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Abbreviations 
 

0D Zero-dimensional HGM-

CNF 

Hollow glass 

microsphere/Carbon nanofiber 

1D One-dimensional h-NP Alumina nanoparticle/Carbon 

nanotube 

2D Two-dimensional KIC Plane-strain mode I fracture 

toughness 

3D Three-dimensional E’’ Loss modulus 

3PB Three-point bending MWNT Multi-walled carbon nanotube 

BSE Back-scattered electrons NP Alumina spherical nanoparticle 

CB Carbon black PP Polypropylene 

CFRP Carbon fibre-reinforced 

polymer 

SE Secondary electrons 

CNT Carbon nanotube SEM Scanning electron microscopy 

CMF Carbon microfiller SENB Single-edge-notch bend 

specimen 

CNF Carbon nanofiber SWNT Single-walled carbon nanotube 

DC Direct current E’ Storage modulus 

DMA Dynamic mechanical analysis TEM Transmission electron 

microscopy 

DSC Differential scanning 

calorimetry 

Tg Glass transition temperature 

EDS Energy dispersive 

spectroscopy 

TGA Thermogravimetric analysis 

FRP Fibre-reinforced polymer XC Degree of crystallinity 

GNP Graphite nanoplatelet   

GIC Mode I critical strain energy 

release rate 

  

HGM Hollow glass microsphere   
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Abstract 

The continuous development of industries, such as aerospace, automobile or 

energy, requires a new generation of polymer composites with novel 

functionalities, i.e. desired values of thermal and electrical conductivities, while 

maintaining their mechanical properties to be used in structural applications. One 

example of this new generation of composites could be hybrid fibre-reinforced 

polymers, consisting in fibre-reinforced polymers in which the matrix is 

appropriately modified with fillers.  

As a first step in the above mentioned approach, in this thesis the modification of 

polymers with different carbon-based fillers is analysed. Graphite nanoplatelets 

and carbon nanotubes were used to prepare polypropylene composites. Both 

fillers provided modest improvements on mechanical properties, while the 

electrical conductivity of the CNT composites was comparable to similar materials 

previously reported. The third filler was a novel micron-scaled carbon material 

which exhibited potential to perform as reinforcing agent in polymeric matrices. It 

was found that the filler significantly enhanced the thermal stability of the 

composites, while having modest effect on their thermal conductivity and 

mechanical behaviour. 

In order to produce polymer composites with specific combination of properties, 

hybrid carbon-based fillers, using spherical micro- and nano-particles as 

substrates, were obtained by the chemical vapour deposition technique (CVD). 

The first developed hybrid filler consisted in alumina nanoparticles and carbon 

nanotubes and it was used as filler for epoxy matrix composites. The obtained 

composites showed enhanced thermal and electrical conductivity compared with 

the neat matrix, although having similar mechanical behaviour. Finally, hollow 

glass microspheres with carbon nanofibres grown on its surface were obtained 

and then dispersed within a urethane acrylate resin. The main characteristic of the 

resulting composites is their low density and thermal conductivity while having 

higher electrical conductivity, compared to the neat resin.  



6 
 



7 
 

Resumen 

El continuo desarrollo de industrias como la aeroespacial, del automóvil o de la 

energía, requiere una nueva generación de materiales compuestos poliméricos con 

nuevas características, como niveles deseados de conductividades térmicas y 

eléctricas, y que al mismo tiempo mantengan unos niveles de propiedades 

mecánicas adecuados para ser usados en aplicaciones estructurales. Un ejemplo de 

materiales compuestos poliméricos mejorados podrían ser los materiales 

compuestos híbridos de matriz polimérica reforzados con fibras, en los cuales la 

matriz polimérica está modificada con los refuerzos apropiados.   

Como primera etapa en el desarrollo de los materiales anteriormente 

mencionados, en ésta tesis se han analizado varios polímeros modificados con 

diferentes refuerzos basados en carbono. Se han empleado nanoplaquetas de 

grafito y nanotubos de carbono para la preparación de materiales compuestos de 

matriz polipropileno. Ambos refuerzos proporcionaron ligeros aumentos de las 

propiedades mecánicas, mientras que la conductividad eléctrica de los materiales 

con nanotubos de carbono es comparable a la de materiales similares reportados 

en la literatura disponible. El tercer material es un novedoso refuerzo 

micrométrico basado en carbono, que ha sido empleado para el procesado de 

materiales compuestos de polipropileno. Éste refuerzo mejoró significativamente 

la estabilidad térmica del polipropileno al mismo tiempo que produjo mejoras más 

modestas en conductividad térmica y propiedades mecánicas.  

Con el objetivo de obtener materiales compuestos con las combinaciones deseadas 

de propiedades, se han obtenido materiales híbridos en estructuras de carbono por 

medio de un proceso de deposición química en fase vapor. Para ello se han 

empleado partículas cerámicas micro y nanométricas.  

