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Abstract

The main aim of modal decompositions is to obtain a set of functions which can describe
in a compact way the variability contained in a set of observables/data. While this
can be easily obtained by means of the eigenfunctions of the operator from which the
observables depends, the empirical eigenfunctions allow to obtain a similar result from
a set of data, without the knowledge of the problem operator. In Fluid Mechanics and
related sciences one of the most prominent techniques to obtain empirical eigenfunctions
is referred to as Proper Orthogonal Decomposition (POD).

This thesis contains applications of the empirical eigenfunctions to (Experimental)
Aerodynamics data. The mathematical framework of the POD is introduced following
the bi-orthogonal approach by Aubry (1991). The mathematical derivation of the
POD is given, wherever possible, in its most general formulation, without bounding
it to the decomposition of a specific quantity. This choice of the author depends
on the variety of POD applications which are included in this dissertation, ranging
from signal processing problems to applications more strictly related with flow physics.
The mathematical framework includes also one of the POD extensions, the Extended
POD (EPOD), which allows to extract modes linearly correlated to the empirical
eigenfunctions of a second quantity.

The first two applications of the empirical eigenfunctions are strictly connected
with the signal treatment in experimental techniques for Fluid Mechanics. In Chapter
3, the empirical eigenfunctions are identified as an optimal basis in which perform a
"low-pass" spectral filter of experimental fluid data, such as velocity fields measured
with Particle Image Velocimetry (PIV). This filtering is extremely beneficial to reduce
the random errors contained in the PIV fields and obtain a more accurate estimate
of derivative quantities (such as, for instance, vorticity), which are more affected by
random errors. In Chapter 4 the POD is exploited for the pre-treatment of a sequence
of PIV images. The aim is to remove background and reflections, which are sources
of uncertainty in PIV measurements. In this case a "high-pass" spectral filtering is
applied to the PIV image ensemble in order to remove the highly-coherent part of the
signal corresponding to the background.
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In the third and fourth applications, the POD is applied to recover the underlying
dynamics of a flow. More specifically, in Chapter 5 the POD is applied to the complex
wake of a pair of cylinders in tandem arrangement with the additional perturbation
of the wall proximity. Through this technique it is possible to track the changes in
the oscillatory behaviour of the wake instabilities ascribed to different geometrical
configurations of the cylinders. In Chapter 6 the POD and the EPOD are applied
respectively to the flow fields around an airfoil in plunging and pitching motion and
to the unsteady aerodynamic forces acting on the airfoil. The decomposition allows
to extract a reduced set of modes of the flow field which are related to the force
generation mechanism. These modes correspond to well-recognizable phenomena of
the flow which can be identified for diverse airfoil kinematics. This flow-field driven
force decomposition is analysed on the light of existing force models, enabling their
reinterpretation and driving towards possible corrections.

The final application is devoted to overcome the low temporal resolution of typical
flow field measurements, such as PIV, by proposing a robust estimation of turbulent
flows dynamics. The method employs a modified version of the EPOD to identify the
correlation between a non-time-resolved field measurement and a time-resolved point
measurement. The estimation of the time-resolved flow fields is obtained exploiting
the correlation of the flow fields with the temporal information contained in the point
measurements.



Resumen

El objetivo principal de las descomposiciones modales es obtener un conjunto de
funciones que sean capaces de describir de una manera compacta la variabilidad
contenida en un conjunto de observables/datos. Si bien este objetivo puede ser
fácilmente realizado mediante el uso de las autofunciones del operador del cual los
observables dependen, las autofunciones empíricas permiten obtener un resultado
similar partiendo de un conjunto de datos sin la necesidad de conocer el operador del
problema. En Mecánica de Fluidos y en ciencias relacionadas con esta disciplina, una
de las técnicas más relevantes para obtener autofunciones empíricas es la conocida
como Descomposición Modal Ortogonal (Proper Orthogonal Decomposition, POD).
Esta tesis contiene diversas aplicaciones de las autofunciones empíricas en datos de
Aerodinámica (Experimental). La base matemática de la POD es introducida siguiendo
la aproximación biortogonal realizada por Aubry (1991). La formulación matemática
de la POD es expresada siempre que es posible en el marco más general posible,
sin condicionarla a la descomposición de una variable en concreto. La elección del
autor dependerá de las diferentes aplicaciones de la POD, todas ellas descritas en
la presente tesis, las cuales abarcan desde problemas de procesado de señales hasta
aplicaciones más estrictamente relacionadas con el análisis de la física del flujo. La
formulación matemática incluye también uno de las extensiones de la POD, la POD
Extendida (EPOD), la cual permite extraer modos linealmente correlacionados con las
autofunciones empíricas de una segunda variable. Las dos primeras aplicaciones de las
autofunciones empíricas están estrictamente relacionadas con el tratamiento de señales
en técnicas experimentales de Mecánica de Fluidos. En el Capítulo 3, las autofunciones
empíricas son identificadas como una base optima, la cual se puede utilizar para realizar
un filtro pasa bajos espectral para datos experimentales de flujos, tales como campos
de velocidad obtenidos mediante la técnica de Velocimetría por Imágenes de Partículas,
(Particle Image Velocimetry, PIV). Este tipo de filtro es muy beneficioso para reducir
los errores de carácter aleatorio contenidos en los campos de PIV y por tanto obtener
una estimación más precisa en las cantidades que precisan del uso de derivadas (por
ejemplo, la vorticidad), ya que están más afectadas por este tipo de errores. En el
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Capítulo 4, la POD es utilizada para el pretratamiento de una secuencia de imágenes
de PIV. El objetivo es reducir el fondo de la imagen y las reflexiones, ambas fuentes
de incertidumbre en las medidas de PIV. En este caso, un filtro pasa altos espectral
es aplicado al conjunto de imágenes de PIV para poder quitar la parte mayormente
correlacionada de la señal, la cual corresponde con el fondo de la imagen. En la tercera
y cuarta aplicación de la POD, está técnica es utilizada para reconstruir las dinámicas
fundamentales de un flujo. Concretamente, en el Capítulo 5 la POD es utilizada para
analizar la estela compleja que se produce en una pareja de cilindros en tándem con la
perturbación adicional de una pared próxima a ellos. A través de esta técnica, es posible
poder estudiar los cambios en el comportamiento oscilatorio de las inestabilidades de
la estela, las cuales están relacionadas con las diferentes configuraciones geométricas
de los cilindros. En el capítulo 6, la POD y la EPOD son aplicadas respectivamente
a campos fluidos y fuerzas aerodinámicas producidos por un perfil aerodinámico en
movimiento (de rotación y desplazamiento vertical) no estacionario. La técnica de
descomposición permite extraer un conjunto reducido de modos del campo fluido que
están relacionados con el mecanismo que genera las fuerzas aerodinámicas. Estos modos
corresponden con fenómenos característicos del flujo que pueden ser identificados para
diferentes cinemáticas de perfiles aerodinámicos. Estas dinámicas del flujo que están
conectadas con las fuerzas aerodinámicas son analizadas teniendo en cuenta los modelos
ya existentes en la literatura que describen las fuerzas aerodinámicas, permitiendo su
reinterpretación e incluso pudiendo añadir posibles correcciones. La última aplicación
propuesta está destinada a subsanar la baja resolución temporal típica de las medidas
de campo fluido, como en aquellas realizadas utilizando PIV, mediante una estimación
robusta de las dinámicas del flujo turbulento. El método propuesto emplea una versión
modificada de la EPOD para identificar para correlación entre un campo fluido medido
que no está resuelto en el tiempo y una medida puntual que sí que está resulta en el
tiempo. La estimación del campo fluido resuelto en el tiempo es obtenida mediante la
correlación de los campos de flujo con la información temporal contenida en la medida
puntual.
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Modal decomposition for unsteady
flows





Chapter 1

Introduction

1.1 Why modal decomposition?
In the 60’s Richard Feynman wrote that “turbulence is the most important unsolved
problem of classical physics” (Feynman et al., 1964), addressing with these words the
great scientific challenge offered by turbulent flows. Along the last century, turbulent
flows have been one of the most explored topics in Fluid Mechanics research. The first
use of the word ‘turbulence’ in the context of Fluid Mechanics is associated to the
experimental observations of eddies decay by Leonardo da Vinci in 1500 (Da Vinci,
1500). The onset of modern turbulence studies, however, should be set at the end of the
19th century with the works of Boussinesq (1877) and Reynolds (1894) who tailored
the problem with a statistical approach. Several other seminal works, mainly empirical
and semi-empirical, followed in the beginning of the 20th century, among them the
works by Taylor (1915), Prandtl (1925) and von Kármán (1935). The theoretical
formalization of turbulence was mainly due to Kolmogoroff (1933), who developed
a rigorous axiomatic foundation of probability theory including a strict definition of
stochastic function of any number of variables. Based on this mathematical framework,
Kolmogoroff (1941a,b) introduced the well known theory of turbulence named after
him. Landau and Lifshitz (1959) and Hopf (1948), independently, developed a theory
on the transition to turbulence.

Similarly to what happened in most of the natural and mathematical sciences,
the second half of the 20th century represented a turning point for Fluid Mechanics
with the introduction of computational science, which, after empirical and theoretical
studies, became the third paradigm in turbulence studies. After the introduction of
Direct Numerical Simulations (DNS, Orszag and Patterson, 1972) and Large Eddy
Simulations (LES, Deardorff, 1970), computational studies were mainly carried out
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between Stanford University and NASA Ames Research Laboratory (Reynolds, 1976),
before becoming a common approach worldwide.

Due to its intrinsic random nature, turbulence is notoriously difficult to be described
in compact form, thus requiring large datasets for its description. The progress of
numerical simulations and experimental techniques have made available an increasing
amount of data, which needs to be processed and analysed. It has become clear that
a fourth paradigm should be added, the data-intensive science (Hey et al., 2009),
which resumes the idea of scientific discovery driven by data-intensive processes. This
approach in the field of turbulence can be dated back to the early works by Lumley
(1967), becoming more and more common with the recent availability of computational
power and recorded data.

The technological advances in the fields of electronics and informatics have led
to an exponential growth over the past 20 years of the collected/produced data to
be processed, which is transversally permeating all aspects of the modern human
activities. The abundance of information led to the creation of a whole new branch
of data science, focused on the opportunities and the problems related to handling
such a large quantity of data. The use of a buzzword like "Big Data", which resumes
both issues and advantages of data-intensive applications, can be considered as a good
marker of this phenomenon. Fig. 1.1 shows the exponential growth of the interest in
this topic during the last 10 years. Usually scientific data are less problematic than
what is commonly referred to as "Big Data" since they are generally well structured.
Nevertheless, the quantity of data to handle often requires some sort of data reduction
in order to be analysed.

On the other hand, there is no doubt that the availability of large datasets has the
potential to drive toward a deeper knowledge about complex flow phenomena. Modern
Aerodynamics (and Fluid Mechanics in general) is focused on problems whose solution
cannot depend simply on average quantities, i.e. flows in which the assumption of
steadiness cannot be retained. Turbulence modelling, aerodynamic noise production,
turbulent convective heat transfer, transport of contaminants and generation of unsteady
aerodynamic forces form just a short and incomplete list of problems which require a
proper understanding of the flow evolution both in space and time. The behaviour of
these flows might result too complex to model due to the non-linearity of the governing
equations (i.e. the Navier-Stokes equations) and requires proper mathematical tools to
be analysed.

The term modal decomposition indicates a family of mathematical tools which offer
a solution for problem-adaptive data reduction. The scope of the modal decomposition
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Fig. 1.1 Number of monthly searches for the word "Big Data" in the period 01 January
2007 - 01 January 2017. Results are normalized with respect to the maximum number
of monthly searches. Source: Google Trends.

is to reduce the dimensionality of a problem, dividing the phenomena under study
into simpler components and, thus, reducing the available dataset to a more compact
and accessible set of information. From this perspective, modal decomposition can be
included among the data mining techniques. Due to the transversal interest in these
techniques, it should be not surprising that modal decomposition has been widely
exploited in many different fields and for the most varied scopes, among them the
study of turbulence. In the following, some of the modal decomposition techniques
more commonly employed in Fluid Mechanics will be shortly introduced in the context
of decomposition of flow fields. The discussion will focus on the Proper Orthogonal
Decomposition. The reason of this choice is twofold: thanks to its relative simplicity
(both in terms of implementation and of requirements) this technique will be largely
employed (for different scopes) in this work; on top of that, POD is to be considered a
"fundamental" data-driven decomposition technique, being included in different forms
in other more advanced decomposition techniques.

1.2 A short summary on modal decomposition tech-
niques

Decomposing a varying feature (in time, space or any other dimension) to reduce its
complexity is a common procedure in almost any branch of physics and mathematics.
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Some notable examples are the Taylor and Fourier series expansions or the wavelet
decomposition. In these cases the varying quantity is projected onto a set of functions
which are assumed to form a basis of the observation space and have been fixed a
priori. In Fluid Mechanics, and especially in turbulence, such decompositions have
been widely explored. A notable example is the Fourier spectrum of turbulence, with
the celebrated −5/3 decay rate in the inertial sub-range (Kolmogoroff, 1941a,b).

In the most recent approaches, the modal decomposition of flow fields aims to
identify a set of modes, acting as decomposition components, which effectively describe
the most relevant flow features (thus driven by the data or the equations describing
the problem). Each mode is associated to a spatial description of the flow features,
to their temporal description and their magnitude. Two different kind of approaches
are possible to perform the modal decomposition (Taira et al., 2017). In the operator-
based approaches, the analysis is performed directly on an operator, i.e. a set of
equations which govern the problem (the Navier-Stokes equations for Fluid Mechanics
problems). The data-based approaches provide a pathway to extract modes from a set
of observations, thus performing an a posteriori modal analysis of the flow. This second
kind of approaches is intimately connected to data mining techniques, which allow
to extract reduced-order informations from a dataset without requiring an a priori
knowledge of the problem operator.

A prominent example of operator-based modal decomposition in Fluid Mechanics
is the flow stability analysis. Earlier theories on flow stability were based on the local
linear stability analysis, which extracts the flow instabilities around a base-flow (i.e.
an exact steady solution of the problem) after linearising the problem operator in one
direction (time or space). More recently it has been introduced the global linear stability
analysis (see Theofilis, 2011, for a review). Global stability analysis differs from the
local stability analysis since it considers a base-flow depending on all the problem
directions. Introducing a modal formulation for the perturbation (i.e. assuming linear
dynamics of the perturbation) the original Navier-Stokes equations can be restated as
an eigenvalue problem. The complex eigenvalues represent the oscillation frequency
and the decay rate of the perturbation. The eigenvectors represent the spatial structure
of the perturbation.

The Koopman analysis (recently reviewed by Mezić, 2013) provides a decomposition
on a basis which is associated to the dynamical evolution of the flow field. The Koopman
-or composition- operator describes a transformation of the state space in which the
problem to study is linear, thus extending the range of linear approximation of the
system. The eigenvalues of the Koopman operator are the complex-valued exponents
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of the exponential function describing the linearised temporal evolution of the system.
The Koopman modes are defined as the projections of a flow field quantity (such as
the velocity field) on the eigenfunctions of the Koopman operator.

While the Koopman analysis is formally an operator-based technique, it is possible
to approximate Koopman modes from an experimental/numerical dataset through the
Dynamic Mode Decomposition (DMD, Schmid, 2010, Tu et al., 2014). The DMD
allows to calculate a set of modes from an ordered set of observables of the flow fields.
The DMD modes may be considered as the finite-rank approximation of the Koopman
modes for non-linear dynamical systems (Rowley et al., 2009). Being a data-based
technique, the advantage of DMD lies in that it does not require the a priori knowledge
of the operator underlying the flow dynamics. On the other hand, the DMD does
not provide a univocal ranking of the modes. Recognising the most relevant modes
may be a hard task, although some efforts in that direction have been performed by
Jovanović et al. (2014). Additionally, DMD requires datasets with high spatial/temporal
resolution (depending on the coordinate along which the decomposition is carried out),
that significantly reduces the range of applicability of this technique. For example,
optical measurement techniques (such as PIV) suffer hardware limitations (for instance,
repetition rate of light sources and frame rate of the camera), which bound spatio-time
resolved techniques to relatively low Reynolds number flows.

The first data-based modal decomposition technique introduced in Fluid Mechanics
is the Proper Orthogonal Decomposition (POD, Lumley, 1967). Depending on the
context, this technique has been also known as Principal Component Analysis (PCA)
or Karhunen–Loève (K-L) expansion. POD modes are usually referred also as empirical
eigenfunctions (Berkooz et al., 1993) to highlight the difference with respect to the modes
obtained through stability analysis. POD modes are calculated under the constraint
of modes orthogonality and minimizing the residual error (according to the L2 norm)
of the truncated reconstruction. The empirical eigenfunctions calculated through the
POD form an exact decomposition basis which allows for an exact reconstruction of
the dataset without introducing any residual error. Moreover, POD modes are ranked
according to their contribution to the variance in the dataset. The ranking and modal
orthogonality properties are at the basis of the success of the POD for the generation
of reduced-order models of experimental/numerical datasets. With respect to other
modal decomposition techniques, POD relies on the statistical properties of the dataset,
thus it does not require temporal resolution of the data.

POD is, perhaps, the most widespread between all the modal decomposition
techniques listed above. Under several names, POD found large application in a huge
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number of different topics, also, and perhaps mostly, outside the context of Fluid
Mechanics and turbulence. The next paragraph will specifically focus on the wide
attention that the POD received in fields different from Fluid Mechanics, giving few
examples of them. A short historical perspective on the applications of POD in the
context of Fluid Mechanics will be addressed in §1.4. The mathematical details of the
POD will be discussed in Chapter 2.

1.3 POD and data mining
The Proper Orthogonal Decomposition has been first introduced by Pearson (1901)
and Hotelling (1933) under the name of Principal Component Analysis (PCA) in
statistical analysis. PCA rapidly spread (even if under several different names) to a
wide variety of branches of natural and social sciences thanks to its capability to easily
recognize underlying patterns in large datasets, independently of the source (and the
nature) of the data. In the following, the terms Principal Component Analysis (PCA),
Proper Orthogonal Decomposition (POD), Singular Values Decomposition (SVD) and
Karhunen–Loève (K-L) expansion will be freely interchanged as they represent (in
their matrix formulation) the solution to the same problem (Liang et al., 2002). The
different nomenclature is mostly ascribed to historical reasons, owing to the different
fields of application.

The ability of K-L expansion to reduce the dimensionality of large datasets rendered
it an important tool for data compression (Andrews et al., 1967). The use of this
compression technique especially spread for medical signals such as electrocardiographic
data (Jalaleddine et al., 1990, Olmos et al., 1996). Apart from signal compression, K-L
expansion has been successfully applied to signal de-noising, thanks to its capability of
spectrally separating the noise content (Algazi and Sakrison, 1969). Such property has
been used to retrieve multichannel signals measured by a sensor array (such as a radar
in Wax and Kailath, 1985). This same property is exploited in Chapter 3 for a signal
de-noising method for Particle Image Velocimetry (PIV) applications developed by the
author of this dissertation (Raiola et al., 2015).

In its very first applications, the PCA has been applied to the analysis of random
variables (see, e.g. Papoulis, 1965), becoming in modern days a standard tool for
multivariate analysis of stochastic processes (Jolliffe, 2002). One of the main advantages
of PCA is that it does not require an a priori probability model of the variable under
study (Tipping and Bishop, 1999), thus it is of straightforward application without
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requiring further efforts on the user side (apart from the interpretation of the results,
of course).

PCA revealed to be very effective in the analysis of video images. This technique
has been largely employed for the decomposition of human faces features (Kirby and
Sirovich, 1990), and it is commonly applied to face recognition problems in computer
vision (Turk and Pentland, 1991). PCA of video images is employed also for video
element segmentation, for example to extract a fixed background and moving objects
(see e.g. Li et al., 2004). Based on these results, a method to remove the background
from PIV images has been developed (Mendez et al., 2017). Chapter 4 reports the
theoretical model of the PIV video sequence decomposition, on which the method is
based, and shows the significant particle image quality improvement obtained with the
method.

With the recent advances of data technology and the availability of both large
datasets and computational power, the presence of PCA has become even more
ubiquitous. Its use is now widespread in a number of different data mining tasks (Berry
et al., 1995, Korn et al., 1998, Kleinberg, 1999). Azar et al. (2001) reports several uses
of SVD in Latent Semantic Indexing (for retrieval of information from documents) and
in Collaborative Filtering (i.e. automatic research suggestions based on other users
experience). The use of this technique as a spectral filter is attested also in sensitive
fields (such as the privacy preserving data mining) to recover information covered with
random noise (on purpose, for privacy preservation) (Kargupta et al., 2003, Guo et al.,
2006).

The above list of PCA applications is not meant to be in any way exhaustive.
Nonetheless the variety of applications reported here is indicative of the flexibility and
robustness of this tool.

1.4 Empirical eigenfunctions in Fluid Mechanics
POD has been first introduced in fluid flows investigation by Lumley (1967) as a
mathematical technique which objectively defines coherent structures in turbulent
flows without relying on event-based definitions. According to the decomposition
proposed by Lumley, the empirical eigenfunctions were obtained as the eigenfunctions
of the two-point spatial correlation matrix of the velocity field. It must be pointed out
that each entry of the two-point spatial correlation matrix was obtained by means of
a synchronous two-point hotwire measurement. Consequently, different entries were
temporally uncorrelated. The large scale coherent structures in the flow can be detected
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as the most energetic spatial modes, i.e. the ones which mostly contribute in terms
of variance to the ensemble. In this sense, the POD spectrum is "optimum", i.e. the
variance in the POD-defined space decays faster than in any other vectorial space.

Initially Lumley’s work was received sceptically by the turbulence community. The
main concern was that empirical eigenfunctions were simply second-order statistics,
thus phase information was lost in the decomposition (even though it can be recovered
in certain conditions, as it will be shown in Chapter 5). Most of the earlier work on
the topic was therefore carried out by Lumley himself and by his students (Bakewell
and Lumley, 1967, Payne and Lumley, 1967). Nearly 20 years after the first Lumley’s
publication on the topic, the POD started to attract the interest of the turbulence
community. Moin and Moser (1989) applied POD for the decomposition of one-, two-
and three-dimensional flow in a turbulent channel. Differently from previous works,
the two-point spatial correlation tensor was obtained from DNS data. POD was used
to extract the characteristic eddies, while a shot-noise expansion (Lumley, 1981) was
used in order to determine their phase.

Sirovich (1987) introduced a computationally efficient method for the POD modes
calculation based on a set of snapshots of the flow field, i.e. multi-point simultaneous
measurements of the flow field. POD modes are calculated as the projection of the flow
field on the eigenfuctions of the temporal two-point correlation matrix. The method,
defined snapshot method, is especially suited for field measurements, such as those from
Particle Image Velocimetry (PIV) and numerical simulation results, both providing
snapshots of the flow field on an eulerian grid for a limited number of frames. In case
the number of grid points is larger than the number of snapshots, the snapshot method
is more computationally efficient than the classic method from Lumley (1967), since
the temporal correlation matrix is significantly smaller than the spatial correlation
matrix.

Aubry et al. (1991) pointed out that the POD, in a bi-orthogonal decomposition
approach, recovers two sets of modes which are orthogonal both in space and time.
The two set of modes (named chronoi and topoi after the Greek words for time and
space) have a one-to-one correspondence between them, i.e. each POD mode in space
is connected to a temporal evolution defined by the temporal mode. The eigenvalues
associated to the spatio-temporal couples of modes are representative of the spatio-
temporal kinetic energy contained in the modes. The work from Aubry et al. (1991)
allowed to use the POD as a tool to study the spatio-temporal non-linear dynamics of
turbulent flows and extract both linear and non-linear instabilities. The bi-orthogonal
approach is different from the approach by Sirovich or Lumley in the sense that a
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single realization of the flow field, varying both in space and time, is used in the
decomposition. This advance was indeed connected to the increased availability of
simultaneous data at different locations (e.g. obtained by means of PIV, by means of
rakes of hotwires or by means of high-fidelity simulations).

An interesting application of the POD is its use as filtering technique. While most
of the previous studies focused on the POD eigenfunction as a means to describe
the characteristic eddies in the flow, Liu et al. (2001) applied the POD to project
the flow field in a energy-aligned basis. This technique has been applied to PIV
measurements of a turbulent channel flow. A low-pass filtered version of the flow
field is obtained by retaining only the most energetic modes in the reconstruction, i.e.
the first POD modes. Owing to the energy spectral distribution of turbulent flows,
this low-order reconstruction process retains prevalently the large scale features in
the flow, which carry the bulk of the energy. Wu and Christensen (2010) applied a
similar approach to study the effect of irregular roughness in a turbulent boundary
layer. The POD was applied on a PIV measurements ensemble as a spectral filter in
order to separate the content due to large scale structures from the content due to
small scale structures. Similarly to Liu et al. (2001), the selection of the threshold
for the low-order reconstruction is based on a turbulent kinetic energy criterion. The
comparison of the POD filtered fields in the smooth wall case and in the rough wall
case was used to prove that large scales are affected spatially by the roughness, while
small scales are relatively insensitive to it.

Owing to its capabilities to deal with both linear and non-linear instability, the POD
has been also largely applied on free shear flows. Particularly rewarding is its use in
case of spectrally-sparse instabilities. Some examples are the wake behind bluff bodies
which shed von Kármán vortices (see e.g. Deane et al., 1991, for the wake of a circular
cylinder) or turbulent jets developing ring vortices (see e.g. Glauser et al., 1989).
The presence of a distinct signature of a certain frequency in the energy spectrum
allows to extract phase information also from non-time-resolved measurements. An
example is given in Perrin et al. (2007), which reconstructed the phase-average of
the vortex shedding from a circular cylinder. Feng et al. (2011) applied the POD to
2D-PIV measurements in the wake of a circular cylinder with synthetic jet control
located in the rear stagnation point. The decomposition allowed the identification
of the shedding from the cylinder and its modification in terms of frequency and
spatio-temporal organization for different jet actuations. For the first time on 3D
experimental data Ceglia et al. (2014) applied phase-extraction techniques from POD
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to obtain a low-order model of the helical vortex instabilities in a turbulent swirling
jet.

The POD has been also widely exploited to reduce the dimensionality of fluid
problems, both to simplify the results interpretation and to reduce computational
cost. In this approach the original differential equation governing the problem can be
projected by means of the Galerkin method onto a truncated POD basis. The solution
of the projected problem relies only on the resolved modes (which are included in the
truncation) while higher order modes (which have been discarded in the truncation)
are considered irrelevant for the solution of the flow dynamics. Rodriguez and Sirovich
(1990) applied this approach for the solution of the Ginzburg-Landau equation. Cham-
bers et al. (1988) applied POD for the solution of the Burgers’ equation in turbulence
problems. Rowley et al. (2004) extended this approach to compressible flows. The
advantage of the Galerkin projection is indeed that the solution of the problem can be
found in a lower dimensional space than the original problem. The number of modes
to retain, however, is a parameter that strongly depends on the problem and on the
user experience. For (spectrally) complex problems, the required number of modes
can be large, thus reducing the computational advantage with respect to a complete
simulation. In order to increase the computational advantage of this approach, the
Galerkin projection method can be modified in order to include a specific model for the
modes which are not included in the truncation. The solution to the problem would
therefore still indirectly account for the excluded modes (through the model) while
only the modes included in the truncation are effectively solved numerically. This
approach has the advantage of not requiring a large number of modes to correctly solve
the dynamics, thus can be more effective in reducing its dimensionality than a pure
Galerkin projection. Some examples can be found in Aubry et al. (1988) for large scale
structures in a turbulent boundary layer or in Glauser et al. (1989) for large scales in a
jet mixing layer.

Several modifications of the POD have been proposed to extend its capabilities.
Here some relevant examples are reported, namely the Extended POD, the Balanced
POD and the Spectral POD. Maurel et al. (2001) first introduced the Extended
POD (EPOD) to analyse the correlation between local and global events in a locally-
significant POD basis. Borée (2003) formalized the EPOD as an extension of the Linear
Stochastic Estimation (LSE) in the POD spectral basis. As noticed by Borée (2003),
in a previous work by Picard and Delville (2000) the EPOD was implicitly applied
to extrapolate a set of velocity modes which were statistically correlated to the POD
modes of the pressure field. In their work, Picard and Delville (2000) showed that there
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is a physical correspondence between the pressure modes and the estimated velocity
modes. The estimated velocity modes have been employed to solve the Lighthill’s
equation, obtaining interesting results for the far-field noise. Rowley (2005) proposed
the Balanced POD (BPOD) algorithm which incorporates elements of control theory
(i.e. the balanced truncation) in the POD. The BPOD modes represent the most
controllable/observable directions of the dynamic system under analysis. The dataset
used for this method is generally quite more specific than for POD as it is composed
of the linear response of the system to impulsive inputs and of the impulsive responses
of an adjoint system. Due to the requirement of an adjoint system, BPOD is generally
not suited for experimental measurements. In this case the Eigensystem Realization
Algorithm (ERA) represents an alternative and equivalent decomposition with respect
to the BPOD (see e.g. Brunton et al., 2013, for experimental measurements on
a flapping wing). Sieber et al. (2016) introduced the Spectral POD to bridge the
gap between Fourier decomposition and POD. The Spectral POD is based on the
consideration that the eigenfunctions of the covariance matrix coincide with a Fourier
expansion when the covariance is calculated in an homogeneous direction. In case of
homogeneous direction, the covariance matrix is constant in its main diagonal direction.
Sieber et al. (2016) proposed to filter the matrix in this direction before applying
the POD algorithm: the filtering parameters constitute therefore a tuning knob to
pass from the standard POD (no filtering on the covariance matrix) to the Fourier
decomposition (covariance matrix constant along the diagonal). The Spectral POD by
Sieber et al. (2016) should not be confused with the POD performed in the frequency
domain as described in the early works by Lumley (1967, 1970), and recently linked to
DMD by Towne et al. (2017).

1.5 Motivation and outline of the work
As discussed in the previous paragraphs, the POD is now widely accepted to model
the complex behaviour of unsteady flows. Even more recent techniques which are
gaining popularity in the Fluid Mechanics community can be considered as extensions
of the POD (such as the BPOD and the Spectral POD) or make extensive use of the
POD (see e.g. the DMD algorithm, Schmid, 2010). The ease in its implementation, its
robustness to errors and its (relatively) low technical requirements makes the POD a
very valuable technique to be used in many contexts.

In this work, the use of the POD both as a tool for signal processing and as tool to
model flow dynamics will be discussed. After a brief introduction to the mathematical
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properties of the POD contained in Part I, the discussion is organized in three other
parts.

Part II focuses on novel contributions of the author to (mainly, but not restricted
to) Particle Image Velocimetry measurement technology. As discussed above, in signal
processing, the POD is exploited to spectrally separate a spatially/temporally coherent
component of the signal from a random component. Two different applications to
PIV are discussed. In the first one, POD is applied to an ensemble of velocity fields
measured with PIV to remove the random component of the measurement noise. An
optimal threshold is identified to provide the best estimation of the signal. In the second
application, POD is applied to raw PIV images in order to identify the time-varying
background and reflections and separate them from the particles. The removal of
the background from the raw PIV images allows to enhance the correlation between
the particles and thus significantly reduce the measurement uncertainty. While these
applications are specifically developed for PIV, their extension to different signal sources
is straightforward. Noise-filtering via POD can be used, for instance, to improve the
quality of IR temperature measurements for convective heat transfer measurements
(Raiola et al., 2017). Eigenbackground removal can find extensive application in imaging-
based techniques (Pressure-Sensitive Paint, Temperature-Sensitive Paint, schlieren,
etc.).

In Part III, POD is exploited to extract flow features from unsteady flow fields and
to model the flow dynamics in compact form. The first application of POD as a flow
analysis tool is the turbulent wake of two circular cylinders in tandem configuration in
cross flow near a wall. The instabilities which arise in this flow are extremely sensitive
to the geometrical arrangement of the cylinders, i.e. cylinder spacing and gap between
the cylinders and the wall. Depending on the selected geometrical parameters, it is
possible to pass from the typical von Kármán vortex shedding of bluff-body wakes to
more spectrally rich flow instabilities. The second case is the flow around a flapping
airfoil in forward flight. This flow is mainly dominated by concentrated vortices over
the wing which arise due to the flapping motion. These vortices largely contribute to
the generation of the aerodynamic forces applied to the wing. The aim of this study is
to model both the flow behaviour and the aerodynamic forces. In order to achieve this
result, a more elaborated decomposition approach is employed. Both flow fields and
forces are expressed in a body-fixed reference frame, which represents a more natural
choice for the evolution of the vortices on the wing. The relation between the modal
decomposition of the flow and the aerodynamic forces is accounted for through the
Extended POD (Borée, 2003). Through this decomposition it is finally possible to
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analyse the force generation on the wing and modify accordingly the existing force
models already present in the literature.

Finally, in Part IV it is described an application of POD and EPOD for the
dynamic estimation of time-resolved turbulent flow fields from non-time-resolved flow
field measurements and time-resolved point measurements. The method relies on
the correlation between field measurements and point measurements which can be
evaluated through a modified EPOD approach. The correlation can be then extended
to the estimate of the time-resolved flow fields thanks to the temporal information
contained in the point measurements. The EPOD employed for this method requires a
statistical truncation which allows to exclude the errors due to uncorrelated signals
and thus obtain a more robust estimation.





Chapter 2

Mathematical framework

The term modal decomposition refers to a set of mathematical techniques which aims
to give a description in terms of modes of a varying phenomenon; in the specific
field of Fluid Mechanics, these modes aim to describe a flow-related quantity, varying
dynamically both in time and space. This chapter will focus on the Proper Orthogonal
Decomposition (POD), introduced with a historical perspective in the previous chapter.
The general mathematical framework of POD will be described, following the bi-
orthogonal approach by Aubry (1991), which is perhaps the most common approach
employed nowadays. The main properties of this decomposition will be formally derived.
Moreover, one of the extensions of this technique, the Extended POD (Borée, 2003),
will be introduced along with its main properties. The mathematical foundations of
the POD, introduced in this chapter, are necessary to build up a framework for the
applications included in the remainder of the thesis.

2.1 Proper Orthogonal Decomposition
The Proper Orthogonal Decomposition is a mathematical procedure which aims to
identify a set of orthonormal functions which best correlate on average with a set
of observations. Each observation can be either an experimental measurement or a
numerical solution of a scalar or vector field (such as velocity, vorticity, temperature
etc.) at different time instants (or different physical parameters). For continuous
problems, the functions are estimated as the solution of the Fredholm equation, which
is an integral eigenvalue problem (for a more rigorous formulation see Berkooz et al.,
1993).

In the following, the bi-orthogonal decomposition by Aubry et al. (1991) will be
adopted, i.e. it will be considered a single realization of the dynamical system varying
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both in space and time. This approach fits very well with the applications presented in
this thesis, in which a set of spatially-resolved realizations (either of velocity vector fields
or raw images) is sampled in time. Suppose that a vector field A(x, t) is approximated
by:

A(x, t) = ⟨A(x, t)⟩ + a(x, t) ≈ ⟨A(x, t)⟩ +
nm∑
i=1
ψ(i)(t)σ(i)φ(i)(x) (2.1)

Without any loss of generality, let x and t be the space and time coordinates,
respectively. The symbols ⟨A(x, t)⟩ and a(x, t) indicate the ensemble average and the
fluctuating part of the vector field A(x, t), respectively; the set of functions φ(i)(x)
constitutes the spatial decomposition basis of the fluctuating velocity field; the functions
ψ(i)(t) constitute the temporal basis; σ(i) is the norm associated to each spatio-temporal
mode; the symbol nm indicates the number of modes. The relation in Eq. 2.1 becomes
an equality for nm → ∞.

The solution for the decomposition in Eq. 2.1 is not unique, as it depends on the
chosen set of basis functions. In the classic implementation by Lumley (1967), the
POD aims to maximize the correlation between the vector field and a space domain
function φ(i)(x), i.e. it aims to maximize the projection of a(x, t) on the function
φ(i)(x):

〈∫
Ω

(
a(x, t),φ(i)(x)

)
dx
〉

= max
∥f(x)∥2=1

〈∫
Ω

(
a(x, t), f(x)

)
dx
〉

(2.2)

with (·, ·) being the scalar product and ∥ · ∥2 =
∫

Ω(·, ·)dx being the L2 norm in space.
The integral in Eq. 2.2 is extended to the entire observation domain Ω. The choice of
the functions φ(i)(x) is limited to functions with unitary norm. Moreover, the functions
φ(i)(x) are subjected to an orthogonality constraint:

〈∫
Ω

(
φ(i)(x),φ(j)(x)

)
dx
〉

= δi,j (2.3)

where δi,j is the Kronecker delta symbol. It can be shown that this problem is equivalent
to find the solution of the Fredholm equation:

∫
Ω
Rs(x, x′)φ(i)(x′) dx′ = |σ(i)|2φ(i)(x) (2.4)

with Rs(x, x′) being the two-point spatial correlation tensor:

Rs(x, x′) = ⟨(a(x, t),a(x′, t))⟩ (2.5)
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An alternative implementation (especially popular in the field of Fluid Mechanics
for both PIV measurements and DNS) is the snapshot method (Sirovich, 1987) as
discussed in §1.4. The basis chosen in this implementation is the one maximizing the
projection of a(x, t) on the time domain function ψ(i)(t):

〈
∥a(x, t)ψ(i)(t)∥2

〉
= max

⟨|f(t)|2⟩=1

〈
∥a(x, t)f(t)∥2

〉
(2.6)

The choice of the set of function ψ(i)(t) is limited to functions with unitary norm
and respecting the orthogonality constraint:

〈
ψ(i)(t)ψ(j)(t)

〉
= δi,j (2.7)

The Fredholm equation for this problem is given by:
∫

T
Rt(t, t′)ψ(i)(t′)dt′ = |σ(i)|2ψ(i)(t) (2.8)

with Rt(t, t′) being the two-point temporal correlation tensor:

Rt(t, t′) =

∫
Ω

(a(x, t),a(x, t′)) dx∫
Ω
dx

(2.9)

The integral in Eq. 2.8 is extended to the entire observation time T .
From Eq. 2.8, the temporal basis is composed by the eigenfunctions of the spatially

averaged temporal correlation operator. From Eq. 2.4, the spatial basis is composed
by the temporally averaged spatial correlation operator. Due their intrinsic temporal
and spatial nature, the elements of the temporal basis are also known as chronoi,
while the elements of the spatial basis are known as topoi (Aubry et al., 1991). The
bi-orthogonal approach by Aubry et al. (1991) discloses the possibility to extract a
spatio-temporal modal decomposition, which is optimal according to the L2 norm. It
should be remarked that no assumption on the statistical property of the signal, such as
ergodicity or statistical stationarity, is required in the implementation by Aubry et al.
(1991) In the work by Lumley (1967) additional hypothesis on the flow were required
since the two-point correlation matrix was built from uncorrelated measurements.

2.1.1 Discrete Proper Orthogonal Decomposition

The datasets produced by experiments or simulations are most often in discrete form,
i.e. on a spatial grid and over a set of instantaneous realizations. For this reason, a
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discrete formulation of the POD is needed. The discrete formulation of the POD can
be straightforwardly rewritten using matrix notation. Let the dataset be composed
of nt temporal realizations, each one containing np point measurements. Following
the bi-orthogonal approach (Aubry et al., 1991), the dataset may be composed of the
values assumed by a scalar field at nt different times in np different spatial points.
Without accounting for the relative position of the spatial points, each realization
can be reshaped in a row vector a(j) ∈ R1×np . The dataset can be organized in a
rectangular matrix A ∈ Rnt×np with rank r ≤ min(nt, np):

A =


a(1)

a(2)

...
a(nt)

 ∈ Rnt×np (2.10)

In the classical implementation of the discrete POD problem, the Fredholm equation
is equivalent to the eigenvalue problem of the two-point spatial correlation matrix of A
(obtained through the inner product matrix AT A ∈ Rnp×np):

AT AΦ = Φ Λ (2.11)

with Λ = diag(λ(1), . . . , λ(r)) ∈ Rr×r containing the set of eigenvalues and Φ =[
φ(1), . . . , φ(r)

]
∈ Rnp×r containing the set of eigenvectors of AT A.

In the snapshots implementation of the discrete POD problem, the Fredholm
equation is equivalent to the eigenvalue problem of the two-point temporal correlation
matrix (obtained through the outer product matrix AAT ∈ Rnt×nt):

AAT Ψ = Ψ Λ (2.12)

with Ψ =
[
ψ(1), . . . , ψ(r)

]
∈ Rnt×r containing the set of eigenvectors of AT A.

Since both AT A and AAT are non-negative Hermitian matrices, they have a
complete set of non-negative eigenvalues equal to their rank r. The solution of both
Eq. 2.11 and Eq. 2.12 is given by:

A = Ψ Σ ΦT =
r∑

i=1
ψ(i)σ(i)φ(i) T (2.13)

with Φ being the orthonormal basis for the rows of A, Ψ the orthonormal basis for the
columns of A, and Σ = diag

(
σ(1), . . . , σ(r)

)
∈ Rr×r the diagonal matrix containing the
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norm of each contribution. The orthogonality condition imposed to the components of
the columns and rows basis leads to ψ(i) Tψ(j) = δi,j and φ(i) Tφ(j) = δi,j and thus to:

ΨT Ψ = I
r

ΦT Φ = I
r

(2.14)

with I
r

being the identity matrix with rank r.
The different arrangements of the discrete Fredholm equation expressed in Eq. 2.11

and 2.12 demonstrate that the classical implementation of the POD (Lumley, 1970) is
preferable when np < nt (which is the typical case for hotwire measurements) while
the snapshot POD implementation (Sirovich, 1987) is preferable when nt < np (which
is the most common case in velocity fields obtained by means of PIV measurements or
numerical simulations).

