, pp. 404 435, 2013

[19] K. Lakshaman S. Kato, and R. Rajkumar, “Scheduling parallel
real time tasks on multicar e processors,” in Proc. 31st IEEE Real
Time Syst. Symp., pp. 259 268, 2010.

[20] J. Kim, K. Lakschmanan, and R. Rajkumar, “Parallel scheduling
for cyber physical systems: Analysis and case study on a self driv
ing car,” in Proc. ACM/IEEE International Conference on Cyber Phys
ical Systems, 2013, pp. 31 40.

[21] B. Theeten, I. Bedini, P. Cogan, A. Sala, and T. Cucinotta,
“Towards the optimization of a parallel streaming engine for telco
applications,” Bell Labs Techn. J., vol. 18, no. 4, pp. 181 197, 2014.

[22] M. Hirzel, R. Soul�e, S. Schneider, B. Gedik, and R. Grimm “A cata
log of stream processing optimizations,” ACM Comput. Surv.,
vol. 46, no. 4, Mar. 2014, Art. no. 46.

[23] R. Garibay Mart�ınez et al. “Allocation of parallel real time tasks in
distributed multi core architectures supported by an FTT SE
network” in Proc. Int. Conf. Archit. Comput. Syst., 2015, pp. 224
235.

[24] M. Fan, et al., “Enhanced fixed priority real time scheduling on
multi core platforms by exploiting task period relationship.”
J. Syst. Softw., vol. 99, pp. 85 96, 2015.

[25] J. Carpenter, et al., “A categorization of real time multiprocessor
scheduling problems and algorithms,” in Handbook on Scheduling
Algorithms, Methods, and Models. Boca Raton, FL, USA: CRC Press,
2004, pp. 30 1.

[26] R. Davis and A. Burns, “A survey of hard real time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, 2011,
Art. no. 35.

[27] L. Sha, et al., “Real time scheduling theory: A historical
perspective,” Real Time Syst., vol. 28, no. 2 3, pp. 101 155, 2004.

[28] B. Gedik, S. Schneider, M. Hirzel, and W. Kun Lung, “Elastic scal
ing for data stream processing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 6, pp. 1447 1463, Jun. 2014.

[29] R. Mayer, B. Koldehofe, and K. Rothermel, “Meeting predictable
buffer limits in the parallel execution of event processing oper
ators,” in Proc. IEEE Int. Conf. Big Data, 2014, pp. 402 411

[30] P. Basanta Val and M. Garcia Valls, “A distributed real time Java
centric architecture for industrial systems,” IEEE Trans. Ind. Inf.,
vol. 10, no. 1, pp. 27 34, 2014.

[31] L. Golab and M. Tamer Ozsu, “Issues in data stream man
agement,” SIGMOD Rec., vol. 32, no. 2, pp. 5 14, 2003. [Online].
Available: http://doi.acm.org/10.1145/776985.77698

[32] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 require
ments of real time stream processing,” SIGMOD Rec., vol. 34,
no. 4, pp. 42 47, 2005, Dec. 2005.

[33] L. Aniello, et al., “Adaptive online scheduling in Storm,” in Proc.
ACM Int. Conf. Distrib. Event Based Syst., 2013, pp. 207 218.

[34] T. Aniello, et al., “Cloud based data stream processing,” in Proc.
ACM Int. Conf. Distrib. Event Based Syst., 2014, pp. 238 245.

[35] L. Soares Indrusiak, “End to end schedulability tests for multi
processor embedded systems based on networks on chip with
priority preemptive arbitration,” J. Syst. Archit. Embedded Syst.
Des., vol. 60, no. 7, pp. 553 561, 2014.

[36] A. Jacobs, “The pathologies of big data,” Commun. ACM, vol. 52,
no. 8, pp. 36 44, 2009.

[37] D. Miner and A. Shook,Map Reduce Design Patterns: Building Effec
tive Algorithms and Analytics for Hadoop and Other Systems. Newton,
MA, USA: O’Reilly Media, Inc., 2012.

[38] P. T. Goetz and B. O’Neill, Storm Blueprints: Patterns for Distributed
Real time Computation. Birmingham, U.K.: Packt Publishing Ltd.,
2014.

[39] S. Sharma, Cassandra Design Patterns. Birmingham, U.K.: Packt
Publishing Ltd., 2014.

[40] H. Ching Hsien, “Intelligent big data processing,” Future Genera
tion Comput. Syst., vol. 36, pp. 14 16, 2014.

[41] N. Fern�andez Garc�ıa, J. Arias Fisteus, and L. S�anchez Fern�andez,
“Comparative evaluation of link based approaches for candidate
ranking in link to Wikipedia systems,” J. Artif. Intell. Res., vol. 49,
pp. 733 773, 2014.