En primer lugar se ha desarrollado un material híbrido compuesto por 

nanopartículas de alúmina y nanotubos de carbono, usado como refuerzo para una 

resina epoxi. Los materiales compuestos obtenidos presentaron mayores niveles 

de conductividad térmica y eléctrica mayores comparados con la matriz sin 

modificar, sin embargo  su comportamiento mecánico era similar al de la resina. 
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En segundo lugar se han obtenido microesferas de vidrio huecas con nanofibras de 

carbono sintetizadas en su superficie. Éste material se ha usado como refuerzo de 

materiales compuestos con una resina uretano acrilato. Las principales 

características de los materiales desarrollados son su baja densidad y 

conductividad térmica y alta conductividad eléctrica, comparada con la resina 

pura.  
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1 Motivation and thesis outline 
 

1.1  Motivation 

Fibre-reinforced polymers (FRPs) are a specific type of polymer composite 

designed to provide superior strength-to-weight and stiffness-to-weight ratios 

than steels or aluminium. In structural applications, FRPs generally adopt a two-

dimensional configuration of laminates composed by carbon fibre plies held 

together by a polymer, intended to maximize the in-plane specific stiffness and 

specific strength. However, the interlayer region of these laminates are matrix-rich 

regions that can crack easily and reduce the electrical and thermal conductivity in 

the through-thickness direction, compared to the in-plane direction.  

A possible approach to overcome these drawbacks is to modify the matrix of the 

FRPs with appropriate fillers to yield desired levels of electrical and thermal 

conductivity, while maintaining or improving the mechanical behaviour of the 

matrix. 

In the las two decades carbon-based fillers, as carbon nanotubes, carbon 

nanofibres, graphene and its derivatives, have been extensively studied to be fillers 

in polymer composites due to their outstanding electrical, thermal and mechanical 

properties.  

The first main objective of this thesis was to study the effect of different carbon 

fillers on the properties of a polypropylene (PP) matrix.  

 Objective 1: In first place, PP composites with graphite nanoplatelets, a 

graphene-based filler, were studied. Due to the lack of extensive research 

done in the field of quasistatic fracture behaviour of PP, the objective of this 

works was to provide a detailed analysis of the fracture mechanism of the 

resulting composites. 

 Objective 2: In second place, the mechanical and electrical properties of PP 

composites with CNTs were assessed. In this case, the objective was to 
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study the effect of the processing approach on the resulting morphology of 

the composites. Moreover, the identification of fracture mechanism of the 

resulting composites was also addressed. 

 Objective 3: In this thesis a novel carbon microfiller was developed. This 

filler showed potential to be used as filler for polymer composites. Thus, the 

third objective of this thesis was to analyse the effect of the carbon 

microfiller on the mechanical and thermal properties of polypropylene.  

In spite of the outstanding properties of carbon fillers, some applications may 

require composites with certain properties which are extremely difficult to obtain 

with a single filler. Therefore, the combination of carbon materials with a 

secondary material, to obtain hybrid polymer composites, is a promising approach 

to achieve new materials with an unusual combination of properties or higher 

properties improvements, compared to the composites with the isolated fillers. 

The second main objective of this thesis was to develop hybrid fillers based on 

spherical micro- and nano-particles. To do so, the chemical vapour deposition 

technique (CVD) was used for the synthesis of carbon-based nano-structures.  

 Objective 4: In first place, the attention was focused on the development of 

a hybrid filler composed by nanoparticles and carbon materials, since there 

were no reported works concerning hybrid fillers obtained by CVD using 

nanoparticles as substrate. The second objective was to study the 

applicability of this hybrid material as filler for epoxy composites.  

 Objective 5: Some applications required polymeric materials with high 

levels of electrical conductivity while maintaining or improving their 

thermal insulating behaviour. Therefore, the last objective of this thesis was 

to provide an approach to satisfy that requirement. This was done by the 

combination of hollow glass microspheres and carbon nanofibres to obtain 

a hybrid filler.  
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1.2  Thesis outline 

This thesis is organized in the following chapters: 

Chapter 2 Introduction 

The background of polymer composites and fibre-reinforced polymers is given. 

The modification of the matrix with carbon-based fillers is presented as an 

approach to overcome the drawbacks of fibre-reinforced polymers. Therefore, a 

review of carbon fillers, especially carbon nanotubes, nanofibres, graphene and 

graphene nanoplatelets, was done.  

Since the combination of fillers is a promising approach to obtain multifunctional 

composites with the desired properties, the background of hybrid fillers is 

presented. The next section deals with the state-of-the-art of hybrid fillers 

obtained by the synthesis of carbon nanotubes on different substrates (micron-

scaled fibres, two- and three-dimensional particles) by chemical vapour 

deposition. 

Chapter 3 How do graphite nanoplatelets affect the fracture toughness of 

polypropylene composites? 

From a mechanical perspective, graphene and its derivatives, such as graphite 

nanoplates, graphite oxide, carbon nanofibers, or nanotubes, are envisioned as 

ideal nanofillers for polymer composites. Thus, tremendous research effort have 

been invested in order to determine the reinforcing mechanism of these nanofillers 

in the matrix: crack bridging, crystallization enhancement or crack deflection are 

some possible mechanisms proposed. In this work, a detailed analysis of the 

fracture mechanism of graphite nanoplates (GNPs)/polypropylene composites was 

performed. Commercially available graphite nanoplates, composed of multiple 

graphene layers stacked together, were used to produce polypropylene 

nanocomposites by following a masterbatch technique. The fracture toughness 

was determined applying the Spb parameter method and the fracture mechanism 

was identified as void nucleation and growth. In this work is demonstrated that 

GNPs affect the fracture toughness of polypropylene, by improving it. The 
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mechanism responsible for this improvement is the debonding of the GNP 

agglomerates, which promotes the matrix plastic deformation during the fracture 

process. 