When decomposing a discrete scalar field, the columns of Ψ are the temporal modes
(or chronoi) ψ(i)(t) and the rows of Φ are the spatial modes (or topoi) φ(i)(x). The set
of singular values Σ is equal to the square root of the eigenvalues Λ from Eq. 2.11 and
Eq. 2.12, as shown by:

AT A =
(
Φ Σ ΨT

) (
Ψ Σ ΦT

)
= Φ Λ ΦT

AAT =
(
Ψ Σ Φ

) (
ΦT Σ ΨT

)
= Ψ Λ ΨT

(2.15)

It is worth noting that the discrete POD as described above is formally equivalent
to the reduced Singular Value Decomposition (SVD) of the matrix A (Fahl, 2000), with
σ(i), ψ(i) and φ(i) being respectively the singular values (sorted in decreasing order),
the left singular vectors and the right singular vectors.

2.1.2 Low-rank approximation

The scope of low dimensional modelling (or low-rank approximation) of a matrix A
is to find the approximation A

nm
∈ Rnt×np of rank nm < r = rank(A) minimizing the

Frobenius norm (∥ · ∥F ) of the error matrix:

∥A− A
nm

∥F = min
rank(X)=nm

(
∥A−X∥F

)
. (2.16)

The solution to this minimization problem, given by the Eckart-Young theorem
(Eckart and Young, 1936), is the nm-truncated SVD of the original matrix:
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λ(i)

i

Fig. 2.1 POD spectrum and an-
other non-optimal basis spectrum
for a dissipative system. Adapted
from Berkooz et al. (1993).

A
nm

= Ψ
nm

Σ
nm

ΦT
nm

=
nm∑
i=1

ψ(i)σ(i)φ(i) T (2.17)

with Φ
nm

=
[
φ(1), . . . , φ(nm)

]
∈ Rnp×nm being the orthonormal basis for the columns of

A, Ψ
nm

=
[
ψ(1), . . . , ψ(nm)

]
∈ Rnt×nm being the orthonormal basis for the rows of A,

and Σ
nm

= diag(σ(1), . . . , σ(nm)) ∈ Rnm×nm being the diagonal matrix containing the
norm of each contribution. The orthonormality of these bases ensures that the error in
Eq. 2.16 is minimal and that the decomposition is exact (∥A−Anm∥F = 0) for nm = r.
Each of the modal contributions ψ(i)σ(i)φ(i) T is a rank one component of the original
matrix, having optimal and sorted norm σ(i) > σ(i+1) ∀i ∈ [1, r − 1].

Alternatively, the truncated reconstruction of rank nm can be expressed as:

A
nm

= Ψ
Inm

0
0 0

Σ ΦT (2.18)

with I
nm

being a rank nm identity matrix with nm < r.
Observing that AΦ

nm
= Ψ

nm
Σ

nm
, Eq. 2.17 can be also written as:

A
nm

= AΦ
nm

ΦT
nm

(2.19)

This form of the equation, with no emphasis on the temporal evolution of the
modes, describes the decomposition as the projection of the data set (of rank r)
into a lower dimensional space (of rank nm < r) spanned by the orthonormal basis
Φ

nm
=
[
φ(1), . . . , φ(nm)

]
. This formulation is common in Principal Component Analysis

(Pearson, 1901, Hotelling, 1933, Jolliffe, 2002) where it is introduced in the framework
of variance maximization or minimal error of the approximation matrix A

nm
(Noy-Meir,

1973, Bishop, 2006, Miranda et al., 2008).
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The minimization problem exposed in Eq. 2.16 sets the basis of the optimality
property of the Proper Orthogonal Decomposition. According to this property the
truncated POD of rank nm is the best possible representation of rank nm of the original
matrix according to the Frobenius norm, meaning that it will achieve the minimum
reconstruction error amongst all the possible representations. Due to this property the
spectral representation of the original dataset obtained from the POD basis will always
decay faster or at least with the same rate of the spectrum in another non-optimal
basis, such as, for instance, the Fourier spectrum. This concept is well represented in
Fig. 2.1, adapted from Berkooz et al. (1993).

2.2 POD and random noise
Measurements are usually corrupted by noise, which may pose a limit to most of the
analysis techniques to extract meaningful information. The POD, thanks to its spectral
optimality, can be generally considered quite robust with respect to random errors. In
the following, the effect of random noise on the POD will be analysed. The fluctuating
part of the measured data ensemble A can be decomposed into the sum of a random
error part E and an objective function Ã. From now on, symbols unsigned refer
to measured quantities, while symbols signed with a tilde refer to objective function
quantities. The objective function Ã is not necessarily the unperturbed measurement
dataset, as it may be affected by bias errors. The measured dataset is:

A = Ã+ E (2.20)

Therefore, the sample covariance matrix obtained from the outer product is:

AAT = Ã ÃT + Ã ET + E ÃT + E ET (2.21)

Eq. 2.21 can be simplified under the assumption that random errors are uncorrelated
with the objective field (even though this might not always be the case). Considering
a normally-distributed error with standard deviation ςe, and provided that the number
of vectors is sufficiently large, according to Huang et al. (2005), the sample covariance
matrix is approximately equal to:

AAT ≈ Ã ÃT + npς
2
e Int

(2.22)
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For a non-Gaussian (but still independent and identically distributed) error the
approximation is still valid when the matrix A is rectangular, so that all the eigenvalues
of E ET are with high probability in a neighborhood of ςe (Marchenko and Pastur,
1967). This is formally equal to assume a spectrally-white distribution of the random
error part in the eigenvalues of the covariance matrix.

Recalling that the POD solves the eigenproblem for the sample covariance matrix
in both perturbed and unperturbed cases:

( Ã ÃT + npς
2
e Int

− λ(j) I
nt

)ψ(j) = 0

( Ã ÃT − λ̃(j) I
nt

)ψ̃(j) = 0
(2.23)

It is possible to conclude that:
λ(j) ≈ λ̃(j) + npς

2
e

ψ(j) ≈ ψ̃
(j) ⇒

Λ ≈ Λ̃ + npς
2
e Int

Ψ ≈ Ψ̃
(2.24)

These relationships can be more accurately derived from matrix perturbation
theory, along with their bounds, and are a common assumption in perturbed Principal
Component Analysis (PCA) applications (Kargupta et al., 2003, Huang et al., 2005).
This approximation is correct if the random errors are small with respect to the distance
between two successive eigenvalues of Ã ÃT (Stewart, 2001, Kargupta et al., 2003,
Venturi, 2006). The perturbation of the eigenvectors increases as λ̃ approaches the
value of ςe.

2.2.1 Optimal low-rank approximation of noise-perturbed datasets

If we indicate with A
nm

the reconstruction of the measured flow fields with the first nm

components, considering Eq. 2.18 and Eq. 2.20, the difference between the objective
field and A

nm
modes is:

Ã− A
nm

= Ψ I
nt

ΨT Ã− Ψ
Inm

0
0 0

 ΨT ( Ã+ E)

= Ψ
0 0

0 I
nt−nm

 ΨT Ã− Ψ
Inm

0
0 0

 ΨT E

(2.25)

and considering Eq. 2.24 (again, assuming statistical independence between Ã and
E):
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( Ã− A
nm

)( Ã− A
nm

)T

= Ψ
0 0

0 I
nt−nm

 ΨT Ã ÃT ΨT

0 0
0 I

nt−nm

 Ψ

+ Ψ
Inm

0
0 0

 ΨT E ET ΨT

Inm
0

0 0

 Ψ

= Ψ̃
0 0

0 I
nt−nm

 Λ̃ Ψ̃T + Ψ̃
Inm

0
0 0

npς
2
e Ψ̃T

(2.26)

Exploiting the linearity and rotation invariance of the trace of a tensor:

Tr
(

( Ã− A
nm

)( Ã− A
nm

)T
)

= Tr
0 0

0 I
nt−nm

 Λ̃
+ Tr

Inm
0

0 0

npς
2
e


=

nt∑
i=nm+1

λ̃(i) +
nm∑
i=1

npς
2
e =

nt∑
i=nm+1

λ̃(i) + nmnpς
2
e

(2.27)

Using the Frobenius norm, we define the reconstruction error δRT with respect to
the objective function as:

δRT (nm) =
(

1
ntnp

) 1
2 ∥∥∥ Ã− A

nm

∥∥∥
F

=
(

1
ntnp

Tr
(
( Ã− A

nm
)( Ã− A

nm
)T
)) 1

2
(2.28)

Substituting Eq. 2.27 into the error expression:

δRT (nm) =
(

1
ntnp

) 1
2
 nt∑

i=nm+1
λ̃(i) + nmnpς

2
e

 1
2

(2.29)

Due to the optimality property of the POD, the eigenspectrum λ̃(i) decays faster
than any other spectral representation of the data ensemble. This assures that if a
spectral representation other than a white spectrum exists for the objective dataset, its
eigenspectrum will be a strictly decreasing function of i with faster decay rate than in
any other basis. Therefore a minimum of the reconstruction error δRT exists according
to Eq. 2.29, meaning that there would exist an optimal value n⋆

m for which A
nm

(n⋆
m)
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is the best approximation of Ã. This concept can be straightforwardly applied to filter
out the noise content from a database, in the same fashion of a low-pass filter. Further
insight will be given in Chapter 3, where optimal flow-feature-oriented filtering will be
applied to velocity field measurements obtained by means of PIV.

2.3 POD and modelling of non-time-resolved flow
field measurements

When dealing with experimental or numerical data, most often the POD is applied to
fluctuating velocity vector fields. In this case, according to the L2 norm defined in §2.1,
the squares of the singular values λ(i) = σ(i) 2 measure the space-averaged contributions
to the turbulent kinetic energy of each mode. It must be remarked that λ(i) is strictly
the turbulent kinetic energy content of each mode only if a regularly spaced grid is
considered for the flow field, otherwise a weight matrix should be added to Eq. 2.12.
The optimality property of POD ensures that the most energetically relevant turbulent
features are contained in the first modes and that the energy content of the modes
rapidly decays as the number of modes increases. This last property is at the basis
of an energy-optimal low-order reconstruction (LOR) of the velocity field snapshot
matrix A from the low-rank approximation derived from the POD (see §2.1.2).

In case of phenomenologies characterized by dominant periodic features (such as
the wake shedding of a bluff body) the POD generally shows a quite clear spectral
separation between first modes accounting for the dominant features and the small-scale
turbulence. This spectral separation can be exploited to effectively extract periodic
flow features (see e.g. Perrin et al., 2007). In case of temporal homogeneity of the
features it is safe to assume that the first POD modes, apart from being orthogonal,
might also align to a Fourier decomposition of the field and show a strong harmonic
relation. Following Holmes et al. (1997), in case of temporal homogeneity of the flow,
the two-point correlation matrix is a function of solely the temporal separation between
two points, i.e. Rt(t, t′) = Rt(t− t′). The eigenfunctions of this matrix coincide with
the Fourier modes, i.e. ψ(i) = eι2πft with ι being the imaginary unit. This can be
verified by substituting the eigenfunction in the Fredholm eigenvalue problem in Eq.
2.8:
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∫
Ω
Rt(t− t′)ψ(i)(t′)dt′ =

∫
Ω
Rt(t− t′)eι2πft′

dt′ =
∫

Ω
Rt(∆t)eι2πf(t−∆t)d∆t

=
(∫

Ω
Rt(∆t)e−ι2πf∆td∆t

)
eι2πft = |σ(i)|2eι2πft

(2.30)

Hence eι2πft is an eigenfunction of Rt(t − t′) with eigenvalue |σ(i)|2 given by the
Fourier transform of the spatially averaged covariance matrix.

Therefore, POD can be used to obtain phase information from non-time-resolved
data and to extract a low-order model of the phenomenon. It is particularly relevant
the case of convected flow features, such as the Kármán vortices shed in the wake of a
bluff body or ring vortex developed due to shear-layer instabilities in submerged jets. In
these cases the travelling instability is accounted by two high-energy modes (generally
the first two modes). Both modes share the same periodicity, i.e. the shedding period
τ , thus, according to the orthogonality of the POD chronoi, it is possible to assume
that the POD would coincide with the following decomposition (Ben Chiekh et al.,
2004, Ceglia et al., 2014):

A(x, t) =⟨A(x)⟩ + b(1)(ϑ)φ(1)(x)

+ b(2)(ϑ)φ(2)(x) +
Nm∑
i=3

b(i)(ϑ)φ(i)(x).
(2.31)

b(1) =
√

2λ(1) sin(ϑ), b(2) =
√

2λ(2) cos(ϑ) (2.32)

with ϑ = 2πt/τ being the period phase. In order to verify that the first two modes
represent the coherent harmonics related to the vortex shedding, the scatter plot of the
coefficients normalized with their respective eigenvalues b(1)/

√
2λ(1) and b(2)/

√
2λ(2)

should be observed in search of Lissajous figures. If the points distribute in the
neighbourhood of a goniometric circle, the Eq. 2.31 is respected (Ben Chiekh et al.,
2004, Ceglia et al., 2014).

In general, the scatter plot of the time coefficients might unlock information on the
phase and frequency relation between higher order modes, thus shedding light on the
interconnection between the different flow features highlighted by the modal analysis.
Assuming that the higher-order POD modes are harmonically related and phase-shifted
with respect to the 1st mode:

b(i) =
√

2λ(i) sin(m(i)ϑ+ ϕ(i)) (2.33)
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where m(i) is a positive integer and ϕ(i) is the phase shift of the ith mode with
respect to the first mode. The procedure to identify the harmonic relation and the
phase shift for higher order modes relies on the simplifying assumption that the first 2
modes are at the same frequency with π/2 phase shift (as in Eq. 2.32). It is possible
to extract the period phase from the time coefficient of the first two modes:

tan(ϑ) =
√
λ(2)

λ(1)
b(1)

b(2) (2.34)

Subsequently, the positive integer m(i) and the phase shift ϕ(i), that characterize
the harmonic relation, can be extracted from the minimization problem in Eq. 2.35:

min
(

b(i)

2
√
λ(i)

− sin(m(i)ϑ+ ϕ(i))
)

(2.35)

in which m(i) and ϕ(i) are the free parameters to set.
An example of this procedure is given in Chapter 5, where it is applied to analyse

the wake instabilities produced by different geometrical configuration of two tandem
cylinders in cross-flow nearby a wall.

2.4 Extended Proper Orthogonal Decomposition
It has been mentioned above that the discrete POD in the snapshot method imple-
mentation solves the eigenvalue problem for the two-point temporal correlation matrix
(Eq. 2.12). The eigenvectors Ψ

A
constitute the chronoi of the snapshot matrix A.

According to the bi-orthogonal decomposition, the corresponding topoi Φ
A

can be
found by re-arranging Eq. 2.13 :

Σ
A

ΦT
A

= ΨT
A
A (2.36)

Eq. 2.36 expresses the POD topoi as the projection of the snapshot ensemble onto
the chronoi. Apart being an easy implementation for the calculation of the topoi in the
snapshot method, Eq. 2.36 can be used to extend the POD to other fluid quantities.
This approach is generally named Extended POD (Borée, 2003).

The aim of the Extended POD is to draw a correlation between the flow features
extracted from a given dataset A and the flow features contained in a second dataset
B. The only constraint imposed is that the datasets have to be captured/generated in
the same time reference frame. The nature of the data contained and/or the spatial
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domain they span may instead be different. In general the two datasets will have
different sizes, for example A ∈ RnA×nt and B ∈ RnB×nt .

Following Eq. 2.36, the temporal basis Ψ
A

is used to project the dataset B:

Σ
B

ΦT
B

= ΨT
A
B (2.37)

where Σ
B

is a diagonal matrix containing the norm σ
(i)
B of the projection of the dataset

B on each chronos of the dataset A, and each column of Φ
B,nm

is the ith topos φ(i)
B

(with unitary norm) of the projection of B. The ith topos φ(i)
B

is analogous to the ith

extended POD mode (Maurel et al., 2001, Borée, 2003). Notice that the EPOD topos
φ(i)

B
here defined formally differ from the EPOD mode defined in Borée (2003), which

is instead equivalent to φ(i)
B
σ

(i)
B σ

(i) −1
A .

2.4.1 Properties of the EPOD

Following both Eq. 2.17 and Eq. 2.37 it is possible to define also a truncated EPOD:

B
nm

= Ψ
A,nm

Σ
B,nm

ΦT
B,nm

= Ψ
A

Inm
0

0 0

Σ
B

ΦT
B

(2.38)

which represents the part of B correlated with A
nm

. Therefore, the resulting decompo-
sition of the dataset B is given by:

B = Ψ
A,nm

Σ
B,nm

ΦT
B,nm

+R = B
nm

+R (2.39)

where R is the residual of the decomposition. It must be highlighted that the residual
R is necessarily equal to zero for nm = r, since Ψ

A
is an orthonormal basis and

Σ
B,nm

ΦT
B,nm

would represent the matrix B
nm

rotated in the new basis.
The following propositions, adapted from Borée (2003), are proven in the following

for illustration purpose.

Proposition 1. B
nm

is the only part of B which correlates with A
nm

.

Proof. The cross-correlation tensor between the two datasets, according to Eq. 2.13
and to Eq. 2.37, can be written as:

AT
nm
B = Φ

A,nm
Σ−1

A,nm

(
ΨT

A,nm
B
)

=
(
Φ

A,nm
Σ−1

A,nm

) (
Σ

B,nm
ΦT

B,nm

) (2.40)
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The cross-correlation between A
nm

and B
nm

, according to Eq. 2.39 and to Eq. 2.14,
is given by:

AT
nm
B

nm
=
(
Φ

A,nm
Σ−1

A,nm
ΨT

A,nm

) (
Ψ

A,nm
Σ

B,nm
ΦT

B,nm

)
=
(
Φ

A,nm
Σ−1

A,nm

) (
Σ

B,nm
ΦT

B,nm

) (2.41)

Due to the linearity of the matrix product, it must hold that:

AT
nm
B = AT

nm
B

nm
+ AT

nm
R (2.42)

and therefore, introducing Eq. 2.40 and Eq. 2.41, it must be:

AT
nm
R = 0 (2.43)

which proves the proposition.

Proposition 2. ψ(i)
A
σ

(i)
B φ(i) T

B
is the only component of B

c
to be correlated with the

contribution of the ith POD mode to A.

Proof. The ith POD contribution to A is given by ψ(i)
A
σ

(i)
A φ(i) T

A
. The cross-correlation

matrix between this component and B
c

can be rewritten as:

φ(i)
A
σ

(i)
A ψ(i) T

A
B

nm
= φ(i)

A
σ

(i)
A ψ(i) T

A
Ψ

A,nm
Σ

B,nm
ΦT

B,nm

=
∑

j

φ(i)
A
σ

(i)
A ψ(i) T

A
ψ(j)

A
σ

(j)
B φ(j) T

B

(2.44)

According to the orthogonality property of the POD basis, ψ(i) T
A

ψ(j)
A

= δij . Therefore
the only contribution to the cross-correlation is given by:

φ(i) T
A

σ
(i)
A ψ(i) T

A
B

nm
= φ(i) T

A
σ

(i)
A ψ(i) T

A
ψ(i)

A
σ

(i)
B φ(i)

B
(2.45)

which proves the proposition.

Proposition 3. The matrix B
nm

does not account entirely for the variance content of
B.

Proof. Following the POD, the energy content of the ensemble B is given by the norm
of the two-point correlation matrix. According to Eq. 2.39, it can be rewritten as:



2.4 Extended Proper Orthogonal Decomposition 31

BTB =
(
B

nm
+R

)T (
B

nm
+R

)
= BT

nm
B

nm
+BT

nm
R +RTB

nm
+RTR

(2.46)

Since B
nm

components results in a linear combination of the components of A
nm

,
the cross-products BT

nm
R = RTB

nm
= 0. Therefore:

BTB = BT
nm
B

nm
+RTR = Φ

B,nm
Σ2

B,nm
ΦT

B,nm
+RTR (2.47)

which proves the proposition. Proposition 3 expresses the fact that the EPOD,
differently from the POD, is not an exact decomposition. If nm = r in Eq. 2.39,
Ψ

A,nm
is an orthonormal matrix and thus RTR = 0.

2.4.2 Connection with Linear Stochastic Estimation

The Linear Stochastic Estimation (LSE, Adrian, 1977) is a technique that is typically
employed to estimate an unknown quantity given a quantity that is known. As the
name suggests, this technique attempts to statistically draw a linear relation between
the known quantity and the quantity which has to be estimated. A strong connection
between the LSE and EPOD exists: the EPOD can be considered as the LSE of the
topoi φ(i)

B
given the topoi φ(i)

A
.

Some attempts to determinate the velocity modes correlated to the POD modes
of a multi-channel pressure signal through Linear Stochastic Estimation (LSE) have
been performed by Picard and Delville (2000) for an axisymmetric jet and Taylor and
Glauser (2004) for a backward facing step.

The method employed by Taylor and Glauser (2004) attempts to find a linear
stochastic estimation of the chronoi corresponding to a decomposition of the velocity
field starting from the knowledge of an array of pressure measurements. The LSE
results in a linear overdetermined system:

Ψ
B,nm

≈ A
nm
C (2.48)

with A corresponding to the pressure ensemble matrix and B to the velocity ensemble
matrix.

The solution C to this system is found by solving the equation:

(
AT

nm
A

nm

)
C =

(
AT

nm
Ψ

A,nm

)
(2.49)
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It is possible to observe that:

C =
(
AT

nm
A

nm

)−1 (
AT

nm
Ψ

A,nm

)
=
(
Φ

A,nm
Σ2

A,nm
ΦT

A,nm

)−1 (
Φ

A,nm
Σ

A,nm
ΨT

A,nm
Ψ

A,nm

)
= Φ

A,nm
Σ−2

A,nm
ΦT

A,nm
Φ

A,nm
Σ

A,nm
= Φ

A,nm
Σ−1

A,nm

(2.50)

Introducing the previous solution in Eq. 2.48, results in:

Ψ
B,nm

≈ A
nm

Φ
A,nm

Σ−1
A,nm

= Ψ
A,nm

(2.51)

Following the approach by Picard and Delville (2000), it is possible to show that
the ith contribution to the velocity field ψ(i)

A
σ

(i)
B φ(i) T

B
is strictly identical to the LSE of

the velocity field from the ith POD mode of the pressure.
The LSE of B

nm
from A

nm
is given by the overdetermined linear system:

B
nm

≈ A
nm
C (2.52)

The matrix C is found as the solution to the equation system:
(
AT

nm
A

nm

)
C =

(
AT

nm
B

nm

)
(2.53)

It can be observed that:

C =
(
AT

nm
A

nm

)−1 (
AT

nm
B

nm

)
=
(
Φ

A,nm
Σ2

A,nm
ΦT

A,nm

)−1 (
Φ

A,nm
Σ

A,nm
ΨT

A,nm
B

nm

)
= Φ

A,nm
Σ−1

A,nm
ΨT

A,nm
B

nm

(2.54)

The solution to Eq. 2.52 is therefore implicitly found by means of the pseudo-inverse
matrix of A

nm
, i.e. through the SVD. Eq. 2.52 can be rewritten as:

B
nm

≈ A
nm

Φ
A,nm

Σ−1
A,nm

ΨT
A,nm

B
nm

= Ψ
A,nm

Σ
B,nm

ΦT
B,nm

(2.55)

from which the equivalence between the LSE of the B modes and the EPOD of B
is found. All the properties of the LSE can be therefore extended to the EPOD. In
particular, it must be noted that, while the relation between velocity fields and other
quantities may be formally non-linear, the LSE may still prove to be adequate due to
the small-magnitude of second-order terms (as shown by Adrian et al., 1989, for the
case of homogeneous turbulence).



Part II

Applications to signal treatment





Chapter 3

Optimal flow-feature oriented
filtering for field measurements

Random noise removal from experimental data in turbulent flows is of paramount
importance, especially for the computation of derivative quantities and spectra. Data
filtering is a critical step, in which most often part of the signal has to be traded for
filtering effectiveness. Thanks to its capability to align with the most energetically
relevant flow features, the POD can be used to enforce the separation between signal and
noise content. Results achieved through this approach can easily perform better than
traditional spectral filtering in the Fourier basis due to the POD spectral optimality,
as discussed in Chapter 2. The POD allows a better separation between low-energy
features, associated to small fluctuations which are dominated by random noise, and
high-energy features, associated to larger fluctuations and therefore less affected by
noise contamination.

In this chapter, a filtering method based on truncated POD is described. The
advantage of a POD-based filtering criterion stands in that it is flow-feature oriented,
i.e. it is driven by the data and not by a generic impulse response. The flow-feature
oriented filter described in this chapter has been published by Raiola et al. (2015),
where the method is applied on Particle Image Velocimetry data. The method consists
in the determination of an optimal threshold on the number of modes to consider for
the low-order reconstruction of the flow field. Modes which are ranked above this
threshold (i.e. with higher energy content) are retained, modes ranked below the
threshold (i.e. with lower energy content) are discarded.

While a theoretical demonstration of the existence of an optimum is given, its a
priori determination is impossible without the knowledge of the spectral content of the
noise-free dataset. Therefore, an a posteriori criterion, inspired by the scree plot test
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(Cattell, 1966), is provided. The robustness of the criterion is demonstrated on both
synthetic and experimental datasets. A significant reduction of the measurement error is
achieved, thus resulting in an enhancement of the dynamic velocity range (i.e. the ratio
between the largest and the smallest measurable velocity, Adrian, 1997). Considering
the improvement observed in the measurement of turbulent spectra and derivative
quantities, the proposed POD-based filter can potentially extend the capability of
PIV to large Reynolds number flows, where high dynamic spatial and velocity ranges
are required. In this chapter the focus is on velocity field measurements; nonetheless,
the proposed filter, can be straightforwardly extended to other applications, such as
temperature surface measurements using infrared thermography as discussed in the
work by Raiola et al. (2017).

3.1 The uncertainty in Particle Image Velocimetry
The key of the success of Particle Image Velocimetry (PIV) lies in its ability to measure
the instantaneous velocity simultaneously at several points thus enabling the computa-
tion of derivative quantities, such as vorticity and rate of strain (Westerweel et al., 2013).
Unfortunately experimental noise and spuriously detected vectors (commonly referred
as outliers) pose great challenges to the reliability of the measurement of gradient-based
quantities. For instance, for tomographic PIV measurements, the standard deviation of
the divergence computed on raw data of an incompressible flow can be assumed as an
estimation of the accuracy of measurement of the velocity spatial derivatives and it is
typically found to be around 7% (Ceglia et al., 2014) of the maximum vorticity in the
measured flow field (locally the error can be much higher). Even using advanced PIV
algorithms and temporal filtering of data, a typical figure of 3% error in the vorticity
measurements is reported (see, e.g. Violato et al. 2012).

PIV measurement uncertainty is traditionally classified in bias and random errors.
The bias errors typically appear in the form of peak-locking, i.e. bias towards integer
displacement due to the pixel discretization (Westerweel, 1997), or as a modulation due
to finite spatial resolution effects (Scarano, 2003). Even though the bias error received
a more significant attention from the community of PIV developers, the random
error is often the dominant component of the measurement uncertainty. According to
Adrian (1991), the root mean square (rms) of the random error is proportional to the
particle image diameter (and hence to the correlation peak width). Other sources of
random errors are the change of relative intensity between two exposures of particle
images due to out-of-plane motion, fluctuating background intensity and camera noise
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introduced during the recording process. Westerweel (2000) reported a typical figure
of 0.05 pixels for the rms of the random error. The random error is highly sensitive to
the interrogation procedure: the use of window weighting functions and of advanced
interpolators is shown to affect its amplitude (Astarita, 2006, 2007). Moreover, false
correlation peaks detection mostly occurs when the correlating windows produce an
insufficient number of particle image pairs, resulting in the occurrence of spurious
vectors (Huang et al., 1997). Recognizing and eliminating such incorrect vectors is a
mandatory step to obtain undistorted velocity statistics. This procedure is referred to
as data validation (Westerweel, 1994, Westerweel and Scarano, 2005).

One path to reduce the instantaneous measurement uncertainty due to random error
consists in exploiting temporal coherence to improve measurement quality. Nowadays
the availability of high speed hardware has multiplied the number of attempts in this
direction (see e.g. Sciacchitano et al. 2012, Cierpka et al. 2013). In three-dimensional
flow field measurements physical criteria can be exploited to reduce the measurement
uncertainty (see, for instance, the solenoidal filtering approach by Schiavazzi et al. 2014).
This is generally not possible in planar PIV experiments. In case of non time-resolved
data, the options to reduce the measurement uncertainty are very limited and often
rely simply on spatial filtering which provides a smoother field but, on the downside,
implies a loss of spatial dynamic range.

3.2 POD as a de-noising tool in PIV measurements
In this chapter an approach based on the extraction of a statistical filter from Proper
Orthogonal Decomposition of velocity data ensembles is explored. POD allows for the
identification of the flow field principal components. In §2.1.2 it has been shown that
it is possible to extract the instantaneous flow field topology by taking into account a
subset of modes containing the bulk of the energy. A low-order reconstruction acts
as a filter on the data while, at the same time, redistributes information from the
entire ensemble into the single snapshots, even if they are statistically uncorrelated.
The POD, similarly to discrete orthogonal transforms (such as Fourier, Chebyshev or
Legendre transforms), projects the dataset onto a set of orthogonal functions, i.e. the
empirical eigenfunctions. While in orthogonal transforms the orthogonal functions are
fixed a priori (for instance sinusoidal functions, Chebyshev or Legendre polynomials)
the empirical eigenfunctions are selected accordingly to a spectral optimality principle.
Therefore, assuming empirical eigenfunctions being properly converged (and thus that
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POD has been performed on a large enough dataset) the POD-based filter is expected
to perform better than other filters based on orthogonal transforms.

The reconstruction of the flow field with a limited set of POD modes is already a
quite assessed instrument for PIV data handling, both for the identification of turbulent
coherent structures (Berkooz et al., 1993, Adrian et al., 2000) and for spurious vectors
replacement (Venturi and Karniadakis, 2004, Raben et al., 2012). In the latter case
one can set up criteria based on data smoothness to assess the optimal number of
modes (Everson and Sirovich, 1995, Raben et al., 2012). On the other hand, for data
reconstruction, the trade-off between reconstructed signal and noise contamination
is still left to empirical judgement. A common criterion is based on the heuristic
consideration that the energy content of the POD-based LOR should be a significative
percentage of the energy of the field (Fahl, 2000, Ravindran, 2000, Bergmann et al.,
2005). For instance, Liu et al. (2001) in a channel-flow PIV measurement set a 48%
of the turbulent kinetic energy threshold to define the most representative large-
scale coherent structures. However, in general, no consideration on the amount of
contamination of noise in the reconstructed field is provided, neither the number of
modes selected is shown to be optimal.

The choice of the number of modes to obtain an optimal low-order reconstruction
of noise-corrupted data has been long debated. The filtering capacities of a LOR have
been widely investigated in the branches of computers science and data mining (see, e.g.
Kargupta et al. 2003, Huang et al. 2005, Guo et al. 2006). On PIV measurements of
turbulent flows, instead, the efforts have been focused on the definition and identification
of non-corrupted modes more than on the identification of an optimality criterion for
the reconstruction of the measured flow field (Venturi, 2006).

3.3 Optimal low-rank approximation of PIV data
In §2.2.1 it has been shown that POD can be used to define an optimal low-rank
approximation of a noise-perturbed dataset which best approximates the noise-free
content of the dataset. In this paragraph this concept is further extended and applied
to PIV data with the aim of removing the spurious noise content. In the following it
will be supposed that the POD is performed on the correlation matrix of the fluctuating
velocity field. In this scenario, it is possible to hypothesize that the POD’s eigenvalues
decay rate can be approximated with that of a turbulent spectrum in the Fourier space.
This hypothesis is rather conservative as the eigenspectrum of the POD has a faster
decay rate due to the spectral optimality property (see §2.1.2). Therefore, for turbulent
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velocity fields it is possible to consider a decay rate in the inertial sub-range given by
the Kolmogorov law:

λ̃(i) = Ci−
5
3 (3.1)

where C is a proportionality constant. To evaluate it, one can consider that the sum
of the λ̃(i) is equal to the total kinetic energy in the ensemble:

nt∑
i=1

λ̃(i) =
nt∑

i=1
Ci−

5
3 = ntnpe ⇒ C ≈ ntnpe

ζ(5/3) (3.2)

where e is the turbulent kinetic energy averaged over all the spatio-temporal data
ensemble, nt and np are the size of the data ensemble respectively in time and space
and ζ(s) is the Euler-Riemann zeta function. In the mid equality of Eq. 3.2 it has
been assumed for simplicity that the data are produced on a structured grid, which is
commonly the case for PIV. Substituting Eq. 3.1 and Eq. 3.2 into Eq. 2.29, discrete
deriving the reconstruction error δRT with respect to the number of reconstructed
modes nm and equating to zero:

∆δRT (n⋆
m)

∆nm

= 0

⇓
nt∑

i=n⋆
m+1

λ̃i −
nt∑

i=n⋆
m

λ̃i + npς
2
e = −ntnpe

ζ(5/3) n
⋆
m

− 5
3 + npς

2
e = 0

(3.3)

where ςe is the standard deviation of the random error and n⋆
m indicates a critical point

for the function δRT . It is easy to notice that n⋆
m is a minimum point as ∆2

∆n2
m
δRT > 0.

The optimum number of modes to reconstruct the field, i.e. the one that minimizes
the reconstruction error, is:

n⋆
m =

(
nte

ς2
e ζ(5/3)

) 3
5

(3.4)

In general the effective n⋆
m corresponds to a lower number of modes than indicated

in Eq. 3.4 due to POD optimality with respect to the L2 norm. It should also be noted
that, in principle, in experimental applications the standard deviation of the random
error is not known a priori; furthermore the Eq. 3.4 is a direct consequence of assuming
the POD eigenvalues decaying as in the inertial sub-range of a high Reynolds number
turbulent flow, which is a conservative assumption (as discussed above) and it cannot
be extrapolated directly to the full spectral range. Consequently, Eq. 3.4 has a limited
practical applicability; nonetheless, it is useful to demonstrate the existence of an
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optimum number of modes for the LOR when the flow-field reference spectrum is not
white. Additionally, the relation provides a useful description of the n⋆

m dependencies:
it increases both with the ratio of the turbulent kinetic energy and the random error
energy and with the number of samples in the ensemble.

Even if Eq. 3.4 cannot be used to choose n⋆
m, it can be used to safely estimate the

number of samples required for the convergence of the proposed method. Suppose that
the objective is a noise reduction by a factor RF (i.e. the residual error energy in the
reconstructed fields is (1 − RF)ς2

e ). Since the noise spectral distribution is white, the
relation nt ≈ (1 − RF)−1n⋆

m is a reasonable approximation. Then, from Eq. 3.4:

nt ≈ (1 − RF)− 5
2

(
e

ς2
e ζ(5/3)

) 3
2

(3.5)

The required number of samples can be assessed via a prior approximate estimate of e
and of the expected measurement random error.

In order to find an operative criterion for the choice of the optimal number of
modes to be retained, the reconstruction error with respect to the measured field can
be considered:

δRM(nm) =
(

1
ntnp

) 1
2 ∥∥∥A− A

nm

∥∥∥
F

=
(

1
ntnp

) 1
2
 nt∑

i=nm

λi + (nt − nm)npς
2
e

 1
2

(3.6)

Consider the relative decrease rate of the reconstruction error δRM , here called
F (nm), defined as the ratio between forward and backward discrete derivative of
δ2

RM(nm):

F (nm) = δ2
RM(nm + 1) − δ2

RM(nm)
δ2

RM(nm) − δ2
RM(nm − 1) = λ̃nm + npς

2
e

λ̃nm−1 + npς2
e

= λnm

λnm−1
(3.7)

in which the last equality derives Eq. 2.24. The quantity in Eq. 3.7 may reach
asymptotically 1, for nm sufficiently large. In the next section it will be shown that a
reasonable threshold for the number of modes to retain can be set at F (n⋆

m) = 0.999.
This is formally equivalent to look for an elbow in δ2

RM , and can be considered a
restatement of the classic scree test plot (Cattell, 1966) used in PCA to determine
the number of components to retain in a low-order reconstruction. It is important to
remark that even though the theoretical estimates of Eq. 3.4 and Eq. 3.5 are limited to
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Fig. 3.1 Sub-domains extracted from the Channel Flow DNS spatial domain for the
synthetic PIV experiment. Different positions in the x− y plane are accounted with
different letter (A, B, C and D).

turbulent flows, the thresholding of Eq. 3.7 is of general application, including laminar
flows.

3.4 Validation

3.4.1 Numerical validation on synthetic images

A set of synthetic PIV images is generated from the Channel Flow DNS database
from the John Hopkins Turbulence Databases (http://turbulence.pha.jhu.edu/,
Li et al., 2008, Yu et al., 2012a, Graham et al., 2013). The Channel Flow DNS database
includes a complete channel flow velocity field with bulk velocity Ub equal to 1 over a
domain of 2 half-channel-heights h from wall to wall, 3π channel half heights in the
span-wise direction and 8π channel half heights in the stream-wise direction. The DNS
sequence duration is of one channel flow-through time 8πh/Ub with data stored each
δt = 0.0065h/Ub (with Ub being the bulk velocity in the channel). The simulation
results in a friction Reynolds number Reτ ≈ 1000 and a centerline Reynolds number
Rec ≈ 20000. The data are stored in a 2048 × 512 × 1536 points grid. For the purpose
of simulating a planar PIV synthetic experiment, the velocity field is extracted over
bi-dimensional square h × h sub-domains (going from the wall to the centerline) in

http://turbulence.pha.jhu.edu/
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the x− y planes to simulate a set of PIV snapshots. In order to reduce the temporal
correlation between different snapshots, the velocity field is extracted over a total of 25
different temporal positions spanning the entire DNS temporal sequence. Since a set of
25 snapshots is not enough to reach statistical convergence, at each temporal position 4
sequences of spatially-separated snapshots are extracted exploiting problem symmetry,
spatial homogeneity and statistical stationary state. Each spatially-separated sequence
comprises 80 slices equally spacing the channel width (along the z direction) at a fixed
x − y position. The spatially-separated sequences are obtained at 4 different x − y

positions, in particular at the beginning and at half channel steam-wise position and
both at the bottom side and at the upper side of the channel. A sketch of the slices
extracted from the DNS domain is given if Fig. 3.1. A maximum of 8000 flow-field
sub-domains are extracted from the DNS simulation for this synthetic experiment.

The sub-domains extracted are used to generate synthetic images with dimensions
1024 × 1024 pixels (resulting in a resolution of 4 pixels/grid DNS points). The
displacements are multiplied by a scaling factor in order to achieve a mean displacement
on the channel centerline equal to 15 pixels.

Gaussian particles (mean diameter 3 pixels, standard deviation 0.5 pixels, 300
counts peak intensity) are randomly generated with a particle image density of 0.01
particles per pixel. The laser intensity is simulated to be Gaussian (with half power
width equal to 4 pixels along the thickness of the light sheet) in order to take into
account the effect of correlation degradation due to the out-of-plane motion. Noise with
uniform distribution (maximum intensity 50 counts, standard deviation 14.4 counts) is
added on the images.

The interrogation strategy is an iterative multi-step image deformation algorithm,
with final interrogation windows of 32 × 32 pixels, 75% overlap. A Blackman weighting
window is used to improve the stability and the spatial resolution (Astarita, 2007).
Vector validation is carried out with a universal median test (Westerweel and Scarano,
2005) on a 3×3 vectors kernel and threshold equal to 2 is used to identify invalid vectors.
Discarded vectors are replaced with a distance-weighted average of neighbour valid
vectors. The spatial resolution achieved in this simulated experiment is realistic and
consistent with that of recent PIV experiments (see, e.g. Hong et al. 2012 achieving a
resolution of about 125×60 vectors in a 2h×h domain). The standard deviation of the
random error ςe is estimated by interrogating images with zero-imposed displacement
and same background noise feature, and it is found to be equal to 0.18 pixels. The
mean turbulent kinetic energy e in the ensemble is of about 1.29 square pixels.
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Fig. 3.2 δRT , δRM (left axis) and F (right
axis) versus the number of modes used in
the reconstruction. Errors are presented
in non-dimensional form using δMT .

Fig. 3.3 POD eigenvalues of the 4000 most
energetic modes for the true field, the
measured field and the error field. Note
that error includes both bias and random
part.

According to Eq. 3.5, in order to aim to a target of random error reduction of about
84%, 8000 synthetic images are generated to form the ensemble. With the same values,
the expected optimal number of modes n⋆

m (Eq. 3.4) is of about 1300 modes. The
8000 images are obtained by using flow fields with a time separation equal to 250 DNS
timesteps (corresponding to a displacement of 250 pixels on the channel centerline)
and with a space separation along the z direction equal to 0.23h (235 pixels). The flow
fields are taken at two stream-wise positions, i.e. x = 0 and x = 4πh. The number of
images is doubled by flipping data from the other half of the channel.