[42] J. Arias Fisteus, N. Fern�andez Garc�ıa, L. S�anchez Fern�andez, and
D. Fuentes Lorenzo, “Ztreamy: A middleware for publishing
semantic streams on theWeb,” J. Web Sem., vol. 25, pp. 16 23, 2014.

[43] D. Mysore, S. Khupat, and S. Jain, “Big data architecture and
patterns,” 2015. [Online]. Available: www.ibm.com

[44] H. P�erez and J. Guti�errez, “Modeling the QoS parameters of DDS
for event driven real time applications,” J. Syst. Softw., vol. 104,
pp. 126 140, 2015.

[45] J. C. S. dos Anjos, I. Carrera Izurieta, W. Kolberg, A. L. Tibola,
L. Bezerra Arantes, and C. F. R. Geyer, “MRAþþ: Scheduling and
data placement on MapReduce for heterogeneous environments,”
Future Generation Comp. Syst., vol. 42, pp. 22 35, 2015.

[46] L. Woo, K. Jin Soo, and M. Seungryoul, “Large scale incremental
processing with MapReduce,” Future Generation Comp. Syst.,
vol. 36, pp. 66 79, 2014.

[47] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design PAT
TERNS: Elements of Reusable Object Oriented Software. Boston,
MA, USA: Addison Wesley Longman Publishing Co., Inc., 1995.

[48] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query lan
guage: Semantic foundations and query execution,” VLDB J. Int.
J. Very Large Data Bases, vol. 15, no. 2, pp. 121 142, 2006.

[49] A. Arasu, et al., “STREAM: The Stanford data stream manage
ment system,” Stanford InfoLab, Stanford, CA, USA,
Rep. No. 2004 20, 2004.

[50] W. Thies, M. Karczmarek, and S. Amarasinghe. “StreamIt: A lan
guage for streaming applications,” Compiler Construction. Berlin,
Germany: Springer, 2002.

[51] D. Abadi, et al., “Aurora: A new model and architecture for data
application management,” VLDB J., vol. 12, no. 2, pp. 120 139,
Aug. 2003.

[52] A. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S.
Mahlke, “Flextream: Adaptive compilation of streaming applica
tions for heterogeneous architectures,” in Proc. 18th Int. Conf. Par
allel Archit. Compilation Techn., 2009, pp. 214 223.

[53] L. Brenna, et al., “Cayuga: A high performance event processing
engine,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2007,
pp. 1100 1102.

[54] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: A timely dataflow system,” in Proc. 24th ACM
Symp. Operating Syst. Principles, 2013, pp. 439 455.

[55] P. Basanta Val and M. Garcia Valls, “Towards a reconfiguration
service for distributed real time Java,” presented at the
REACTION 2012 Workshops, Puerto Rico, Dec. 4, 2012.

[56] P. Basanta Val and M. Garc�ıa Valls, “A simple distributed
garbage collector for distributed real time Java,” J. Supercomput.,
vol. 70, no. 3, pp. 1588 1616, 2014.

[57] J. Sun, “Fixed priority end to end scheduling in distributed
real time systems,” University of Illinois at Urbana Champaign,
Champaign, IL, USA, Tech. Rep. 97 1973, 1997.

14

[58] J. M. L�opez, J. L. D�ıaz, and D. F. Garc�ıa, “Minimum and maximum
utilization bounds for multiprocessor rate monotonic scheduling,”
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 7, pp. 642 653, Jul. 2004.

[59] J. Palencia and M. Gonz�alez Harbour, “Exploiting precedence
relations in the schedulability analysis of distributed real time
systems,” in Proc. 20th IEEE Real Time Syst. Symp., 1999, Art.
no. 328.

[60] C. Maia, M. Bertogna, L. Nogueira, and L. Pinho, “Response time
analysis of synchronous parallel tasks in multiprocessor systems,”
in Proc. 22nd Int. Conf. Real Time Netw. Syst., Oct. 8 10, 2014,
Art. no. 3.

[61] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and
H. Hartig, “Response time analysis of parallel fork join workloads
with real time constraints,” in Proc. 25th Euromicro Conf. Real Time
Syst., 2013, pp. 215 224.

[62] H. Mei, I. Gray, and A. J. Wellings, “A Java based real time reac
tive stream framework,” in Proc. IEEE 19th Int. Symp. Real Time
Distrib. Comput., 2016, pp. 204 211.

[63] M. T. Higuera Toledano, “Java technologies for cyber physical
systems,” IEEE Trans. Ind. Inf., vol. 13, no. 2, pp. 680 687, 2017.

15