Chapter 4 The effect of a semi-industrial masterbatch process on the carbon 

nanotube agglomerates and its influence in the properties of thermoplastic carbon 

nanotube composites 

The present study details an industrial process to prepare polypropylene (PP) 

composites reinforced with different loadings (0.5-10wt.%) of carbon nanotubes 

(CNTs) from a direct dilution of a masterbatch produced by an optimised extrusion 

compounding process. The work demonstrates how the anisotropy in the 

distribution of CNTs can have a positive effect on the electrical conductivity and 

fracture toughness of the resulting composites. The composite with the highest 

loading of CNTs had an electrical conductivity of 10-2 S/m comparable to those 

reported in the available literature. The composites showed anisotropy in their 

properties that seems to be caused by the non-homogeneous distribution of the 

agglomerates produced by the orientation of the flow direction during the injection 

process. The composites produced in this work exhibited a fracture toughness up 

to 55% higher than neat PP and failed by polymer ductile tearing. It was found that 

the CNT agglomerates distributed throughout the matrix increased the toughness 

of PP by promoting plastic deformation of the matrix during the fracture process 

and by a slight load transfer between the polymer matrix and the CNTs of the 

agglomerates. 

Chapter 5 Polypropylene composites with enhanced mechanical and thermal 

properties thanks to a novel carbon microfiller 

The potential of a novel carbon micron-scaled material to be used as filler in 

polypropylene (PP) composites was analysed in this work. The filler exhibited high 

growth yield, being a promising filler to be produced at large-scale, and a fibre-like 

structure with a highly rough surface morphology, being also a promising filler to 

improve the mechanical properties due to mechanical interlocking. Although after 

the processing of the composites by a masterbatch approach, the fibre-like 

structures that were obtained after the synthesis were broken, the resulting 
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carbon microfiller (CMF) was homogeneously distributed within the matrix. 

Moreover, the resulting composites exhibited improved thermal stability and 

conductivity.  It was found that, likely due to its surface morphology, the CMF acted 

as nucleating agent for the crystalline phase of PP and some degree of mechanical 

interlocking effect took place, since the addition of CMF resulted in composites 

with enhanced mechanical properties. Further work should be done to understand 

the effect of the filler on the crystalline morphology of PP and their effect on the 

plastic deformation, e.g. strain at break and fracture behaviour, of composites. The 

obtained results make the CMF/PP composite very attractive for the development 

of commercially available polymer composites with improved mechanical and 

thermal properties. 

Chapter 6 Alumina nanoparticle/carbon nanotube hybrid filler and its application 

to epoxy composites 

Hybrid materials offer the opportunity to obtain polymer composites with desired 

properties which cannot be obtain when using a single material as filler. In this 

work a nano-scaled hybrid material composed by spherical alumina nanoparticles 

and carbon nanotubes was developed. An aerospace-grade epoxy resin was used 

as matrix for nanocomposites filled with the hybrid material and the as-received 

nanoparticles for comparison purposes. The resulting composites showed similar 

mechanical behaviour but enhanced thermal conductivity, compared to the neat 

epoxy and the composites with nanoparticles without carbon nanotubes. The 

presence of CNTs in the hybrid filler resulted in a composite with an electrical 

conductivity of 1 ± 0.3 × 10−3 S/m, compared with the electrically insulating 

matrix and nanoparticle composites.  

Chapter 7 Low thermal and high electrical conductivity in hollow glass 

microspheres covered with carbon nanofiber–polymer composites 

To take advantage of both the low density and thermal conductivity of hollow glass 

microspheres, and the high mechanical and electrical conductivity of carbon-based 

nanofillers, micro- and nanosized fillers can be combined into a single composite 

material. Here we prepared composite materials from hollow glass microspheres 

(HGMs) and from the same microspheres surrounded by carbon nanofibers 
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(CNFs). By adding 10% wt. of HGM-CNFs to a high-temperature resin we can 

obtain a low density (0.8 g/cm3), low thermally (0.17 W/mK) and high electrically 

conductive (7 ± 3 × 10−4 S/m) composite. This novel method demonstrates the 

possibility to achieve an unusual combination of properties such as low thermal 

and high electrical conductivity which, along with their light weight and thermal 

stability, makes these materials promising for aerospace applications or 

thermoelectric devices. 

Chapter 8 Concluding remarks and future work 

Finally, this chapter summarizes the conclusions obtained from the work done 

during this thesis. Further work to be done in order to complete or develop the 

presented results is proposed.  
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2 Introduction 

2.1  Background 

Polymers are materials composed by long chains of repeating groups of atoms 

joined to each other by covalent bonds [1]. Depending on their molecular structure 

and properties they can be divided in three categories: thermoplastics, thermosets 

and elastomers. The different properties will determine the application where they 

are used. In spite of their differences, in general, polymers provide a wide number 

of advantages over metals or ceramics such as lower cost, lower densities, ease of 

fabrication and chemical resistance. However due to the low level of their 

mechanical properties (Figure 2.1) the use of polymers in structural applications is 

limited [2,3].  

In order to overcome the limitations of polymers, composites has been developed. 

Composites are the result of the combination of two or more materials, retaining 

their chemical and physical properties and having an identifiable interface 

between them [4]. The combination of the different materials is done in a way that 

allows to obtain superior or different properties than their constituents [2]. 

Therefore, when polymers are combined with one or more materials, producing 

polymer-matrix composites, they can give the best overall and desired 

performance. 