In Fig. 3.2 the values of δRT (nm) and δRM(nm) as defined by Eq. 2.28 and Eq.
3.6 are plotted; data are presented in non-dimensional form dividing by δMT , i.e. the
error of the measured field with respect to the true one, that in this test is equal
to 0.32 pixels. It has to be outlined here that this value is higher than the random
noise since it includes also signal modulation and other bias errors. The minimum δRT

is reached when the first 1200 modes are used for the reconstruction (corresponding
to 96.6% of the fluctuating energy of the measured field). The effective number of
modes which minimizes the reconstruction error will be indicated with nδ

m. It has to be
remarked that a quite extended plateau of about 500 modes width is present, thus the
exact choice of the number of modes to be retained is not critical, provided that one
can identify a reasonable estimate of the range in which the optimum should be. In
this plateau the error is of about 0.82 δMT (corresponding to a 0.06 pixels total error
reduction). Beyond 1200 modes δRM has approximately a linear trend with nm. Indeed,
as noise has a white spectral distribution, it is reasonable to expect that for large nm
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the contribution of each mode is approximately constant. The relative decrease rate
of the reconstruction error F (nm) defined in Eq. 3.7 is also plotted; its values are
low-pass filtered (windowed linear-phase FIR digital filter with 25 points span and
normalized cutoff frequency 0.0313). The relative decrease rate of the reconstruction
error approaches 1 beyond 1200 modes, apart from the very last coefficients in which the
linearity of the contribution of noise is lost. A reasonable threshold is F (nm) = 0.999,
corresponding to nm ≈ 1300 and to a δRT nearby the minimum. The number of modes
satisfying the relation F (k) = 0.999 will be referred from now on with the symbol nF

m.
In Fig. 3.3 the POD eigenvalues of the measured and true flow fields and of the

error are illustrated. The latter is defined as the difference between measured and
true flow fields, thus it includes both bias and random errors. The eigenvalues of both
measured and true fields follow approximately a power law, at least for the first half of
the set of POD modes. The eigenvalues of the error present a slower decay rate. Even
if this may seem in contrast with the hypothesis introduced in §2.2.1, i.e. white random
error distribution, it should be remarked that, in the plot, the error includes also a bias
component, which is not necessarily "spectrally white". It is worth to highlight that
true eigenvalues and error eigenvalues cross over in the region that contains the values
n⋆

m, nδ
m and nF

m. Beyond the cross-over point, the measured spectrum approaches the
error eigenvalues. This means that, from this point on, each additional mode included
in the reconstruction would introduce a contribution in which noise is predominant on
the signal.

In Fig. 3.4 a true snapshot is compared to the raw snapshots obtained with PIV
interrogation and with POD-based low-order reconstruction. Maps of the out-of-plane
vorticity component are reported to stress differences. The measured field (Fig. 3.4c)
is affected by spurious vortical features that are not present in the original field. As an
example, the negative vorticity peak marked as A in the figure is much weaker in the
original field, while in the measured field has intensity comparable to that of the vortex
marked as B, that is an original field feature. The optimal reconstruction with 1300
modes (Fig. 3.4d) provides a remarkable improvement of the data quality with respect
to the measured field. This reconstruction smears out the negative vorticity peak in A,
while retaining vortex B. Such a result could not be achieved by a conventional spatial
filter as it will be shown in 3.4.3. Even though the residual error δRT (nδ

m) from Fig.
3.2 might still appear relatively large, it has to be reminded that in this simulated
experiment the measurement error is dominated by bias due to finite spatial resolution
effects. If the number of modes used for the low-order reconstruction is significantly
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Fig. 3.4 Instantaneous fluctuating vorticity (ωz) field. a) The DNS field used for
this benchmark. Magnified view of the: b) DNS field, c) measured field, d) field
reconstructed with 1300 modes, e) field reconstructed with 3000 modes.
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Fig. 3.5 a) Compensated transverse velocity spectra E22 in stream-wise direction versus
wavenumber 2π/ℓ; b) transverse vorticity spectra Ω33 in stream-wise direction versus
wavenumber 2π/ℓ.

increased (e.g. 3000 modes in Fig. 3.4e) the noise contamination is stronger, and, for
instance, the vortex A is still present.

In Fig. 3.5 the spatial power spectra (E22 for the traverse velocity spectrum and
Ω33 for the traverse vorticity spectrum) of the true, the measured and the reconstructed
fields are reported. Spectra are computed at a fixed tunnel height and ensemble
averaged. In both Fig. 3.5a and 3.5b the wavelengths ℓ are expressed in pixels. Data
are proposed in Fig. 3.5a in the form of the compensated spectrum (multiplied by the
wavenumber to the 5/3) in order to magnify the effects at the smallest scales. It has to
be remarked that, even in the case of the original DNS data, the spectrum at the small
scales is contaminated by aliasing effects due to the finite length of the domain. The
reconstruction with 1300 modes closely follows the DNS spectral behaviour to a larger
extent with respect to reconstructions with a larger number of modes. The growth of
the error with respect to the true spectrum for smaller wavelengths can be associated
mostly to the residual noise. For the sake of completeness, the spectrum obtained by a
reconstruction with a lower number of modes is also reported. The reconstruction with
300 modes (which corresponds to 95% of the fluctuating energy) causes a significant
underestimation of the spectral energy of a wide range of large scales, thus highlighting
that the information obtained from these modes is still insufficient to achieve a proper
description of the flow field. The vorticity spectra reported in Fig. 3.5b further stress
the improvement achieved using the optimal POD filter. The spectrum obtained using
1300 modes for the reconstruction follows with high fidelity the true one up to a
wavelength of 70 pixels. The spectrum obtained from the PIV measured data largely
overestimate the vorticity power spectrum already at very large scales (e.g. 35% at
512 pixels and 100% at 128 pixels) due to the measurement noise. The LOR with only
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Fig. 3.6 Test case with 6000 images: a) δRT , δRM (left axis) and F (right axis) versus
the number of modes used in the reconstruction; b) Compensated transverse velocity
spectra E22 in stream-wise direction versus wavenumber 2π/ℓ reconstructed with nF

m

number of modes.

300 modes provides a completely distorted view of the vorticity distribution over the
turbulent scales (even if taking into account 95% of the energy content).

3.4.2 Validation of the criterion for modes selection

In the §3.4.1 the relative decrease rate of the reconstruction error F (nm) was shown
to be a possible parameter to be used for the choice of the optimal number of modes
nm to be included in the LOR, being F (nm) = 0.999 a suitable threshold value. This
criterion is here assessed on synthetic images for several conditions, by changing the
parameters affecting n⋆

m as given by Eq. 3.4 (i.e. the number of snapshots used in the
POD nt and the standard deviation of the random noise ςe). A study to evaluate the
effects of a change of resolution on the selection criterion is also performed. It will be
shown in the following that the spatial resolution is not an independent parameter,
since it affects both q, ςe and also the maximum number of images to be used in the
POD.

The effect of a lower number of images (6000 images in Fig. 3.6 and 4000 in Fig.
3.7) is tested under the same noise level and resolution of the test case in §3.4.1. Figs.
3.6a-3.7a show that the number of modes that minimize the error nδ

m decreases with
decreasing nt, in agreement with the trend predicted by Eq. 3.4. The weaker reduction
of nδ

m with respect to the theoretical prediction of Eq. 3.4 can be associated to the
hypothesis of POD spectrum equal to the inertial sub-range spectrum introduced
for simplification in §3.3. The flatness of the curve δRT is also affected by a smaller
number of snapshots: the maximum achievable error reduction decreases (82% of δMT
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Fig. 3.7 Test case with 4000 images: a) δRT , δRM (left axis) and F (right axis) versus
the number of modes used in the reconstruction; b) Compensated transverse velocity
spectra E22 in stream-wise direction versus wavenumber 2π/ℓ reconstructed with nF
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number of modes.

for 8000 images, 84% of δMT for 6000 images and 86% of δMT for 4000 images), while
the plateau centered in nδ

m increases in size. This behavior is consistent with a lower
degree of separation between true field and noise modes, that produces a stronger
contamination of the measured field modes. The values of nF

m track the nδ
m value in a

conservative way (with respect to preserving the signal content), always predicting a
number of modes slightly larger than nδ

m. The difference between nF
m and nδ

m increases
as the ensemble decreases in size. This is mainly due to an increase in the extension
of the optimal plateau and affects only marginally the reconstruction: the value nF

m

estimated with the F (nm) = 0.999 criterion always identifies a δRT inside the optimal
plateau, i.e. a low-order reconstruction with an error nearly equal to the optimal one.
The effect of a smaller ensemble size on velocity spectra is shown in Fig. 3.6b and 3.7b,
respectively for nt = 6000 and nt = 4000 snapshots. The low-order reconstruction
obtained with the F = 0.999 criterion is less effective in predicting the true spectrum
as the ensemble size decreases, but it still achieves remarkable results (reduction of
about 75% and 40% of the original error for a 64 pixels wavelength, respectively for
nt = 6000 and nt = 4000).

Fig. 3.8 and 3.9 show the effect of a change in the level of background noise. The
intensity of the uniformly distributed noise is set to 25 and 75 counts (the original case
was generated with 50 counts noise), leading respectively to ςe = 0.11 and ςe = 0.27
pixels (estimated with the zero-displacement test) on the calculated velocity fields.
Resolution and number of images are set as in the test case of §3.4.1. A lower level
of noise (Fig. 3.8a) shifts the nδ

m value towards a higher number of modes, meaning
that it is possible to achieve a higher order reconstruction without introducing strongly
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Fig. 3.8 Test case with ςe = 0.11: a) δRT , δRM (left axis) and F (right axis) versus
the number of modes used in the reconstruction; b) Compensated transverse velocity
spectra E22 in stream-wise direction versus wavenumber 2π/ℓ reconstructed with nF
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Fig. 3.9 Test case with ςe = 0.27: a) δRT , δRM (left axis) and F (right axis) versus
the number of modes used in the reconstruction; b) Compensated transverse velocity
spectra E22 in stream-wise direction versus wavenumber 2π/ℓ reconstructed with nF

m

number of modes.

corrupted modes. Conversely, a higher noise level (Fig. 3.9a) shifts nδ
m towards a lower

number of modes, meaning that noise is contaminating a larger spectrum of modes.
As in the previous case, the variation of nδ

m follows the trend predicted by Eq. 3.4. It
should be highlighted that the δRT curve shape is strongly affected by the noise level:
the maximum relative noise reduction increases when the noise level increases, while the
optimal plateau extension decreases. The F (nF

m) = 0.999 criterion allows a reasonable
prediction of the nδ

m position with a conservative weak overestimation, still achieving
a value of δRT inside the optimal plateau. For lower noise levels the LOR obtained
with the F (nF

m) = 0.999 criterion achieves a lower relative noise reduction with a larger
nF

m. The effect of this behaviour on velocity spectra is shown in Fig. 3.8b: a lower
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Fig. 3.10 Test case with lower spatial resolution: a) δRT , δRM (left axis) and F (right
axis) versus the number of modes used in the reconstruction; b) Compensated transverse
velocity spectra E22 in stream-wise direction versus wavenumber 2π/ℓ reconstructed
with nF

m number of modes.

fraction of energy is discarded, while the higher order reconstruction leads to a more
precise computation of the spectra (predicted spectrum is accurate up to a 64 pixels
wavelength). In Fig. 3.9b the effect of a more intense noise contention on velocity
spectrum is shown. Less favourable cases allow to discard a higher percentage of
noise-related fluctuation energy, at the cost of a poorer, but still satisfying description
of the spectrum (reduction of the 85% of the original error for a 64 pixels wavelength).

As previously reported in §2.1.1, the maximum number of modes of the POD is
given by the rank of the snapshots matrix A, meaning that the maximum number of
images nt that can be used in the POD snapshot method is limited by the velocity
field grid points np, i.e. by the PIV algorithm final resolution. This means that it
is not possible to change the spatial resolution without modifying also the number
of images used for POD and the noise level. A test is performed on the PIV images
used for the basic test case, reducing the overlap to 50% (Fig. 3.10). For this test
case a q = 1.32 square pixels and a ςe = 0.17 pixels are estimated, while the number
of images used for the POD has been reduced to 3900. It is difficult in this case to
extract information that a change in resolution produces on the estimate of nδ

m, since
the effects of a change of both noise level and number of snapshots should be taken
into account. As in the previous cases, also for this case the F (nF

m) = 0.999 criterion
predicts an overestimation of nδ

m, even though with δRT (nF
m) value well within the

optimal plateau. The main effect that can be distinguished is a smaller maximum error
reduction with respect to the case with 4000 images (Fig. 3.7a) that seems to be at
least partially justified by a reduction of the noise level and an increment of average
turbulent kinetic energy. The velocity spectrum reconstructed with nF

m number of
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Fig. 3.11 Spatial filter comparison: a) Compensated transverse velocity spectra E22
in stream-wise direction versus wavelength ℓ; b) transverse vorticity spectra Ω33 in
stream-wise direction versus wavenumber 2π/ℓ.

modes (Fig. 3.10b) still gives outstanding results (the error reduction for a 64 pixels
wavelength is higher than 60% of the original error).

3.4.3 Comparison with spatial filtering

In this subsection the performances of the proposed optimal low-order reconstruction
are compared with those of standard spatial filtering techniques. The test case is
the same of §3.4.1. In Fig. 3.11 the velocity and vorticity spectra of the LOR with
1300 modes are compared with those of two of the most commonly adopted spatial
filtering techniques found in PIV literature: Gaussian filter (kernel size 5 × 5 grid
points, corresponding to ±3 standard deviations) and second order polynomial filter
(kernel size 5 × 5 grid points). The low-order reconstruction (LOR) outperforms the
standard spatial filtering techniques, achieving a precise description of both velocity
and vorticity spectra up to a 70 pixel wavelength. For the velocity spectrum at the
same wavelength the Gaussian filter and the polynomial filter provide respectively an
error reduction of 65% and 40% with respect to the original error. A similar behaviour
is observed for the vorticity spectra.

A direct comparison of the instantaneous vorticity fields (Fig. 3.12) clarifies the
outstanding performance of the optimal POD-based LOR with respect to conventional
spatial filters. As anticipated in §3.4.1, the optimal LOR (Fig. 3.12b) is capable of
retaining true field vortical features (such as the vortex labelled as B) and of discarding
spurious vortical features (such as the vortex labelled as A) even if the intensities
of these features are quite similar. Conversely, in the same context, both Gaussian
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Fig. 3.12 Instantaneous fluctuating vorticity (ωz) field. Magnified view of the: a) DNS
field, b) field reconstructed with 1300 modes, c) field filtered with Gaussian filter, d)
field filtered with polynomial filter.

filter and polynomial filter (respectively Figs. 3.12c-3.12d) retain both true field and
spurious vortical features.

3.4.4 Experimental validation

The POD-based filter is validated on an experimental PIV dataset. The flow field
under investigation is the turbulent wake of a 2D circular cylinder.

The experiment is performed in the closed loop wind tunnel of the Aerospace
Engineering Group at Universidad Carlos III of Madrid. This wind tunnel has a square
test section of 0.4 m × 0.4 m with a length of 1.5 m. The ceiling and the lateral walls of
the tunnel are made in methacrylate in order to enable optical access. Free-stream
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turbulence intensity is estimated to be lower than 1% by means of PIV measurements
in the empty tunnel. A circular cylinder, with diameter D = 10 mm, is mounted at
the tunnel’s half height, spanning the entire test section width. The blockage ratio
is equal to 0.025. The free-stream velocity U∞ at the end of the contraction is about
6.2 m/s which gives a Reynolds number based on the cylinder diameter of about 3900.

The flow is seeded with Di-Ethyl-Hexyl-Sebacate droplets with diameter of approx-
imately 1 µm. The light source is a Big Sky Laser CFR400 ND:Yag (230 mJ/pulse).
The acquisition is performed with two Andor Zyla 5.5MP sCMOS cameras (2560×2160
pixels2 resolution, 16.6 × 14.0 mm2 sensor size). The cameras are synchronized in
order to acquire images simultaneously. The first camera is equipped with a 25 mm
focal length objective. The resolution of the images acquired with the first camera is
equal approximately to 55 pix/D (5.5 pix/mm). The second camera is equipped with a
60 mm focal length objective. The resolution of the images acquired with the second
camera is equal approximately to 110 pix/D (11 pix/mm). The time delay between
laser pulses is chosen to be 200 µs, in order to give a displacement of about 14 pixels
in the higher resolution images and of about 7 pixels in the lower resolution images.
The higher resolution camera has then a lower relative error, since the measured
displacement is larger while the expected absolute error is the same (the typical figure
of merit of 0.1 pixels, Adrian and Westerweel 2011). The velocity fields acquired
from the higher resolution camera are considered to be the reference fields due to
their intrinsically lower noise content (as in the work by Neal et al., 2015), while the
corresponding velocity fields from the lower resolution camera are used to test the
POD-based filtering. The cameras are placed side by side in order to have an overlap
region between their respective field of view of about 14 cylinder diameters. An optical
calibration is performed on both the cameras as described in Heikkila (2000). Using
the calibration parameters, dewarping is applied to the two cameras images in order to
match the overlap region, as in Giordano et al. (2012). The overlap regions of both
images are dewarped on the same grid (size 1548 × 443 pixels2) with resolution equal
to 110 pix/D (11 pix/mm). The PIV interrogation strategy is an iterative multistep
image deformation algorithm with final interrogation window of 32 × 32 pixels2 and
75% overlap. The Blackman weighting window is used in the cross-correlation step
(Astarita, 2007). The vector validation (universal median test, 5 × 5 kernel, threshold
2) is implemented similarly to the synthetic test case. The processed images result in
190 × 52 velocity vectors fields. The POD-based filter is applied on an ensemble of
9000 velocity fields acquired from the lower resolution camera.
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Fig. 3.13 δRT , δRM (left axis) and F (right
axis) versus the number of modes used in
the reconstruction. Errors are normalized
with δMT .

Fig. 3.14 Compensated transverse veloc-
ity spectra E22 in stream-wise direction
versus wavenumber 2π/ℓ.

The values of δRM(nm), δRT (nm) and of the function F (nm) (low-pass filtered by
windowed linear-phase FIR digital filter with 25 points span and normalized cutoff
frequency 0.0313) are plotted in Fig. 3.13. The reconstruction errors δRM(nm) and
δRT (nm) are presented in non-dimensional form, normalized by the error of the measured
field over the true field δMT , that for this test has been estimated to be 1.29 pixels from
the high resolution measurements. Compared with the previous synthetic benchmarks,
a similar shape in the error both with respect to the measured flow field δRM (nm) and
with respect to the true flow field δRT (nm) is found. The minimum δRT is reached for
nδ

m ≈ 1000 (corresponding to 84.7% of the fluctuating energy of the measured field).
As in the synthetic benchmark, in this test an extended plateau is present around
the value nδ

m, in which the function δRT has a nearly constant value of about 0.9 δMT .
By taking as a criterion a value of F (nF

m) = 0.999, an optimum number of modes
nF

m ≈ 1100 is found. For a number of modes higher than nF
m, the error δRM has a

nearly linear trend that indicates a dominant contribution of random noise to the
reconstruction.

In Fig. 3.14 the power spectra of the true, the measured and the reconstructed
velocity fields are reported. Data are plotted in the form of compensated spectrum
(multiplied by the wavenumber to the 5/3) in order to magnify the effects at the
smallest scales; wavelengths are expressed in pixels. Wavelengths smaller than 64 pixels
are not considered in the comparison. This limit is posed to account for the filtering
behaviour of the PIV algorithm itself, that degrades spectral information at scales
comparable to the interrogation window size. The reconstruction with 1100 modes
closely follows the reference field spectral behaviour nearly up to the limit considered
in the comparison, slightly underestimating the spectral power (4% error at 90 pixels).
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The spectrum obtained from non-filtered data, instead, considerably overestimates the
reference spectrum even at large scales (14% at 160 pixels and 25% at 90 pixels) due
to its noise content.

The direct comparison of raw, filtered and reference fluctuating velocity fields (Fig.
3.15) gives a better insight on the noise removal obtained using the POD-based filter.
The raw measured flow field (Fig. 3.15c) is degraded by measurement noise if compared
to the reference field (Fig. 3.15a). A number of spurious vectors are present in the
measured field, and even some large-scale flow structures appear to be distorted and
hard to recognize. The POD-filtered velocity field (Fig. 3.15b) is smoother and more
regular than both measured field (Fig. 3.15c) and reference field (Fig. 3.15a). This
result has a twofold explanation: indeed one should consider that the reference field
itself is a measurement, meaning that it contains some measurement uncertainty and
thus noise. Moreover the POD-filter is able to recover coherent structures in the field
and save them from being smeared out in the filtering process. While this certainly
happens for large structures that are well discretized, this is not likely to happen to
poorly discretized structures due to the nature of the proposed method, that looks for
a trade-off between flow field description and noise removal. This behaviour can be
better appreciated in the velocity spectrum (Fig. 3.14), where the POD reconstruction
appears to overfilter the smaller scales.

3.5 Conclusion
In this chapter it has been introduced a feature-oriented filter for applications in flow
field measurements (and specifically for PIV measurements) based on the property
of the POD to achieve a good spectral separation between correlated features and
uncorrelated random noise. The reduction of the random error attained through this
method is extremely beneficial in the computation of derivative quantities of the flow
field, which are more prone to be affected by noise amplification. The feature-oriented
filter relies on the truncated low-order reconstruction obtained from the POD of the
velocity fields. The existence of an optimal number of POD modes to achieve random
error minimization in low-order reconstruction of randomly perturbed flow fields (such
as PIV data) has been demonstrated mathematically assuming a reference spectrum to
model the flow features (i.e. the Kolmogorov spectrum in the inertial range). While the
existence of a minimum-error reconstruction can be easily extended to any other flow
spectral behaviour different from the white one, the theory developed in this chapter
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Fig. 3.15 Magnified view of fluctuating velocity fields: a) reference velocity field, b)
velocity field reconstructed with 1100 POD modes, c) measured velocity field.
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cannot be employed to obtain the optimal number of POD modes without the direct
knowledge of the noise-free field spectral behaviour.

An empirical criterion for the choice of the optimal number of modes has been
therefore indicated and validated. The optimal number of modes can be obtained by
simply observing the variation of the difference between the reconstructed fields and
the original ones, without adding any hypothesis on the features of the flow field itself,
thus making the method robust and flexible. Following the scree plot method, the
optimal number of modes can be identified with a threshold on the second derivative
of the reconstruction error. The robustness of the optimum identification is guaranteed
by the relatively low sensitivity of random error to the number of modes.

The method has been validated on synthetic images ensembles generated from a
channel-flow DNS dataset and on real PIV measurements in the wake of a circular
cylinder. In the first test case the error is dominated by modulation effects, which
cannot be recovered by the POD-based low-order reconstruction. Nevertheless, a total
error reduction of about 18% is achieved, corresponding to a value that is about the
33% of the noise estimated with a zero-displacement benchmark test, while retaining
most of the spectral information of the original field. The vorticity distributions
highlight that the method is able to suppress spurious vorticity blobs without removing
original vortical structures with comparable size and intensity. The spectra of the data
closely follow those of the DNS for a wider portion of the wavelengths with respect
to reconstruction with a larger number of modes. The cutoff wavelength is slightly
larger than twice the interrogation window size. In the experimental test case a total
error reduction of about 10% with respect to the reference field is achieved. The
velocity spectrum of the low-order reconstruction reveals that noise reduction preserves
small scale structures down to scales comparable with the interrogation window size.
Furthermore, the low-order reconstruction is very effective in removing clusters of
spurious vectors, which generally pose a challenge to the standard validation methods.
An extensive parametric validation with synthetic test cases is performed, proving the
robustness of the method and of the criterion used for the identification of the optimal
low-order reconstruction.

As expected, the improvement is more evident on derivative quantities (see, for
instance, the vorticity spectra). Comparison with common spatial filtering techniques
provides a clear idea of the advantages that this technique could introduce, especially
for measurement of turbulence statistics.

The method described here is expected to contribute in enhancing the reliability of
PIV as it allows for uncertainty reduction and robustness improvement. The spatial
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resolution might also indirectly benefit from it. Indeed, generally the choice of the
processing algorithm (window size, interrogation method, etc.) arises from a trade-off
between desired spatial resolution and measurement noise amplification. The optimal
low-order reconstruction allows for the use of advanced high-resolution interrogation
algorithms since the random noise can be consistently reduced in the post-processing
phase. As turbulent flows investigation is demanding in terms of dynamic spatial range
requirements, this advancement would be beneficial.

As a final note, while the method has been here described specifically for PIV
applications, it can be easily extended to other measurements. As an example, in Raiola
et al. (2017) an application to temperature maps measured with infrared thermography
is described. In this case, the random error reduction is extremely beneficial to obtain
a better estimate of small temperature fluctuations, paving the way to time-resolved
heat transfer measurements.



Chapter 4

Eigenbackground removal for PIV
images

PIV image quality is often affected by time-dependent light reflections and strongly
non-uniform background, which are challenging to be removed by image pre-processing.
It is clear that the image quality strongly affects the final results; consequently, the
benefits of proper image conditioning are expected to flow along the processing chain
and to reduce the measurement uncertainty. In this chapter, modal analysis will be
exploited in a quite different scenario than in the previous and in the following chapters,
with the aim of enhancing the PIV image quality. The method presented here is
based on the concept of eigenbackground, and it has been published in the work by
Mendez et al. (2017). Eigenbackgrounds are closely related to the Proper Orthogonal
Decomposition as they represents the topoi obtained by the modal decomposition of an
image sequence. Exploiting the different spatial and temporal coherence of background
and particles images, it is possible to isolate the former from the latter in the POD
spectrum. A reduced-order model (ROM) can be extracted, retaining the PIV particle
pattern, while excluding the highly coherent background included in the low-rank
modes. Therefore, this methodology may be intended as a "high-pass" filter in the POD
spectrum, and represents the specular approach of the filter proposed in Chapter 3. It
should be noted that in this scenario the separation between coherent and non-coherent
scales is much stronger than in the scenario reported in the previous chapter due to
the rank-deficiency of the background features, as shown by Mendez et al. (2017).

The enhancement of the image quality obtained by filtering out the background
features allows to significantly reduce the uncertainty of the PIV measurements,
especially near walls and in conditions in which good imaging is difficult to be achieved.
It is shown that the improvement of the image quality obtained through this method is
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independent of the image sequence temporal resolution, background features sharpness
or brightness. After introducing the theoretical framework, the method is tested on
synthetic and experimental images. Finally the method is compared with widely
used pre-processing techniques in terms of image quality enhancement, improvements
in the PIV interrogation and computational cost to assess its performances. An
open-source version of the pre-processing tool presented in this chapter is available at
http://seis.bris.ac.uk/~aexrt/PIVPODPreprocessing/.

4.1 State of the art in pre-processing methods for
PIV images

Particle Image Velocimetry infers velocity fields from the analysis of image pairs/sequen-
ces, either with statistical operators (cross-correlation, least-square matching) or with
individual particle tracking, or with a combination of them. Regardless of the method
employed to identify the particle displacement, the final accuracy of the velocity
measurement strongly relies on the quality of the images which are fed to the PIV
algorithm. An ideal PIV image consists of bright particles (with a typical diameter of
2-3 pixels, Westerweel, 2000) over a perfectly dark background (Fincham and Spedding,
1997, Okamoto et al., 2000). For a set of ideal PIV images, the identification of the
cross-correlation peak position can be obtained with a sub-pixel accuracy of the order
of 0.01 pixels (Fincham and Delerce, 2000). In real PIV images, however, several
undesired background features usually pollute the cross-correlation map and lower the
accuracy of the measurement. Some examples are uneven gray level offsets produced
by multiple laser light reflections due to variations in the refractive index within the
experimental setup, or random noise produced by camera dark noise and multiple
light scattering between particles. These background features typically reduce the
signal-to-noise ratio of the particle displacement cross-correlation peak by both reducing
the particle contrast and introducing spurious peaks in the cross-correlation map.

The image quality can be improved during the imaging phase by physically reducing
the laser light reflected towards the camera. For instance, for PIV measurements over
opaque objects, a proper material selection or an adequate surface treatment can
reduce the omnidirectional light scattering (Paterna et al., 2013) while a suitable
camera observation angle can reduce the reflected light gathered by the image sensor
(Lin, 1998). These solutions, however, strongly depend on the actual experimental
setup and often can not be implemented due to restrictions in the model materials
and/or on the optical access. Therefore, the PIV image quality is generally enhanced

http://seis.bris.ac.uk/~aexrt/PIVPODPreprocessing/


4.1 State of the art in pre-processing methods for PIV images 61

in the post-recording stage. Two common approaches to improve the image quality are
levelization and normalization. In the levelization approach a reference intensity map,
representative of the background, is subtracted from each PIV image. The reference
intensity map can be obtained from low-pass filtered versions of the images (Willert,
1997) or by considering each PIV frame as the reference intensity of the following
(Honkanem and Nobach, 2005, Mejia-Alvarez and Christensen, 2013). Alternatively,
when the image set is sufficiently large, the reference images can be obtained on a
statistical ground by considering the ensemble minimum intensity (Gui et al., 1997),
the ensemble average (Werely and Gui, 2002) or the intensity probability density
distribution (Stitou and Riethmuller, 2001). In the normalization approach the original
image intensity is rescaled using the entire dynamic range available in order to maximize
the contrast between particles and background. This rescaling can be accomplished
via either linear or non-linear transformations (Dellenback et al., 2000). The rescaling
can be performed globally on the full image or locally on small portions of the image
(Zuiderveld, 1994, Hart, 1996, Roth and Katz, 2001). The intensity capping method
proposed by Shavit et al. (2007) represents an alternative to the full rescaling of the
intensity levels. In this method, the relative intensity of bright objects with respect
to particle intensities is limited by setting an upper limit for the gray scale values
of the images. The min/max filtering technique proposed by Westerweel (1993) and
Meyer and Westerweel (2000) combines both the levelization and the normalization
approaches: the original intensity levels of the image are normalized with respect to
the minimum and maximum intensities, determined on the m× n neighbour pixels.

All the pre-processing methods reported above do not perform satisfactorily when
reflections are either very bright, largely time-varying, or sharp. To remove similar
reflections from the image it is necessary to combine multiple techniques in complex
schemes (e.g. Deen et al., 2010, Theunissen et al., 2008) or, in case of time-resolved high-
repetition-rate PIV experiments, to employ temporal high-pass filtering (Sciacchitano
and Scarano, 2014). The final image quality mostly depends on the experience of the
user (Kähler et al., 2016).

In the following, a background removal method based on the Proper Orthogonal
Decomposition will be discussed. The mathematical foundations of the method, based
of the decomposition of a typical PIV image sequence, are briefly introduced. Finally
the method is applied on both a synthetic and an experimental test case to assess the
quality improvement achieved by this method.
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4.2 Reduced-order modelling of PIV image
sequences

In §2.2 it has been shown that the Proper Orthogonal Decomposition can be used to
identify a projection basis in which the valuable signal content of a dataset and the
spurious random noise can be separated. In this basis, in fact, it is possible to apply
a "low-pass" POD-based filter (i.e. a filter cutting out high order modes) to remove
the noise content (as shown in Chapter 3). In the following it will be shown that a
"high-pass" POD-based filter can instead be applied to a PIV image sequence to retain
the particle images and remove the background image.

The strategy for the background features removal described in this chapter relies
on the reduced-order modelling of a generic PIV image sequence. The reduced-order
modeling of image sequences was first proposed by Oliver et al. (2000) to detect
moving objects for automatic video analysis by means of the PCA. A large number
of ROM methods has been later applied for pattern recognition and video processing
applications (Bouwmans et al., 2016). These methods decompose the original image
sequence matrix in the sum of a low-rank component, representative of static and large
objects, and a sparse one, representative of small and moving objects. In the following,
the reduced-order modelling of a PIV image sequence is introduced accordingly with
Mendez et al. (2017).

A PIV image sequence can be considered as the sum of an ideal PIV image sequence
A

p
(i.e. bright particle images superimposed onto a black background) and a background

image sequence A
b
, which can be expressed via the singular value decomposition as:

A = Ψ Σ ΦT = A
p

+ A
b

= Ψ
p

Σ
p

ΦT
p

+ Ψ
b
Σ

b
ΦT

b
(4.1)

with Φ
p

and Φ
b

being the set of spatial modes (or eigenbackgrounds) respectively of A
p

and A
b
. Typically, the background of a PIV image sequence strongly auto-correlates

both spatially and temporally. Due to the similarity in the rows and in the columns of
the background image sequence, A

b
is close to be rank-deficient (rb = rank(A

b
) ≪ nt)

and only few of its modes are required to approximate it, i.e.:

A
b

≈ Ψ
b

Irb
0

0 0

 Σ
b
ΦT

b

σ
(i)
b ≈ 0 ,∀i > rb

(4.2)

with I
rb

being the rank rb identity matrix.



4.2 Reduced-order modelling of PIV image sequences 63

For an ideal PIV sequence, it is possible to consider each image as a realization of
a random variable. If statistical convergence is reached such that the spatial average
µp and the spatial standard deviation ςp are valid for the entire sequence, the inner
product of the ideal PIV sequence reads:

K
p

= A
p
AT

p
≈ np

(
µ2

p1 + ς2
pInt

)
(4.3)

where 1 ∈ Rnt×nt is a square matrix of ones and I
nt

the rank nt identity matrix.
For a statistically-converged PIV image sequence, it is possible to assume the

following:

Assumption 1. For i > rb, the contribution of the ideal PIV image sequence A
p

is
equally distributed, such that σ(i)

p ≈ σ(i+1)
p ,∀i ∈ [rb, nt − 1]. In particular, for i > 1:

(i) the singular values of the ideal PIV sequence are equal to √
npςp; (ii) the eigenvector

of the ideal PIV image sequence A are orthonormal to the constant vector 1, such that(
ψ(i), 1

)
= 0 ,∀i ∈ [2, nt].

Assumption 2. For i > rb, the decomposition of the image sequence A is aligned with
that of the ideal PIV sequence A

p
, such that σ(i) ≈ σ(i)

p ,∀i ∈ [rb, nt].

For a theoretical proof of these assumptions, the reader is referred to the original
journal paper (Mendez et al., 2017). The complete theoretical derivation of the
properties of the PIV image set decomposition is not included in this dissertation since
its development is mostly a contribution of the first author of the paper, i.e. Miguel
Alfonso Mendez.

4.2.1 Eigenbackground removal algorithm and error estima-
tion

Since the background sequence is rank-deficient (rb ≪ nt) and according to Assumption
1 (σ(i)

p ≈ σ(i+1)
p ∀i ∈ [rb, nt − 1]), an estimate of the ideal PIV image sequence A

p

underlying the image sequence A (Eq. 4.1) can be obtained by filtering out its first rb

POD modes:

A
p

=
nt∑

i=1
ψ(i)

p
σ(i)

p φ(i) T
p

≈ A
p,rb

=
nt∑

i=rb+1
ψ(i)

p
σ(i)

p φ(i) T
p

(4.4)
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Moreover, according to Assumption 2 (σ(i) ≈ σ(i)
p ∀i ∈ [rb, nt]), it is reasonable to

expect the eigenfunctions of A to be aligned with those of A
p

for i > rb, thus:


φ(i) ≈ φ(i)

p

ψ(i) ≈ ψ(i)
p

,∀i ∈ [rb + 1, nt] (4.5)

Using Eq. 2.19, the background-free estimation of the image sequence reads:

A
p,rb

≈ A
rb

=
nt∑

i=rb+1
ψ(i)σ(i)φ(i) T = A

p
Φ

rb
ΦT

rb
(4.6)

where Φ
rb

=
[
φ(rb+1), . . . , φ(nt)

]
is the basis for the reduced-order model of A.

The combination of Assumption 1 and Assumption 2 gives the condition σ(i) ≈
σ(i+1) ∀i ∈ [rb, nt − 1]. In addition to the equality of the singular values, the temporal
modes ψ(i) approximating the ideal PIV sequence are required to be orthonormal to
ψ(1)

p
= 1 /√nt, i.e.

(
ψ(i), 1

)
= 0, according to Assumption 1(ii). The occurrence of these

two conditions identifies the interval [rb + 1, nt] of the POD modes that approximate
the PIV pattern and, thus, that have to be retained in the reconstruction. Once the
reconstruction interval is defined according to the criteria given above, the reduced basis
restricted to this interval can be built and used as projection basis for the set of images.
To minimize the number of background modes in case of significant difference in the
illumination of two consecutive camera exposures, the algorithm should be applied
independently on the two sequences containing the first and second PIV exposures.
This is also beneficial to limit the memory requirements of the algorithm.

The pseudo-code of the eigenbackground removal method is reported in Algorithm
1, where the tolerances in line 6 are set as ε1 = 0.01σ(i)

p = 0.01√
npςp and ε2 = 0.01.

1: Reshape 2D Images Im(i) ∈ Rnx×ny in a(i) ∈ R1×np

2: Assemble Snapshots Matrix A ∈ Rnt×np

3: Compute K = AAT

4: Diagonalize K = Ψ Σ2 ΨT

5: Compute Φ = A ΨT Σ−1

6: Find rb : σ(i+1) − σ(i) < ε1 &
(
1 /√nt, ψ

(i)
p

)
< ε2 ∀i > rb

7: Construct ΦT
rb

=
[
φ(rb+1) T , . . . , φ(nt) T

]
8: Compute A

rb
= AΦT

rb
Φ

rb
with A

rb
=
[
a(1)

rb
, . . . , a(nt)

rb

]
9: Reshape a(i)

rb
∈ R1×np back to Im(i)

rb
∈ Rnx×ny

Algorithm 1 POD Filter for PIV Image pre-processing.
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A measure of the particle pattern’s intensity retained in the reconstructed image
sequence A

rb
is given by the recovery ratio R, defined using the Frobenius norm as:

R =

∥∥∥A
p,rb

∥∥∥
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∥∥∥
F

≈
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∥∥∥
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p

∥∥∥
F

=

√√√√√∑nt
rb+1 σ

(i) 2
p∑nt

1 σ
(i) 2
p

(4.7)

where the last two equalities are a result of Eq. 4.6 and of Assumption 2.
It is possible to demonstrate (see Mendez et al., 2017, for further details) that the

recovery ratio of the POD-filtered image sequence is equal to:

R =

√√√√ (nt − rb)ς2
p

µ2
pnt + ntς2

p

. (4.8)

Eq. 4.8 can be used to estimate the error introduced by the approximations in Eq.
4.4 and Eq. 4.6 and thus the impact of the algorithm on the PIV particle pattern.
Observing that ideal PIV images are characterized by an exponential probability
density distribution (Westerweel, 2000), it is possible to assume that ς2

p ≫ µ2
p, and

thus estimate the recovery ratio as R ≈
√

1 − rb/nt. Finally, it is interesting to observe
that upon the assumption of statistical convergence (i.e. that the image set is large
enough to obtain a good estimate for µp and ςp), the recovery ratio does not depend
on the image resolution np.

4.3 Validation

4.3.1 Statistical convergence of an ideal PIV sequence

The hypothesis of statistical convergence in ideal PIV images is tested on sequences
of synthetic PIV images characterized by different sizes np = nx × ny, number of
images nt and image particle concentration Cp. Random particle positions (ip, jp, kp)
(expressed in pixels) are extracted from a volume such that ip ∈ [1, nx], jp ∈ [1, ny]
and kp ∈ [−0.5, 0.5]. Particle images are superposed onto a perfectly dark background.
The intensity map Imp(i, j) of each image is defined as:

Imp(i, j) =
NP∑
p=1

IL(kp)IP (i− ip, j − jp, dp, pf ) , (4.9)

where NP is the number of particles per image (NP = Cpnp) and IL is the intensity
of the laser sheet. IP refers to the 2D Gaussian intensity distribution produced by
a particle of dp pixels diameter, centered in (ip, jp) and integrated over the sensitive
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(a) (b)

Fig. 4.1 Example snapshot of the background source a(i)
b (a) and corresponding PIV

synthetic image a(i) = a
(i)
b + a(i)

p (b). The insert W1 is illustrated in Fig. 4.6.

part of a pixel having fill factor pf . The laser profile IL is assumed to be Gaussian
(Raffel et al., 2007) and the particle intensity IP is expressed in terms of error function
(Lecordier and Westerweel, 2004) assuming aberration-free optics. The pixel fill factor
is set to 0.7 and particle diameters are selected from a normal distribution with a mean
of 2 pixels and standard deviation of 0.5 pixels. The camera’s dynamic range is set to
0 − 255 (8 bits). The test is performed for two particle densities representing extreme
conditions for practical PIV experiments: Cp = 0.0064 and Cp = 0.287 particles per
pixel (ppp), corresponding to source densities of Ns = 0.02 and Ns = 0.9, where the
source density Ns (Adrian and Westerweel, 2011) can be computed as Cp times the
particle area. A representative image is shown in Fig. 4.1 for each source density. For
each synthetic PIV image sequence the actual inner product matrix K

p
is compared to

the theoretical prediction given in Eq. 4.3. The Frobenius norm is selected to quantify
the deviation from the hypothesis of statistical convergence over the entire singular
value spectrum. The error for varying image size np = nx × ny and number of images
nt is given by:

EF =

∥∥∥K
p

− np

(
µ2

p1 + ς2
p Int

)∥∥∥
F∥∥∥K

p

∥∥∥
F

(4.10)
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Fig. 4.2 Analysis of statistical convergence on synthetic PIV images with source density
NS = 0.02 (example in top-left) and NS = 0.9 (example in bottom-left). In top-right and
bottom-right are compared the corresponding error maps, defined in term of Frobenius
norm in Eq. 4.10, as a function of image size and number of images.

Fig. 4.2 shows the resulting error maps for several sequences of square images.
The source density Ns and the image size np strongly affect the error map, with lower
source densities and smaller image sizes deviating more significantly from the statistical
convergence hypothesis. The number of images nt has a minor influence on the validity
of the hypothesis. For a set of images of realistic size, (√np > 600), the error EF is
within 2%, even at very low particle concentrations, confirming the validity of the
hypothesis.

4.3.2 Background removal in a synthetic test case

The assumptions given in §4.2 are tested on a synthetic PIV image sequence. Addition-
ally, the background removal performances of the proposed image-quality enhancement
algorithm (§4.2.1) are compared to those of common PIV pre-processing techniques.

The image sequence is composed of a set of synthetic image pairs. A total of
nt = 200 statistically independent image pairs with resolution of np = 1024 × 1024
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pixels is used. Each image is constructed as the sum of an ideal PIV sequence A
p

and
a background sequence A

b
as assumed in Eq. 4.1. The displacement of the particles

contained in the ideal PIV sequence A
p

is extracted from the DNS of a channel flow
included in the John Hopkins Turbulence Database (Li et al., 2008, Yu et al., 2012a,
Graham et al., 2013). The velocity fields used for the generation of the synthetic PIV
images are extracted from the database as described in Chapter 3. For the image
database used in this chapter, the particles are randomly distributed in space with a
concentration of 0.01 ppp and with diameters randomly assigned according to a normal
distribution with a mean of 3 pixels and standard deviation of 0.5 pixels. The laser
intensity is modelled with a Gaussian profile with half power width equal to 4 pixels
along the laser sheet thickness direction, in order to take into account the effect of
correlation degradation due to the out-of-plane motion.

The intensity maps Imb forming the background sequence A
b

are constructed as
the sum of four sources each having a spatial structure gk(i, j) and temporal evolution
fk(n):

Imb(i, j, n) =
4∑

k=1
fk(n)gk(i, j) (4.11)

Since this background sequence would be characterized by time-resolved back-
ground features, the images are randomly reordered inside the sequence. The first two
background sources introduce in the image brighter triangular areas bounded by lines
connecting the top corners with the mid-points on the opposite side (g1, g2 in Fig.4.1).
Within these regions, the gray intensity levels have a Gaussian form:

g1,2 = exp
(

−(i− i01,2)2 − (j − j01,2)2

2ς2
g1,2

)
(4.12)

centered in the top corners (i01, j01) = (1, 1) and (i02, j02) = (1, nx). These Gaussians
have standard deviations of respectively ςg1 = 800 pixels and ςg2 = 1600 pixels. The
resulting gray level distributions are further blurred with a square Gaussian kernel of
150 pixels, leading to different levels of intensity and sharpness. The temporal evolution
of these two noise sources is simulated with squared sinusoids of the form:

f1,2(n) = I1,2 sin2
(

2π
T1,2

n− θ1,2 + fm1,2

)
(4.13)

where the periods, in terms of number of images n, are chosen as T1 = 15n and
T2 = 33n; the phase delays are θ1 = 0, θ2 = π/2; both amplitudes are I1,2 = 100
counts and the average intensity is fm1,2 = 40 counts. The third source g3 accounts for
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Fig. 4.3 Singular value spectra of
the synthetic image sequence σ(i),
of the background σ

(i)
b , and of the

ideal PIV pattern σ(i)
p sequences,

compared to the theoretical spec-
trum of the ideal particle images√
npςp. To improve the figure read-

ability, the plots are limited to
i ≤ 20.

Fig. 4.4 Normalized scalar products
of corresponding temporal eigen-
vectors ψ(i), ψ(i)

b
and ψ(i)

p
with the

constant vector 1/√nt. To improve
the figure readability, the plots are
limited to i ≤ 20.

omnidirectional laser light scattering caused by surface roughness, including flare, over
a vertical and a horizontal line. In order to simulate realistic light reflection and flare,
for each pixel along the defined horizontal and vertical lines, two Gaussian intensities
are superimposed in the normal directions t:

g3(t, i, j) = Ir exp
(

−t2

2ς2
r (i, j)

)
+ If exp

(
−t2

2ς2
f (i, j)

)
(4.14)

The reflection intensity amplitude Ir is set equal to the maximum possible grayscale
(255). Prior to spatial smoothing, the widths of the intensity distributions ςr were
drawn from a normal probability with a mean of 2 pixels and standard deviation of 0.5
pixels. Flare is modelled imposing a constant standard deviation ςf of 10 pixels with a
maximum intensity If of 20% of the maximum image intensity, followed by the spatial
convolution with a Gaussian of 3 pixels in standard deviation. The resulting intensities
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Fig. 4.5 Comparison of the first
temporal eigenvectors for the im-
age sequence (ψ(1)) and the back-
ground sequence (ψ(1)

b ).

are capped to 255 gray levels before imposing a sinusoidal temporal variation of f3

with a period T3 = 5n and an amplitude of I3 = 125 counts, producing periodical pixel
saturation.

Finally, the fourth background source f4g4 mimics the thermal camera noise,
modelled as a random distribution in both time and space with a mean value of 20
counts and standard deviation of 8 counts.

The singular values of the image sequence σ(i), of the background sequence σ(i)
b

and of the ideal PIV sequence σ(i)
p are reported in Fig. 4.3. The theoretical values of

the ideal PIV sequence given in Assumption 1(i), i.e. σ(i)
p = √

npςp, are reported for
comparison. For i > 5, the singular values of the ideal PIV sequence σ(i)

p show a constant
value, in agreement with Assumption 1, while the singular values of the image sequence
become σ(i) ≈ σ(i)

p , in agreement with Assumption 2. For i > 5 the singular values
of the background drop to the constant value σ(i)

b ≈ 31 ≪ σ(i)
p . This value is strictly

connected to the random noise component g4f4 of the background, having standard
deviation of ςb = 8/256 ≈ 0.031. As this noise source is randomly distributed both in
time and space, the related singular values are such that σ(i)

b ≈ √
npςb ,∀i ∈ [rb + 1, nt],

similarly to the ideal PIV sequence. For i > 5 the temporal eigenvectors of both the
complete image sequence, of the background image sequence and of the particles image
sequence result orthogonal to the constant vector 1/√nt (see Fig. 4.4) accordingly
to Assumption 1(ii). The assumptions in §4.2 are therefore valid also in presence of
moderate uncorrelated background, typical of camera sensor noise, as long σ(i)

b ≪ σ(i)
p .

Fig. 4.5 compares the first temporal eigenvector of the image sequence with that
of the background sequence. Indeed, regardless of the loss of temporal resolution
produced by the sequence reordering, the removed POD modes are well representative
of the background, as expected from Eq. 4.6.
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(a)
Original

(b)
Min Removal

(c)
High Pass Filter

(d)
CLAHE Recontrasting

(e)
min/max Adjusting

(f)
POD Filter

Fig. 4.6 Examples 128 × 128 image crop in the window W1 in Fig. 4.1, showing the
result of image pre-processing using historical minimum removal, high-pass filtering,
CLAHE recontrasting, min/max adjusting and the proposed POD filtering method.
While levelization methods such as b) and c) performs poorly for time varying and
sharp reflections, normalization methods encounter difficulties for background features
brighter than the particle images. The proposed POD filter is insensitive to both issues.

According to the criteria given in §4.2.1, the ideal PIV sequence can be estimated
with the last i ∈ [6, nt] POD modes of the image sequence (Eq. 4.6). To prove the
efficiency of the eigenbackground removal method, its results are compared to that
of four popular image pre-processing techniques: the minimum intensity background
subtraction (Gui et al., 1997), the high-pass filtering (Willert, 1997), the contrast-
limited adaptive histogram equalization (CLAHE) (Shavit et al., 2007, Thielicke and
Stamhuis, 2014) and the min/max recontrasting (Westerweel, 1993). For the 128 × 128
window W1 shown in Fig. 4.1b, the images pre-processed with each technique are
compared to the original one in Fig. 4.6.
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The minimum removal method is applied separately on the two series of camera
exposure ‘a’ and ‘b’. The high-pass filter is constructed by removing a blurred version
of the images using a convolution with a squared Gaussian kernel of size 10 and
standard deviation 4. The CLAHE histogram equalization is performed using the
Matlab function ‘adapthisteq’ with 8 × 8 tiles (i.e. image sub-regions) and exponential
histogram distribution with α = 5, to reproduce the exponential distribution typical of
PIV images (Westerweel, 2000). The min/max method is applied using the Matlab
function listed in Adrian and Westerweel (2011), using a kernel size of 8 × 8 pixels2

and a level of 230 counts. From the comparison, the worst performing method is the
minimum removal method (Fig. 4.6b), due to the temporal evolution of the background
features in the images. The high-pass filter (Fig. 4.6c) performs well in removing
both the blurred background feature g2 and the random noise source pedestal g4,
but it is challenged by the high gradient regions of the background features g1 and
g4. An increase of the spatial cutoff frequency may result beneficial to reduce the
residuals of the background features g1 and g4, but at the cost of chopping the particle
images in the smooth areas, and thus increasing the risk of peak locking (Westerweel,
1997). Both CLAHE (Fig. 4.6d) and min/max (Fig. 4.6e) show poor performances in
removing the brightest portions of the background exceeding the particle intensities.
The proposed POD filter (Fig. 4.6f), instead, is insensitive to reflection intensity,
gradient and temporal variations. The reconstructed sequence A

rb
approximates the

particles pattern with a recovery ratio R ≈ 96% (Eq. 4.8), being able to recover several
particles lying on high-intensity background areas. The eigenbackground removal
method has a limited impact on the particles, while background features are almost
completely removed.

The impact of the different image pre-processing methods on the estimation of the
velocity fields has been analysed using the same PIV interrogation strategy. An iterative
multi-step image deformation algorithm (Scarano, 2001), with final interrogation
windows of 8 × 8 pixels2, 75% overlap has been applied to the pre-processed images.
Vector validation is carried out with a universal median test (Westerweel and Scarano,
2005) on a 3 × 3 vectors kernel and threshold equal to 2. Discarded vectors are
replaced with a distance-weighted average of neighbour valid vectors. The interrogation
strategy has been implemented by means of a custom-made PIV software, developed
at University of Naples Federico II (Astarita and Cardone, 2005, Astarita, 2006, 2007).
The results of the PIV algorithm on the window W1 reported in Fig. 4.6 are shown in
Fig. 4.7 for the different pre-processing methods. The contour plots report the velocity
magnitude error, defined as the error of the estimated velocity field (u, v) with respect
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(a) (b) (c)

(d) (e) (f)

Fig. 4.7 Error plots in the average velocity magnitude within the 128 × 128 example
window W1 in Fig. 4.1, for the original image sequence, historical minimum removal,
high-pass filter, CLAHE recontrasting, min/max adjusting, and the proposed POD
filtering. The velocity error is defined in Eq. 4.15 and the sub-title reports the
percentage of vectors, within the window, for which ErrV > 0.01 (nvv).

to the velocity fields evaluated from the ideal PIV sequence A
p

(considered as the
reference flow field (uref , vref )) according to:

ErrV = (u− uref )2 + (v − vref )2

(uref )2 + (vref )2 (4.15)

The figure sub-titles report the percentage nnv of invalid vectors in the window,
which has been calculated in post-processing as the vectors for which ErrV > 0.01.

The error on the flow field evaluated from the original images (cf. Fig. 4.7a) is quite
large in correspondence of the sharp and time varying edges of the background features
g1 and g3 (c.f Fig. 4.1). The vector validation introduced in the PIV algorithm results
ineffective in reducing this error. The PIV algorithm applied on the original images
yields up to 71% of invalid vectors vectors. All the standard pre-processing methods
tested (Fig. 4.7b to Fig. 4.7e) suffer from errors produced by the poor background
removal performances, which can not be compensated by the outliers interpolation.
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Fig. 4.8 Computational cost of sev-
eral pre-processing methods as a
function of the number of images
nt having resolution of 1Mpixels:
min/max adjusting ( ) ; CLAHE
recontrasing ( ); proposed POD
filter ( ); ensemble minimum re-
moval ( ); high-pass filtering ( ).

The best results, achieved by the CLAHE re-contrasting, yields 33% of invalid vectors.
The proposed POD-based filter (Fig. 4.7f) shows remarkably higher performances with
no invalid vectors, resulting in an estimated flow field which matches almost perfectly
the ideal one and no invalid vectors.

The computational cost of the tested pre-processing techniques is assessed on a
PIV sequence of 1000 × 1000 pixels for different numbers of images nt in Fig. 4.8.
All the methods are implemented on Matlab 2015 running on an Intel(TM) i7-3770
processor. While the high-pass filter remains the computationally cheapest method,
the computational cost of the proposed POD filter is two orders of magnitude lower
than that of the min/max filtering method.

4.3.3 Background removal in an experimental test case

The background removal capabilities of the proposed algorithm have been assessed on
an experimental test case featuring unsteady reflections. The selected test case is a
PIV investigation of the flow around a 2D flapping wing, sketched in Fig. 4.9.

The flapping motion of the wing consists of a plunging translation along the y-axis
and a pitching rotation around the z-axis. The wing section is a NACA 0012 airfoil
with a chord of c = 30 mm and a span of 490 mm. Plunging and pitching motions are
produced by a four-bar linkage, driven by linear actuators in periodic oscillation with
an amplitude equal to the wing chord for the heaving and to 10◦ for the pitching. A
detailed description of the experimental setup is given in §6.2.

The experiment is performed in the water tunnel at Universidad Carlos III de
Madrid, which has a rectangular cross-section of 500×550 mm2. The free-stream velocity
is set to V∞ = 0.1 m/s, corresponding to a Reynolds number Re = V∞c/ν = 3 · 103,
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Fig. 4.9 Sketch of the 2D flapping
wing experiment. The flow field is
illuminated from the bottom, and
the wing motion results in time-
varying laser light reflection.

and the flapping frequency is set to f = 0.5 Hz, resulting in a Strouhal number equal
to St = 2cf/V∞ = 0.3. The flow is seeded with neutrally-buoyant polyamide particles,
with 56 µm diameter. The illumination is provided by a dual cavity Nd:Yag Quantel
Evergreen laser (200 mJ/pulse at 15 Hz), reshaped in a sheet with 1 mm thickness,
illuminating the flow from the wing lower side. A 5.5 Mpixels Andor sCMOS camera
is used to grab nt = 400 image pairs in phase-locked mode, with a resolution of about
12 pix/mm.

A PIV snapshot extracted from the experimental test case is shown in Fig. 4.10 for
reference. Fig. 4.10 also includes the intensity difference of two consecutive exposures
for a 96×96 image window W located in the trailing edge area. The intensity difference
highlights the presence, close to the wing surface, of both particles pairs (with relatively
low density) and of a strong reflection which displaces with the wing. Thanks to the
low particle density the average particle displacement can be evaluated in about 7
pixels in the x-axis and 10 pixels in the y-axis through a visual inspection. The wing
displacement can be evaluated from the reflection in about 1 pixel in the x-axis and
12 pixels in the y-axis. Fig. 4.11d reports the cross-correlation map in the window
W for the original image pair. The correlation map is dominated by the correlation
peak corresponding to the wing displacement, due both to the high intensity of the
reflection and to the low particle density.

The experimental conditions are particularly challenging due to the presence of time-
varying reflection caused by laser flickering. Even restricting the image-pre-processing
to a phase-locked sub-sample of the image set, random variations in the background
intensity map are present, preventing an effective image correction by means of the
historical minimum removal method. Fig. 4.11b shows the result on the image crop W
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Fig. 4.10 Example of snapshot for the PIV investigation of the flow over a flapping wing.
In a 96 × 96 window W located close to the wing trailing edge, the image difference
between two exposures is shown (inset). Particles and wing motion are evident, with
the yellow referring to the first exposure, the blue referring to the second.

of the minimum removal method (applied separately to the two sequences of image
exposures ‘a’ and ‘b’). The persistence of the reflection after the image correction does
not allow to identify the particle displacement correlation peak (see Fig. 4.11e), which
is covered by the wing motion correlation peak as observed for the raw images.

The eigenbackground removal method is applied separately on both the exposures
image sets ‘a’ and ‘b’. The singular-value spectrum for the image set ‘a’ is reported
in Fig. 4.12a; the scalar product of the temporal eigenvectors with the constant
vector 1/√nt ∈ Rnt×1 is reported in Fig. 4.12b. The eigenbackground removal
algorithm (§4.2.1) is applied with ϵ1 = 0.0001σ1 and ϵ2 = 0.001. The threshold selected
corresponds to the removal of the first r = 40 modes from the image sequence a and of
the first r = 35 modes from the image sequence b. The recovery ratio (cf. Eq. 4.8 ) is
R ≈ 95% from both the image sets.

The results of the eigenbackground removal method on the image crop W are shown
in Fig. 4.11c. The intensity of the reflection on the wing is drastically reduced, while
particle intensity is not altered appreciably. This results in a cross-correlation map (Fig.
4.11f) from which the wing displacement peak is below the noise-to-signal threshold
and a sharp peak for the particle displacement is recovered.

4.4 Conclusions
In this chapter an image pre-processing method for Particle Image Velocimetry (PIV)
based on the Proper Orthogonal Decomposition has been described. The eigenback-
ground removal method relies on the identification of the background source by means
of a reduced set of eigenbackgrounds (i.e. the spatial POD modes of an image sequence).
Different portions of the singular value spectrum (and thus a different subset of the
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Fig. 4.11 Top: image crop from Fig. 4.10 for the original sequence (a) and the results
of the ensemble minimum removal (b) and POD filter (c). Bottom: plots of the
corresponding cross-correlation maps. Contrary to the ensemble minimum removal (e),
the proposed POD filter (f) is insensitive to the reflection variation produced by the
laser flickering and the cross-correlation map recovers the particle displacement.

eigenbackgrounds) of an image sequence can be used to construct either the background
features or the particle images. Particles images and background are distinguished
according to the higher degree of correlation of the background features compared
to that of the particle pattern. In particular, highly-correlated background features
are well approximated by a subset formed by the first few eigenbackgrounds. The
spectral content of the uncorrelated particle patterns, instead, is equally distributed
along the entire spectrum, behaving similarly to white noise. The method identifies the
minimal number of modes representing the background features, excluding them from
the particle pattern reconstruction. The eigenbackground removal method described in
this chapter, therefore, can be considered as a "high-pass" POD-based filter, whereas
the filter described in Chapter 3 can be considered as a "low-pass" POD-based filter. A
robust criterion to select the threshold on the number of modes is given by Mendez
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(a) (b)

Fig. 4.12 a) Singular value spectra of the experimental image sequence for the flapping
wing experiment ; b) scalar product of the corresponding temporal eigenvectors ψ(i)

constant vector 1/√nt. For r > 40, the singular values become constant and the eigen-
vectors orthonormal to 1/√nt, indicating that no significant background contribution
remains.

et al. (2017) exploiting the different spectral properties of the background features and
of the particle patterns.

The method performances have been assessed using a synthetic test case featuring
a turbulent channel flow. The eigenbackground removal method performances have
been compared to those of existing image pre-processing methods. Differently from
other existing methods, the eigenbackground removal is insensitive to background
features size, intensity, gradient, and temporal oscillations. The intensity reduction of
the background features operated by the eigenbackground removal method drastically
reduces the uncertainty in the velocity field estimated from cross-correlation PIV
algorithms. The computational cost of the proposed method is comparable to that of
already existing techniques.

The eigenbackground removal method has been tested on an experimental test case,
featuring a wing in flapping motion. The test case is characterized by sharp, large,
bright, and moving reflections which pollute the cross-correlation map and bias the
measurement towards the wing velocity. Despite the complexity of the experimental
setup, the eigenbackground removal method drastically reduced the reflection intensity
without significantly alter the particle intensities. The image quality enhancement
resulted in the recovery of the particle displacement peak from an otherwise corrupted
cross-correlation map. An open-source version of the POD pre-processing toolbox is
available at http://seis.bris.ac.uk/~aexrt/PIVPODPreprocessing/.

http://seis.bris.ac.uk/~aexrt/PIVPODPreprocessing/


Part III

Flow modelling: POD for data
exploration





Chapter 5

Wake of cylinders in tandem
configuration near a wall

This chapter reports an experimental investigation on the near wake of two circular
cylinders in tandem configuration with the additional interference of the ground. Such
a flow is characterized by more complex flow features with respect to the classical
von Kármán wake shed by a bluff body, including multiple phenomena occurring at
different scales. The study of such a flow is limited by the difficulties in performing time-
resolved measurements over the entire flow field at sufficiently large Reynolds number.
Nevertheless, the knowledge of the flow dynamics is fundamental to understand, for
instance, the periodic force generation on the cylinders. Modal analysis is here exploited
to extract information on the dynamics of the coherent structures in the wake. The
temporal evolution of the most energetic features is obtained through observation of the
Lissajous figures obtained from the chronoi of the decomposition. The modal analysis
presented in this chapter is enriched by an exhaustive study of the time-averaged flow
field, which gives a better physical picture of the different flow dynamics observed
by varying the geometrical parameters of the problem. The results reported in this
chapter have been published in the work by Raiola et al. (2016).

5.1 Tandem cylinders in cross flow
The periodic flow behaviour generated by a cylinder, or by a bluff body in general,
immersed in a cross flow is a widely explored topic (Williamson, 1996). The periodic
shedding of counter rotating vortices, known as von Kármán vortices, gives rise to
fluctuating forces and noise. The shedding occurs at a Strouhal number based on the
cylinder diameter (St = fD/V∞ where f is the shedding frequency, D is the cylinder
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Fig. 5.1 Flow behaviors for cylinders in tandem configurations: (a) bluff-body regime,
(b) reattachment regime, (c) co-shedding regime.

diameter and V∞ is the free-stream velocity) equal to about 0.2 in a range of Reynolds
number 1300 < Re < 5000 (Fey et al., 1998). In this Reynolds number range the
shedding generally starts with separation of a laminar boundary layer, while transition
to turbulent wake occurs further downstream with respect to the separation points.

The flow around arrays of cylinders immersed in a cross flow is a typical engineering
problem that can be found in several applications. Cylinder-like structures are typical
elements, for example, of heat exchangers, cooling systems for nuclear power plants,
offshore structures, buildings, chimneys, powerlines, struts, grids, screens, and cables.
Often these structures work in close proximity, thus introducing strong interaction
effects between their respective wakes, with effects on both amplitude and frequency of
the periodic flow oscillations. Similarly, ground-structure interaction can effectively
modify the behaviour of the flow surrounding these objects such as in the case of
underwater pipelines or arrays of bluff-bodies in ground effect. The wake of bluff-body
arrays in ground effect is especially relevant for solar energy production. Solar plants
(either photovoltaic or thermal) feature arrays of elements (e.g. solar panels or parabolic
trough collectors) which behaves like bluff bodies. Often these elements are loaded
with unsteady aerodynamic forces arising from the wake of upwind elements. This may
lead to structural damage, which increments the maintenance costs of solar plants and,
thus, the final cost of solar energy. Understanding the behaviour of canonical bluff
bodies, such as cylinders, in tandem arrangement and in ground effect is of paramount
importance to predict unsteady loads and design structures immersed in complex
wakes.

The flow around two cylinders in tandem configuration in cross flow has been widely
studied by Igarashi (1981) and Zdravkovich (1987). A review of the subject is given by
Sumner (2010). Depending on the Reynolds number and on the the center-to-center
longitudinal pitch (expressed in non dimensional form as L/D, abbreviated hereafter
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as the longitudinal pitch ratio) three main flow behaviours can be identified. At
small longitudinal pitch ratios (approximately 1 < L/D < 1.2 − 1.8 according to
Zdravkovich, 1987, or 1 < L/D < 2 according to Zhou and Yiu, 2006, depending on
the Re range) the Kármán vortex shedding for the upstream cylinder is completely
suppressed and the two cylinders act as a single bluff body. Meneghini et al. (2001)
observed that vortex roll-up occurs closer to the downstream cylinder with respect
to the single cylinder case. This flow regime has been often defined as extended-body
or single bluff-body regime as sketched in Fig. 5.1a. At intermediate longitudinal
pitch ratios (approximately 1.2 − 1.8 < L/D < 3.4 − 3.8 according to Zdravkovich,
1987 or 2 < L/D < 5 according to Zhou and Yiu, 2006, depending on the range of
Re) a complex flow behaviour appears in the space between the cylinders. Even if
in this regime the flow can show different behaviours, it can be mostly characterized
by the reattachment of the separated free shear layers from the upstream cylinder on
the surface of the downstream cylinder. This regime is referred to as reattachment
regime as sketched in Fig. 5.1b. At larger longitudinal pitch ratios (approximately
L/D > 3.4 − 3.8 according to Zdravkovich, 1987 or L/D > 5 according to Zhou and
Yiu, 2006, depending on the range of Re) both the cylinders develop a wake with the
typical features of a von Kármán street. This regime, sketched in Fig. 5.1c, is referred
to as co-shedding regime. In the co-shedding regime, both the cylinders shed vortices
at the same frequency, with the upstream cylinder shedding triggering the downstream
one (see Alam and Zhou, 2007). The vortices shed from the downstream cylinder are
larger in size but weaker in intensity than in the previous regimes (Zhou and Yiu,
2006).

The different regimes for various L/D are characterized also by the variation of the
shedding frequency of the von Kármán vortices in the cylinder wake; in particular Xu
and Zhou (2004) characterized the variation of the corresponding Strouhal number
spanning through the tandem-cylinders regimes in the range Re ∈ [800, 42000]. For
small longitudinal pitch-to-diameter ratios the Strouhal number is higher than 0.2
(shedding occurs at a higher frequency than for an isolated cylinder). For higher
longitudinal pitch ratios, the Strouhal number decreases, reaching values lower than
0.2 in the reattachment regime. A discontinuous jump occurs when the flow behaviour
passes from the reattachment to the co-shedding regime. For higher longitudinal pitch
ratios the Strouhal number slowly approaches 0.2.

The effect of the ground proximity has been investigated for both circular (e.g. Lei
et al., 1999, Price et al., 2002, Wang et al., 2013) and square (see Martinuzzi et al., 2003,
Wang and Tan, 2008, Mahir, 2009, Shi et al., 2010) single cylinders. The ground affects
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the pressure distributions on the cylinder surface, as well as the flow-induced vibration
modes. The interaction of the cylinder with the wall has been also demonstrated to be
a useful mean to control the flow in more complex arrangements (e.g. Michelis and
Kotsonis, 2015). The flow behavior is controlled by the ratio between the cylinder-to-
wall gap height and the cylinder diameter (G/D, abbreviated hereafter as the wall gap
ratio). According to Zovatto and Pedrizzetti (2001) for a critical wall gap ratio between
0.3 and 0.5 the von Kármán vortex shedding is suppressed as the impermiability of
the wall poses an irrotational constraint on the cylinder wake. According to Price
et al. (2002), however, periodical release of vorticity is still present and its frequency
depends on the Reynolds number for Re < 2000. Lin et al. (2009) found evidence of
the presence of a wall-jet flowing from the wall gap for wall gap ratios lower than 0.3,
showing that this jet presents a self-similar velocity profile.

Little attention has been paid to the effect of the wall proximity in the case of two
cylinders in tandem configuration. Bhattacharyya and Dhinakaran (2008) investigated
with 2D simulations the flow around two near-wall tandem square cylinders (G/D = 0.5,
L/D = 1.5 − 6, Re = 100 − 200) with a shear velocity profile imposed upstream of
them, and found that the cylinders wake resulted in a non-symmetric flow behaviour:
both non-uniformity of the flow and wall-induced vorticity weakens the lower separated
shear layer with respect to the upper one. Harichandan and Roy (2012) simulated the
flow around two near-wall tandem circular cylinders (G/D = 0.5 − 1, L/D = 2 − 5,
Re = 100 − 200) immersed in a zero-pressure-gradient flat-plate boundary layer: for
L/D = 5 the shedding frequencies of both upstream and downstream cylinders are
found to be equal. Moreover, the wake of tandem cylinders is less effective than the
wake of a single cylinder in destabilizing the downstream wall boundary layer and
causing separation. Wang et al. (2014) measured with PIV the flow field around two
square cylinders at Re = 6300 spanning a wide parametric space in both longitudinal
pitch ratio (L/D = 1.5 − 7) and wall gap ratio (G/D = 0.25 − 2). Similarly to the
case of the single cylinder for wall gap ratios below 0.5 the shedding is found to be
suppressed. The interaction with the wall boundary layer is found to be relevant up to
G/D = 1.

5.2 Experimental setup
An experimental campaign has been carried out to study the near wake mechanisms
downstream of two circular cylinders in tandem arrangement and its perturbation due
to the proximity of a plane wall. The experimental study has been carried out in the
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Fig. 5.2 Schematic of the ex-
perimental setup.

closed loop wind tunnel of the Aerospace Engineering Group at the Universidad Carlos
III de Madrid. Details about this facility are given in §3.4.4 (as well as in the works by
Raiola et al., 2015, 2016). The tunnel is equipped with a plane splitter plate (750 mm
length, 2 mm thickness) with a sharp leading edge. The splitter plate is used as ground
(instead of a tunnel wall) in the attempt of obtaining a ground effect on the cylinders
along with a relatively thin boundary layer. The boundary layer thickness on the plate
without cylinders has been measured with PIV and resulted being smaller than 7 mm
at the position of the downstream cylinder and smaller than 11 mm at the trailing
edge of the splitter plate. Two PVC cylinders, with diameter D = 32 mm and length
400 mm (blockage ratio 0.08), are used as test models spanning the wind tunnel test
section from side to side. Figure 5.2 shows a schematic of the experimental setup. The
stream-wise position of the downstream cylinder is kept fixed with respect to the plate
trailing edge for all the experiments, at a distance of 10D. The stream-wise position of
the upstream cylinder is changed in order to vary the longitudinal pitch ratio L/D.
The minimum distance of the first cylinder to the leading edge of the splitter plate (i.e.
for the case L/D = 6) is slightly less than 7.5D. The vertical position of the plate with
respect to the tandem cylinders is changed to vary the wall gap G/D. Experiments
are carried out for L/D spanning from 1.5 to 6 and G/D in the range 0.3-3. The wind
tunnel velocity is monitored before each test with a Pitot tube in order to keep it
constant and equal to 2.3 m/s for all the experiments. The Reynolds number based on
the cylinder diameter is equal to 4.9 × 103.

Velocity field measurements are performed with digital Particle Image Velocimetry.
The flow is seeded with Di-Ethyl-Hexyl-Sebacate droplets with diameter of approx-
imately 1 µm. The light source is a Big Sky Laser CFR400 ND:Yag (230 mJ/pulse,
pulse duration 3 ns). The acquisition is performed with a TSI PowerViewTM Plus 2MP
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Camera (1600 × 1200 pixel array, 7.4 µm × 7.4 µm sensor size) with a spatial resolution
of about 7.2 pixels/mm. The sampling frequency of the PIV measurements is 10 Hz.
An ensemble of 2000 image couples is acquired for each experiment.

The image quality is improved by removing laser reflections and illumination
background by means of the eigenbackground removal technique (Mendez et al., 2017)
illustrated in Chapter 4, allowing unbiased measurements near the wall.

The same custom-made software of the University of Naples used in §4.3.2 is adopted
here for the velocity fields extraction from the PIV images. The final interrogation
windows of the multi-step image deformation process is set to 16 × 16 pixels, 50%
overlap (final vector spacing 8 pixels, corresponding to 0.035D). The vector validation
is carried out with a universal median test (Westerweel and Scarano, 2005) on a 3 × 3
vectors kernel and a threshold equal to 2 is used to identify invalid vectors. Discarded
vectors are replaced with a distance-weighted average of neighbour valid vectors.

5.3 Results

5.3.1 Average fields and turbulence statistics

The velocity fields are processed to extract the distributions of the first and second
order statistics. Analysing the profiles of the wake deficit of momentum u1(x, y) =
⟨u(x, y)⟩ −umax(x), where umax(x), reported in Fig. 5.3, is the local velocity maximum
along the wall normal direction, the maximum deficit u1,max(x) and its position y1,max(x)
are identified (the reference frame is indicated in Fig. 5.2). The maximum deficit is
of paramount importance in order to properly scale the velocity profiles in the wake
(Schlichting and Gersten, 2003). Following the literature about turbulent wakes (Sarkar
and Sarkar, 2010), the wake boundaries ywake(x) are defined as the locations in which
u1(x, ywake)/u1,max(x) = 0.5. The wake width w(x) is defined as the y-distance between
the wake boundaries.

The velocity deficit profiles at various x-distances from the downstream cylinder
for the case L/D = 3, G/D = 3 are illustrated in Fig. 5.3d. After rescaling the
y-coordinate with the wake width w and the velocity deficit with u1,max, the velocity
deficit profiles tend to collapse on a single curve. Despite self-similarity cannot be
assured at the tested short stream-wise distance, velocity deficit profiles compare quite
well with the theoretical asymptotic result given by Schlichting and Gersten (2003):

u1 = u1,max

(
1 −

(
y

w

) 3
2
)2

(5.1)
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(i) L/D=6, G/D=0.3
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(l) Single, G/D=0.3
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Fig. 5.3 Velocity deficit profiles for varying L/D and G/D. Self-similar solution by
Schlichting and Gersten (2003) ( ). Measured profiles at different stream-wise stations:
X/D = 2.0 ( ); X/D = 3.0 ( ); X/D = 4.0 ( ); X/D = 5.0 ( ).
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(d) L/D=3, G/D=3
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(e) L/D=3, G/D=1

x/D

y
/D

1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

3

3.5

4

(f) L/D=3, G/D=0.3
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(g) L/D=6, G/D=3
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(h) L/D=6, G/D=1
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(i) L/D=6, G/D=0.3
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(j) Single, G/D=3
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(k) Single, G/D=1
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(l) Single, G/D=0.3
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Fig. 5.4 Contour maps of the average stream-wise velocity component for all the
longitudinal pitch ratios (L/D) and wall gap ratios (G/D) object of the study. The
stream-wise distance is measured from the downstream cylinder center; the vertical
distance is measured from the splitter plate. The red dashed curve represents the
position of u1,max(x). The red continuous curves represent the wake boundaries for
which the condition u1(x, ywake)/u1,max(x) = 0.5 is satisfied. The streamlines depict
the average field behavior.
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(b) L/D=1.5, G/D=1
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(c) L/D=1.5, G/D=0.3
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(d) L/D=3, G/D=3

x/D

y
/D

1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(e) L/D=3, G/D=1
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(f) L/D=3, G/D=0.3
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(g) L/D=6, G/D=3
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(h) L/D=6, G/D=1
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(i) L/D=6, G/D=0.3

x/D

y/
D

1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

2

2.5

3

3.5

(j) Single, G/D=3
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(k) Single, G/D=1

x/D

y
/D

1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

3

3.5

4

(l) Single, G/D=0.3
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Fig. 5.5 Contour maps of the turbulent kinetic energy (TKE) for all the longitudinal
pitch ratios (L/D) and wall gap ratios (G/D) object of the study. The stream-wise
distance is measured from the downstream cylinder center; the vertical distance is
measured from the splitter plate. The red dashed curve represents the position of
u1,max(x). The red continuous curves represent the wake boundaries for which the
condition u1(x, ywake)/u1,max(x) = 0.5 is satisfied. The streamlines depict the average
field behavior.



90 Wake of cylinders in tandem configuration near a wall
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w
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Fig. 5.6 Comparison of a) wake width and b) maximum velocity deficit for G/D = 3
and varying L/D: L/D = 1.5 ( ); L/D = 3.0 ( ); L/D = 6.0 ( ) ; single
cylinder ( ).

Similar results have been found for almost all cases at G/D = 3 (Fig. 5.3a,d,g,j).
This assures that the blockage effects on the presented results is minimal. Moreover,
the absence of symmetry alteration in the profiles for −1 < y/w < 1 suggests that
for all the cases with G/D = 3 the effect of the wall is negligible along the whole
stream-wise extension of the measured domain. This is also consistent with the
symmetry of the distributions of average stream-wise velocity (see Fig. 5.4a,d,g,j) and
turbulent kinetic energy (see Fig. 5.5a,d,g,j) and by the absence of rotation in the wake
(in both figures red dashed and solid lines depict respectively the maximum deficit
location and the wake boundaries). The turbulent kinetic energy (TKE) is computed
as TKE = 3/4(⟨u′u′⟩ + ⟨v′v′⟩). As the cylinders approach the wall (see Fig. 5.3e,f) the
symmetry in the velocity deficit profiles is disrupted, departing from the Schlichting
profile in the wake portion on the wall side. In this region the Schlichting profile is
substituted by a jet-like behaviour that can be associated to the wall-jet described by
Lin et al. (2009). Differently from the work by Lin et al. (2009), a proper scaling for
this jet has not been found for the present experiment, suggesting that the presence
of multiple bluff-bodies may significantly change the characteristics of this jet. The
wall-jet profile and the wake profile coexist until the jet maximum position approaches
the lower wake boundary; from this point on the given wake width definition does not
appear as a proper scaling for the velocity deficit profile (Fig. 5.3b).

In Fig. 5.6 the wake width and the maximum velocity deficit evolution along the
x-axis are shown for the cases at G/D = 3. Fig. 5.6a depicts clearly the effect of
different L/D on the wake: while the growth rate appears to be quite similar for
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all the cases past x/D = 3, the near wake (x/D < 2) shows the most remarkable
differences. The single cylinder case presents a protracted region (about 3 diameters
long) in which the wake expands before contracting again and finally spreading with
higher growth rate similar to the tandem cylinders cases. This region can be associated
with the distance required by the Kármán vortices to roll up and with the presence of
an elongated recirculation bubble (refer to Williamson, 1996 for further details). In
this region the maximum velocity deficit (see Fig. 5.6b) is nearly constant.

For L/D = 1.5 a relatively thin wake forms in close proximity of the downstream
cylinder (20% smaller than the cylinder diameter, see Fig. 5.6a). The absence of the
recirculation bubble is consistent with the picture of a bluff-body regime (Zdravkovich,
1987). It can be conjectured that the shear layers are rolling up closer to the downstream
cylinder with respect to the single cylinder case (thus outside of the measurement
region). For L/D = 3 the wake width in proximity of the downstream cylinder is
larger, being almost equal to one cylinder diameter. In contrast with the previous
case, the wake width has a plateau for x/D < 1.5, and then starts growing, with
slope similar to the other cases. This different wake behaviour can be ascribed to
the occurrence of a reattachment regime (Zdravkovich, 1987), with the wake of the
upstream cylinder reattaching on the downstream one. Differently from the bluff-body
regime, in the reattachment regime the shear layer detaches directly from the surface of
the downstream cylinder, thus showing some similarity to the case of the single cylinder.
The velocity deficit is stronger with respect to the case falling in the bluff-body regime,
especially in the near wake (x/D < 2). The combined analysis of wake growth and
maximum velocity deficit reveals a stronger drag being produced in this configuration,
as found in literature for similar longitudinal pitch ratios (Alam et al., 2003). For the
case at L/D = 6 the wake is thicker than both the previous cases at L/D = 1.5 and
L/D = 3, while the growth rate is similar to the one falling in the bluff-body regime.
The maximum velocity deficit remarkably increases with respect to both the other
tandem cylinder cases throughout almost all the measurement domain. The effect of
both increasing wake width and maximum velocity deficit suggests a dramatic increase
of the drag for the case with L/D = 6, depicting the scenario of a co-shedding regime
(Alam et al., 2003).

The effect of reducing the wall gap ratio is more diversified (see Fig. 5.7) and
seems to affect significantly the flow field regime. In most of the cases the wake width
is relatively unaffected by the wall interference. For the case of the single cylinder
the growth rate downstream of the recirculation bubble is unchanged when passing
from G/D = 3 to G/D = 1, while the only appreciable effect seems to be a change of
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Fig. 5.7 Wake width comparisons for varying G/D: G/D = 3.0 ( ); G/D = 1.0
( ); G/D = 0.3 ( ). Solid lines represent w(x) = ywake,up(x) − ywake,low(x).
Dashed lines represent wup(x) = 2(ywake,up(x) − y1,max(x)).

the bubble extension. For G/D = 0.3 the general characteristics of the wake width
evolution along the stream-wise coordinate are preserved approximately up to a point
in which the cylinder wake on the wall side and the wall boundary layer merge (at
about x/D = 4 as can also be appreciated in Fig. 5.4l). A similar behaviour of the
wake width evolution can be observed for almost all the cases. A very exemplifying case
is represented by L/D = 1.5, G/D = 1: the wake growth rate is nearly unaltered with
respect to the G/D = 3 case up to x/D = 4, while at this value it starts decreasing
due to the merging of the wake with the boundary layer (see Fig. 5.4b). Starting from
x/D > 4 the wake width w cannot be used as a suitable scaling parameter (see e.g. Fig.
5.3b). The effect on the maximum velocity deficit (see Fig. 5.8) clearly indicates that,
as the cylinders approach the wall, the momentum deficit tends to increase, possibly
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Fig. 5.8 Maximum velocity deficit comparisons for varying G/D: G/D = 3.0 ( );
G/D = 1.0 ( ); G/D = 0.3 ( ).

due to the addition of the mass flow deficit of the wall boundary layer to the wake
mass flow deficit.

A better insight on the effect of the wall on the wake evolution is given by Fig. 5.4,
that shows the contour plots of the average stream-wise component of the velocity,
along with the curves depicting the positions of the wake boundaries and the line of
maximum velocity deficit. With respect to the symmetric cases (exemplified by wall
gap ratio G/D = 3), all the cases at G/D = 1 (Fig. 5.4b,e,h,k) and G/D = 0.3 (Fig.
5.4c,f,i,l) present a wake bending, showing a concavity towards the wall, as highlighted
by the maximum deficit position and by the wake boundaries. The maximum velocity
deficit line (red dashed line in the figures) is slightly rotated upwards for the closer-
to-the-cylinder portion of the wake. This behavior has been already observed for the
single cylinder in Lin et al. (2009), showing that the recirculation region rotates far
from the wall following the wall jet. The farther-from-the-cylinder portion of the wake,



94 Wake of cylinders in tandem configuration near a wall

instead, appears to rotate towards the wall, suggesting the formation of a low pressure
region on the wall that could draw the wake toward the ground.