2.1.1 Fibre-reinforced polymers (FRPs) 

The most commonly used polymer composite, designed to provide superior 

strength-to-weight and stiffness-to-weight ratios than steels or aluminium, are 

continuous fibre-reinforced polymers (FRPs) [5,6] (Figure 2.1). FRPs are highly 

demanded for a variety of applications in industries as transport (aerospace, 

marine, automobile), sport or even civil engineering [7,8]. As an example of the 

importance that FRPs have in aerospace industries, the new A350 of Airbus has up 

to 52% in weight made of composite materials and also Boeing claimed to have 

developed the first aircraft with a full-scale one-piece composite fuselage section 

(Boeing 787) [9]. 
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Figure 2.1 Specific modulus as a function of the specific strength for different groups of materials 

(adapted from [6]). 

From a mechanical point of view, FRPs for structural applications generally adopt a 

two-dimensional (2D) configuration of laminates composed by fibre plies held 

together by a polymer, intended to maximize the in-plane specific stiffness and 

specific strength (Figure 2.2). In this configuration, the in-plane direction is 

defined by the axes 1 and 2; and the though-thickness direction, by the axis 3.  

However, the interlayer region of these laminates are matrix-rich regions that are 

extremely susceptible to crack initiation and propagation due to the relatively poor 

properties of the matrix and the weak matrix-fibre interface. This problem is 

known as delamination and is one of the most important limitations for the 

implementation of FRPs on a wide scale and range of structural applications [4,5]. 
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Figure 2.2 Schematic of an unidirectional 2D fibre-reinforced polymer [10]. In-plane direction (axes 

1 and 2) and trhough-thickness direction (axis 3). 

Regarding other properties different from mechanical, in general, fibre-reinforced 

polymers have low thermal and electrical conductivities, similar to those of the 

matrix. However, since carbon fibres possess high thermal (10-100 W/mK) and 

electrical conductivities (104 -105 S/m) [5], carbon fibre-reinforced polymers 

(CFRPs) have higher thermal and electrical conductivities compared to glass or 

ceramic FRPs. Furthermore, due to their two-dimensional configuration, the 

properties of FRPs in the through-thickness direction are highly matrix-property 

dominated. For instance, carbon fibre-reinforced polymers (CFRPs) usually 

present relatively lower thermal (≈1 W/mK) and electrical (10-2-100 S/m) 

conductivity in the through-thickness direction compared to those in the in-plane 

direction (≈10 W/mK, ≈104 S/m) [5,11–13].  

Materials used for aerospace structures require a certain level of electrical 

conductivity to protect the structures from the damage caused by common 

environmental occurrences as lightning strikes [12,14,15]. Therefore, the 

development of FRPs with enhanced through-thickness electrical conductivity is of 

great interest. Other possible applications for polymer composites with improved 

electrical and thermal conductivity is the development of self-sensing capability 

for health monitoring of damages [16] or the effective heat dissipation in 

aerodynamically heated areas or those near electronic devices or engines [5].  

2.2  Polymer composites 

An approach to overcome the low mechanical properties and lack of 

multifunctionality (i.e. thermal and electrical conductivity) in the through-
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thickness direction of conventional two-dimensional FRPs, consists in the 

modification of the polymeric matrix by adding appropriate micro- or nano-sized 

fillers. The resulting material can be defined as a hybrid polymer composite as it is 

reinforced with fibres and a secondary filler.  

Polymers reinforced with nanosized fillers, namely nanocomposites, has focused 

the interest of materials researchers since the late 1980s. For instance, the Toyota 

research group demonstrated enhanced mechanical and thermal stability in nylon 

6-clay nanocomposites [17–19]. 

The most important advantage of nano-scaled fillers over conventional micron-

scaled fillers is that significant properties (i.e. mechanical, electrical, thermal) 

improvements can be achieved at very low amounts of nanofillers (<5 wt.%), 

instead of the higher additions (10-30 wt.%) of micron-sized fillers [20]. 

In order to enhance the mechanical properties of a polymer, it can be modified 

with polymeric (elastomer or thermoplastic) particles [21,22].  However, 

depending on the material and processing, the addition of a polymeric dispersed 

phase could lead to the lowering the glass transition temperature (Tg) of the matrix 

[23–25] or the decrease of strength and modulus of the composite with increasing 

the rubber content [23,26–29].  

An alternative approach to obtain improvements in mechanical properties without 

compromising other properties is to add rigid inorganic particles. This type of filer 

has proved to be effective fillers to improve the mechanical properties of polymer 

composites. Furthermore, due to the relatively higher thermal conductivity of 

inorganic (bulk) materials, compared to that of polymers, the resulting composites 

usually exhibits enhanced thermal conductivity. However, these fillers failed when 

an electrically conducting material is needed, due to their inherent insulating 

behaviour.  

In order to increase the electrical conductivity of polymers, the use of metallic 

particles as fillers has been explored [30]. Due to the relatively higher density of 

these particles, compared to polymer, the increase in the electrical conductivity is 

obtained at expenses of the increased weight of the resulting composites.  
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In this context, carbon-based fillers are envisioned as ideal candidates to be used 

as fillers due to their low densities (≈2 g/cm3) and superior mechanical, electrical 

and thermal properties. Therefore, a review of carbon fillers and their use for the 

development of polymer composites is presented in the following section. 

2.3  Carbon-based fillers 

Since the 70s, carbon based fillers, such as carbon black, has been used as 

nanofiller to produce polymer composites, especially elastomeric matrix, with 

enhanced electrical conductivity and mechanical properties while maintaining 

light weight [31,32]. Recently, carbon nanotubes, graphene and its derivatives had 

become promising nanofillers due to their excellent mechanical, electrical and 

thermal properties. 