This rotation effect can be addressed as a weak interaction between the cylinders
wake and the wall. As the wake lower boundary and the wall boundary layer (whose
edge corresponds to the point of maximum velocity in the wall jet) merge, a strong
interaction occurs: the upper wake boundary -that represent the only well-recognizable
feature of the former wake- no longer spreads, remaining nearly parallel to the wall
or shrinking. In this case no more distinction can be performed between wake and
wall boundary layer: they completely merge in a single low speed region attached
to the wall. It can be expected that this structure may eventually develop in a
boundary layer, being the cylinders considered as an overtripping (e.g. see Marusic
et al., 2015). The geometrical configuration of the cylinders appears to be a major
player in determining the position at which the two structures merge, controlling
both wake characteristics -such as wake width and maximum velocity deficit- and wall
jet/boundary layer characteristics.

The contour maps of turbulent kinetic energy (TKE) are reported in Fig. 5.5. For all
the cases at G/D = 3 the TKE presents a symmetric pattern with respect to the wake
centerline, in agreement with the previously reported results on first-order moments
and wake behaviour. Significant differences between the different configurations can
be appreciated for varying L/D. For L/D = 1.5 (bluff-body regime) the wake is
characterized by a strong TKE production, especially localized on the wake centerline
and close to the downstream cylinder. This TKE distribution resembles closely the
one observed for the single cylinder, even if the TKE values are consistently higher.
Differently from the single cylinder case, the low turbulence intensity region associated
with the recirculation bubble is not present, in agreement with the previously outlined
results. For L/D = 3 (reattachment regime) the TKE in the wake is characterized
by the presence of two elongated production regions, with some analogy with the
shear layer development observed for the single cylinder case. This is again consistent
with the view of a reattachment regime. For L/D = 6 (co-shedding regime) the TKE
values are slightly stronger and diffused than in the previous case, with peaks along
the wake boundaries. This behaviour appears to be consistent with the release of
Kármán vortices from the upstream cylinder, as observed by (Zdravkovich, 1987): the
downstream cylinder is invested by a pulsating flow that convects the wake of the
downstream cylinder; this determines a more intense spatial spreading of the TKE and
an increase of the fluctuations in the most external part of the wake.
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As the wall gap ratio is reduced to G/D = 1 (see Fig. 5.5b,e,h), the TKE
distribution becomes asymmetric, increasing in intensity in the wall-facing portion of
the wake. For low wall gap ratios (G/D = 0.3 in Fig. 5.5c,f,i) and for L/D = 1.5,
G/D = 1 (Fig. 5.5b) a remarkable change in the spatial distribution of the TKE is
present: in the most downstream portion of the wake the energy tends to redistribute
from the centerline to the upper wake boundary as soon as the lower wake boundary
and the wall boundary layer merge. This determines the formation of a low TKE
region nearby the wall and the displacement of the maximum TKE region farther
from the wall with respect to the wake centerline. Close to the downstream cylinder a
strong asymmetry in the TKE distribution is still present, generally with an increase
of TKE close to the wall and flowing out from the cylinder-wall gap. More than to
turbulence production, this strong intensity of the fluctuating field can be addressed
to a periodical mean flow, suggesting the presence of a pulsating-jet-like flow in the
gap between the downstream cylinder and the wall.

5.3.2 POD modes organization and mutual relation

The turbulent kinetic energy content of the first 20 POD modes is reported in Fig. 5.9
for the nine tandem cylinders configurations that have been tested (along rows, variable
wall gap ratio; along columns, variable longitudinal pitch ratio). The case of a single
cylinder is included for comparison in the last row. Similarly to the case of the single
cylinder, at G/D = 3 the first two modes account for most of the turbulent kinetic
energy in both the bluff-body regime (about 70% of the total energy) and reattachment
regime (about 55% of the total energy). These modes, as it will be clarified later in
this section, are related to the first harmonic of the von Kármán vortex shedding. A
strong drop in the energy content of the first two modes occurs for the co-shedding
regime (about 20% of the total energy), while energy redistributes over higher order
modes, unveiling a more complex behaviour. The effect of small wall gap ratios is
evident for the case of the single cylinder: due to ground effect, the energy content of
the first two modes strongly drops (passing from nearly 60% at G/D = 3 to about 35%
at G/D = 0.3). This behaviour is compatible with a flow not dominated anymore by
the shedding. Similarly, for cylinders in tandem configuration, a more or less intense
drop can be observed for all the cases when wall gap ratio decreases. Energy tends to
redistribute from the first modes (strongly dominant at G/D = 3) over higher order
modes that may be uncorrelated with the typical von Kármán shedding behaviour.

The most energetic POD mode is reported in Fig. 5.10 for all the cases under
study. The case of a single cylinder in cross flow is also included for reference. Data
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Fig. 5.9 Energy content of the first 20 modes expressed in percentage of the total
in-plane turbulent kinetic energy.
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are presented in terms of out-of-plane non-dimensional vorticity component maps to
spotlight the vortical features. In all the cases the vorticity maps are dominated by the
intermittent release of vorticity, coherently with the scenario of a shedding wake. This
picture was expectable, and it is confirmed by the analogous vorticity distributions
in the second mode (not included for brevity). The dominance of a shedding is also
confirmed by the scatter plot of the time coefficients of the first two POD modes (Fig.
5.11), normalized with twice the square root of the corresponding eigenvalue. The
Lissajous curve obtained from low-order modelling of the scatter plot is indicated in
red in Fig. 5.11. The analytical form of the Lissajous curve is:

b(1) =
√

2λ(1)sin(2πf (1)t), b(2) =
√

2λ(2)sin(2πf (1)t± π/2) (5.2)

with f (1) the frequency of the first oscillatory mode.
In most of the cases under examination, the normalized time coefficients of the first

two POD modes distribute with quite good fidelity on a circle with unitary radius.
Notice that the agreement is more evident for the case of the single-body regime at the
largest wall gap ratio. This is due to the different nature of the shedding. For the case
of the single-body regime (L/D = 1.5, G/D = 3, see Fig. 5.10a), a regular shedding
similar to that of a single cylinder (see Fig. 5.10j) is released, with concentrated blobs of
vorticity on the centerline. It must be highlighted that the vorticity blobs in the single
cylinder case present a double tail, corresponding to the shear layers released from
the cylinder in the vortex formation region. This shows a strong statistical correlation
between the shear layers oscillations and the vortex shedding. A similar behaviour
cannot be observed for the bluff-body regime, as the vortices roll-up very close to the
downstream cylinder. This difference is reflected also by the scatter plots: while in
the single-body regime there is a very weak scattering of the time coefficients from the
Lissajous curve (see Fig. 5.11a), in the single cylinder case (see Fig. 5.11j) a stronger
scattering appears, revealing a lower harmonic coherence due to the presence of the
shear layers in the first two POD modes. For the case of the reattachment regime
(L/D = 3, G/D = 3, see Fig. 5.10d) the vorticity blobs appear more stretched along
the stream-wise direction and mix up with the shear layer of the wake of the first
cylinder. The two phenomena are statistically correlated but might be characterized
by different characteristic frequencies, thus reducing the clearness of the scatter plot
of the normalized time coefficients (Fig. 5.11d). In the co-shedding regime (L/D = 6,
G/D = 3, see Fig. 5.10g) this process is further stressed, leading to the appearance of
pairs of vortices with similar vorticity value released in the wake for the case of the
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Fig. 5.10 Contour maps of non-dimensional vorticity ω̂z = D
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of the 1st

POD mode.
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Fig. 5.11 Scatter plot of time coefficients of the 2nd POD mode with respect to the time
coefficients of the 1st mode. The red line indicate the Lissajous curve with analytical
form b(1) =

√
2λ(1)sin(2πf (1)t); b(2) =

√
2λ(2)sin(2πf (1)t± π/2).
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largest distance from the wall. This is symptomatic of a phase-locked shedding of the
two cylinders.

As the two cylinders approach the wall, intermittent release of vorticity is still
clearly observed in all cases, revealing an underlying shedding behaviour also for
G/D = 0.3. At G/D = 0.3 (see Fig. 5.10c,f,i,l) the spatial frequency of the shedding
strongly increases with respect to the case of G/D = 3. The shedding behaviour is
confirmed also by the circular pattern in the scatter plots of the time coefficients (see,
in particular, Fig. 5.11c and 5.11f). The not perfect agreement of the harmonic relation
with time coefficients suggests a more chaotic behaviour than in the far-from-the-wall
cases, possibly characterized by the contamination of multiple frequencies. It must
be also pointed out that the energy content of the first two modes (Fig 5.9c and 5.9f)
strongly drops for the close-to-the-wall cases, revealing that the shedding loses its
dominance. For L/D = 3, G/D = 0.3, due to the energy drop, the shedding mode may
be nearly completely covered by other oscillations in the wake. Similar shedding modes
are present also for the single cylinder case at G/D = 0.3 (Fig. 5.10l). Despite most of
the literature agrees with the observation that von Kármán shedding from a cylinder
should disappear at wall gap ratios equal to G/D = 0.3 (see, e.g. Lei et al. (1999)),
the presence of similar vortical structures in the wake has been already evidenced
by Price et al. (2002) and Michelis and Kotsonis (2015). For a single cylinder, the
frequency at which this vorticity is released has been observed to be strongly dependent
on the Reynolds number (Price et al., 2002). It must be highlighted that the shedding
spatial frequencies observed for L/D = 1.5, G/D = 0.3 (Fig. 5.10c) and for L/D = 3,
G/D = 0.3 (Fig. 5.10f) are similar to those observed for the single cylinder. This
suggests that the mechanism that promotes this shedding should be similar for both
single and tandem cylinders. A possible explanation is that these oscillations are
synchronized with the instabilities in the wall jet flow released from the wall gap:
oscillations may then depend on the effective wall gap passage area -i.e. the equivalent
passage area once the boundary layer mass deficit has been subtracted. This justifies
the different behaviour for L/D = 6.

The picture of a strong interaction of the wall boundary layer with the shedding
in the wake is further enforced by the asymmetry of the POD modes for low wall
gap ratio cases. A prominent feature of these cases is the production on the wall of
intermittent vorticity patches synchronized with the shedding (see Fig. 5.10b, 5.10e
and 5.10h) that, for the lowest wall gap ratio, tend to merge with the vorticity shed by
the downstream cylinder (see Fig. 5.10c, 5.10f and 5.10g), thus introducing stronger
asymmetry in the modes.
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The case of L/D = 6, i.e. within the co-shedding regime for G/D = 3, is significantly
different. While for the far-from-the-wall case a dual shedding wake has been observed,
at G/D = 1 the wake assumes features which are more similar to those of the case of
L/D = 3, i.e. to the reattachment regime. This would suggest that the effect of the wall
is to push the wake towards the downstream cylinder, thus promoting reattachment.
For the case of L/D = 6 and G/D = 0.3 (Fig. 5.10i) the scenario is further complicated,
since the pure shedding is associated with a flapping jet-like ejection from the slot
created by the second cylinder and the wall. This feature is not observed in the cases
of L/D = 1.5 and L/D = 3 since in both cases the wake of the upstream cylinder does
not have enough stream-wise length to spread and merge with the wall boundary layer,
producing blockage in the lower wall gap. However, even for the case of L/D = 6 and
G/D = 0.3 (Fig. 5.10i) the intermittent release of vorticity of shedding wakes is still
observable at y/D = 1.5 − 2, even though more diffused. This shedding is likely to be
originating from the upstream cylinder, thus providing a picture of a shedding-attached
regime, in which the wake of the downstream cylinder is strongly asymmetric, with an
intermittent oscillating jet on the wall side and a shedding of vortices on the outer side.

The analysis of higher order modes is performed following the procedure described
in §2.3 to identify the harmonic relation with the 1st mode. Following Eq. 2.33, the
harmonic relation with the first mode is found in the form:

b(i) =
√

2λ(i)sin(2πm(i)f (1) + ϕ(i)) (5.3)

in which the parameters m(i) and ϕ(i) are found through the minimization problem
in Eq. 2.35. The harmonic relation is considered successful when the correlation
coefficient between the normalized time coefficient vector and the harmonic relation is
above 0.7. For ease of notation, in the following the frequency of higher order modes
will be indicated as f (m) = mf (1).

Higher order modes present a more various set of behaviours for changing longitu-
dinal pitch and wall gap ratios: same order modes can strongly differ from one case to
the other, mostly because of the energy redistribution that characterizes these modes.
In the cases where a pure vortex shedding is clearly the dominant behaviour (namely
for bluff-body regime at high wall gap ratios), higher order modes are prevalently char-
acterized by intermittent release of vorticity at a spatial and temporal frequency that is
an integer multiple of the principal shedding frequency. The vorticity distribution is in
some cases symmetric with respect to the stream-wise direction (see, for instance, for
the 4th POD mode, the case of Fig. 5.12a and 5.12e), in some others asymmetric (see
for example Fig. 5.12b and 5.12d). Symmetric modes tune the intensity and size of the
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Fig. 5.12 Contour maps of non-dimensional vorticity ω̂z = D
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modes.

vortices shed in the wake, and are related to odd multiples of the shedding frequency
(see, for instance, Fig.5.13a and 5.13e). Asymmetric modes, on the other side, model
the cross-wise oscillation of the shedding wake, and are related to even multiples of the
shedding frequency (see, for instance, Fig.5.13b and 5.13d). For cases not characterized
by a pure shedding (such as for reattachment and co-shedding regimes), oscillations
not correlated with the shedding (Fig. 5.12c and 5.12f and Fig. 5.13c and 5.13f) can
account for higher energy content than the higher order harmonics of the shedding.

5.4 Discussion and conclusions
An extensive investigation has been carried out to study the effect of the ground on the
wake produced by two cylinders in tandem configuration at Re = 4.9 × 103. A number
of interesting cases have been selected on the basis of the existing literature about the
topic: 3 different longitudinal pitch ratios (L/D = 1.5, 3, 6) to span the typical regimes
found for cylinders in tandem configuration with no wall effect; 3 different wall gap
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Fig. 5.13 Scatter plot of time coefficients of POD modes with respect to the time
coefficients of the 1st mode.

ratios (G/D = 3, 1, 0.3) to study the effect of the ground. As a reference, the cases of
a single cylinder at the same wall gap ratios have been studied. The study has been
performed by means of PIV measurements in the wake of the downstream cylinder.
The non-time-resolved measurements have been used to retrieve information about the
first and second order statistics of the flow fields. The wake characteristics have been
identified, finding in almost all the cases a good agreement with the self-similar wake
model proposed by Schlichting and Gersten (2003). A modal decomposition of the
fluctuating flow field has been performed to identify the dominant oscillations of the
wake. This analysis has been performed by means of Proper Orthogonal Decomposition.

In all the cases, decreasing the wall gap ratio, asymmetry is introduced in the
average flow, resulting in a bent wake: the very near wake is tilted upwards due to
the effect of a wall jet released from the wall gap; the wake is then pulled towards
the wall, most likely due to the presence of a wall-low-pressure region. This effect is
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strengthened for the cases in which a strong and localized blockage occurs, such as in
the reattachment regime.

For moderate wall gap ratios, a still strong average flow is present through the
gap. This results in the formation of a wall jet whose maximum velocity point can
be considered as a boundary for the wall boundary layer. The wall jet appears to be
strongly related to the width of the wake, resulting in a thickening of the boundary
layer for thicker wakes, and thus in the merging of wake and boundary layer closer to
the cylinders. Downstream of the merging, no more resemblance of the lower part of
the former wake with the Schlichting model is found, suggesting that the low velocity
region that is formed develops its own characteristics. Fluctuations in the wake of the
cylinders are generally strengthened closer to the wall. For small wall gap ratios the
average flow through the gap tends to be suppressed, due to the merging of wake and
boundary layer close to the cylinder. Fluctuations tend to be further strengthened
close to the wall gap, while they tend to disappear in the low velocity region which
forms close to the wall downstream the merging point. This behaviour suggests the
formation of a pulsating-jet-like flow in the gap and the periodical separation of the
flow from the wall downstream with respect to the second cylinder.

The two most energetic modes from the decomposition revealed the presence in
all the cases of study the presence of an underlying shedding-like mode. For high and
moderate wall gap ratios (G/D = 3, 1) these modes model the von Kármán vortex
shedding. Different characteristics in the shedding have been noticed at G/D = 3,
depending on the L/D regime: in the bluff-body regime a simple and well localized
shedding is observed; in the reattachment regime vortices are stretched in the stream-
wise direction and mix up with the shear layer deployed from the cylinders; in the
co-shedding regime the vortices are stretched along the cross-wise direction and seem to
be characterized by a double core. A reduction of the wall gap ratio to moderate values
(G/D = 1) seems not to deeply influence the shedding, but a vorticity paired with it
appears at the wall. The only exception appears to be the case L/D = 6, G/D = 1 in
which the regime seems to change from the co-shedding regime to the reattachment
regime as the wall gap is reduced. This behaviour may be explained by a bending of
the shear layer released by the upstream cylinder due to the proximity of the wall and
its reattachment on the surface of the downstream cylinder. For small wall gap ratio
(G/D = 0.3) this vortex shedding appears to be at a significantly higher frequency and
strong interaction with the wall is highlighted by strong asymmetry in the vorticity
map. This behaviour suggests that this mode does not model anymore a von Kármán
vortex shedding. The authors suggest that this vorticity release may be related with
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pulsating jet instabilities coupled with shedding from the outer side of the cylinders.
Also for G/D = 0.3 the case L/D = 6 appears to be an exception: in this case it is
possible to recognize a flapping jet that pairs with the shedding from the upstream
cylinder.

The energy content of the first two POD modes is strongly reduced both for an
increase of the longitudinal pitch ratio L/D and for a decrease of the wall gap ratio
G/D. At the same time, higher order modes are generally interested by an energy
redistribution. This suggests a shift of the flow towards less coherent behaviours and a
reduction of the relevance of vortex shedding with respect to pure von Kármán shedding
cases. It must also be remarked herein that the introduction of the downstream cylinder
in the bluff-body regime results in a strengthening of the shedding modes with respect
to the single cylinder case, suppressing shear layers oscillations.

The analysis of higher order POD modes and of their time coefficients revealed the
presence, in most of the cases, of POD modes harmonically related to the first 2. These
modes can be simply accounted as higher order harmonics of the vortex shedding and
model vortex oscillations in both stream-wise and cross-wise directions. Due to the
energy redistribution, for increasing L/D or for decreasing G/D these modes appear
to be less energetically relevant and are often replaced by non harmonically related
modes.





Chapter 6

Unsteady force and flow structures
over flapping airfoil

In Chapter 5 it has been shown that POD can be used to describe the dynamics of
the flow field with a compact subset of modes. In this chapter, the modal analysis is
carried out on both the flow field and the aerodynamic force acting on a flapping airfoil
in forward flight. The main interest is focused on the formation of vortical structures
during the pitching/plunging motion of a 2D wing. These structures determine high
unsteady loads on the wing, which cannot be captured by classical steady aerodynamics
theories. The modal decomposition proposed in this chapter is aimed at determining a
reduced-order model describing the mechanism of production of the force associated
with these unsteady vortical features. The POD is applied on the fluctuating part
of the phase-averaged flow field. Due to the presence of a moving boundary, the
approach has been modified in order to obtain the modal description of the flow in the
non-inertial body-fixed reference frame. The use of the Extended POD, which exploits
the statistical correlation between two different set of signals (velocity fields and forces),
allows for the estimation of the contribution to the fluctuating aerodynamic force of
the flow structures extracted from POD. Finally, by comparing the different modal
content for different kinematic parameters, a parametric model of the aerodynamic
force is obtained.

6.1 Introduction
Several engineering problems deal with the unsteady aerodynamics of streamlined
bodies in flapping motion, thus attracting a transversal interest on the topic. Some
relevant examples are wing flutter instability (Bisplinghoff et al., 2013), dynamic stall
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of rotor blades both in helicopters (Harris et al., 1970, Tarzanin, 1972, Young Jr, 1981)
and wind turbines (Hansen and Butterfield, 1993, Shipley et al., 1995). A recently
growing interest on flapping wings is due to the development of the concept of Micro
Air Vehicles (MAVs), i.e. vehicles with a wing span and weight lower than 15cm and
200g (Pines and Bohorquez, 2006), respectively.

Due to their small size and flight speed, MAVs operate in a low Reynolds number
regime, (Re 6 O(104), Shyy et al., 2007). In this regime the performances of traditional
fixed wings are seriously compromised due to the earlier occurrence of stall with respect
to higher Reynolds number airfoils (Lian and Shyy, 2007). On the other side, rotary
wings, when scaled to the small size of a MAV, generate induced drag which reduces
the aerodynamic efficiency.

These considerations led to aim towards bio-inspired paradigms to improve MAVs
aerodynamic performances. Birds, insects, fishes and any other natural flyer (or
swimmer) make use of flapping wings (or fins) to efficiently produce high lift and thrust
coefficients despite operating at low Reynolds numbers (Lighthill, 1969, Ellington, 1984).
The superior performances of flapping wings with respect to their fixed counterparts
are ascribed to the formation of vortical structures on both the leading and the
trailing edge of the wing during the unsteady separation of the flow. The high lift
coefficient experienced in flapping flight is ascribed to the formation of a Leading
Edge Vortex (LEV) and to the delayed stall effect which it induces. As long as the
LEV is attached to the wing, complete separation of the flow is delayed; consequently,
the maximum lift coefficient attained before stall is greater than the maximum lift
coefficient of a conventional fixed wing (McCroskey, 1982). Thrust generation in
natural flyers and swimmers has instead been connected to the spatial organization
of the vortical structures shed in the wake (Platzer et al., 2008): thrust-producing
wakes are characterized by an inverse von Kármán street, which produces an increase
of momentum in the wake, oppositely to a classic von Kármán street, which produces
a momentum deficit. This is, however, a simplified picture, since in some cases an
inverse von Kármán street might not be thrust-generating (Mackowski and Williamson,
2015, Andersen et al., 2017).

A commonly investigated simplified version of the 3D flapping wing consists in a
2D airfoil with a two degrees of freedom motion, namely a sinusoidal vertical plunging
motion h(t) and a sinusoidal pitching motion α(t). The parametric space of the involved
physical quantities includes the airfoil chord c [m], the free-stream velocity V∞ [m/s],
the fluid kinematic viscosity ν [m/s2], the flapping frequency f [Hz] or the flapping
period τ = 1/f [s] and the plunging amplitude h0 [m]. According to the Buckingham π
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theorem (Buckingham, 1914), the scaling of 2D flapping airfoils performances is based
on three non-dimensional numbers: the chord-based Reynolds number, Re = cV∞/ν;
the Strouhal number, St = 2h0f/V∞; the reduced frequency, k = πcf/V∞. The airfoil
geometry should be added to the set (even though it has been shown to have minor
effects, except for the leading edge shape, see e.g. Rival et al., 2014), as well as the
effective angle of attack history

αeff (t) = α(t) − tan−1
(
ḣ(t)/V∞

)
(6.1)

where ḣ(t) is the time-derivative of h(t). The effective angle of attack history, as
reported in Eq. 6.1, is implicitly including also the information about the pitching
motion history (which, in case of sinusoidal motion would be determined by the pitching
amplitude and by the phase delay).

6.1.1 Potential flow models for force generation in flapping
airfoils

The first models of lift generation in plunging and pitching airfoils date back to the
works of Theodorsen (1935) and von Kármán and Sears (1938). The models were
derived within the framework of the linear potential flow theory, which implies inviscid
fluid, small oscillations and planar wake. While these hypotheses are suitable for the
study of wing flutter instability, the wing kinematics of natural flyers determine effects
far beyond the limits of linear theory. Nevertheless, these linear models still provide a
useful framework for the understanding of flapping wing aerodynamics (Baik et al.,
2012). In the work by von Kármán and Sears (1938) it is assumed that the flow is
two-dimensional and that the wake produced by the airfoil is located on its chord-wise
direction (planar wake). In this framework the theory of thin airfoils is used for the
calculation of the lift. In unsteady flows the total circulation around the airfoil is
time-variable, producing a wake of distributed vortex lines. For the computation of
the lift, it is considered that the vorticity γ along the chord-wise direction is composed
of two parts:

1. the quasi-steady vorticity distribution γ0, which is the vorticity that would be
produced according to the thin airfoil theory without accounting for the wake
effect;

2. the vorticity distribution induced by the wake γ1.
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It can be shown that the lift per unit area L/S is composed of three contributions:

L/S = −ρ d
dt

∫ 1

0
γ0(ξ)ξdξ︸ ︷︷ ︸

non-circulatory lift

+ ρV∞Γ0︸ ︷︷ ︸
quasi-steady lift

+ ρV∞

∫ ∞

1

γ1(ξ)dξ√
ξ2 − 1︸ ︷︷ ︸

wake-induced vorticity

(6.2)

where ξ is the non-dimensional chord-wise coordinate (which coincides with the stream-
wise coordinate under the small angles assumption) using the wing chord as reference
length. The non-circulatory term that appears in Eq. 6.2 accounts for the effect of the
added mass, i.e. the mass of fluid moved by the wing acceleration, and depends on the
change of circulation over the wing.

Wagner (1925) calculated the lift response of a flat plate to a step input, i.e. the
lift generated on an impulsively started airfoil. The circulatory lift from Wagner (1925)
results in:

Cl = 2π sin(α)W (s) (6.3)

where W (s) is the Wagner’s "indicial" function depending on s = 2V∞t/c. The Wagner’s
function can be approximated (within a 2% error) as:

W (s) ≈ 1 − 2
4 + s

(6.4)

In the formulation by Theodorsen (1935), the vorticity is modelled according to
the velocity potential of an airfoil in sinusoidal pitching/plunging motion. Theodorsen
(1935) expresses the sinusoidal motion using the complex exponentials notation:

h(t) = h0 e
ι(2πft)

α(t) = αm + α0 e
ι(2πft+ϕ)

(6.5)

with h0 being the plunging amplitude, α0 the pitching amplitude, αm the mean angle
of attack and ϕ the phase delay between plunging and pitching motion.

Following the notation reported by Baik et al. (2012), the lift coefficient can be
expressed as in Eq. 6.6:

Cl(t) = πc

2V∞

(
α̇eff (t) − c

2V∞
α̈(t)(2ξp − 1)

)
︸ ︷︷ ︸

non-circulatory lift

+ 2παm + 2πC(k)Q(t)︸ ︷︷ ︸
circulatory lift

Q(t) = αeff (t) − αm + c

2V∞
α̇(t)(1.5 − 2ξp)

(6.6)
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where ξp is the position of the pivot point with respect to the leading-edge expressed
as a fraction of the chord and the dot notation ġ indicates the time derivative of the
generic quantity g. The complex-valued function C(k) is the Theodorsen’s function
defined according to Eq. 6.7 (Jones, 1945):

C(k) = H
(2)
1 (k)

H
(2)
1 (k) + ιH

(2)
0 (k)

(6.7)

where H(2)
n (k) is the Hankel function of the second kind of order n of the reduced

frequency k. This function accounts for the wake vorticity contribution and it is equal
to 1 for k = 0. The only physically meaningful part in Eq. 6.6 is the real part. Garrick
(1938) showed that the Wagner’s function W (s) and the Theodorsen’s function C(k)
are related through the Fourier transform.

Concerning drag/thrust generation in flapping airfoils with sinusoidal motion, in
a pioneering study, Garrick (1937) identified 2 contributions to the unsteady drag:
the projection in the flight direction of the pressure force on the airfoil (roughly
corresponding to the lift in the Theodorsen’s model) and a leading-edge (LE) suction
produced by the accelerated flow about the leading edge.

Following the notation by Baik et al. (2012), the drag coefficient can be expressed
according to Eq. 6.8:

Cd(t) = −Cl(t)α︸ ︷︷ ︸
lift projection

− π

(√
2

2

(
2C(k)Q(t) − c

2V∞
α̇
))2

︸ ︷︷ ︸
LE suction term

(6.8)

where the suction term is calculated from the energy balance necessary to generate the
wake vorticity. It should be remarked that the model by Garrick is based on potential
flow theory, thus disregards the effects of friction drag (for reference, see DeLaurier,
1993). At low Reynolds number this assumption is severely challenged. Also, in Eq.
6.8 small angles of attack have been assumed.

The models by Wagner (1925), Theodorsen (1935) and Garrick (1937) rely on the
hypothesis of small amplitude oscillations, thus they are not accurate in describing
the forces for the high angles of attack which typically characterize flapping flight.
Several other models have been proposed in literature to overcome this limitation.
Aerodynamic force models which are of interest for flight control applications in MAVs
have been recently reviewed by Sun (2014). In the following a few examples are
reported.
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Sane and Dickinson (2002) developed a quasi-steady model which has been largely
employed for flight dynamics. The total instantaneous force Finst on the wing is
decomposed in four components, all acting perpendicularly to the chord:

Finst = Fa + Ftrans + Frot + Fwc (6.9)

where Fa is the added-mass force, Ftrans is the circulatory force which is induced by
the wing translation, Frot is the force depending on the wing rotation and Fwc is the
force due to the wake capture. The quasi-steady circulatory force due to translation is
obtained by Sane and Dickinson (2002) by fitting measurements of mutually orthogonal
lift and drag forces for the wing to model to account also for the dynamic stall effects.

The added-mass force for a flat plate is obtained theoretically by Sedov (1965)
through the method of the complex coordinates. For a plunging/pitching flat plate,
the added-mass force has 2 components, Fa,y′ , normal to the plate and Fa,x′ , tangent
to the plate:

Fa,y′ = −ρπc2

4 V̇y′ − ρπc3

8 α̈

Fa,x′ = ρπc2

4 α̇Vy′ + ρπc3

8 α̇2
(6.10)

with Vy′ and Vx′ being respectively the velocity of the flow in the normal and in the
tangential direction with respect to the plate. The circulatory force due to wing
rotation is derived by Fung (2002) and corresponds to:

Frot = ρV∞πc
2
(3

4 − ξp

)
α̇ (6.11)

The model by Sane and Dickinson (2002) has been further refined by Pesavento
and Wang (2004) and by Berman and Wang (2007), removing the wake-capture term
and adding a term for the viscous force. Pesavento and Wang (2004) estimate the
circulatory forces by fitting the pressure force obtained from the Navier-Stokes solution
with the force obtained by a circulation over the airfoil which includes both the part due
to translation and the part due to rotation. A similar approach has been also employed
by Taha et al. (2014), who accounted for the effect of the wake in a generic motion by
extending the Wagner’s indicial function by means of a superposition principle. An
attempt to develop a semi-analytical model with no semi-empirical adjustements has
been proposed by Ansari et al. (2006). The model by Ansari et al. (2006) is based on
the unsteady vortex lattice method, modified to account for LEVs and TEVs. The
effect of added-mass, wing-rotation and wake-capture forces are included in the model.
Despite the model by Ansari et al. (2006) does not require empirical adjustments, its
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solution is computationally expensive for a MAVs microprocessor, an thus cannot be
employed for flight control applications.

The recent work by Floryan et al. (2017) proposes a novel scaling for propulsive
forces in pure pitching and pure plunging airfoils. The scaling is based on the results
of potential flow theory. The time-averaged thrust is found to depend mainly on the
Strouhal number (based on the trailing edge displacement amplitude) and on the
reduced frequency. For pure pitching motion, the thrust is entirely ascribed to the
added mass effects. For pure plunging motion, the thrust is entirely due to lift-based
(circulatory) forces. The thrust estimated from potential flow theory has to be corrected
by subtracting a viscous drag term which is shown to be almost independent on the
amplitude and frequency of the motion. Consequently, since the lift projection term of
the thrust decreases for slower flapping motions, viscous drag is dominant with respect
to thrust at low Strouhal numbers.

6.1.2 Force generation and flow organization

The flow topology of flapping airfoils and its effects on force generation have been
object of a long debate. For instance Polhamus (1966), differently from Garrick (1937),
considered the LEV as a source of lift in delta-wings rather than a thrust source.
According to the so called Polhamus’s leading-edge-suction analogy, the LEV produces
a low-pressure region on the upper surface of the wing which generates a vortex lift.
More recently, an assessment of models for forces generation and their relation with
the vortex dynamics has been proposed by Baik et al. (2012). The lift and drag
measurements were compared with the estimations provided according to Theodorsen
(1935) and Garrick (1937) theories. The measured lift was found to be in acceptable
agreement with the Theodorsen’s theory if adding to Eq. 6.6 the suction term from
Eq. 6.8, thus proving the validity of the Polhamus’s analogy in flapping wings. On the
other side, the measured drag presented a poor agreement with Garrick’s theory (both
with and without the LE suction term). The results by Baik et al. (2012) confirm
that the LEV produces lift, as suggested by Polhamus (1966), and identify the force
component normal to the chord as the main contributor to the total aerodynamic force.
The importance of the LEVs and Trailing Edge Vortices (TEVs) on force generation in
flapping wing aerodynamics has been further studied by Pitt Ford and Babinsky (2013)
for an impulsively started wing. The LEV and the TEV are modelled as additional
circulation sources in a potential flow model, thus confirming the importance of these
vortical structures in determining the aerodynamic forces over the wing.
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It is clear that both the correct prediction of the temporal variation of the aerody-
namic forces and the consequent development of control strategies require a deeper
understanding of the mechanisms behind the evolution of the vortical structures (LEVs
and TEVs) on the wing. During the plunging and pitching motion the vorticity flux in
the boundary layer feeds the growth of the LEV. The LEV increases in size providing
additional suction until it detaches from the airfoil, eventually resulting in a drop of
the lift coefficient. Dabiri (2009) related the optimal Strouhal number of bio-inspired
propulsive systems to the optimal vortex formation time. This concept was first
introduced by Gharib et al. (1998) for ring vortices generated as the result of the am-
plification of the instability of a shear layer between two flows moving with a difference
in velocity equal to ∆V . Dabiri (2009) extended the concept of non-dimensional vortex
formation time (T̂ ) to flapping wings:

T̂ = KΓ
c∆V (6.12)

where Γ is the instantaneous vortex intensity, c is the airfoil chord, ∆V is the boundary
layer strength (i.e. the total velocity difference through the boundary layer between
the wing wall and the outer flow) and K is a non-dimensional constant related to the
inverse of the dimensionless vorticity flux dΓ̂/dT̂ . An optimum vortex formation leads
to maximize the circulation of the vortex and consequently its contribution to the
aerodynamic force. Past the optimal vortex formation time, the vortex growth cannot
be sustained anymore and the vortex pinch-off occurs. The optimal vortex formation
time is found to be approximately equal to T̂ ≈ 4. The relationship of T̂ with the
Strouhal number can be expressed as:

T̂ = Γmax

V∞c

2
2πSt (6.13)

with Γmax being the maximum vortex intensity.
It follows that the typical Strouhal numbers characterizing the mechanics of animal

locomotion (in the range 0.2 < St < 0.4) correspond to the optimal vortex formation.
The concept of T̂ ≈ 4 as the limiting point for the LEV growth has been experimentally
proven by Rival et al. (2009) and Baik et al. (2012) for low reduced frequencies and
kinematic parameters compatible with efficient flight. For higher reduced frequencies
Baik et al. (2012) found much lower formation times. A possible explanation is provided
by Widmann and Tropea (2015) who identified two different mechanisms for the LEV
pinch-off in flapping wings: the boundary layer eruption and the bluff-body detachment
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mechanism. The boundary layer eruption (Doligalski et al., 1994) occurs when the
LEV is expelled from the boundary layer due to the impossibility to sustain its growth.
This phenomenon is mainly related to the characteristics of the boundary layer at the
leading edge. The bluff-body detachment mechanism (Gerrard, 1966) is obtained when
the LEV reaches the size of chord of the airfoil. Widmann and Tropea (2015) show that,
while the LEV is attached to the airfoil, it is bounded between the stagnation point
and a reattachment point on the airfoil, which, according to singularity-based topology
analysis (Foss, 2004), represent two half-saddle points in the flow field. As the LEV
grows, the reattachment point moves towards the trailing edge. If the reattachment
point moves beyond the trailing edge, it merges with the half-saddle point of the rear
stagnation point, forming a full-saddle point in the free-stream. This full-saddle point
results in a flow reversal on the airfoil and in the consequent detachment of the LEV.
This phenomenon is more likely to occur for moderate reduced frequencies.

6.1.3 Bridging the gap between flow topology and reduced-
order models

Although the topology of the flow around a flapping airfoil has been well characterized
for a wide portfolio of kinematics in the literature, a simple model describing the
influence of the kinematics on the vortex growth and pinch-off is still lacking. More
importantly, the effect of the kinematic parameters on the aerodynamic force (i.e. lift
and drag/thrust components) needs to be further understood. Simplified models such
as those by Theodorsen (1935) for the lift and Garrick (1937) for the drag/thrust
have shown to be a powerful starting point for control strategies (see, e.g. Brunton
et al., 2013). Nevertheless, classical theories have shown some limits in predicting
aerodynamic loads, especially in the low Reynolds number range (as shown by Baik
et al., 2012), thus an improvement is needed for the optimization of flapping wings
performances and control.

The objective of the work included in this chapter is to identify a simplified model of
the evolution of the vortical features (LEV and TEV) and of the generation of lift and
drag/thrust in flapping airfoils, depending on motion kinematics. The final aim is to
derive corrections to the models by Theodorsen (1935) and Garrick (1937), accounting
for the vortex organization during the motion. The approach to relate force generation
and vortex organization is based on measuring simultaneously velocity fields and forces,
and then decomposing both on the same temporal basis. The basis is obtained through
POD to extract low-order reconstructions based on the most energetically relevant flow
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features. To this purpose a set of airfoil kinematics have been investigated in a water
tunnel. The Reynolds number based on the chord and on the free-stream velocity is set
equal to 3600 (thus in the region of interest of MAVs). The Strouhal number is fixed to
0.2, which has shown to be a typical value for natural flyers over a wide range of size
and flight speed (Shyy et al., 2007). Setting a plunging half-amplitude of one chord,
the reduced frequency results equal to 0.31. This shrinks down the non-dimensional
parametric space to the effective angle of attack history. The experimental arrangement
is described in §6.2.

The projection onto the same temporal basis to correlate force and velocity field
features grounds in the extended POD approach (Borée, 2003) which has been success-
fully used in the past to correlate with flow coherent structures several synchronized
measurements such as wall pressures (Picard and Delville, 2000) and concentrations
in reactive flows (Duwig and Iudiciani, 2010). Measured forces are projected onto
the POD temporal basis in order to estimate the force contribution over time of each
mode. The flow fields are priorly reported in the wing-fixed non-inertial reference
frame to compensate the wing motion and mantain fixed the grid on which the POD
analysis is carried out. A discussion on the effect of rotation on the vorticity is reported
in §6.3.1. Phase and time average flow fields and forces are reported in §6.4, while
modal decompositions of the flow fields and of the forces are discussed in §6.5. The
modal analysis performed through POD and EPOD gives a deeper insight both on flow
features and on their effect of the force than what is possible to get from phase-averaged
quantities, eventually setting the pathway to the construction of a reduced model
for the force. In §6.6 the contributions of the modes on the forces are contrasted
against the force terms of the models by Theodorsen and Garrick, suggesting a new
interpretation and paving the way for their modification.

6.2 Experimental setup
The experimental measurements have been performed on a two-dimensional flapping
wing in the water tunnel of the Aerospace Engineering Group at the Universidad
Carlos III de Madrid. The water tunnel has a 2.5 m long rectangular test section of
0.5 × 0.55 m2 with full optical access. The tunnel is capable of reaching a maximum
speed of 2 m/s with a stream-wise turbulence intensity lower than 1% of the free-stream
velocity at a 0.12 m/s.

The model tested is an aluminium wing with rectangular plan-form and aspect
ratio equal to 16.3. The wing section is a NACA 0012 airfoil with chord c equal to
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Fig. 6.1 Sketch of the experimental
setup.
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Fig. 6.2 Pitching/plunging airfoil motion and
forces. The + superscript indicates positive
direction.

0.03 m. The wing span is 0.49 m, thus fitting almost from side-to-side the test chamber.
This ensures minimal finite wing effects while still providing sufficient clearance to
avoid contact with the tunnel walls during the movement. The experimental setup
is sketched in Fig. 6.1. In the following details on the movement system and on the
measurement systems (load cell and PIV system) will be given.

6.2.1 Wing kinematics and motion system

The wing kinematics is a combination of sinusoidal pitching and plunging motion
described in Eq. 6.14:

h(t) = h0 sin(2πft)
α(t) = αm + α0 sin(2πft+ ϕ)

(6.14)

which is equivalent to Eq. 6.5. The positive direction of the movements is sketched in
Fig. 6.2, which also reports the wind reference frame (x, y) and the airfoil reference
frame (x′, y′).

L12 = 600.0 mm L23 = 60.0 mm Lw = 12.0 mm
L45 = 565.0 mm L34 = 40.0 mm x5 − x1 = 40.0 mm

Table 6.1 Lengths of the bars of the linkage mechanism.
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The wing movement is achieved by means of a home-built four-bar linkage (sketched
in Fig. 6.3a) which converts the displacements of two independent linear actuators into
a pitching/heaving motion. The linear movement of the actuators is obtained from the
kinematic inversion of the mechanism. According to the mechanism diagram given in
Fig. 6.3b, the position of the hinges of the linkage and of the wing aerodynamic center
is described by the equation system:



x2 = x1

y2(t) = y1(t) − L12

x4 = x5

y4(t) = y5(t) − L45

x3(t) = x2 + L23 cos(α(t)) = x4 + L34 sin(β(t))
y3(t) = y2(t) − L23 sin(α(t)) = y4(t) − L34 cos(β(t))
xw(t) = x2 − Lw sin(α(t))
yw(t) = y2(t) − Lw cos(α(t))

(6.15)

where the length of each bar is give in Table 6.1.
By solving the system for y1(t) and y5(t) as a function of yw(t) and α(t), it is possible

to get the inverse kinematic relations of the mechanism. It is worth noticing that
the mechanism only allows for two inputs (corresponding to y1(t) and y5(t)) and two
independent outputs (yw(t) and α(t)). The output xw(t) is a slowly varying function
on α(t) and cannot be compensated due to the lack of a third degree-of-freedom in the
system. This dependence can be reduced by reducing Lw, i.e. setting the aerodynamic
center as close as possible to the linkage rotation center. However, since the linkage
is connected close to the middle-span of the wing, a minimum distance is required in
order to avoid contact between the wing and the linkage mechanism.

The vertical positions y1(t) and y5(t) are controlled by means of two independent
linear drives Festo EGSK-26-50-6P (maximum span 100 mm, maximum acceleration
3 m/s2, 0.01 mm positioning precision). The uncertainty in the position of the wing is
equal to 0.01 mm in the vertical direction and lower than 0.03◦ for the angle of attack.

Due to the limited acceleration, the system can work in a parametric space which
is limited in terms of k, St and h0 as sketched in Fig. 6.4, where the shaded area
contains the parametric space of allowed motions. The span of the linear actuator,
along with the limitation imposed by the angles of the linkage, limits the range in the
parametric space including ϕ, αm, α0 and h0.
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Fig. 6.3 Four-bar mechanical linkage: a) example of the wing aerodynamic center (red)
and linkage hinges (blue) pattern; b) diagram of the mechanism.

Fig. 6.4 Parametric space spanned by the motion system. The shaded area contains
the parametric space allowed.
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Test Name h0 [mm] α0 αm ϕ St

Case A 30 0◦ 0◦ 90◦ 0.2
Case B 30 10◦ 0◦ 90◦ 0.2
Case C 30 20◦ 0◦ 90◦ 0.2
Case D 30 0◦ 10◦ 90◦ 0.2
Case E 30 10◦ 10◦ 90◦ 0.2
Case F 30 20◦ 10◦ 90◦ 0.2

Table 6.2 Summary of the wing kinematics parameters.
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Fig. 6.5 Effective angle of attack history for all the cases.

As mentioned in §6.1.3, the experiments described in this chapter are performed at
St = 2h0f/V∞ = 0.2 and k = πcf/V∞ = 0.31 (corresponding to a flapping frequency
f = 0.4 Hz), with a free-stream velocity of V∞ = 0.12 m/s corresponding to a chord-
based Reynolds number Re = cV∞/ν = 3600 (with ν the kinematic viscosity of water).
Six different kinematics have been explored (see Table 6.2).

The six cases result in different time-histories of the effective angle of attack of the
airfoil (see Fig. 6.5). This angle can be calculated from the kinematic parameters by
reworking Eq. 6.1 and 6.14 as

αeff (t) = αm + α0 cos(2πft) − tan−1
(
π St cos(2πft)

)
(6.16)
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6.2.2 Aerodynamic forces measurements

The aerodynamic force components in the airfoil reference frame (Fx′ and Fy′ , with
positive directions indicated in Fig. 6.2) are measured with an ATI Industrial Automa-
tions Nano-17 IP68 load cell with IP68 waterproofing. The load cell connects the wing
to the mechanical linkage as sketched in Fig. 6.1. The force components are reduced
to non-dimensional force coefficients using the dynamic pressure q = 1

2ρV
2

∞ and the
wing area S as reference force:

CFy′ = Fy′/ (qS) = Fy′/
(1

2ρV
2

∞S
)

chord-normal force coefficient

CFx′ = Fx′/ (qS) = Fx′/
(1

2ρV
2

∞S
)

chord-wise force coefficient

CL = L/ (qS) = L/
(1

2ρV
2

∞S
)

lift coefficient

CD = D/ (qS) = D/
(1

2ρV
2

∞S
)

drag coefficient

According to the load cell manufacturer specifications, within the adopted cali-
bration range the force measurement resolution is of 1/341 N. For a tunnel speed of
about 0.12 m/s, a density of 1000 kg/m3 and a wing surface of 0.015 m2 the typical
resolution of force coefficients measurements is about 0.03. The sensor response is also
affected by a long-period thermal drift. While this effect is easily removed from the
fluctuating part of the force by signal detrending, a bias error on the average force is
still present. Consequently the uncertainty on the average force components has been
experimentally estimated accordingly to the typical thermal drift and measurement
duration. The uncertainty on the force coefficients is estimated to be lower than 0.1
and 0.05 respectively for the chord-wise and chord-normal components. This results in
an experimental uncertainty of about 1% and 6% of the maximum force-fluctuation
amplitude respectively for the chord-wise and chord-normal components. The analogue
signal from the load cell is digitalized by a National Instruments Data Acquisition
device (NI USB-6210) at a sample rate of 1000 Hz. A low pass filter with threshold
at 10 Hz is applied to the force data to remove spurious noise content (mostly due
to electromagnetic noise from the water tunnel pumps running at 13 Hz). While this
cutoff frequency may look fairly low, it must be specified that it still results in a 25
times bigger frequency than the flapping one for the present experiments. Also, the
main interest in the following will be towards the lower order modes obtained through
the EPOD of the force, which are not affected by the filtering. The phase averages of
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the force components are obtained after correction of the inertial forces of the wing
and of the height-dependent bias induced by the waterproofing, which have been both
determined experimentally. The inertial forces have been measured in a dry experiment,
i.e. with empty tunnel. The height-dependent bias has been determined with a static
wet experiment, i.e. with filled test section, no free-stream flow and very slow wing
motion (actuation frequency of 0.04Hz).

6.2.3 Flow field measurements

The flow field measurements are carried out with planar Particle Image Velocimetry in
a x-y plane. The flow is seeded with neutrally-buoyant polyamide particles with 56µm
diameter. The illumination is provided by a dual cavity Nd:Yag Quantel Evergreen laser
(200 mJ/pulse at 15 Hz); the laser beam is shaped into a light sheet with a thickness of
approximately 1 mm and a width of about 10 chords in the stream-wise direction. A
5.5 Mpixels Andor sCMOS camera is used to capture images with a resolution of about
8.5 pix/mm. The PIV system is synchronized with the movement system in order to
provide phase-averaged measurements. Measurements are performed for 80 different
phases, acquiring for each of them a set of 55 phase-locked flow field snapshots. The
images are pre-processed to remove the background intensity via an eigenbackground
removal procedure (applied separately for each phase-locked snapshot set) outlined in
Chapter 4 and in Mendez et al. (2017). A multi-pass image deformation algorithm
implemented in the software SPIV (Astarita, 2006) is used to extract the velocity fields.
The velocity fields are computed using a custom-made multipass image deformation
algorithm (Scarano, 2001). The final interrogation region size is 32 × 32 pixels with
75% overlap, thus corresponding to about 32 independent vectors per chord. The
typical displacement error is equal to 0.1 pixels (Westerweel, 1997), thus corresponding
to an error of 0.8% of the free-stream velocity at the present image resolution. Due to
the presence of the shadow of the wing in the PIV images, after phase averaging, the
velocity vectors in the flow field regions which are not illuminated by the laser light are
replaced on the basis of symmetry arguments with data from a specular experiment.

6.3 Data Processing

6.3.1 Change of reference frame

In case of problems with moving boundaries (such as a flapping wing), the fluid domain
changes with time, thus the decomposition approach needs to be modified. The POD
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with the snapshot method operates with indices corresponding to the measurement
grid points and does not directly account for the relative position with respect to the
wing. In a problem with a time-varying domain, the location of the grid points has
to be adapted for each snapshot outside of the fluid domain (for instance inside of
the moving wing). Based on these arguments, in the following, velocity values are
estimated over a grid with points fixed with respect to the airfoil (i.e. the grid is
heaving and pitching together with the airfoil). A similar POD approach over a moving
grid was proposed by Anttonen et al. (2003).

To pass from the inertial reference frame x = (x, y) in which the wing is moving
to the non-inertial one x′ = (x′, y′) in which the wing is steady, a rotation and a
translation, according to the pitching angle α(t) and heaving h(t) history are needed.
Given i and j the unit vectors in the x and y directions and i′ and j′ the unit vectors
in the x′ and y′ directions, the space transformation is expressed by:

x′ = M(α)
(
x− h(t)j

)
x = M−1(α)x′ + h(t)j

(6.17)

where the rotation matrix M(α) is given by:

M(α) =
cos(α) − sin(α)

sin(α) cos(α)

 (6.18)

The transformation of the velocity field ẋ ≡ (u, v) in the inertial reference frame
to the velocity field ẋ′ ≡ (u′, v′) in the wing-fixed reference frame is obtained through
derivation of the Eq. 6.17. The transformation of the velocity field is then given by:

ẋ′ = Ṁ(α)
(
x− h(t)j

)
+M(α)

(
ẋ− ḣ(t)j

)
ẋ = M−1(α)

(
ẋ′ − Ṁ(α)M−1(α)x′

)
+ ḣ(t)j

(6.19)

in which the temporal derivative of the rotation matrix is expressed as a function of
the angle of attack and of its derivative:

Ṁ(α) = −α̇(t)
 sin(α) cos(α)
− cos(α) sin(α)

 (6.20)

The definition of the vorticity field ω′ in the wing-fixed reference frame requires the
derivation of the gradient operator in the new reference frame. The vorticity in the
frame x = (x, y) is thus given by:



124 Unsteady force and flow structures over flapping airfoil

ω′ = ∇′ × ẋ = JT ∇ × ẋ (6.21)

where J = MT is the Jacobian matrix of the rotation. For two-dimensional flows,
the out-of-plane (z) component of the vorticity is the only non-zero component of
the vorticity field. From Eq. 6.21, it can be shown that the transformation of the
z-component of the vorticity field is simply given by:

ω′
z = ωz + 2α̇(t) (6.22)

6.3.2 Estimation of the extended POD modes

The POD is performed on the phase-averaged fluctuating velocity fields rotated in the
wing-fixed reference frame. This approach is analogous to the phase-averaged POD
reported by Fogleman et al. (2004) to study the flow inside the cylinder of an internal
combustion engine. The POD is then extended to phase-averaged fluctuating forces.
In the following, the subscript ∥V ∥ will be employed to indicate all the quantities
which are calculated from the velocity field. Similarly, the subscripts ω, Fy and Fx

will indicate the quantities related to vorticity, chord-normal force component and
chord-parallel force component, respectively.

The POD chronoi ψ(i)
∥V ∥ are calculated as the eigenvectors of the two-points temporal

correlation matrix R of the fluctuating velocity snapshot matrix, according to Eq. 6.23:

R = U ′ U ′T + V ′ V ′T = Ψ∥V ∥ Σ2
∥V ∥ ΨT

∥V ∥ (6.23)

where U ′ and V ′ are the snapshot matrices of the fluctuating chord-wise and chord-
normal velocity components, respectively and Σ∥V ∥ are the singular values obtained
from the economy-size SVD of R. In Eq. 6.23 and in the following, for the ease of
notation all the extended POD matrices do not show the apex ′ in the subscripts
although all the quantities are referred to the wing-fixed reference frame.

Accordingly with Eq. 2.36, the components in the wing-fixed frame of the POD topoi
of the velocity are calculated through projection of the fluctuating velocity components
on the temporal basis Ψ∥V ∥:

Σ∥V ∥Φu
= ΨT

∥V ∥U
′

Σ∥V ∥Φv
= ΨT

∥V ∥V
′

(6.24)

with Φ
u

and Φ
v

being the topoi of U ′ and V ′ respectively.
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Similarly, the projection of the rotated vorticity field ω′
z

is obtained by:

Σ
ω
Φ

ω
= ΨT

∥V ∥ω
′
z

(6.25)

where Σ
ω

is a diagonal matrix containing the norm σ(i)
ω of the projection of the vorticity

on each chronos of the velocity, and each row of Φ
ω

is the ith topos φ(i)
ω

(with unitary
norm) of the projection of the vorticity. It must be remarked that the vorticity topoi
found through Eq. 6.25 are equivalent to the vorticity of the velocity topoi (apart from
a scaling) since curl is a linear operator. In fact:

ΨT
∥V ∥ω

′
z

= ΨT
∥V ∥

[
U V

]
C = Σ∥V ∥

[
Φ

u
Φ

v

]
C (6.26)

with C being the matrix representation of the curl operator.
Following Eq. 2.37, the temporal basis Ψ∥V ∥ is used to project the fluctuating part

of the force components in the airfoil reference frame F x′ , F y′ . For the force, the
projection is:

ΣFx
= ΨT

∥V ∥F x′

ΣFy
= ΨT

∥V ∥F y′

(6.27)

where ΣFx
and ΣFy

are vectors containing the projection coefficients σ(i)
Fx

and σ
(i)
Fy

of
the force components.

It has to be remarked that the chronoi obtained from Eq. 6.25 and Eq. 6.27
have zero mean since they are estimated from zero-mean signals, thus it is not needed
to remove the time average value from ω′

z
, F x′ and F y′ in order to estimate the

corresponding projections.
Also, it has to be remarked that σ(i)

Fx
and σ(i)

Fy
are not necessarily positive since they

are not singular values but are instead obtained as the projections on the POD velocity
chronoi. This implies that the extended POD modes can be either in-phase (positive
diagonal value) or in phase opposition (negative diagonal value) with respect to the
velocity POD modes. The absolute values of the projection coefficients σ(i)

ω , σ(i)
Fx

and
σ

(i)
Fy

can be considered as pseudo singular values accounting for the mean square of the
projection of force/vorticity on each POD chronos.
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Following Eq. 2.38 the truncated reconstruction of both vorticity and forces is
defined as:

ω′
nm

≈ ⟨ω′⟩ + Ψ∥V ∥

Inm
0

0 0

Σ
ω

Φ
ω

F x′,nm
≈ ⟨F x′⟩ + Ψ∥V ∥

Inm
0

0 0

Σ
Fx

F y′,nm
≈ ⟨F y′⟩ + Ψ∥V ∥

Inm
0

0 0

Σ
Fy

(6.28)

6.4 Flow topology and forces

6.4.1 Phase-averaged flow fields and forces

Before discussing the phase-averaged velocity fields and forces, an important feature
of the tested cases is underlined. For cases A, B and C, characterized by mean angle
of attack αm = 0◦, realizations in phase opposition are antisymmetric with respect to
the chord as the motion of the wing is perfectly specular. In the following, these cases
will be simply referred as antisymmetric cases. Instead, cases D, E and F, which are
characterized by αm = 10◦, do not present symmetry of the wing motion and thus
of the flow behaviour. These cases will be referred to as asymmetric cases. During
the periodic motion the suction side switches its position from the upper side to the
lower side of the airfoil due to the large oscillations in αeff (with amplitude higher
than 20◦, as shown in Fig. 6.5). While for antisymmetric cases the upper side acts as
pressure and suction side during the same amount of time, in asymmetric cases the
upper side acts prevalently as suction side. The phase-averaged velocity fields and
force components are reported for the antisymmetric cases in Fig. 6.6 (cases A, B and
C) and for the asymmetric cases in Fig. 6.7 (cases D, E and F).

Almost all the cases, with exception of case C, are characterized by the formation of
a LEV on the suction side. The LEV, when attached to the airfoil, is characterized by a
vorticity blob surrounded by streamlines ending on the airfoil surface in a reattachment
point (Widmann and Tropea, 2015). For antisymmetric cases A and B, the LEV forms
on the lower and upper sides during the upstroke and downstroke, respectively. For
asymmetric cases the LEV forms only on the upper side during the downstroke, with
the exception of case D for which a weak LEV forms also on the lower side during the
upstroke. By comparing these observations with respect to the instantaneous effective
angle of attack reported in Fig. 6.5 it is reasonable to assume that the formation of
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the LEV is subjected to the condition of reaching a minimum αeff sightly higher than
the static stall angle of attack (≈ 12◦ for Re = 3600), in agreement with what reported
by Prouty (1995). Given the phase shift of π/2 between pitching and plunging motion
for the present study, increasing the pitching amplitude α0 results in a decrease of the
maximum αeff (see Fig. 6.5), thus generating a smaller and more stretched LEV.

During the downstroke the LEV grows in size and the reattachment point on the
airfoil moves progressively towards the trailing edge. The growth of the LEV produces
an increase of the chord-normal component of the force, which reaches values far beyond
the static stall values (for the present airfoil and Re the static stall lift coefficient has
been measured to be about 0.7). Accordingly with Widmann and Tropea (2015), as
the reattachment point reaches the trailing edge, the LEV starts detaching from the
airfoil surface. A reverse-flow forms on the suction side during the detachment process
of the LEV, leading to the failure of the Kutta condition at the trailing edge. The
LEV detachment approximately coincides with a peak in the chord-normal component
of the force. After this instant the airfoil undergoes a part of the cycle characterized
by the aerodynamic stall, for which the chord-normal component of the force rapidly
decreases.

While the LEV forms on the suction side, the pressure side sheds in the wake
a continuous trail of vorticity of opposite sign, accordingly to the vorticity balance
imposed by the Kelvin theorem. When the LEV detaches, this trail of vorticity, before
being shed in the wake, concentrates in a Trailing Edge Vortex due to the reverse-flow
on the suction side. Both the LEV and the TEV are then convected downstream
in the wake, forming typical mushroom-like structures (see, e.g. the experimental
visualizations by Andersen et al., 2017 and the DNS simulations by Moriche et al.,
2016).

The LEV and TEV formation and dynamics are strongly affected by the kinematics
parameters. In particular, since the LEV intensity depends on the maximum effective
angle of attack, an increase of α0 produces a less intense LEV, up to its inhibition as
in case C; instead, an increase of αm enhances the LEV intensity on the upper side,
while, on the lower side, the LEV is weakened till disappearing (see cases E and F).

In all the tested cases the fluctuating part of the chord-normal component of the
force Fy′ has periodicity equal to the flapping period. The peak-to-peak amplitude of
the chord-normal force component is reduced for increasing α0, due to the decreasing
intensity of the LEV.

The chord-wise force component Fx′ shows a more diverse behaviour. The pitching
amplitude α0 has the dominant influence. For α0 = 0◦ and αm = 0◦ (case A), Fx′
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shows 2 peaks (at about t/τ ≈ 0.2 and t/τ ≈ 0.7) with almost the same strength for
each complete stroke of the flapping wing. A similar double-peak behaviour is present
for case D (α0 = 0◦ and αm = 10◦). Increasing the pitching amplitude to α0 = 10◦

(cases B and E), the double peak is still present, but the first one is significantly lower
with respect to that observed in case A. For case E the difference between the peak at
t/τ ≈ 0.2 and that at t/τ ≈ 0.75 results amplified with respect to case B. Finally, for
α0 = 20◦ (cases C and F), the first peak completely disappears and the fluctuating
part of the chord-wise force component has s single maximum at t/τ ≈ 0.75. Thus, for
what concerns chord-wise forces, an analogy between antisymmetric and asymmetric
cases A-D, B-E and C-F, is obtained at fixed α0, regardless of the αm value.

Despite the problem under study is symmetric in time (with respect to t/τ = 0.5)
for cases B and C, the force measurements show an asymmetric time-history of the
chord-wise component of the force. This asymmetry is not consistent with the picture
of a symmetric vorticity time-history which results from the phase-averaged flow fields.
It can be deduced, therefore, that the asymmetry must be related to non-circulatory
forces acting on the wing. In §6.5 it will be shown that a force mode inducing this
asymmetry can be extracted by means of the EPOD. In §6.6.2 this force mode will be
ascribed to an added-mass force induced by the airfoil rotation which closely resembles
the contribution calculated by Sedov (1965).

6.4.2 Time average flow fields and forces in the wing-fixed
reference frame

Time averaged flow fields are estimated after applying the transformation to the wing-
fixed reference frame (Fig. 6.8). For the asymmetric cases (D, E and F) a downward
deflection of the flow past the wing is recognizable, accompanied by on-average positive
lift and chord-normal force component (see Table 6.3). Antisymmetric cases (A, B and
C) are instead symmetric with respect to the chord as, on average, each side of the
airfoil undergoes the same flow conditions during a complete period. As a consequence,
nearly no streamline deflection is detected (apart from small asymmetries which may
arise from not completely converged time-averaging), and the average lift coefficient is
approximately zero within experimental uncertainty.

It is worth highlighting that the average lift force generated in the asymmetric
cases is significantly lower than the expected CL = 2παm (valid for a steady airfoil
at high Reynolds number). The values of ⟨CL⟩ for case D are in good agreement
both with steady measurements performed at the same Reynolds number (CL ≈ 0.56)
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Test Name ⟨CL⟩ ⟨CD⟩ ⟨CFy′ ⟩ ⟨CFx′ ⟩
Case A 0.071 0.193 0.071 0.193
Case B 0.071 −0.121 0.073 0.035
Case C −0.073 −0.004 −0.068 0.138
Case D 0.592 0.171 0.613 0.066
Case E 0.727 0.109 0.749 0.126
Case F 0.761 0.163 0.824 0.175

Table 6.3 Summary of time-averaged force coefficients for all the cases analysed.

ANTISYMMETRIC
CASES

(a) CASE A

(b) CASE B

(c) CASE C

ASYMMETRIC CASES

(d) CASE D

(e) CASE E

(f) CASE F

Fig. 6.8 Average flow field in wing-fixed reference frame for all the cases. Contour
indicates the normalized vorticity field, streamlines the velocity field.
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and with the results reported by Sunada et al. (2002), thus suggesting that viscosity
plays a major role in the determination of the average forces. An increase of the
mean lift is observed when the pitching is introduced (cases E and F). This effect has
been already observed by Dawson et al. (2016) for purely pitching airfoils. Dawson
et al. (2016) ascribe this effect to the forcing imposed by the pitching motion on
the wake instabilities. It is possible to suppose that a similar effect may be present
also for combined pitching/plunging motions, such the cases here studied, even if the
present experimental campaign does not provide sufficient data to support this claim.
This observation highlights that there is a clear mismatch between the mean lift at
low Reynolds numbers and the mean values used in the Theodorsen’s theory. This
mismatch may be caused either by the viscosity, which has been neglected in the
Theodorsen’s model, either by effects of forcing on the wake instabilities due to the
pitching.

While αm introduces an asymmetry in the field, a secondary effect on ⟨CL⟩ is played
by α0. Increasing α0 avoids the formation of the LEV on the lower side, resulting
in a greater time average lift for the cases with αm ̸= 0. For the case with αm = 0,
as discussed in the previous section, the LEV is suppressed symmetrically on both
sides of the airfoil. The effect of α0 on the LEV is made clear in the average vorticity
distribution: non-zero vorticity regions spread farther away from the airfoil as α0

decreases, indicating that the rotation of the flow occurs farther from the body. These
non-zero vorticity regions follow the trace of the LEV which evolves (growing and
detaching) in time (see Fig. 6.7). As already commented in §6.4.1, the size of the LEV
is strictly connected to the pitching angle spanned, reducing as the pitching increases.
It can be argued that, as the LEV grows in size, the airfoil appears to the flow, on
average, thicker. As will it be shown in the following this same effect occurs also for
the fluctuating part of the flow field. The increase of the effective thickness of the
airfoil may be also in agreement with the reduction of ⟨CL⟩: Sunada et al. (2002) have
shown that the lift at low Reynolds number is reduced as the airfoil becomes thicker.

For what concerns the chord-wise force coefficient it has to be remarked that, in
agreement with what reported by Floryan et al. (2017), aerodynamic forces for airfoil
kinematics at the considered low Reynolds and Strouhal numbers might be dominated
by a viscous term. For the experimental setup used in this study, the viscous term
was found to be approximately equal to 0.15 from steady measurements and to be
practically constant with the angle of attack. The steady viscous force value matches
with the time-average chord-wise force coefficients for most of the cases reported.
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(a) CASE B (b) CASE E

Fig. 6.9 Cumulative spectral density of the Extended POD modes.

6.5 Modal decomposition
It has been observed in §6.4.1 that a modification in the flapping-motion parameters
strongly influences the dynamics of both the flow field and of the aerodynamic force
acting on the wing. Phase-averaged data, however, do not permit to clearly draw a
picture of how different motion parameters affect the flow field. Neither it is possible
to spot a clear correlation between the change in the flow field and the change in
the aerodynamic force history. To fill this gap, in the following a modal analysis will
be performed on both phase-averaged flow fields (using POD) and phase-averaged
force measurements (using EPOD). The analysis will be devoted to the comparison
of different cases in the basis spanned by the flow-field POD modes, highlighting
similarities between different cases and shedding light on the role of different motion
parameters on both flow organization and aerodynamic force generation. The final
aim of this analysis is the low-order modelling of the flow features involved in flapping
flight and of their influence on the aerodynamic force history, both included in §6.6.

6.5.1 Spectral distribution of extended POD modes

The pseudo singular values |σFx|, |σFy | and |σω| represent the mean squares associated
to each chronos and can be assimilated to a spectral density in the POD temporal basis
(§6.3.2). In Fig. 6.9 the extended cumulative spectral densities of chord-wise and chord-
normal force components, velocity and vorticity are reported for two representative
cases, namely case B and case E.

The velocity spectrum σ∥V ∥ has been optimized through the POD algorithm, i.e.
has been mathematically constrained to achieve the most compact spectral distribution
in terms of number of modes between all the possible spectra. The optimality of
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the POD modes according to the L2 norm leads to spectral coefficients of the signal
decaying faster than in any other basis. Measurement noise instead spreads uniformly
over the entire spectrum, thus leading to nearly constant singular values (and thus
linearly growing cumulative spectrum) for higher order modes. The same behaviour is
observed for the vorticity spectrum since vorticity is linearly related to the velocity.

The spectral distributions of force components shown in Fig. 6.9 have instead been
obtained by means of a projection, meaning that the basis has not been chosen to
optimize these spectra. Consequently, a more or less compact representation using
extended POD modes is to be ascribed only to a higher correlation between the
projection basis and the quantity to be projected, i.e. only on physical grounds of
relation between flow features and force generation. Differently from standard POD, in
the Extended POD approach the uncorrelated component contains both measurement
noise and the uncorrelated part between the quantity to be projected (e.g the force in
the present application) and the quantity originally used to generate the POD temporal
basis.

Assuming the beginning of the linear part in the cumulative spectrum as a threshold
following the scree plot test (see Chapter 3 and Raiola et al., 2015), the velocity field
results to be very well described with about 25 modes. The same statement can be
made for the vorticity spectrum, which indeed has a lower signal-to-noise ratio, i.e. a
higher noise contribution, resulting in a steeper slope of the linear part for case B and
E.

It has been checked for all the tested cases (not included for brevity) that the
force components spectra are more compact than both the velocity and the vorticity
spectrum, i.e. can be described with a lower number of modes, typically below 10.
This reveals that force generation has to be ascribed prevalently to the most energetic
features of the velocity fields. This should not be surprising since the aerodynamic
forces applied by the airfoil to the fluid are largely contributing to the kinetic energy
of the flow, thus the POD is expected to capture them in the very first modes.

The most energetic features correspond to the large scale structures close to the
airfoil as it will be shown in §6.5.3 and §6.5.4. As a consequence, the break-up of
the mid-far wake is not relevant from the viewpoint of the force generation (as shown
by Moriche, 2017). Followng this argument, the configuration of the vortices in the
wake plays a secondary role; the force generation (expecially for what concerns the
chord-wise component) is mostly affected by the relative position of the LEV and the
TEV at the pinch-off. This is the reason behind the observation by Andersen et al.
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(2017), which report non-thrust-generating kinematics despite the presence of a reverse
Kármán wake.

The spectral distribution of the force components reveals a slight but consistent
difference between antisymmetric cases (case B in Fig. 6.9) and asymmetric cases (case
E in Fig. 6.9). For the antisymmetric cases the contribution of the first modes is higher,
as testified by steeper trend of the cumulative spectrum. This behaviour is indicative
of a higher importance gained from higher order modes in the force reconstruction
when αm ̸= 0◦ (especially for the chord-wise component), and thus of a richer spectral
content of these cases. An explanation of this behaviour will be given in the following
sections.

6.5.2 Low-order reconstruction of the force

The spectral distribution observed in §6.5.1 ensures that the bulk of the force is
contained in the first few modes (nm 6 10). Following Eq. 6.28, the low-order
reconstruction with the first nm modes of the chord-normal and chord-wise force
components is calculated. This section is a prelude to §6.5.3 and §6.5.4, where a
description of the modes will be provided and the physical meaning of the LOR will
be discussed.

The LOR of the chord-normal force component with the first nm modes is reported
in Fig. 6.10 along with the original measurement of the force. For the sake of brevity the
reconstruction is presented only for test cases B (antisymmetric) and E (asymmetric).

The periodic behaviour of the fluctuating chord-normal force component (discussed
in §6.4.1) is almost entirely reproduced by the first 2 extended POD modes (check
Table 6.4 for the coefficient of determination R2). Although the reconstruction with
nm = 2 represents the bulk of Fy′ , it is not able to recover the smaller oscillations in
the measured force which define the peaks positions. This is especially evident for the
asymmetric case (case E). For the antisymmetric case (case B) a reconstruction with
the first 6 modes is capable of following almost perfectly the measured force. For the
asymmetric case (case E), instead, the first six modes are able to provide an excellent
reconstruction of the chord-normal force component (for nm = 6, R2 = 0.994), but
the force peak is not completely recovered. This can be a consequence of the higher
spectral richness of force modes in asymmetric cases, as discussed in §6.5.1.

The LOR of the chord-wise force component with the first nm modes is reported in
Fig. 6.11. Owing to the variety of different behaviours discussed in §6.4.1, only 4 cases
are included in the discussion (case E and F show trends similar to cases B and C and
are excluded for brevity). For case A, the first two modes play a secondary role on
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(a) CASE B (b) CASE E

Fig. 6.10 Low-order reconstruction of the chord-normal force component (Fy′) with
extended POD modes. Each curve represents the reconstruction with the firsts nm

modes.

(a) CASE A

(b) CASE B

(c) CASE C

(d) CASE D

Fig. 6.11 Low-order reconstruction of chord-wise force component (Fx′) with extended
POD modes. Each curve represents the reconstruction with the first nm modes.
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nm
CASE B CASE E

Fy′ Fx′ Fy′ Fx′

1 0.760 0.116 0.796 0.058
2 0.969 0.594 0.964 0.874
3 0.986 0.822 0.991 0.937
4 0.992 0.868 0.992 0.958
5 0.994 0.972 0.992 0.973
6 0.995 0.975 0.994 0.986

Table 6.4 Coefficient of determination R2 of the force LOR.

Fx′ , while the modes from 3rd to 6th reconstruct together almost entirely the measured
force and are responsible for the double peak formation. For case B the modes from
3rd to 6th are responsible for the double peak in Fx′ . The 1st and 2nd modes introduce
a sinusoidal behaviour, determining a difference in the amplitude of the force peaks.
For case C, modes 1st and 2nd represent almost completely Fx′ , while modes from 3rd

to 6th seem to play a minor role.
The similitude of the chord-wise force behaviour for corresponding antisymmetric

and asymmetric cases affects also the associated extended POD modes. The LOR for
case D is the one that most differs from its corresponding antisymmetric case, i.e. case
A. The first 2 extended POD modes are responsible for recovering completely the peak
of Fx′ at t/τ = 0.75, while the modes 3rd to 6th are responsible for recovering the peak
at t/τ ≈ 0.2. This difference depends on the particular organization of the POD modes
of the velocity, and in particular of its 2nd chronos, as it will be shown in §6.5.3.

As a final remark, it must be specified that the force modes here presented are the
result of the extended POD, thus represent solely the part of the force which is linearly
correlated to the velocity field modes. However, the LOR obtained is shown to follow
with high fidelity the measurements, thus suggesting that the effects of non-linearities
are negligible.

6.5.3 Description of the 1st and 2nd extended POD modes

A compact overview of the 1st POD mode of the velocity with its associated extended
POD modes of vorticity and force is reported in Fig. 6.12 for all the analysed cases.

The topoi of the velocity (φ
x

and φ
y
) and of the vorticity (φ

ω
) of the 1st mode present

common features for all the cases. The 1st mode describes two counter-rotating vorticity
regions bounded to the airfoil. The negative vorticity region which concentrates at the
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(a) CASE A

(b) CASE B

(c) CASE C

(d) CASE D

(e) CASE E

(f) CASE F

Fig. 6.12 Compact overview of the 1st POD modes of velocity and extended POD
modes of vorticity and force for all the cases. The topos of the velocity (φ

x
and φ

y
) is

reported as a quiver plot. The topos of the vorticity (φ
ω
) is reported as a contour plot.

The chronos (ψ∥V ∥) of the mode is reported below along with the norm of the vorticity
projection (σω) and the projection coefficient of the force components (σF,x and σF,y).
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(a) CASE A

(b) CASE B

(c) CASE C

(d) CASE D

(e) CASE E

(f) CASE F

Fig. 6.13 Compact overview of the 2nd POD modes of velocity and extended POD
modes of vorticity and force for all the cases. The topos of the velocity (φ

x
and φ

y
) is

reported as a quiver plot. The topos of the vorticity (φ
ω
) is reported as a contour plot.

The chronos (ψ∥V ∥) of the mode is reported below along with the norm of the vorticity
projection (σω) and the projection coefficient of the force components (σF,x and σF,y).
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leading edge is connected to the formation of the LEV and to its growth over the wing.
The positive vorticity region at the trailing edge, instead, is connected to the release of
vorticity which has to compensate the vorticity of the LEV according to the Kelvin
theorem.

For antisymmetric cases (cases A, B and C) the vorticity distributes symmetrically
with respect to the chord. For asymmetric cases (see cases D, E and F) the vorticity
regions are more extended on the upper side of the airfoil. This difference is induced by
the asymmetrical flow conditions between the two sides of the airfoil for the latter cases,
which has been shown to affect in a similar way the average flow field (see §6.4.2).

The 1st mode also captures an upward motion of the flow, especially recognizable
for case A, which appears to be connected to the plunging motion of the airfoil. A
complete correspondence between the 1st mode and the plunging motion is however
present only for the pure plunging cases. When the pitching motion is introduced, the
1st mode does not entirely capture the plunging motion (as clarified by the discrepancy
of the chronoi from a cosine), which is partially contained in the 2nd mode. The
pitching motion adds a rigid vortex to the flow in the wing-fixed frame whose intensity
is proportional to the angular velocity of the airfoil (see Minotti, 2002). Similarly to
the plunging motion, also the pitching motion is captured in the 1st and 2nd modes,
while none of the two is completely aligned with it.

For both antisymmetric and asymmetric cases, α0 controls the relative strength
of the counter-rotating vorticity regions. For pure plunging airfoils (α0 = 0◦, cases
A and D) the vorticity regions are balanced to fulfil the Kelvin theorem, and their
induction results in a flow oriented in the chord-normal direction. Introducing the
pitching motion (cases B and E), the relative strength of the vortices is modified due
to the change of reference, as shown in Eq. 6.22.

The rationale behind the effect of α0 on the vorticity distribution of the extended
POD modes can be extracted by observation of the chronoi ψ(1)

∥V ∥. The chronoi of
the 1st POD mode are for all the cases sinusoidal functions with periodicity equal to
the flapping period of the wing. The overall effect of α0 is to produce a phase shift
of the chronoi. The mean angle of attack αm, instead, does not affect the chronoi,
which are similar for corresponding antisymmetric and asymmetric cases. The phase
shift observed for varying α0 is related to the introduction of the rigid rotation. This
rotation can be considered as a rigid vortex with intensity varying sinusoidally in time
according to the angular velocity (thus with maximum at t/τ = 0.75, see Eq. 6.22).
As this rigid rotation grows in importance, the modes tend to temporally align with it.
It must be specified that this phase shift phenomenon is not simply a mathematical
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artefact but it has a physical explanation. It is reasonable to assume that the kinetic
energy entering the fluid system is connected to the growth rate of the LEV circulation.
The first POD modes, therefore, should be aligned with the direction of maximum
circulation growth rate. According to Roshko (1954) the circulation growth rate of the
LEV can be approximated as the integral over the boundary layer thickness δBL of the
vorticity flux, e.g. on the upper side during the downstroke:

Γ̇LEV (t) =
∫ δBL

0
ω′

z(y′, t)u′(y′, t)dy′ (6.29)

Defining with Veff(t) = ∥V∞i + ḣ(t)j∥ as the magnitude of the effective velocity
"seen" by the airfoil, and considering that it is possible to approximate (assuming
triangular velocity distribution inside the boundary layer):

ωz(y′, t) ≈ Veff (t)
δBL(t)∫ δBL(t)

0
u′(y′, t)dy′ ≈ 1

2V∞δBL(t)
(6.30)

and recalling Eq. 6.22, the growth rate of the LEV is:

Γ̇LEV ≈ 1
2V∞δBL(t)

(
Veff (t)
δBL(t) + 2α̇(t)

)
(6.31)

Eq. 6.31 (which would have opposite sign when referring to the lower side during
the upstroke) expresses the simple concept that the angular velocity of the wing
influences the growth rate of the LEV in the wing-fixed frame. For the present cases,
due to the phase shift between the plunging and the pitching motion, as α0 grows the
modes shaping the circulation growth are temporally delayed with respect to the cosine
function which shapes ḣ(t).

The change in pitching amplitude also strongly affects the projection coefficients
of the forces. The projection coefficient of the normal force component σFy decreases
with α0 increasing. Oppositely, the projection coefficient σFx slowly increases with α0

increasing.
The parallelism between antisymmetric and asymmetric cases extends also to the

projection coefficients of the force σFx and σFy and to the norm of the projection of the
vorticity σω, which result almost identical for corresponding cases. The variation of
both the vorticity spatial integral and of the force which is modelled by the 1st mode
is then uncorrelated with the mean angle of attack αm, which only affects the spatial
distribution of vorticity.
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A compact overview of the 2nd POD mode of the velocity with its associated
extended POD modes of vorticity and force components is reported in Fig. 6.13.
Similarly to the 1st mode, the differences between chronoi of cases with the same α0

are not relevant. Also, similarly to the 1st mode, a quite strong similarity can be
observed for the norm of the vorticity projection (σω) and for the force projection
coefficients (σFx and σFy) for cases with the same α0. The chronoi ψ(2)

∥V ∥ of the 2nd

mode are sinusoidal functions in phase quadrature with respect to the 1st mode for all
the cases except for case D. This exception is responsible for the difference in the force
reconstruction of the first 2 modes which have been observed for case D in §6.5.2 with
respect to the rest of the cases. The reason behind this difference could be ascribed to
the larger maximum αeff achieved in this case (Fig. 6.5), thus determining stronger
spectral contamination due to deep stall conditions reached at mid-cycle.

The topoi of the 2nd mode are strictly related to those of the 1st mode, as evident
from visual inspection. For the antisymmetric cases, the negative vorticity region
associated to the LEV is completely detached from the airfoil. The positive vorticity
region extends over the entire airfoil, occupying also the leading edge. For cases E and
F, both the positive and negative vorticity regions appear only on the upper side of
the airfoil, while their presence on the lower side is negligible due to the absence of the
LEV on the lower side in these cases. Similarly to what observed for the 1st mode, the
relative strength of the counter-rotating vorticity regions is influenced by α0, with the
negative vorticity region decreasing in importance as α0 increases.

The interconnection between the 1st and the 2nd mode suggests that they are the
in-phase and quadrature components of the formation and release of a bound vortex
over the airfoil, to which both quasi-steady, LEVs and TEVs circulations contribute.
These modes also contain the acceleration of the flow induced by the wing motion. A
more detailed discussion of this group of modes and of its effect on the force will be
given in §6.6.

6.5.4 Description of higher order extended POD modes

Fig. 6.14 shows the modes from the 3rd to the 6th for case B. Differently from the
1st and 2nd modes, these modes are characterized by more complex (non-sinusoidal)
chronoi featuring several peaks per flapping period. Despite being characterized by
different shapes, the chronoi of these four modes are closely interconnected. The
position of the peaks is phase-shifted of about π/4 from one mode to the other, thus
suggesting that they are half-quadrature components of the same phenomenon.
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(a) POD mode 3

(b) POD mode 5

(c) POD mode 4

(d) POD mode 6

Fig. 6.14 Compact overview of the 3rd, 4th, 5th and 6th POD modes of velocity and
extended POD modes of vorticity and force for case B. The topos of the velocity (φ

x
and φ

y
) is reported as a quiver plot. The topos of the vorticity (φ

ω
) is reported as a

contour plot. The chronos (ψ∥V ∥) of the mode is reported below along with the norm
of the vorticity projection (σω) and the projection coefficient of the force components
(σF,x and σF,y).
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(a) POD mode 3

(b) POD mode 5

(c) POD mode 4

(d) POD mode 6

Fig. 6.15 Compact overview of the 3rd, 4th, 5th and 6th POD modes of velocity and
extended POD modes of vorticity and force for case E. The topos of the velocity (φ

x
and φ

y
) is reported as a quiver plot. The topos of the vorticity (φ

ω
) is reported as a

contour plot. The chronos (ψ∥V ∥) of the mode is reported below along with the norm
of the vorticity projection (σω) and the projection coefficient of the force components
(σF,x and σF,y).
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This is indeed testified by the vorticity organization of the corresponding topoi. In
all the presented modes a double-vorticity shedding which alternatively interests both
sides of the airfoil is present. For each vorticity blob shed in the wake, a wall-bounded
counter-rotating vorticity region forms on the corresponding side of the airfoil. These
modes clearly model the LEV shedding in the wake and the modulation of the bound
vorticity which they produce on the airfoil. These considerations similarly apply for
cases A and C (not reported here for brevity).