2.3.1 Carbon black 

 

Figure 2.3 TEM images of a) carbon black particles [33], b) epoxy resin with 3 wt.% of carbon black 

[34] and c) volume resisitivity of nafural rubber filled with carbon black. At various vulcanizates 

temperatures, as a fucntion fot he CB loading, in parts per hundred resin (phr) [32]. 

Carbon black is obtained from partial combustion and thermal degradation of 

hydrocarbons [31]. It consists in near-spherical particles composed by amorphous 

carbon and small domains of graphitic carbon, with a size in the range of 5-100 nm 

(Figure 2.3a). This particles forms agglomerates (1-40 μm) due to chemical and 

physical interactions. Once they are mixed with a polymeric matrix, the carbon 

black agglomerates are broken up down to smaller agglomerates (100-500 nm) 

(Figure 2.3b). Carbon black has been long used for the reinforcement of elastomers 

to increase tear and abrasion resistance, tensile strength, modulus or hardness 

c)a) b)

100 nm
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[32,34]. It has also been used in the production of electrically conductive polymers 

[35–37] (Figure 2.3c). 

2.3.2 Carbon nanotubes and nanofibres (CNTs and CNFs) 

A single-walled carbon nanotube (SWNT) can be described as a single-atom layer 

of sp2-hybridized carbon atoms, i.e. a graphene sheet, rolled up in a seamless tube 

with diameters between 0.4 to 10 nm and length of up to several micrometres 

(Figure 2.4a). A multi-walled carbon nanotube (MWNT) consists in multiple 

concentric layers of graphene separated by approximately 0.34 nm, similar to the 

interlayer distance in graphite (Figure 2.4b), with diameter between 10 and 100 

nm, depending on the number of walls [38–40]. Although the properties of carbon 

nanotubes depend on their structure (diameter, number of layers, chirality), 

impurities and defects, these materials have outstanding thermal, electrical and 

mechanical properties due to the covalent sp2 bond between carbon atoms. A value 

of ca. 2500 W/mK was measured for the intrinsic thermal conductivity of 

individual MWNT [41], while values in the range of 1750-5800 W/mK were 

obtained for crystalline ropes of SWNTs [42]. In addition, SWNTs have electrical 

conductivity >106 S/m [43] and >105 S/m for MWNTs [44]. The tensile strength of 

individual MWNT was found to be in the range 11-63 GPa, while the Young’s 

modulus varied from 270 to 950 GPa [45]. 

An alternative filler to carbon nanotubes are carbon nanofibers (CNFs) [46–48], 

which consist in high aspect ratio filaments, with diameters on the order of 50-200 

nm and lengths of up to mm. CNFs can present a wide range of morphologies, some 

of them are shown in Figure 2.4. In general, CNFs have lower mechanical 

properties, higher diameter and densities than CNTs, however they have higher 

availability and lower price. Additionally, due to the presence of reactive carbon 

edges in the CNF surface, they can be easily functionalized, compared with CNTs, to 

enhance the dispersion and stress transfer to the matrix [46–49].   
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Figure 2.4 Schematic of a) single-walled, b) multi-walled carbon nanotubes [50] and carbon 

nanofibers with different structures: c) platelet, d) spiral platelet, e) fishbone with hollow core, f) 

solid fishbone, g) ribbon and h) stacked-cup [51]. 

Carbon nanotubes and nanofibres have been extensively studied to be part of a 

novel generation of composite materials [46–48,52–56]. 

The effect of carbon nanotubes and nanofibers on the resulting mechanical 

properties of polymer composites are greatly influenced by many parameters, e.g. 

filler type, aspect ratio, orientation, synthesis method, surface pre-treatment, 

functionalization and/or morphology, processing approach or polymer matrix 

[52]. Nonetheless, probably the main concerns to fully take advantage of the 

outstanding strength and stiffness of CNTs and CNFs are to achieve a homogeneous 

dispersion of the filler and a strong interaction filler-matrix to enhance the stress 

transfer [48,55]. In general, there is an optimum filler content until which the 

properties increase with increasing the filler content. At higher contents than the 

optimum one, agglomeration of the filler may take place and, thus, the composite 

d)

e) f) g) h)

b) c)a)
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processing becomes more difficult. This may result in composites exhibiting a drop 

in mechanical properties, in some cases even below those of the neat matrix [57–

59].  

It is worth to note that some authors suggest that the reinforcing efficiency of CNTs 

and CNFs is higher when the matrix has a ductile behaviour, such as polyolefins, 

than in brittle matrices, such as epoxies [5,52]. An example of this effect has been 

reported for glassy (brittle) and rubbery (ductile) epoxy composites with carbon 

nanotubes [60]. In the glassy composite with 4 wt.% of multi-walled CNTs, the 

tensile modulus increased only 4%, while the strength and strain at break 

decreased by 4 and 50%, respectively, compared to the neat glassy epoxy. In the 

case of the rubbery epoxy composite with the same filler content, the modulus, 

strength and strain at break were significantly improved, being a 23, 34 and 13% 

higher, respectively, than those of the rubbery epoxy.  

In fracture mechanics, the energy required for the propagation or growth of a pre-

existing crack within a material is defined as fracture toughness [3]. During the 

fracture process of a polymer composite, different sub-processes related with the 

filler may take place. These processes may dissipate a certain amount of energy, 

which contribute to increase the total energy required for the sample’s final 

failure. In this case, the process is known as toughening mechanism [61]. 