Fig. 6.15 shows the modes from the 3rd to the 6th for case E (cases D and F are
here omitted for brevity). The 3rd and 4th modes are temporally described by a double
peak function. The peaks positions are phase-shifted by π/4, thus suggesting again
that they are two half-quadrature components of a single phenomenon. From the topoi
it appears clear that these modes describe a shedding generated from the upper side of
the airfoil. The presence of the double peak in each chronos shows that two couples
of counter-rotating vortices are shed per each cycle, even if this phenomenon is not
periodical with half of the flapping period. The shedding of the vorticity blobs is
contrasted by the formation of a bound vorticity region on the airfoil with opposite
sign with respect to the detaching vortex. Similarly to the antisymmetric cases, these
modes model the pinch-off and shedding of the LEV. However, the lack of two more
half-quadrature components in case E has to be ascribed to the asymmetry in the flow
topology and to the absence of the LEV on the lower side of the airfoil.

The 5th and the 6th mode of case E describe a shedding from the upper side
characterized by three-peaked chronoi. The peaks of the chronoi are displaced of about
π/8, thus suggesting that these modes are quarter-quadrature components of a single
shedding phenomenon mainly located in the second half of the period.

6.6 Low-order model of the flow field features and
their contribution to the force

6.6.1 Low-order reconstruction of flow features

As outlined in §6.5, some groups of POD modes are in-quadrature components of time-
varying flow features. For a better understanding of these features, the composition of
these modes is proposed in Fig. 6.16 and in Fig. 6.17 respectively for case B and E. The
LORs are obtained without including the time-average flow field. The corresponding
fluctuating flow field is added for comparison (Fig. 6.16a and Fig. 6.17a). According
to the analysis carried out in §6.5, for case B two groups of interrelated modes can be
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a) Fluctuating field b) 1st and 2nd modes c) 3rd to 6th modes

Fig. 6.16 Case B. Snapshot of the flow field: left) fluctuating flow field; center) LOR
with 1st and 2nd modes; right) LOR with 3rd to 6th modes.

identified, i.e 1st-2nd modes and modes from the 3rd to the 6th. For the case E, instead,
higher order modes have highlighted different in-quadrature arrangement, thus the 5th

and the 6th have to be isolated from the 3rd and the 4th.
As already anticipated in §6.5.3, the 1st and 2nd modes are strongly connected with

a bound vortex over the wing. The vorticity which is contributing to this mode (and
thus to the bound vortex) corresponds to the region in which the LEV develops and
to the region occupied by the counter rotating vorticity which is continuously shed
from the TE. These features can be identified in Fig. 6.16b and Fig. 6.17b. The
LEV coincides with the vorticity region which starts from the leading edge and grows
up to its detachment. The counter rotating vorticity corresponds to the aft-region of
the airfoil and to the trail which is shed from the TE. As commented in §6.5.3, these
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a) Fluctuating field b) 1st and 2nd modes c) 3rd to 6th modes

Fig. 6.17 Case E. Snapshot of the flow field: left) fluctuating flow field; center) LOR
with 1st and 2nd modes; right) LOR with 3rd and 4th modes.

modes are strongly affected by the pitching rotation, which is included in the form of
a rigid vortex. This rigid rotation is responsible of the modification of the vorticity
distribution of both the attached LEV (decreasing it according to the pitching/plunging
phase shift) and the bound vortex (enhancing it) and thus produce an asymmetry in
the vorticity distribution between the leading edge and the trailing edge.

The group of modes from the 3rd to the 6th in case B (Fig. 6.16c) represent a vortex
shedding that interests alternatively the upper and the lower side of the airfoil. It must
be highlighted that the vortex blobs which are modeled by these modes only partially
coincide with the LEVs. For each LEV shed in the measured field, three vorticity blobs
are actually shed in these modes: one of them coincides with the LEV of the measured
flow field, while the other two respectively precede and follow the LEV in time. The



148 Unsteady force and flow structures over flapping airfoil

vorticity blob that temporally precedes the LEV clearly represents the counter-rotating
vorticity blob which balances out the LEV formation according to the Kelvin theorem.
The vorticity blob which follows the LEV in time cancels out the detached vorticity
region of the 1st and 2nd mode, thus likely modelling the reattachment of the flow on
the suction side after the pinch-off of the LEV.

Similarly to the 3rd to 6th modes of the antisymmetric cases, the 3rd and 4th modes in
case E represent a vortex shedding associated with the LEV. Also in this case the vortex
shedding in these modes only in part coincides with the actual vortices configuration.
The spurious vortices contribute to cluster the vorticity which is continuously released
from the trailing edge. Further components of the shedding are contained in the
higher order modes, e.g. the couple formed by the 5th and the 6th modes which model
a shedding at the double of the frequency than the 3rd and 4th modes. It is worth
remarking that differently with respect to the antisymmetric cases, in the asymmetric
cases these modes are quite important for the modelling of the forces (§6.5.2), thus
suggesting a non negligible role played by the near-wake vorticity in forces generation.

6.6.2 Reduced-order model of the force

In §6.5.2 it has been observed that there is a clear pattern in the contribution of the
extended POD modes to the fluctuating force depending on wing kinematics. The light
shed on the nature of these modes from the analysis of both topoi and chronoi helps
clarifying the role played by these modes in the force reconstruction. The behaviour of
the time-average forces is not taken into account in this analysis, as the extended POD
modes are intended to model solely the fluctuating part of the force linearly correlated
with the velocity field.

According to the analysis performed previously in §6.6.1, the contribution of the 1st

and 2nd mode is connected to the bound vortex. The bound vortex observed in these
modes is strictly correlated to the trail of vorticity released by the pressure side and
thus it may account for the fluctuating part of both the quasi-steady circulation and
the wake-induced circulation, expressed in the Theodorsen’s model by Eq. 6.32:

CL,c(t) = 2πC(k)Q(t) (6.32)

with Q(t) defined in Eq. 6.6. It can be stated then that these first two modes account
completely for the contributions of the Theodorsen’s circulatory force. To prove this
statement, the results of the circulatory force exposed in Eq. 6.32 are plotted against
the LOR of the forces in Fig. 6.18 for all the tested cases. In the following, the
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(a) CASE A

(b) CASE B

(c) CASE C

(d) CASE D

(e) CASE E

(f) CASE F

Fig. 6.18 Chord-normal component of the fluctuating force: comparison of LOR and
theoretical force models.
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(a) CASE A

(b) CASE B

(c) CASE C

(d) CASE D

(e) CASE E

(f) CASE F

Fig. 6.19 Chord-wise component of the fluctuating force: comparison of LOR and
theoretical force models.
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circulatory force from the Theodorsen’s model has been considered normal to the chord,
despite it has been originally developed as a lift force. Also, in Eq. 6.32 only the
fluctuating part of the force is considered to compare with the LOR of the fluctuating
force. A discussion about the mean force is included in §6.4.2. From Fig. 6.18, few
considerations can be extracted:

1. the 1st and 2nd extended POD modes model the circulatory force which arises to
fulfil the Kutta condition at the Trailing Edge. For sinusoidal motion, this term
can be described through the Theodorsen function (see Eq. 6.32);

2. there is no relevant non-circulatory force on the chord-normal direction;

3. the circulatory force accounted through the Theodorsen’s function is orthogonal
to the chord.

The last statement is in agreement with the finding of Dickinson et al. (1999) for a
flat plate and with the more recent findings of Moriche (2017) for a thick airfoil. The
second statement can be further reinforced by considering in the force model also the
non-circulatory force contribution obtained from Theodorsen (1935) and reported in
Eq. 6.33:

CL,nc(t) = πc

2V∞

(
α̇(t) − ḧ(t)

V∞
− c

2V∞
α̈(t)(2ξp − 1)

)
(6.33)

Despite the 1st and 2nd modes are strongly affected by the rigid rotation of the
wing and its plunging motion (as discussed in §6.5.3), non-circulatory forces accounted
through Eq. 6.33 does not fit the LOR in Fig. 6.18.

It has been observed in §6.6.1 that the rigid rotation introduced by the pitching
motion introduces an asymmetry in the vorticity distribution between the leading edge
and the trailing edge. Also, in §6.5.2 it has been observed that the 1st and 2nd modes
introduce a sinusoidal force component on the chord-parallel direction. It is possible
to assume that this force is connected with a non-circulatory force depending on α̇(t).
In the following, we model this contribution on the chord-wise axis by means of the
rotational added-mass force term included originally by Theodorsen (1935) in the lift
expression and given by Eq. 6.34:

CD,nc(t) = πc

2V∞
α̇(t) (6.34)

The comparison in Fig. 6.19 proves that this non-circulatory term captures the
contribution to the chord-wise force of the 1st and 2nd modes. Despite Theodorsen
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(1935) considers this term on the lift (and thus orthogonally to the chord due to the
small angles hypothesis), a similar term is given in Sedov (1965) on the chord-wise
direction for a flat plate (as reported in Eq. 6.10). It must be remarked, however, that
the term given by Sedov (1965) would is significantly different from that in Eq. 6.34,
which is not including any dependence on chord-normal wing velocity Vy. To stress out
the difference between the two expressions, it is possible to rewrite the corresponding
term from Eq. 6.10 as:

CD,Sedov = πc

2V∞

Vy

V∞
α̇(t) = CD,nc(t)

Vy

V∞
(6.35)

Higher order modes account for the shedding of vortices and for the modulation
that they produce on the vorticity around the airfoil. It has been observed in §6.5.2
that their most relevant contribution to the force is directed chord-wise. As a further
evidence, the modes both in Fig. 6.16c and Fig. 6.17c clearly show that the pairing
between shed and induced vorticity on the airfoil surface generate a jet-like flow along
the chord-wise direction. In line with the sign of Fx′ , this jet is directed downstream
for t/τ ≈ 0 and t/τ ≈ 0.5, thus producing negative Fx′ , while it is directed upstream
for t/τ ≈ 0.25 and t/τ ≈ 0.75.

These modes can be associated to the suction term of the Garrick’s model. Garrick
(1937) calculates this term from an energy balance in the wake of the airfoil. This
model can be therefore associated with the energy required to form the concetrated
vortices in the wake. The suction contribution is given by Eq. 6.36:

CD,s(t) = −π
(√

2
2

(
2C(k)Q(t) − c

2V∞
α̇
))2

(6.36)

It must be remarked that the model by Garrick was intended to be applied on the
free-stream direction rather than in the chord-wise direction, i.e. for small angles of
attack. Nevertheless the reference frame transformation applied in this work allows to
apply it also for flapping wings in the chord-wise direction. According to the results
from Baik et al. (2012), this model did not prove to be effective in describing the
thrust/drag of the airfoil for the entire flapping cycle.

In Fig. 6.19 the force contribution of the modes from the 3rd to the 6th is compared
with half the suction term included in the model by Garrick (see Eq. 6.36) after
removing its average value. A good agreement with all the cases is found, thus
suggesting that the application of the Garrick’s model should be preferably done in
the chord-wise direction. Consequently, the oscillation of bound vorticity observed in
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Fig. 6.16c and Fig. 6.17c may be at least partially explained through the Garrick’s
model for the leading-edge suction. It is worth noting that ⟨CFx′ ⟩ ≠ ⟨CD,s⟩: this is a
consequence of the Garrick’s model being based on the potential flow assumption. At
low Reynolds numbers the skin friction contribution is relevant, thus discrepancies in
the average forces are expectable.

Following the Leading Edge suction analogy of Polhamus (1966), it is possible
to account half of the suction term by Garrick (1937) in the chord-normal direction.
Fig. 6.18 shows that the discrepancies between the Theodorsen’s model and the LOR
are slightly reduced if half of the suction contribution from the Garrick’s model is
included to the normal force. The direction of the suction is chosen accordingly with
the position of the LEV on either the upper or the lower side of the airfoil. The split
of the Garrick’s suction term between chord-wise and chord-normal force components
might be ascribed to the airfoil leading edge shape. Ashraf et al. (2011) and Yu et al.
(2012b) report that the propulsive force is strongly depending on the airfoil shape,
increasing for thicker airfoils. This suggest that the bulk of the LEV suction might be
contributing more in the chord-wise direction more than in the chord-normal direction
for thicker LEs.

The higher order modes are also responsible for the introduction of oscillations in
the normal force which are not captured neither by the 1st and 2nd modes, neither by the
Theodorsen’s model. These oscillation can be explained either as a modulation of the
bound vorticity operated by the shed vorticity, either as a change in the chord-normal
component of the momentum in the wake.

6.7 Conclusions
This chapter describes an experimental study over an airfoil in both plunging and
pitching motion. Measurements of the phase-averaged flow fields and of the phase-
averaged force are reported. A novel approach to decompose the unsteady aerodynamic
forces acting on an airfoil in flapping motion is employed. The approach is based
on the statistical decomposition of the flow field through the Proper Orthogonal
Decomposition and to its extension to decompose the force in a common temporal
basis following the extended POD (Borée, 2003). The approach is applied to phase-
averaged velocity fields, measured by means of PIV, and to phase-averaged force
components in the chord-wise and chord-normal direction, measured by means of a
high-resolution load cell. The measured velocity and vorticity fields are transformed
into the corresponding fields in the non-inertial wing-fixed reference frame in order to
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remove the influence of the moving boundary, i.e. the airfoil, from the decomposition.
Subsequently, velocity/vorticity fields in the wing-fixed reference frame are decomposed
via POD. The chronoi obtained from the POD of the velocity are used as a basis to
project the force and to extract the force contribution of each mode. The proposed
approach draws a statistical interconnection between the force generation and the flow
organization described through the POD modes.

From the analysis of the different cases, it results that the force components can be
modelled using a very compact subset of modes of the velocity field. The compactness
of the correlation ensures that a simple link can be found between flow field and force,
paving the way to simple data-driven models for the fluctuating force. Independently
on the case, this subset of modes accounts for very specific and well-organized flow
features: the first two modes are the in-quadrature components describing the temporal
evolution of the bound vortex (including the LEV while still attached on the airfoil);
higher order modes model the near-wake generated by the flapping wing, thus including
the shedding of free LEVs and TEVs and their induction both on the airfoil and in
the wake. Thanks to this link with the actual flow features in the field, both the topoi
and the chronoi of these modes present similar characteristics. Very localized and
consistent changes are operated spanning the parameters of the motion. A change
in αm introduces an asymmetry in the topoi of the modes, modifying the relative
strength between features on the upper side (which are enhanced) and the lower side
(which are weakened) of the airfoil. The temporal evolution of these features, which is
contained in the chronoi, remains substantially unaffected by the introduction of an
asymmetry in the motion. The pitching amplitude α0 is found to influence both the
size of the vortical structures attached to the wing or shed in the wake (according to
the observation of the topoi) and their temporal evolution (chronoi). Specifically, the
size of the vortical structures is reduced as the pitching amplitude increases, while their
growth in time is delayed. These changes can be connected to the reduction of the
vorticity flux feeding the LEV due to the angular velocity of the wing, which weakens
the vortical structures for the phase delay that has been chosen in the wing motion
(ϕ = π/2 between plunging and pitching).

Finally, the contribution of each mode to the force has been assessed, finding a
correspondence between the modelled flow features and their contribution to the force.
The 1st and the 2nd mode, which include the contribution of the bound circulation,
are the main source of the normal component of the force. Their contribution on
the chord-wise component is strongly dependent on the pitching motion amplitude.
Higher order modes, which include the contribution of free vortices in the wake, are
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mainly responsible for the chord-wise component of the force. Similarly to topoi
and chronoi, also the contribution to the force ascribed to each mode is found to
depend on the parameters of the wing motion. This relation can be accounted for
through a modification of the models by Theodorsen and Garrick. The normal force
component due to the first two modes coincides with the superposition of the circulatory
component of the lift of Theodorsen model and (part of) the Garrick suction term,
while its chord-wise component is essentially ascribed to the non-circulatory forces
from the Theodorsen model. The chord-wise force component ascribed to high order
modes can be associated to part of the suction term in the Garrick’s model.

In summary it has been found that the force components in the wing-fixed reference
frame can be successfully modelled by correctly rearranging the terms included in the
models by Theodorsen and Garrick. The model found is given by Eq. 6.37:

CFy′ = ⟨CFy′ ⟩ + CL,c + 0.5CD,s

CFx′ = CD,nc + 0.5CD,s + CD,f

(6.37)

where CL,c, CD,nc and CD,s are respectively the circulatory lift (from Eq. 6.32), the
non-circulatory drag (from Eq. 6.34) and the suction term (from Eq. 6.36). The term
CD,f represents an average drag term which accounts for friction forces and which has
not been considered in the analysis, which is focused on potential flow theories.

The presented analytical model provides an excellent estimation of the experimental
data. However, further studies are needed to prove that it can be directly extended to
other configurations. In particular, further studies are needed to estimate the share
of the Garrick suction term between chord-wise and chord-normal force components
which has probably to be ascribed to the airfoil leading edge shape.





Part IV

Other applications





Chapter 7

Estimation of time-resolved
turbulent fields

In §2.4 it has been introduced the extended POD, which allows estimating the modes
of a certain flow quantity that are linearly correlated to the POD modes of another
flow quantity. The term quantity is here expressing a very generic concept: it can
either refer to two different physical quantities (such as velocity, pressure, temperature,
etc.), or the same physical quantities evaluated on different domains. When the linear
stochastic relation between these quantities is statistically well-converged, the extended
POD modes can be successfully exploited to obtain the estimation of one of the two
quantities from the knowledge of the other one.

In this chapter, the extended POD will be exploited to estimate a time-resolved
turbulent field from the combination of non-time-resolved field measurements and
time-resolved point measurements. The proposed method poses its fundaments on
a stochastic estimation based on the Proper Orthogonal Decomposition of the field
measurements and of the time-resolved point measurements. The statistical correlation
between the field measurements and the point measurements at synchronized instants
can be evaluated by means of the extended POD. In order to improve the correlation,
field snapshots are correlated to probe snapshots obtained by considering point mea-
surements over a finite timespan. This procedure, therefore, implicitly accounts for
multiple time delays for different extended POD modes. The correlation between field
measurements and point measurements is then extended to the “out-of-sample” time
instants for the field measurements, i.e. those in which field data are not available.
Through the estimation of the POD time coefficients in the out-of-sample instants it is
possible to obtain the reconstruction of the corresponding flow fields.
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The method here reported extends the work by Hosseini et al. (2015) by proposing
a truncation criterion which allows to remove the uncorrelated part of the signal from
the reconstruction of flow fields. The truncation is fundamental in case of turbulent
flow fields, in which a great wealth of scales is involved, thus reducing the correlation
between the probes signal and the field measurements. The threshold selection poses
its basis on the random distribution of the uncorrelated signal.

The mathematical details of the method and of the truncation are given in §7.2. The
method is validated with a synthetic test case and an experimental one in §7.3. A Direct
Numerical Simulation database of a channel flow is selected since its spectral richness
is expected to represent a significant challenge for this method. This dataset allows
isolating the effects of correlation between field measurements and point measurements,
removing issues connected to noise contamination or to the finite spatial resolution
which would inevitably affect experimental data. The experimental test case is the wake
flow behind a high-angle-of attack airfoil with a relatively small number of samples,
affected by significant noise. The quality of the dynamic estimation is found to be
affected by the noise contamination of the data and by poor convergence of the POD
modes, which add on the effect of the probes location, i.e. on the correlation between
probes events and flow features. The selection of the probes timespan to perform the
POD analysis on the probes signal is also discussed. The determination coefficient
between reconstructed data and in-sample data is proposed as an assessment of the
flow fields estimation quality. The use of the determination coefficient directly on the
in-sample data is allowed by the truncation itself, while it would not be possible for
extended POD modes without truncation.

7.1 Dynamic estimation of turbulent flow fields
In the last decades Experimental Fluid Mechanics has experienced the flourishing of
field measurement techniques, disclosing the access to the instantaneous distribution
of field quantities such as velocities, concentrations, temperatures or pressures as in
Particle Image Velocimetry (Westerweel et al., 2013), thermographic phosphors (Abram
et al., 2015), Infrared thermography (Raiola et al., 2017) or pressure sensitive paints
(Pastuhoff et al., 2013). Unfortunately due to limitations related to data rate or sensor
technology, it often occurs that such measurement techniques are unable to provide
information on the flow dynamics, such as for instance in moderate to high Reynolds
number turbulent flows. For example, for the case of Particle Image Velocimetry,
although the most recent technological developments have led in the last decades to
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powerful high speed light sources and fast high-resolution scientific cameras, which
have triggered the development of novel approaches exploiting time resolution (see,
e.g. the reviews in van Oudheusden, 2013, and Kähler et al., 2016), time-resolved PIV
remains of real practical use prevalently for low Reynolds numbers flows.

When the real-flow dynamics are not accessible due to hardware limitations, dynamic
estimation of coherent structures is an extremely appealing option. Some promising
attempt of dynamic estimation relies on physics-driven methods such as the vortex-
in-cell (VIC, Schneiders et al., 2014) method. While VIC can provide high-quality
estimation of the time-resolved flow, it is inherently a three-dimensional method. This
limits the use of VIC in turbulent flows to 3D flow field measurements. Its extension
to planar flow field measurements its only possible for purely two-dimensional flows.

Dynamic estimation based on low order models has proven to be a prominent
candidate to elaborate flow control strategies (see, e.g. Noack et al., 2011, Holmes et al.,
2012). Low order models often truncate small scales and aim to model prevalently the
dynamics of large scale structures, thus losing detail of description in high Reynolds
number flows. Nonetheless, large scale structures are widely recognized to be the main
actors in momentum transport in turbulent flows. For example in wall-bounded flows
large scale structures carry the bulk of the kinetic energy and contribute largely to the
production of Reynolds stresses (see for instance the very large scale structures in pipe
flows (Balakumar and Adrian, 2007), or the interaction between large scale structures
in the outer layer and near wall features in adverse-pressure-gradient boundary layers
Harun et al. (2013), Sanmiguel et al. (2017)).

Among the possible solutions, one relevant candidate is based on modal analysis.
Coherent structures are often detected through Proper Orthogonal Decomposition
(POD, Berkooz et al., 1993) and then, through further analysis, their dynamics is
identified. In case of shedding-dominated phenomena, POD has been widely used to
extract phase coherent information for the first and higher order harmonics, both in
2D (see, e.g. Chapter 5 of this thesis, van Oudheusden et al., 2005, Legrand et al.,
2011, Raiola et al., 2016) and 3D (Ceglia et al., 2014, Cafiero et al., 2014). This is
however only possible when a dominant phase relation between POD modes can be
identified from the scatter plots of the time coefficients and does not allow to extract
any absolute frequency information. Through some physical assumptions on convection
velocities it is however possible to identify also modes temporal information as done by
Jaunet et al. (2016).

The modes frequency information can be retrieved with the help of additional
time-resolved data by making use of Linear Stochastic Estimation (LSE). Originally
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developed to provide an approximation of a conditional average (see Adrian, 1994),
LSE allows to estimate the most probable value of a certain quantity (e.g. a POD time
coefficient), given another measured quantity. By using a time-resolved probe, LSE
allows thus to estimate the most probable instantaneous flow field given a certain value
measured by the probe. This flow-field estimation capability can be especially exploited
in flow control applications in which real-time flow diagnostics are required. The first
attempts of dynamic estimations of the flow fields were based on the information
from only one time instant and are referred to as single-time-delay techniques (see,
e.g. Guezennec, 1989). The word delay refers to the fact that a time shift, typically
corresponding to a given convective time, was imposed between the value to be
estimated and the value used to perform the estimation.

The temporal coherence of time-resolved probes was later exploited more intensively
by means of multi-time-delay LSE. Of course, multi-time delays are beneficial since
they allow to reduce the effect of noise contamination on the probe measurements and
are able to deal with several convective time scales. Depending on the application of
interest, multi-time-delay LSE has been preferred in the spectral (e.g. for aeroacoustics
applications Tinney et al., 2006) or temporal domain (for flow field reconstruction from
PIV data or flow control applications, Durgesh and Naughton, 2010). An assessment
of stochastic estimation methods performances and on the effect of the sensor location
is reported in Arnault et al. (2016).

Most recent developments for LSE-based dynamic estimations of flow fields include
the method proposed by Tu et al. (2013), who defined a linear model of the flow field and
incorporated a Kalman smoother to improve the estimation and minimize the effects
of noise contamination. Baars and Tinney (2014) proposed a significant improvement
of spectral LSE providing a POD-based method exploiting higher order coherences
and thus able to identify mutual interaction between coherent structures. This aspect
is especially interesting when dealing with turbulent flows in which more energetic
coherent structures affect the convective velocity of less energetic ones; a higher order
representation thus appears necessary to account for the multiple interaction of coherent
structures.

An interesting alternative approach is based on the Extended POD (EPOD). Borée
(2003) has shown that, when dealing with multiple synchronized measurements, the
correlation between them can be ascertained through the evaluation of the extended
POD modes which are estimated through the projection of the snapshot matrix of a given
quantity on the temporal basis corresponding to another one. This technique reduces
to the LSE if all POD modes of the probes data are retained in the reconstruction.
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A recent improvement of this technique for shedding wake flows has been proposed
by Hosseini et al. (2015), which proposed to perform the EPOD projection using the
correlation between temporal coefficients of the POD of both velocity fields and probes
data. The advantage is that the spatio-temporal correlations of the EPOD approach
are replaced by solely temporal correlations. Additionally, history effects are taken into
account by adding “virtual” probes using time-shifted probes data (with the support
of the Taylor’s hypothesis of uniform convection). A similar probes data organization
was previously proposed in Sicot et al. (2012) to extract the conditional flow structure
downstream of a reattaching flow region. Hosseini et al. (2015) argued that only the
modes for which the correlation with the velocity is non-vanishing are considered, i.e.
the method is self-tuning. It has to be underlined that Hosseini et al. (2015) applied
their method to three kind of modes: symmetric, antisymmetric and non-periodic
low-frequency modes in the wake of a wall-mounted pyramid at Re = 28000. It will be
shown later that, for turbulent flows with a richer variety of scales, the self-adjustment
to only non-vanishing modes is not straightforward and uncorrelated modes might
introduce spurious effects. In this case the method converges to a Linear Stochastic
Estimation, losing the advantage of the Extended POD which allows to minimize the
noise contamination of the reconstructed signal due to uncorrelated signal which results
in random noise.

Additionally, it has to be noted that in all the aforementioned cases both LSE and
EPOD have been extensively applied to shedding-dominated phenomena. The scenario
of a turbulent flow with full rank of frequencies appears intuitively more complex.
For instance Kerhervé et al. (2017) report the dynamic description of very-large-scale
motions in high Reynolds number turbulent boundary layers, based on synchronized
low-repetition-rate two-dimensional stereo-PIV measurements and hotwires. The
experiments by Kerhervé et al. (2017) made use of a two-dimensional rake of 143 single
probes sampled at 30 kHz to obtain a satisfactory reconstruction of the flow dynamics
using LSE. The large number of probes needed might possibly be due to the inability
of LSE to deal with optimal truncation of the uncorrelated part of the signal.

In the following a modified EPOD procedure to deal with the dynamic estimation of
field quantities in turbulent flows is demonstrated. The modification of the procedure
consists in an automated simple truncation criterion which allows to remove the noise
and the uncorrelated part of the signal. Additionally, while for shedding-dominated
fields the selection of the optimum time span for multi-time delay approaches is
straightforward (for instance Hosseini et al., 2015, use the shedding period, and tune
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the number of virtual sensors to describe a clearly periodic phenomenon), this choice
is not trivial for turbulent flows and will be discussed in the following.

7.2 Mathematical foundations

7.2.1 An extended POD approach for turbulent fields estima-
tion

Suppose that a set of nt field snapshots, each containing np points, is acquired. Suppose
also that the signal of m synchronized fast probes is sampled with a rate s times faster
than the sampling rate of the field measurements. Therefore, data from the synchronized
fast probes is available such that m× s independent probe samples are recorded for
each field snapshot and npr = m × s × nt probe samples are recorded in total. For
example, a low repetition rate PIV system capturing flow fields at 10 Hz for 10 s would
provide nt = 100 PIV samples, and three hotwires capturing at 1 kHz for the same
time period would lead to npr = m× s× nt = 30000 total samples and npr/nt = 300
independent samples per snapshot.

The snapshots of the fluctuating flow field can be rearranged in vectors and then in
the data matrix U with size nt × np and decomposed by means of the snapshots POD
as described in §2.1:

U = Ψ Σ Φ (7.1)

Also the probes data can be rearranged in a matrix U
pr

, with the rows being formed
by ntt “virtual” probes data pertaining to each corresponding snapshot (thus having
nt rows as the snapshot data matrix, and ntt columns). Without leading the generality
of the problem, we will assume that the probe snapshot matrix is built considering
ntt = npr/nt, i.e. assigning to each field snapshot a number of virtual probes equal to
the captured probe data in the time interval between the field snapshots. In general for
turbulent flows the choice of the time span depends on the average convection velocity,
as it will be shown in §7.3.

The proposed approach for virtual probe construction is analogous to that proposed
by Sicot et al. (2012) and Hosseini et al. (2015) which generated virtual probes under
the Taylor hypothesis assumption. This probes snapshot matrix can be decomposed
with a POD snapshot approach (Sirovich, 1987) as:

U
pr

= Ψ
pr

Σ
pr

Φ
pr

(7.2)
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The modes included in the rows of Φ
pr

constitute a pseudo-spatial basis of the probe
snapshot vectors. Ψ

pr
, as for the field data, represents the corresponding temporal

basis and Σ
pr

is again a diagonal matrix containing the singular values. The probes
snapshot vectors can thus be reconstructed using nm modes as:

upr (t) ≈
nm∑
i=1

ψ(i)
pr (t)σ(i)

pr φ
(i)
pr

(7.3)

Although the rows of Φ
pr

would be a basis for the ntt-vector space only for nt = ntt,
if the experiment is ergodic and the decomposition of the U

pr
matrix contains a dataset

sufficiently large and rich (i.e. it contains enough snapshots which are taken over a
sufficiently long sampling time) to reach statistical convergence, the modes Σ

pr
Φ

pr

are a basis sufficiently large and well converged to reconstruct any upr vector with a
minimal residual error. For a square snapshot matrix (nt = ntt) the rows of ΦT

pr
form a

basis in the ntt vector space and the reconstruction in Eq. (7.3) is exact for any upr(t)
if nm = nt. A generic probe acquisition u+

pr at a generic time instant t+ can be used
to estimate the vector of time coefficients ψ+

pr
which allows approximating the probe

acquisition as a linear combination of the probe snapshot modes σ(i)
pr φ

(i)
pr

ψ+
pr

(
t+
)

= u+
pr

(
t+
)

ΦT
pr

Σ−1
pr

(7.4)

where the superscript T refer to a transpose. It has to be noted that if the
experiment is ergodic whatever probe sequence u+

pr(t+) can also be acquired outside
(either before or after) of the acquisition from which the modes were estimated, and
used for the flow field estimation.

For the problem under investigation, the extended POD modes (Borée, 2003)
corresponding to the field measurements can be estimated as:

ΨT
pr
U = Σ

e
Φ

e
= ΨT

pr
Ψ Σ Φ = Ξ Σ Φ (7.5)

where the subscript e refers to extended POD modes and the matrix Ξ = ΨT
pr

Ψ is
a matrix containing information about the temporal correlation between fields and
probes modes.

Given Eq. (7.5), the probes time coefficient ψ+
pr

(t+) can be used to reconstruct
the part of the field snapshots which is correlated with the probes signal through the
extended POD modes. For computational efficiency, it is preferable to operate in the
space of POD modes (Hosseini et al., 2015). If the dataset is sufficiently large to reach
statistical convergence, it is possible to assume that the matrix ΨT

pr
Ψ represents a
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good estimate of the dyadic product ψ+
pr

T
ψ+

DY N
which embeds the relation between

the time coefficient of the probe snapshot at t+ and the time coefficient ψ+
DY N

of the
out-of-sample estimate of the field measurement. Through a linear transformation
between the probes time coefficients and the flow fields time coefficients, the dynamic
estimation of the latter starting from ψ+

pr
(t+) is obtained as:

ψ+
DY N

(
t+
)

≈ ψ+
pr

(
t+
)

ΨT
pr

Ψ (7.6)

The time coefficients can then be used to reconstruct the flow field snapshot at the
time instant t+.

This procedure can be carried out for any time instant t+ at which probes data
are available, allowing to provide an estimation of the field measurements at the same
sampling frequency of the probes.

u+
DY N(t+) ≈

nm∑
i=1

ψ
+ (i)
DY N(t+)σ(i)

φ(i) (7.7)

Following the previous example of nt field snapshots synchronized with m probes
sampling s times faster than the field measurements, this would lead to obtain up to
snt fields, increasing the sampling rate by a factor s.

7.2.2 Truncation of the time coefficients correlation matrix

The ith extended POD mode Σ
e

Φ
e

in Eq. (7.5) contains solely and entirely the part of
U which is correlated to the ith probe mode (Borée, 2003). A proof of this statement is
provided in §2.4.1. Consequently extended POD has been used in the past to correlate
flow field modes with other measured quantities, e.g. OH concentrations in flames
(Duwig and Iudiciani, 2010) and wall pressures (Sicot et al., 2012). As shown on the
right hand side of Eq. (7.5), an extended POD mode is the combination of all the POD
modes of the snapshot field. Consequently, the estimation of the time coefficients of a
certain mode (Eq. 7) depends on all the probes time coefficients, accounting also for
modes interaction through the matrix Ξ = ΨT

pr
Ψ. This estimation method removes the

need of multiple-time delays and accounts for the variation of the modes time delays
due to modal interaction.

Nevertheless, this modes interaction might result in the noise contamination of
the highly energetic POD modes. In fact, although in PIV measurements noise has
typically a spectrally white content and has a greater impact on low-energy modes (see,
e.g., Chapter 3 of this thesis and Raiola et al., 2015, which report the noise distribution
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through the POD modes in turbulent flows) the contamination from higher order
modes can produce spurious effect also in the first extended POD modes.

The larger (in term of number of samples) and richer (in term of statistical conver-
gence) is the dataset with which the fields and probes times coefficients and modes
are estimated, the greater will be the accuracy of the estimation of the modes mutual
interaction. Nevertheless, both the columns of Ψ

pr
and Ψ are orthonormal vectors

and form 2 bases in the nt-dimension vector space; consequently also Ξ is composed
by columns forming a basis. This implies that higher order modes which might be
mutually uncorrelated are taken into account for the dynamic estimation in Eq. (7.6)
which coincides with a LSE for nm = nt.

The error in the estimation of a generic snapshot u+
DY N(t+) is dependent on the

correlation between probes and field modes, on the convergence in the estimation of the
modes and on the noise content of the measurements. In particular, the noise content
requires to be taken into account carefully. According to Hosseini et al. (2015), the
vanishing elements of Ξ will not contribute in building the dynamic estimated field, thus
this approach is, in this sense, self-adjusting. However, while for a spatially persistent
shedding the correlation between the velocity and probe data is dominating, in case of
a richer range of scales this correlation might become weaker, giving rise to significant
noise contamination. Reminding that all rows/columns of Ξ have unitary norm and
supposing that at a certain ith probe mode (jth field mode) is uncorrelated with the
field modes (the snapshot modes) the ith row (jth column) of Ξ will be composed
of randomly distributed elements, with unitary norm and zero mean, thus standard
deviation equal to σstd = 1/√nt.

This consideration can be easily exploited to reduce the spurious contamination
due to uncorrelated residual components, thus enabling a powerful truncation. In
fact, for a normal distribution (such as that of the rows and columns corresponding to
uncorrelated POD modes) 99.7% of the data is within three standard deviations of
the mean (Pukelsheim, 1994). Consequently it is possible to remove practically all the
uncorrelated and noisy contribution from u+

DY N by truncating all the elements of Ξ
with the 3σstd rule, i.e:

− 3
√
nt

≤ Ξij ≤ + 3
√
nt

⇒ Ξij = 0 , i, j = 1, . . . , nt (7.8)

It will be shown that the proposed truncation allows to obtain higher quality data
with a smaller number of probes, as well as to provide a useful strategy to obtain a
reconstruction accuracy estimate for real experimental data.
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Fig. 7.1 Energy spectrum and cumu-
lative energy contribution of the flow
field modes of the channel simulation.

7.3 Method validation
The method is applied to synthetic and experimental data using a Direct Numerical
Simulation (DNS) dataset and an experimental PIV test case. The DNS dataset
includes fields from numerical simulations in a channel at friction Reynolds number
Reτ ∼ 1000 (centerline Reynolds number Rec = 2.2625 × 104, Li et al., 2008, Yu et al.,
2012a). This dataset has been chosen since the spectrum of a fully turbulent wall
bounded flow without any dominant shedding frequency poses an extremely challenging
environment for the present technique. Moreover, the absence of noise contamination
and the high spatial resolution of the DNS database allows assessing the sole effect of
the correlation between field measurements and point measurements. The assessment
on experimental data is carried out using data of a time-resolved PIV experiment.
Time-resolved probes are extracted considering localized grid points as pseudo-probes,
while a non-time resolved PIV sequence is obtained via down-sampling (as done by Tu
et al., 2013). The PIV snapshots are collected in the wake of a NACA0012 2D wing at
angle of attack equal to 15◦ and chord based Reynolds number equal to 1800. This
dataset is characterized by a clear vortex shedding (even though still involving a range
of scales after the break-up of the wake vortices), which is well resolved with the PIV,
thus allowing for a strong correlation between the field measurements and the probe
measurements. The limited number of snapshots supposes a further challenge due to
the poorer statistical convergence of the dataset and the noise contamination of the
modes.

7.3.1 DNS test case

A virtual stereo PIV experiment has been simulated using the velocity field of the
Channel Flow DNS database contained in the John Hopkins Turbulence Databases
(http://turbulence.pha.jhu.edu/). For more details about the Channel Flow DNS,
see §3.4.1. The three components of the velocity field were extracted over a square h×h

http://turbulence.pha.jhu.edu/
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(a) (b)

Fig. 7.2 North-West corner of the time coefficients correlation matrix Ξ for a probe
acquisition time of 1 convective time h/Ub: (a) 3 probes and (b) 11 probes. The symbol
i indicates the number of POD mode of the probes, while j indicates the number of
POD mode of the field measurements.

domain (going from the wall to the centerline) in the x− y plane to simulate a PIV
snapshot. The methodology applied for the extraction of the sub-domains is similar
to that of the synthetic test case reported in Chapter 3. Snapshots were extracted
one each convective time h/Ub in order to reduce the temporal correlation between
them. Due to the limited temporal duration of the simulation, a maximum of 24
uncorrelated snapshots at different temporal position and in the same spatial position
can be extracted, which is not enough to reach the statistical convergence of the
dataset. In order to obtain a well-converged dataset, sequences of temporally-separated
flow field snapshots were extracted at different spatial positions, exploiting problem
symmetry, spatial homogeneity and statistically stationary state. In particular, slices
were extracted in 80 span-wise locations both at the beginning and at half channel
stream-wise length, both at the bottom and upper side of the channel over 24 instants.
The spacing in both space and time between snapshots has been chosen to minimize
their correlation. A sketch of the DNS domain slicing is given in Fig. 3.1. A total of
7680 snapshots with 88 × 88 points (along the channel height and in the stream-wise
direction) were used. The slices size, from the wall up to half channel height, allows to
identify adequately the main flow structures present in the flow field under study.

The probes data were obtained probing the three velocity components at 11 points
equally spaced from the wall up to the channel centerline between 0.05 h and 0.95 h.
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Fig. 7.3 Temporal evolution of the time
coefficients of the first mode estimated
with three probes, using a sampling
length of one convective time. No trunca-
tion is performed on the time-coefficients
correlation matrix.

Fig. 7.4 Squared correlation coefficient of
the reconstructed time coefficient series
with the ground truth solution for the
case of sampling length equal to h/Ub

and for different number of probes.

For each snapshot the corresponding probes were placed at the same span-wise locations
as the corresponding slice and at a stream-wise location immediately downstream
of the slice domain. For each flow field snapshot, each probe sequence included 880
time samples during the 1.25 convective times h/Ub starting after the time instant
corresponding to the flow field snapshot. Consequently the probes frequency was
arbitrarily set in order to obtain 704 time instants for each turnover time, i.e. with
time spacing approximately equal to the DNS time step.

This well statistically converged dataset was used to estimate the snapshot modes
Σ Φ. Figure 7.1 reports both the modes energy distribution (λ(i) = σ(i) 2) and the
cumulative energy content for the flow field snapshots. High energy contribution is
due to the first modes corresponding to the large scale motions (Liu et al., 2001) while
following modes have a lower energy contribution. Owing to the wide range of spatial
scales, a high number of modes (about 400) is needed to reach 90% of the cumulative
energy spectrum.

The probes signal was used to estimate the probes modes Σ
pr

Φ
pr

and the time-
coefficients correlation matrix Ξ. The effect of the number of probes and of the
temporal length of the sequence was analysed using all 11 probes and a restricted set
of 3 probes (using the probes located closer to the wall, closer to the channel centerline
and in the center of the domain) over 1 convective time h/Ub. The effect of the probes
snapshot length is further addressed using 11 probes over 0.75, 1 and 1.25 convective
times h/Ub.
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Fig. 7.5 Temporal evolution of the time coefficients of the first 6 modes obtained with
sampling time equal to h/Ub for different number of probes.

Figure 7.2 reports the contour plot of the north-west corner of the matrix Ξ
estimated with probes signal from 3 (Figure 7.2a) and 11 probes (Figure 7.2b). The
flow field estimation task would be straightforward and noise-free if the matrix Ξ would
be diagonal, i.e. if the problem would be characterized by a biunivocal correspondence
between probes and field modes. The matrix, however, exhibits a diagonal dominance
in the north-west corner, corresponding to high energy probes and field modes; moving
along the diagonal towards the matrix center (for increasing number of modes) this
dominance disappears. Using only 3 probes the diagonal dominance of the Ξ matrix
is lost beyond the 100th probe mode while a wider range of diagonal dominance is
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(a) (b) (c)

(d) (e)

Fig. 7.6 Contour plot of fluctuating stream-wise velocity component with superimposed
(down-sampled) vector arrows. Top: comparison of the dynamic reconstruction of the
flow field (a) against the exact flow field (c) and the exact low-order reconstruction
with the same mode truncation (200 modes) as the dynamically estimated flow field
(b). Bottom: reconstruction error distributions in percentage with respect to the LOR
(e) and to the original field (e).

attained for the case with 11 probes. This has to be ascribed to the better spatial
sampling of the 11 probes case which captures modes with smaller wavelengths.

A time sequence with a length of 25 convective times h/Ub was acquired at a fixed
location for both the probes and the slices. The chosen region is different from any
of the ones used to estimate the modes. It is located at a stream-wise coordinate
x/h = 0 and at a span-wise location equal to z/h = 0.1. Therefore all fields have to be
considered as “out-of-sample”. Time resolved probes were used to perform the flow field
estimation at each instant of the time sequence and the available exact velocity fields
were used as ground truth for comparison. The effects of the poor diagonal behaviour
shown by the matrix Ξ for the 3 probes case are evident from Figure 7.3 which reports
the time coefficients of the first mode ψ(1)

DY N(t) estimated without any truncation on
the matrix Ξ. The dynamically-estimated time coefficients are compared with the true
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time coefficients, computed by projection as ψ(i)
true(t) = u(t)φ(i) Tσ(i) −1 with u(t) being

the true velocity field at the time t (and represented as a vector with size 1 × np).
The estimation of the time coefficients appears to be noise-dominated. The flow field
estimation, in fact, here converges to a LSE which is not able to capture the flow
evolution since spurious effects due to the contamination of uncorrelated higher-order
modes affects even the most energetic mode.

This phenomenon can be synthesized through the representation of the squared
correlation coefficient R2 of the modes time coefficients, defined as:

R2(i) = ⟨(ψi,DY N(t)ψi,true(t))⟩2〈
(ψi,DY N(t))2

〉 〈
(ψi,true(t))2

〉 (7.9)

where angular brackets indicate ensemble averaging. The squared correlation coefficient
is reported in Figure 7.4 against the mode number for 3 and 11 probes both with
and without truncation on the uncorrelated elements of Ξ. Here, again, the true time
coefficients are estimated as done for the first mode. Increasing the number of probes
significantly improves the squared correlation coefficient and thus the quality of the
flow field estimation, thus justifying the choice by Kerhervé et al. (2017) of using more
than 100 probes. However, it is remarkable that, by means of the truncation on Ξ,
acceptable results are recovered also for the set with only 3 probes.

When using 11 probes the already satisfactory estimation is significantly improved
by the truncation, allowing for a squared correlation coefficient greater than 0.5 for
the 100th mode. A visual representation of the estimation quality is assessed in Figure
7.5 which reports the time coefficients estimated with 3 and 11 probes against the true
solution. Data is reported for 3 probes only for the truncated version of Ξ while for
11 probes both the time coefficient for truncated and non-truncated Ξ are reported.
Both with 3 and 11 probes the signal reconstruction is quite satisfactory, however the
non-truncated estimation with 11 probes exhibits spurious high frequency content,
probably ascribed to contamination from uncorrelated modes; the truncated case with
3 probes, instead presents a smoother time-coefficient history with only minor errors.

Fig. 7.6 provides a visual representation of the flow field reconstruction quality
attained with 11 probes and truncating Ξ. The contour of the reconstruction of the
fluctuating stream-wise velocity component with superimposed vector arrows is reported
for one single snapshot (Fig. 7.6a). The true flow field is reported for comparison (Fig.
7.6c), as well as the exact reconstruction of the flow field truncated at 200 modes (Fig.
7.6b). The LOR truncation at 200 modes can be assumed to be comparable to the
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Fig. 7.7 Squared correlation coefficient
of the reconstructed time coefficient se-
ries with the ground truth solution for
the case with 11 probes and different
probes sampling time equal to 0.75, 1
and 1.25 h/Ub.

filtering on Ξ, since the squared correlation coefficient falls below 0.3 after the 200th

temporal mode (as shown in Fig. 7.4).
The error maps reported in Figure 7.6d and Figure 7.6e show that the method

correctly estimates the large scale features located sufficiently far from the wall (for
y/h > 0.4 the error is about ±2% of the bulk velocity). Small scales located nearby
the wall are instead estimated with a larger error (for y/h < 0.4 the errors reach peaks
of the order of ±10%). The higher error for small wall-near scales is only marginally
affecting the quality of the proposed reconstruction, which is mainly focused to the
estimation of large-scale structures in the flow. The poorer estimation nearby the wall
might be ascribed to three reasons:

1. the lower convective velocity of near wall flow structures which might not reach
the probes location during the probes sampling time;

2. the highly three-dimensional flow field nearby the wall which might cause these
flow features to never be convected towards the probe location since they leave
the flow field slice.

3. smaller structures are characterized by smaller turnover times and their convective
velocities are affected by the larger scales, thus reducing the correlation between
field measurements and point measurements. In this sense recent works have
shown that the Taylor’s hypothesis is not applicable for near-wall structures
(Geng et al., 2015).

While the issue of three-dimensionality can be solved as done by Kerhervé et al.
(2017) by placing the probes in multiple spanwise planes, the fact that different eddies
have different convective velocities poses a question on the most suitable choice for the
probe sampling time. This issue was solved by Hosseini et al. (2015) for cases in which
a clear shedding is identified by choosing for the virtual probes a timespan equal to
the vortex shedding period. For turbulent flows in which no dominating frequencies
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are present a more suitable choice appears to be connected with the convection time
through the field measurement domain. In particular Figure 7.7 reports the squared
correlation coefficient of estimated modes time coefficients against the mode number
for varying probe sampling time equal to 0.75, 1 and 1.25 h/Ub. The results show
that it is fundamental to select a probe time span equal to at least the time needed
for all the information in the field to pass through the probe location. It has to be
underlined that a time span slightly larger than one simple convective time might be
partly beneficial since it might improve the correlation between field data and probes
close to the wall, where the local convective velocity is lower. Adaptive approaches
might be suggested using different time series lengths according to the local value of
the time-average velocity.

Finally, it should be highlighted that in the present validation the probe signal is
constituted of velocity point measurements, which simulate hot-wire probes inside the
flow. The use of velocity probes is not the most common configuration for both flow
sensing/control, preferring a more suitable (from a purely experimental point of view)
configuration with wall-mounted pressure probes. The estimation of the flow field
dynamics through wall-mounted pressure probes is possible for flows with a significant
imprint of large-scale structures on the wall. Few examples are the test cases proposed
by Sicot et al. (2012), investigating the separating/reattaching flow on a thick plate
with sharp leading edge, and by Hosseini et al. (2015) with the shedding wake of a
wall-mounted pyramid obstacle. For large scale motion estimation in wall-bounded
flows (such as the channel flow here reported) a similar setup is not optimal since the
correlation of the wall pressure fluctuations with the large scale structures in the outer
boundary layer is expected to be rather weak. As a matter of fact, in wall-bounded
flows, near-wall features are mostly characterized by an amplitude modulation of high
frequency events rather than by a linear relation between large wavelength events (see
e.g. the seminal works by Marusic et al., 2010, and Mathis et al., 2013). This suggests
that, perhaps, in this case the extended POD should be performed between the spatial
modes of the velocity fields and modes of the near wall fluctuations expressed in the
Fourier space (analogously to what done for instance by Baars and Tinney, 2014).

7.3.2 Experimental test case

The experimental database is generated using time-resolved PIV data collected in the
wake of a NACA0012 2D wing in stall conditions. The experiment is carried out in the
recirculating water tunnel of the Universidad Carlos III de Madrid. For details about
this facility the reader should refer to §6.2. The wing chord is c = 30 mm and spans
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the test section from side-to-side in order to minimize 3D flow effects. The free-stream
velocity has been tuned to 0.06 m/s, which results in a Reynolds number, based on
the wing chord, of 1800. The wing is set to an angle of attack of 15◦ to promote
the formation of a complex separated flow in the wake including a dominant vortex
shedding with additional smaller scales turbulence. The observation region extends
from approximately 1.5 to 5.5 chords in the stream-wise direction (measured from the
wing leading edge) and from -1.2 to 2 chords in the cross-wise direction.

A schematic of the PIV experimental setup is reported in Fig. 7.8. The particles used
for seeding the flow are neutrally-buoyant polyamide particles with 56 µm diameter. A
dual cavity pulsed Nd:Yag Quantel Evergreen laser (200 mJ=pulse at 15 Hz), reshaped
in a sheet with 1 mm thickness, illuminates the observation region. The recording
device is a 5.5 Mpixels Andor sCMOS camera, with 6.5 µm pixel pitch. The camera
is equipped with a 100 mm Tokina objective set at f/#=11. The magnification is
approximately 0.06, thus leading to a resolution of about 9.1 pix/mm. A set of 27000
PIV snapshots has been collected at a frequency of 30 Hz by setting the time separation
of the two laser heads at 1/30 s (which represent the limit sampling frequency for the
PIV system employed). With the adopted imaging, flow speed and sampling rate, the
particle displacement in the images is of almost 20 pixels and allows for time resolved
estimation of the velocity in the airfoil wake. The maximum displacement of 20 pixels
results in strong particles displacement gradients, thus reducing the correlation quality
and resulting in velocity fields with significant noise contamination (Westerweel, 1997).
The relatively large displacement is due to repetition rate limitations of the used
laser source. Nonetheless the consequent signal degradation is exploited to isolate
the effects of the noise contamination and poor convergence in a test case in which
there is a less reach wealth of scales with respect to the synthetic validation (being the
wake dominated by vortex shedding), and thus the correlation between probe signal
and velocity fields is much stronger (provided that the probes are located within the
shedding wake).

PIV processing was performed after background removal (see Chapter 4 or Mendez
et al., 2017) with the PIV code developed at the University of Naples (Astarita, 2006,
2007) with final interrogation window size equal to 64 x 64 pixels at 75% overlap,
resulting in a resolution of 17 vectors/chord.

From the full set of 27000 PIV snapshots, 334 velocity field snapshots are extracted,
equally spaced in time, down-sampled by a factor of 80 with respect to the original
time-resolved data. The set of 334 velocity field snapshots is assumed to be a virtual
non-time-resolved field measurement employed for the dynamic estimation of the
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Fig. 7.8 Sketch of the PIV experimental
setup.

Fig. 7.9 Energy spectrum and cumula-
tive energy contribution of the flow field
modes of the experimental test case.

turbulent field. Pseudo-probes are located in the wake of the wing and generated
by extracting velocity vectors with the original time resolution (i.e. s = 80 and
ntt = m× 80) while the original PIV snapshots are used as a ground truth to assess
the quality of the dynamic estimation of the flow fields. Two pseudo-probes have
been used, located at y/c = −0.3 and y/c = −0.7, at the same stream-wise position
x/c = 5.25. The choice of the downsampling rate and of a time span for the probes
snapshot matrix equal to 80 PIV snapshots is ascribed to the convective velocity in
the wake. Assuming a displacement in the wake of approximately 15 pixels between
each PIV snapshot, a time span of 80 snapshots leads to a displacement of 1200 pixels
in the stream-wise direction, which is the stream-wise length of the observed region.
The selected timespan allows to include in the rows of the probes snapshot matrix all
the information included in the corresponding PIV snapshots. This choice is following
the guidelines obtained in §7.3.1. The resulting probe snapshot matrix Upr contains
334 × (m× s) elements, being m = 2 and s = 80.

The spectral distribution of the energy of the POD modes is shown in Fig. 7.9. The
first two modes, corresponding to the vortex shedding, are energetically dominant. The
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Fig. 7.10 Contour plot of the stream-wise velocity component of the first 6 flow fields
modes with superimposed (down-sampled) vector arrows.

Fig. 7.11 Squared correlation coefficient
between dynamically estimated time co-
efficient and original time coefficients
of the PIV sequence. The squared cor-
relation coefficient is calculated in the
time instants of the used PIV samples.

modes spectrum falls rapidly in intensity, until reaching nearly constant eigenvalues
due to the strong noise contamination (see e.g. Chapter 3 or Raiola et al., 2015).

The first 6 flow field spatial modes (evaluated over only 334 snapshots in order to
simulate a real non-time-resolved experiment) are reported in Fig. 7.10. While the
first two modes describe the shedding in the wake of the stalled airfoil, higher order
modes have not yet reached a full statistical convergence. In particular modes 4 and
5 are poorly converged as they seem to represent a higher frequency component of
the shedding phenomenon (i.e. higher order harmonics, similarly to what observed
in the wake of a cylinder in Chapter 5 and by Raiola et al., 2016) although partially
contaminated by cross-talk with higher order modes.

Fig. 7.11 reports the squared correlation coefficient of the estimated POD time
coefficients with respect to the true temporal variation of the POD time coefficients.
The squared correlation coefficient is evaluated using the reconstructed time coefficients
of the entire sequence, including both in-sample (i.e. used for the POD calculation)
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Fig. 7.12 Time coefficients of the true measured signal, of the dynamic estimation and
of the subsampled PIV sequence.

and out-of-sample (i.e. not used for the POD calculation) snapshots. The improvement
using the 3σstd approach is remarkable, allowing to use up to 25 modes if a threshold
of 0.2 is set on the squared correlation coefficient (while for the unfiltered approach
only 3 modes should be included under the same criteria).

It is important to underline that in a real experiment a ground truth is not available
for out-of-sample snapshots. In-sample snapshots do not allow a direct application of
the squared correlation coefficient as a metric for reconstruction accuracy quantification,
since indeed using all modes would provides a perfect reconstruction for the in-sample
snapshots, i.e. R2 = 1. The available alternative with experimental data is to eliminate
from the sequence part of the samples, and use them as fictitious out-of-sample
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(a) (b) (c)

(d) (e)

Fig. 7.13 Contour plot of stream-wise velocity component with superimposed (down-
sampled) vector arrows. Top: comparison of the dynamic reconstruction of the flow
field (a) against the exact flow field (c) and the exact low-order reconstruction with the
same mode truncation (20 modes) as the dynamically estimated flow field (b). Bottom:
reconstruction error distributions in percentage with respect to the LOR (e) and to
the original field (e).

snapshots for comparison. In some cases this approach might pose convergence issues
(consider for instance short duration experiments due to facilities limitations). The
results of Fig. 7.11 show that the squared correlation coefficient applied on in-sample
snapshots using the 3σstd filtering is still an indicative figure of merit, thus providing
a useful assessment instrument also for short sequences. Nonetheless, it has to be
underlined that the squared correlation coefficient obtained with in-sample data is
still slightly larger than the real one, thus requiring a stricter cutoff on the number of
modes to reduce noise contamination of the reconstructed time coefficients history.

The reconstruction quality can be assessed through the observation of Fig. 7.12
and Fig. 7.13. Fig. 7.12 reports the POD modes time coefficients estimated (with
black markers and black line) against the original values (in blue line) and the samples
used to build the original snapshot dataset (in red markers connected through red
lines). The proposed methodology is able to reconstruct events with a frequency far
beyond the Nyquist limit and results are satisfactory both for time-periodic modes
(modes 1 and 2) and non-periodic modes (modes 3-6). As expected, the estimation
quality drops with respect to the channel DNS database due both to the decrease of
the number of snapshots (and consequent increase of 1/√nt), which imposes a stronger
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truncation on the matrix Ξ, and to the increase of measurement noise which causes a
poorer statistical convergence of the POD modes. It is possible to argue that a longer
time-sequence would increase the estimation quality. In fact, as discussed in Chapter 3
(see also Raiola et al., 2015) noise contamination can be reduced by increasing the
number of snapshots used, here limited by memory storage restriction when working
with time-resolved sequences.

A visual representation of the reconstruction quality can be seen in Fig. 7.13 which
reports the reconstruction of one single snapshot (Fig. 7.13a) against the true flow
field (Fig. 7.13c) and the exact reconstruction of the flow field truncated at 20 modes
(Fig. 7.13b). The errors with respect to the truncated LOR and the original field
reported in Fig. 7.13d,e, respectively, shows that the discrepancy is mostly due to the
truncation of the smaller scales of the shedding. Indeed the error with respect to the
original field which contains the small scales is significantly higher that the error with
respect to the LOR. The poor convergence of the modes 4 and 5 and consequently their
poor dynamic estimation is the cause of the errors in the quantification of the velocity
fluctuations in the wake. Although the shedding frequency is perfectly identified, the
lack of convergence of higher order modes causes a modulation in the estimation of the
wake deformation.

7.4 Conclusions
A robust and easy-to-implement method for the estimation of flow fields using syn-
chronized acquisition with fast probes (such as hotwires) and non-time-resolved field
measurement techniques (such as PIV) for turbulent flows has been assessed. The
method poses its foundations on the work by Hosseini et al. (2015), which is improved
here by truncating the time correlation matrix between temporal modes of the flow field
measurements and of the probes measurements. The rationale behind the truncation is
in the random distribution of noise and uncorrelated field-probes measurements. Using
a standardized 3σstd criterion, a robust approach is proposed, which is applicable for
flows involving a significative spectral richness.

The method has been validated with a synthetic test case, based on DNS data of a
turbulent channel flow, and with an experimental test case of the wake of an airfoil in
stall conditions. The proposed dynamic estimation method has proved to be able to
properly capture the dynamics of the large-scale structures via estimating the time
coefficients of the most energetic POD modes. Two aspects arose from the validation
of the filtering approach:
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1. When building the probes snapshot matrix, the choice of the timespan of the
probes data corresponding to each field snapshot has to be similar to the time
needed to convect all the information contained in the field snapshots to the probe
location. This depends on the probe location (either past the field or embedded
in it). In case of a preferential direction of the mean flow this timespan might
be trivially equal to the length of the domain divided by the mean convection
velocity. In case of strong mean velocity gradients or in absence of a preferential
direction of the mean flow, an adaptive-probe timespan might be a suitable
solution. This aspect might be object of future studies;

2. When dealing with turbulent flows, thus without any dominant shedding fre-
quency, truncation of the time correlation matrix allows to reduce significantly
the time-jittering in the rebuilt history of the time coefficients, and to remarkably
improve the reconstruction quality also for a small number of probes. This filter-
ing is fundamental for turbulent flows, where uncorrelated small scale features
contribute in contaminating the time correlation matrix, and consequently, the
field estimation. While this filter is of simple implementation for the extended
POD case, it is not trivial to include it in the LSE, which is instead strongly
dependent on a proper statistical convergence of the correlation between the
quantities to be measured.

This second point reflects directly in the experimental test case, where a small set
of snapshots is used for the dynamics reconstruction in the separated wake of a stalled
airfoil. Considering the poor convergence of the POD modes, the time correlation
matrix filtering with the 3σstd criterion has shown to significantly improve the quality
of the reconstructed time coefficients history. Additionally the filtered data can be used
to evaluate the squared correlation coefficient of the modes time coefficients directly on
the in-sample data. This is potentially useful in case of short time sequences, in which
in-sample snapshots can not be extracted to benchmark the reconstruction without
affecting the convergence itself.



Part V

Final remarks





Chapter 8

Conclusions

8.1 Summary
In this dissertation a showcase of applications of the Proper Orthogonal Decomposition
developed by the author and coworkers has been reported. On the author judgement,
these applications have a potential impact in the field of Experimental Aerodynamics,
both for data conditioning and reduction.

Some of the applications reported in this manuscript can be used to improve
data quality. The applications reported herein focus prevalently on Particle Image
Velocimetry (PIV), an optical velocity measurement technique. PIV is a well-assessed
instrument for turbulent flows investigation thanks to its capability to measure velocity
at multiple spatial positions with a relatively high spatial resolution. The uncertainty
of this technique is usually classified in random and bias errors, both of which may be
hard to suppress in case of non-time-resolved measurements.

In Chapter 3, which reports the work published by Raiola et al. (2015), the POD
is employed to reduce random errors in PIV velocity fields. The method exploits the
spectral separation of coherent features in the flow -which represent the valuable part
of the measured signal- from the random noise. Due to the properties of the POD
eigenspectrum, the coherent part of the signal is contained in the lower-order modes,
while the noise, being spectrally white, spreads all over the POD eigenspectrum. It has
been demonstrated theoretically, for a sample flow field, that it is possible to set an
optimal trade-off between signal recovery and noise contamination when performing a
low-order reconstruction. The method described can be assimilated, for simplicity, to a
low-pass filter in the POD basis. The main advantage with respect to standard filters
is the compactness of the POD-basis. Since the analytical determination of the optimal
number of modes depends on the knowledge of the flow field, an empirical criterion has
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been assessed to deduce this threshold from the eigenspectrum of the measured (and
thus corrupted by random error) flow fields. The results show a significant reduction
of the random error (with consequent improvement of the dynamic velocity range) if
compared to standard filters.

In Chapter 4, reporting the work published by Mendez et al. (2017), the spectral
separation properties of the POD are applied over a PIV image ensemble to remove
background and reflections which are a source of uncertainty. The method is conceptu-
ally similar to the filter described in Chapter 3: the background and the reflections
are identified as low-order features in the eigenspectrum, and thus eliminated from
the images by means of a "high-pass" filter. The Proper Orthogonal Decomposition of
PIV images is analysed theoretically to build a robust mathematical background of the
method. The POD-based background removal method have been tested extensively.
At present state, its capabilities outclass all the other background removal methods in
literature.

The applications described in Chapter 3 and 4 leverage the spectral optimality
of the POD to obtain more effective filtering capabilities than the ones achievable in
other spectral descriptions. While this property is extremely useful for signal treatment
applications, in Fluid Mechanics POD is best known for extracting coherent structures.
In the non-homogeneous directions of a flow field, the description with empirical
eigenfunctions, due to the POD optimality property, is more compact than in any
other basis. In the second part of this dissertation, POD has been used in its most
"traditional" framework, i.e. for modal decomposition of turbulent flows.

In Chapter 5 POD is applied to PIV measurements in the wake behind a couple of
circular cylinders in tandem configuration with the additional interference of a wall.
This application has been published by Raiola et al. (2016). This flow shows several
modal behaviours which are related to the geometrical arrangement of the cylinders
with respect to each other and with respect to the wall. In particular, the modes
which describe the von Kármán shedding and the Kelvin-Helmholtz instabilities are
temporally quasi-periodic. Due to the properties of the correlation matrix, the temporal
modes of the POD corresponding to these features can be effectively approximated by
Fourier modes. This temporal description holds also for non-time-resolved data, since
POD retrieves the modes by means of a statistical approach. Therefore it is possible
to recover the harmonical relation between modes by looking for Lissajous figures in
the scatter plot of the temporal coefficients of different modes. As an example, it can
be observed that the shedding typically found in bluff-body wakes can be represented
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as a travelling wave by means of two modes with the same temporal frequency but
phase-shifted of π/2.

In Chapter 6, the modal analysis has been performed on the flow around an airfoil
in plunging/pitching motion. This flow is characterized by a periodical separation of
the boundary layer from the airfoil surface, which results in the formation of vortical
structures, normally grouped under the names of Leading Edge Vortices (LEVs) and
Trailing Edge Vortices (TEVs). According to the literature, these structures strongly
influence the aerodynamic loads on the airfoil, leading to forces which cannot be
predicted by classical aerodynamics theory. In order to deal with the moving domain
(due to the airfoil motion), the velocity fields have been transformed to the non-inertial
wing-fixed reference frame. The modal decomposition of the velocity field over a single
phase-averaged period has been obtained through POD. This decomposition has been
extended to the force measurements by means of the EPOD in order to determine the
contribution of the different modes to the fluctuating part of the force. This extension
is equivalent to approximate linearly the relation between the fluctuating aerodynamic
force and the kinetic energy in the flow. It is shown that the majority of the force can
be ascribed to only two flow features (accounting each one for several POD modes)
of the flow field: a bound vortex over the wing, which accounts for the circulation
of the vortical structures on the airfoil (while they are attached to its surface) and
which is intimately connected to the flow acceleration imposed by the added-mass
forces; a shedding-like instability which describes the roll-up in concentrated vortices
of the boundary layer, thus determining the formation of the vortical features in the
wake. The contribution to the force of the bound vortex feature is mainly directed
orthogonally to the chord and can be effectively described by quasi-steady circulatory
force models from the literature. The added-mass forces, depending on the pitching,
are pointing in the chord-parallel direction. The contribution of the roll-up of vortices
is mostly directed parallel to the chord and it accounts for the energy which is extracted
to form the vortices in the wake of the airfoil.

Chapter 6 reports an extensive use of the EPOD, which allows to express the linear
relation underlying two different sets of measurements in a POD basis. Chapter 7
deals with the identification of the correlation between two different datasets and its
exploitation to estimate a flow quantity in points on the (either temporal or spatial)
domain in which the measurements have not been performed. More specifically, the
correlation is determined between a set of non-time-resolved field measurements (for
example obtained by means of PIV) and a set of time-resolved point measurements
(obtained by one or more point probes such as hotwires). The correlation of the
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two datasets is obtained through a modified EPOD approach, from which spurious
correlation between physically uncorrelated events is removed on statistical grounds.
The estimation of the velocity field has been obtained by extending the EPOD to
unmeasured time instants thanks to the information of the time-resolved probe. The
method has been tested over both a synthetic and a real experiment to assess its
performances. It has been observed that the length of the point probes time-series used
for the correlation has to be long enough to allow the convection of the information
from the location of the field measurements to that of the point probes. Additionally,
it has been observed that the filtering included in the modified EPOD allows to extend
the estimation to turbulent flows even in absence of easily recognizable features such
as, for instance, a vortex shedding.

8.2 Future work
This manuscript would not be complete without some considerations about the remain-
ing ideas whose development has not been completed due essentially to lack of time.
While these ideas are not included in this thesis, they might be research topics of the
author in the near future.

In Chapter 6 it has been described a non-conventional decomposition for the
unsteady aerodynamic force over a flapping wing. Rather than being based on an
analytical model, this decomposition has been derived with a data-driven approach.
While this decomposition is quite powerful in describing the forces, it does not provide
automatically a phenomenological model. This gap has been partially filled by the
author, modifying the potential models of Theodorsen and Garrick to match with the
force modes extracted. The modification imposed to the potential models is based,
however, on heuristic considerations and does not follow a rigorous mathematical for-
mulation. This aspect would require further studies to set solid theoretical foundations
for the proposed model and to understand minor effects, such as the ones linked to
the leading edge shape. On the author opinion, a possible way to accomplish this
task would be to exploit the velocity information contained in the POD modes to
directly compute forces. Such approach can be carried out by applying the impulse
equation (Noca et al., 1999) to the velocity POD modes to verify which are the sources
of the forces in each mode. Nevertheless, this approach presents some drawbacks
which should be previously fixed. The impulse equation is based on the Navier-Stokes
equation formulated in an inertial reference frame. To extract useful information from
the modes, the impulse equation has to be expressed in the non-inertial body-fixed
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frame. Also, this equation, while not requiring the pressure field in input, strongly
relies on the calculation of both temporal and spatial derivatives. In order to have
a sufficiently accurate estimate of the derivatives, a higher resolution of the velocity
measurements should be achieved.

In both Chapter 5 and Chapter 6, the POD has been mainly employed as a mean to
explore data. While this technique proved to be extremely useful to compare different
experimental runs, the POD is quite limited when it comes to parametric studies. The
POD can only be employed to decompose a flow field in two directions, i.e. space
(without distinctions between components of the Cartesian space) and time, since it is
essentially based on a 2D matrix decomposition (the SVD). The retrieved modes are
therefore strictly modes of the single data sequence employed in the decomposition
and cannot contain any information about the effect of additional parameters. To
overcome similar limitations, a tensor decomposition might be employed, with additional
parameters forming the additional dimensions of the tensor. An extension of SVD to
tensors is already present in the literature (multilinear SVD, De Lathauwer et al.,
2000), even if, to the author knowledge, it has not been employed in the study of
fluid flows. A similar decomposition might be especially interesting for flow control
applications. However, the effectiveness of a similar technique in the study of flows
requires an extensive testing before it could be applied, both to verify that it can
retrieve useful informations and to give a proper interpretation to tensor modes.





Chapter 9

Conclusiones

9.1 Síntesis
En esta tesis doctoral ha sido presentado un muestrario de aplicaciones de la POD
desarrolladas por el propio autor y sus colaboradores. En la opinión del autor, estas
aplicaciones tienen un elevado potencial de impacto en el campo de la Aerodinámica
Experimental, tanto para el tratamiento de datos como para su reducción. Algunas
de las aplicaciones descritas en esta tesis pueden ser usadas para mejorar la calidad
de los datos. Estás aplicaciones descritas aquí están centradas principalmente en la
PIV, una técnica de medida de velocidad óptica. PIV es un muy buen instrumento
para el estudio de flujos turbulentos, gracias a su capacidad para medir velocidad en
múltiples posiciones con una relativa alta resolución espacial. La incertidumbre de
esta técnica es normalmente clasificada en errores aleatorios y sistemáticos, ambos
tipos de error pueden llegar a ser difíciles de suprimir en el caso de medidas que
no sean resultas en el tiempo. En el Capítulo 3, en donde es descrito el trabajo
publicado por Raiola et al. (2015), la POD es empleada en reducir errores de carácter
aleatorio en medidas de campos de velocidad de PIV. El método explota la separación
espectral de fenómenos coherentes en el flujo –que representan el componente útil
de la señal medida- con respecto al ruido aleatorio que también está incluido en la
señal. Gracias a las propiedades del autoespectro de la POD, la parte coherente de la
señal está contenida en los modos de orden bajo, mientas que el ruido, siendo posible
considerarlo espectralmente ruido blanco, se propaga a lo largo de todo el autoespectro
de la POD. En relación con ello, se ha demostrado de manera teórica que para una
muestra de un campo fluido es posible alcanzar un compromiso óptimo entre el grado
de reconstrucción de una señal y la cantidad de ruido presente en ella, a la hora de
realizar una reconstrucción de orden bajo. El método descrito puede asemejarse por
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simplicidad a un filtro pasa bajos en una base POD. La principal ventaja con respecto al
filtro estándar es la compacidad de la base de la POD. Como la determinación analítica
del numero óptimo de modos depende del grado de conocimiento del campo fluido, un
criterio empírico ha sido proporcionado para poder estimar este número límite con la
información proporcionado por el autoespectro del campo fluido medido (siendo este
afectado por errores aleatorios). Los resultados muestran una importante reducción
de los errores aleatorios (con la consecuente mejora del rango dinámico de los campos
de velocidad) cuando estos son comparados con los filtros estándar. En el Capítulo
4, se detalla el trabajo publicado por Mendez et al. (2017), donde las propiedades de
separación espectrales de la POD son aplicadas sobre un conjunto de imágenes de PIV
para quitar el fondo y las reflexiones, las cuales son una gran fuente de incertidumbre.
El método es conceptualmente muy simular al filtro descrito en el Capítulo 3 el fondo
de la imagen y sus reflexiones son identificadas como fenómenos de bajo orden en el
autoespectro, y por tanto pudiendo ser eliminados de las imágenes filtrando como un
“filtro pasa altos”. La POD de las imágenes de PIV es analizada de manera teórica para
desarrollar un modelo matemático robusto del método. Este filtro POD ha sido testado
extensivamente en numerosas pruebas demostrando que actualmente, sus capacidades
sobrepasan las de cualquier otro método descrito en la literatura. Las aplicaciones
descritas en los Capítulos 3 y 4 se aprovechan de la optimización espectral de la
POD para obtener filtros muchos más efectivos que otros filtros también basados en
descripciones espectrales. Mientras que esta propiedad de la POD es extremadamente
útil para aplicaciones relacionadas con el tratamiento de señales, en Mecánica de
Fluidos la POD es más conocida por su capacidad de extraer estructuras coherentes.
En las direcciones no homogéneas de un campo fluido, la descripción realizada usando
autofunciones empíricas, gracias a las propiedades de la base optima de la POD, es
mucho más compacta que en cualquier otra base. En la segunda parte de esta tesis, la
POD ha sido usada en su contexto más “habitual”, i.e. para la descomposición modal
de flujos turbulentos. En el Capítulo 5 la POD es aplicada en medidas de PIV en la
estela detrás de una pareja de cilindros circulares en configuración de tándem con la
perturbación adicional de una pared. Esta aplicación ha sido publicada en Raiola et al.
(2016). Este tipo de flujos muestran diversos comportamientos modales, los cuales
están relacionados con las diferentes configuraciones geométricas de los cilindros entre
ellos mismos y con respecto a la pared. Concretamente, los modos que describen la
estela de von Kármán y las inestabilidades de Kelvin-Helmholtz son temporalmente
cuasi-estacionarios. Como consecuencia de las propiedades de la matriz de correlación,
los modos POD asociados a estos fenómenos pueden ser aproximados de manera precisa
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por modos de Fourier. Esta descripción temporal también es válida para datos que no
sean resueltos en el tiempo, ya que la POD extrae los modos mediante una aproximación
estadística. Por ello, es posible recuperar la relación armónica entre los diferentes
modos buscando las figuras de Lissajous en las gráficas donde los coeficientes de tiempo
de los diferentes modos son representados. Como muestra de ello, se puede observar
que el desprendimiento de vórtices que se encuentra típicamente en la estela de un
cuerpo no fuselado puede ser representada por una onda que viaja mediante el uso de
dos modos con la misma frecuencia temporal pero desfasados π/2. En el Capítulo 6,
el análisis modal ha sido realizado en el flujo alrededor de un perfil aerodinámico en
movimiento de rotación y traslación vertical. Este tipo de flujo esta caracterizado por
una separación periódica de la capa límite de la superficie del perfil alar, que resulta
en la formación de estructuras vorticosas, normalmente agrupadas bajo el nombre de
vortices del borde ataque (Leading Edge Vortices, LEVs) y vortices del borde de salida
(Trailing Edge Vortices, TEVs). Acorde a la literatura, estas estructuras afectan de
manera crucial a las fuerzas aerodinámicas que se producen en el perfil alar, dando
como resultado fuerzas que no pueden ser predichas usando las teorías clásicas de la
aerodinámica. Para poder lidiar con un dominio que está en movimiento (debido al
propio movimiento del perfil alar), los campos de velocidad han sido cambiados de
ejes al sistema de referencia no inercial fijo al ala. La descomposición modal de los
campos de velocidad ha sido realizada sobre un periodo promediado en fase donde se
ha aplicado la POD. Esta descomposición ha sido extendida a las medidas de fuerza
utilizando la EPOD para poder determinar la contribución de los diferentes modos a la
parte fluctuante de las fuerzas. Esta extensión es equivalente a aproximar linealmente
la relación entre la parte fluctuante de las fuerzas aerodinámicas y la energía cinética
del flujo. Se muestra como la mayoría de las fuerzas pueden ser adscritas a tan solo dos
fenómenos del campo fluido (cada uno de ellos con varios modos POD): un vórtice ligado
al ala, que explica la circulación de las estructuras vorticosas en el perfil alar (mientras
que estén adheridas a la superficie del ala) y que además está conectado de manera
muy cercana con la aceleración que experimenta el flujo impulsado por las fuerzas de
inercia; el otro fenómeno puede ser visto como una inestabilidad que recuerda a un
desprendimiento de vórtices el cual describe como se enrolla en vórtices concentrados
la capa limite, determinando de esta manera la formación de estructuras vorticosas en
la estela. La contribución a la fuerza del vórtice ligado al ala es principalmente dirigida
de manera ortogonal a la cuerda y puede ser descrita de manera efectiva mediante
modelos cuasi-estacionarios de circulación existentes en la literatura. Las fuerzas de
inercia, dependiendo del movimiento de rotación, son orientadas en la dirección paralela
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a la cuerda. La contribución de los vórtices que se enrollan es principalmente dirigida
paralela a la cuerda y tiene en cuenta la energía que se extrae para formar los vórtices
en la estela del perfil alar. El Capítulo 6 describe un uso extensivo de la EPOD, que
permite expresar la relación lineal subyacente entre dos conjuntos diferentes de medidas
en una base POD. El Capítulo 7 trata sobre la identificación de la correlación entre dos
conjuntos de datos y como aprovechar esto para poder estimar una propiedad del flujo
en puntos del dominio (tanto temporales como espaciales) en donde no se han realizado
las medidas. Más concretamente, la correlación es determinada entre un conjunto de
medidas no resueltas en el tiempo de un campo fluido (como podrían ser medidas de
PIV) y un conjunto de medidas resueltas en el tiempo puntuales (obtenidas por uno o
más sensores como podrían ser sondas de anemometría caliente). La correlación de
los dos conjuntos de datos es obtenida mediante una EPOD modificada, mediante la
cual la correlación espuria entre eventos no correlacionados físicamente es eliminada
en términos estadísticos. La estimación del campo de velocidad ha sido obtenida
extendiendo la EPOD para instantes de tiempo no medidos gracias a la información
resuelta en el tiempo provista por el sensor. El método ha sido probado tanto con
casos sintéticos como con un experimento real para verificar su rendimiento. Se ha
observado que la longitud de las series temporales del sensor que provee la información
resuelta en el tiempo debe ser suficientemente grande como para permitir la convección
de la información desde el lugar donde se realizan las medidas de campo fluido hasta
la localización donde se sitúen los sensores. Adicionalmente, se ha observado también
que el filtrado incluido en la EPOD modificada permite extender la estimación para el
caso de flujos turbulentos incluso en casos donde no existan fenómenos reconocibles
como podrían ser una estela de vórtices.

9.2 Perspectivas futuras
Esta tesis doctoral no podría estar completa sin realizar algunas consideraciones sobre
ideas pendientes, cuyo desarrollo no ha podido ser completado debido principalmente a
la falta de tiempo. Aunque esas ideas no estén incluidas en la tesis doctoral, estas quizás
podrían ser futuros temas de investigación del autor en un futuro cercano. En el Capítulo
6 se ha descrito una descomposición no convencional para las fuerzas aerodinámicas
no estacionarias sobre un perfil aerodinámico oscilante. Esta descomposición, más
que estar basada en un modelo analítico, ha sido obtenida usando un enfoque basado
en datos. A pesar de que esta descomposición es bastante potente cuando describe
las fuerzas, no es capaz de proporcionar automáticamente un modelo fenomenológico.
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Este vacío ha sido parcialmente llenado por el autor realizando una modificación de los
modelos potenciales de Theodorsen y Garrick para hacerlos coincidir con el modelo de
fuerzas extraído. La modificación impuesta a los modelos potenciales está basada en
consideraciones heurísticas, las cuales no siguen una formulación matemática rigorosa.
Este aspecto requeriría un estudio más detallado para poder realizar un fundamento
teórico solido que permita entender pequeñas modificaciones, como podrían ser aquellas
conectadas a la forma del borde de ataque. En la opinión del autor, una manera
posible para lograr este objetivo podría ser utilizar el uso de la información contenida
en los modos POD para directamente calcular las fuerzas. Esta aproximación puede
ser llevada a cabo utilizando la ecuación del impulso (Noca et al., 1999) en los modos
POD de la velocidad para verificar cuales son la causa de las fuerzas en cada modo. Sin
embargo, esta aproximación presenta algunas desventajas que deberían ser arregladas
previamente. La ecuación de impulso está basada en las ecuaciones de Navier-Stokes
cuando son formuladas en un sistema de referencia inercial. Para extraer información
útil de los modos, la ecuación de impulso debe de ser expresada en un sistema de ejes
no inercial. Además, esta ecuación, aunque no requiere el campo de presiones como
variable de entrada, esta influenciada de manera importante por el cálculo de derivadas
tanto espaciales como temporales. Para poder estimar de una manera suficientemente
precisa el cálculo de las derivadas es necesario obtener una mayor resolución en las
medidas del campo de velocidad. Tanto en el Capítulo 5 como en el 6, la POD ha
sido principalmente empleada como un medio para explorar los datos. A pesar de que
esta técnica ha demostrado ser extremadamente útil a la hora de comparar diferentes
ensayos experimentales, la POD está bastante limitada cuando se enfrenta a estudios
paramétricos. LA POD solo puede ser empleada para descomponer un campo fluido
en dos direcciones, p. ej. espacio (sin distinciones entre las diferentes componentes del
espacio cartesiano) y tiempo, ya que esta esencialmente basado en una descomposición
2D de matrices (la SVD). Los modos obtenidos, por tanto, son modos estrictamente
de la secuencia de datos empleada en la descomposición y no puede contener ningún
tipo de información sobre el efecto de ningún parámetro adicional. Para poder superar
este tipo de limitaciones se debería utilizar una descomposición tensorial donde los
parámetros adicionales son empleados para formar las dimensiones adicionales del tensor.
Una extensión de la SVD para tensores ya existe en la literatura (SVD multilineal,
De Lathauwer et al., 2000), aunque hasta donde llega el conocimiento del autor, este
tipo de técnica no ha sido empleada para el análisis de flujos. Una descomposición de
este estilo seria especialmente interesante para aplicaciones de control de flujo. Sin
embargo, para comprobar la efectividad de un método con estas características sería
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necesario hacer una evaluación exhaustiva antes de poder ser aplicado, tanto para
verificar si su posible uso es capaz de dar información útil como para ser capaces de
dar una correcta interpretación de los modos tensoriales.
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