Regarding the fracture behaviour of polymer composites with CNTs or CNFs, 

generally the dominant mechanism in the total energy dissipation process is the 

filler pull-out [62,63]. When the sample is loaded, the stress concentration in the 

process zone ahead the crack tip induces the filler debonding. As the crack 

propagates, the filler is pulled out from the matrix (Figure 2.5a). In this process the 

energy is dissipated through the work of friction of the interfacial shear stresses 

between the debonded filler and the matrix. Crack bridging is another possible 

toughening mechanism that can take place after filler debonding in polymer 

composites with CNFs and CNTs (Figure 2.5b) [64–66]. It takes place behind the 

crack front and consists in the connection of botch crack surfaces by the fibrous 

nanofillers. Some authors reported that in the case of randomly oriented fillers, 

only 23% of them will contribute to the bridging mechanism [67]. Additional 
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energy is dissipated through the filler breakage (Figure 2.5a), the sword-in-sheath 

of CNTs (Figure 2.5a) [45,68,69] and the unravelling or uncoiling of stacked-cup 

CNFs [65,66].  

 

Figure 2.5 a) Toughening mechanisms consisting in carbon nanotube breakage, sword-in-sheath of 

a CNT and CNT pull-out [61]. b) SEM image of crack bridging in an epoxy composite with CNFs [66].  

Concerning the cure behaviour of thermosets, as epoxy resins, it may be affected 

upon the addition of CNFs and CNTs. In general, the curing process of epoxies can 

be divided in an initial chemically controlled stage followed by a diffusion-

controlled stage [70,71]. In one hand, the residual catalyst particles, present in the 

carbon filler, may accelerate the reaction during the first stage of the curing 

process [70,71]. Furthermore, some authors claimed that the accelerating effect 

may be also due to the high thermal conductivity of carbon filler [72,73] and/or to 

their high specific surface area [74]. On the other hand, the addition of filler 

generally results in an increased viscosity of the mixture, thus the diffusion control 

of the cure process is favoured [70,71].  

Regarding the glass transition temperature (Tg), several parameters may 

contribute to the reduction of the Tg. The lowering of the cross-linking degree, 

taking place with both untreated [75,76] and surface modified CNTs [77], the 

presence of dispersion-aiding agents or solvents [78] and the agglomeration of the 

filler [70] are some mechanisms that contribute to the reduction of  the Tg. On the 

other hand, once the resin is cured, the filler could restrict the mobility of the 

polymeric chains, thus contributing to increase the Tg [48,73,79,80]. Even if the 

amount of nanofiller added to the polymer is not really large, the combination of 

the mentioned effects may also lead to composites with slightly affected Tg 

a) b)
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[48,60,81,82]. A review on the effect of carbon nanotubes on the cure reaction and 

the Tg can be found elsewhere [70]. 

In polypropylene, a semi-crystalline thermoplastic, CNTs may act as nucleating 

agents for the crystalline phase of the matrix while they seem to have no 

significant effect on the degree of crystallinity nor on the appearance of new 

crystalline phases, as reported by some authors [58,83–88]. Furthermore, it has 

also been reported a reduction in the crystallite size, resulting from a similar 

degree of crystallinity and a higher number of nucleating sites in composites, 

compared to the neat matrix [58,86,89] and a more uniform distribution of 

crystallite size than in neat polymer [86,90].  

Regarding the electrical properties, from the available literature it is clear that the 

conductivity can be improved by several orders of magnitude upon the addition of 

a small amount of CNTs or CNFs [46,52,56,91]. In order to change the behaviour of 

a polymer composite from insulator to conductor, electrically conducting fillers are 

added to the matrix. Starting with the insulating matrix, with increasing the filler 

content there is a region, known as percolation threshold, in which the electrical 

conductivity suddenly increases by several orders of magnitude. In Figure 2.6a this 

region is located between 1 and 3 wt.% of filler for the CNF composites. The 

percolation threshold is related with the formation of a continuous filler path, i.e. 

conducting network, through the composite (Figure 2.6a) [56]. 

In general, higher values of electrical conductivity and lower percolation 

thresholds are obtained when CNTs are used to modify polymers, compared to 

CNFs. An example of this behaviour can be observed in Figure 2.6a, where the 

direct current electrical conductivity of polystyrene composites with CNFs and 

CNTs, respectively, are shown. This effect may be due to several factors, as the 

relatively higher electrical conductivity, aspect ratio and surface area of CNTs 

compared to that of CNFs, making filler-filler contacts to be more likely to occur for 

the CNTs than for the CNFs at the same filler content [92,93]. In Figure 2.6a it can 

be observed that the percolation threshold of CNT composites is reached at lower 

filler contents compared to the CNF composites. 
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Figure 2.6 a) Direct current (DC) electrical conductvity, as a function of filler content, of polystyrene 

composites with CNFs and CNTs [92]. The schematic of the filler distribution within the matrix and 

its effect on the electrical behaviour of the composite [46]. B) Thermal conductivity, as a function of 

filler content, of CF/phenolic resin composites containing as-synthesized and heat treated CNTs, 

respectively [94].   

Similarly to the electrical conductivity behaviour, the addition of CNTs and CNFs to 

a polymer would lead to composites with improved thermal conductivities. 

However, the majority of reported results are not even close to those expected 

from the intrinsic thermal conductivities of CNTs, approximately between 1000 

and 6000 W/mK [41,42], and CNFs [54], higher than those of polymers, in the 

range between 0.1 and 1 W/mK [95]. Impurities and defects in the structure of the 

filler may reduce their intrinsic conductivity [96,97]. As an example, some authors 

have reported a significant enhancement in the thermal conductivity of 

CF/phenolic resin composites by adding heat treated CNTs compared to the same 

CNTs but used as-synthesized (Figure 2.6b) [94]. The main heat conduction 

mechanism in polymers is through elastic vibrations of the lattice, i.e. phonons, 

therefore defects in the polymer structure, interface between the filler and the 

matrix and contacts between fillers are regions where phonon scattering takes 

place, therefore contributing to increase the thermal resistance [97]. However, 

other parameters that affect the resulting thermal conductivity are the nature of 

the matrix (amorphous, semi-crystalline), filler morphology (shape and size) and 

distribution within the matrix (orientation, agglomeration, formation of 

conducting network) [95]. 

 

As-synthesized CNTs

Heat treated CNTsb)

Isolated
filler

Conducting
network
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CNT
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2.3.3 Graphene and graphite nanoplatelets (GNPs)  

Probably the material that has generated the greatest interest in the last decade to 

be used as filler for polymer composites is graphene. Considered as the building 

block of all graphitic materials (Figure 2.7), graphene is a single-atom-thick flat 

layer of sp2-hybridized carbon atoms joined together forming a two-dimensional 

honeycomb lattice [98].  

 

Figure 2.7 A graphene layer (2D) can be wrapped to form buckyballs or fullerenes (0D), rolled into 

nanotubes (1D) or stacked into graphite (3D) [98]. 

Graphene has been envisioned an excellent filler for polymer composites due to its 

outstanding in-plane properties. A defect-free graphene layer could exhibit an 

Young’s modulus of 1 TPa, having a breaking strength of 42 N/m [99], which 

corresponds to an intrinsic strength of 130 GPa. It also has very high electrical 

conductivity, up to 6000 S/cm [100], and room-temperature carrier mobility of 

about 104 cm2/Vs [101]. The extremely high values of thermal conductivity, in the 

range of 4800-5300 W/mK [102], exceed those of the diamond, which is in the 

range 800-2000 W/mK [103]. 

Since graphene production is still really far to be efficiently scaled up, graphene-

based materials have been developed as a solution for the lack of availability of 

graphene in large quantities. Graphite oxide is a common precursor for the cost-

effective and scalable production of chemically modified graphene and other 
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graphene-based materials [104,105]. It can be prepared by treatment of graphite 

flakes with oxidizing agents so that epoxide and hydroxyl groups are attached 

within the layer and carboxyl and carbonyl groups are attached at the layer edges 

(Figure 2.8a). Due to its polar functional groups it can be easily dispersed in water 

and organic solvents [106] and exfoliated by sonication or shear mixing [107]. 

Thus, producing single layer or nanoplatelets of graphene oxide [105,108] that can 

be functionalized [109] or reduced to obtain materials similar to graphene 

[108,110]. For example, graphene oxide is electrically insulating while the material 

obtained after reducing it is electrically conductive, like graphene. 

Graphite nanoplatelets (GNP) are composed by multiple graphene layers that are 

stacked together (Figure 2.8b). Thus, the thickness of the platelet depends on the 

number of layers [111]. This material has in-plane properties similar to the in-

plane properties of graphite (e.g. mechanical, thermal and electrical) [112] and can 

be obtained by cost-effective methods involving exfoliation of natural flaky 

graphite, by mechanical milling or chemical approaches involving graphene oxide, 

graphite intercalation compounds or expanded graphite [113].  

 

Figure 2.8 a) Schematic of graphite oxide [108], b) SEM image of graphite nanoplatelets. 

Graphene and graphene-based fillers have been widely used for the processing of 

polymer composites [59,108,114–117]. The main characteristic of these two-

dimensional structures is their large surface areas which allow high interaction 

between the filler and the matrix and high levels of stress transfer from the matrix 

to the filler [118]. Some authors reported that having different types of GNPs with 

similar thickness but different flakes sizes, those with the highest lateral size 

50 μm 

a) b)
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provide higher toughening and reinforcing efficiency in the resulting composites 

[119–121]. An example of this effect can be observed in Figure 2.9. 

 

Figure 2.9 a) Flexural modulus and b) mode I fracture toughness of epoxy composites with GNPs 

with a flake size of 5 and 25 μm, respectively [121]. 

As it has been mentioned, a homogenous dispersion of the filler is a key parameter 

to obtain significant improvements of properties [122]. Carbon nanofillers tend to 

agglomerate due to van der Waals forces. Moreover, graphene-based fillers are 

difficult to homogeneously disperse within the matrix due to the strong 

interplanar π-π interactions and their large surface areas [59,123].  

In some of the few reported works where the authors compare the effect of the 

CNTs and GNPs, the CNTs outperform the GNPs in terms of mechanical behaviour 

of the resulting composites [121,124]. In [125], the authors reported an 

improvement of 13%, compared to the neat epoxy, in the tensile strength of epoxy 

composites with 1 wt.% of CNTs, while the tensile strength of the composite with 1 

wt.% of GNPs was similar to that of the neat epoxy.  

If a uniform dispersion is achieved, graphene and GNPs show potential to provide 

higher improvements in mechanical properties compared to composites with 

other carbon fillers, as CNTs or CNFs, at the same filler content [59,125–127]. For 

instance, it has been reported that epoxy composites with 0.1 wt.% of GNPs 

showed an improvement on tensile strength of about 40%, compared to that of 

neat resin. However, by adding the same amount of CNTs resulted in an 

improvement of only 14%. The same effect was found for the tensile modulus and 

the mode I fracture toughness [126]. 

a) b)
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The fracture behaviour of graphene and GNPs have also been extensively studied, 

providing the identification of the main toughening mechanisms involved during 

the failure of composites [128–130]. Crack deflection may take place by tilting and 

twisting of the advancing crack front as it reaches a graphene-based filler 

[126,127,129,131]. The deflection of the crack results in an increased roughness of 

the fracture surface, as shown in Figure 2.10. The fracture surface of neat epoxy 

(Figure 2.10a) is smooth, indicative of brittle fracture. However, the fracture 

surface of the composite with 1 wt.% of GNPs (Figure 2.10b) exhibits a rougher 

surface, than that of neat epoxy.  

 

Figure 2.10 SEM images of the fracture surface of a) neat epoxy and b) composite with 1 wt.% of 

GNP. Schematic of the toughening mechanisms consisting in c) crack pinning and d) separation 

between layers [128]. 

Based on the analysis of adjacent fracture surfaces, some authors have also 

identified features related to filler pull-out, crack bridging, crack pinning (Figure 

2.10c) and separation between the GNP layers as the crack propagates through the 

GNP particle (Figure 2.10d) [122,128,130]. Other authors have suggested that void 

nucleation and plastic deformation of the matrix, due to the debonding of the filler, 

are possible toughening mechanisms [122,130,132]. Regarding the pull out 

mechanism, it is worth to note that some authors have reported significant 

a) b)
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improvements on strain and toughness in epoxy composites with graphene flakes 

as the lateral size of the filler increases [119]. They suggested that this behaviour 

could be due to the increased friction between the filler and the matrix, as the filler 

lateral size increased, during the pull-out of the filler.  

The addition of graphene-based fillers to polymers as polycarbonate [133], 

polypropylene [134], polyimide [135] or epoxy [136] may result in no changes on 

Tg. It has also been reported Tg shifted towards higher temperatures in polymers as 

epoxy [122,132,137], polymethyl methacrylate [120,138],  polyvinyl alcohol [139], 

polypropylene [140] or ethylene-propylene-diene rubber [141]. Conversely, some 

authors reported Tg shifted towards lower temperatures in polymers as 

polycarbonate [133]. Nonetheless, it should be taken into account that the effect of 

graphene or its derivatives on the glass transition of the matrix also depends on 

the size of the platelets [120], their degree of dispersion [122] or interaction with 

the host polymer [139]. Another important parameter is the surface morphology, 

as the presence of defects and roughness may induce a certain degree of 

mechanical interlocking with the matrix, thus reducing the segmental mobility of 

polymeric chains [118]. 

Graphene or GNPs may have a nucleating effect on the crystallisation of the semi-

crystalline polymers and may even induce the crystallisation of different 

crystalline phases, as those present in neat polymer [108]. For instance, in [142], 

Kalaitzidou et al. found that GNPs act as nucleating agents and promote the 

nucleation of the β-phase, rather than the α-phase of neat PP. As a result of the 

addition of graphene or GNPs, the degree of crystallinity may be increased, not 

significantly affected or decreased, compared to the unmodified polymer. 

Moreover, the crystalline structure may suffer changes, e.g. in crystallite thickness 

or spherulite size [108,142]. 

The addition of graphene and graphite nanoplatelets results in composites with 

improved electrical, once the percolation threshold has been reached, and thermal 

conductivities [95,113,134,143–145]. As in the case of other properties, the 

electrical and thermal conductivities of the resulting composites depend especially 

on the dispersion degree of the filler [122,136]. For instance, in [136], the authors 
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dispersed GNPs in epoxy resin by two different approaches, i.e. three-roll milling 

and sonication plus high speed mixing [136]. In one hand, the composites prepared 

by three-roll milling showed the characteristic percolating behaviour. The 

electrical conductivity increased by 4 orders of magnitude at the percolation 

threshold, which was approximately 0.3 wt.%. On the other hand, the composites 

obtained by sonication and high shear mixing showed the worst electrical 

behaviour. The electrical conductivity of the composites did not show the 

characteristic shape of the percolating behaviour, instead it steadily increased with 

increasing the filler content, reaching lower conductivity values compared to the 

composites obtained after three-roll milling.   

 

Figure 2.11 a) Electrical conductivity, as a function of the filler content, of epoxy composites with 

GNPs prepared by three-roll milling (3RM) or by sonication and high speed mixing (Soni_hsm) 

[136]. b) Thermal conductivities of epoxy composites with 5.4 vol.% of graphite microfiller (GMP) 

and GNPs with different sizes, i.e. aspect ratios [145]. 

Regarding the thermal conductivity, the filler morphology, i.e. lateral length or 

aspect ratio, also plays a crucial role on the resulting composites [121,145]. This 

can be clearly seen in Figure 2.11b, where the thermal conductivities of epoxy 

composites with 5.4 vol.% of graphite microfiller and GNPs with different aspect 

ratios are shown [145]. The authors concluded that the efficiency of the graphitic 

filler on the improvement of the thermal conductivity increased as the aspect ratio 

increased. The composite with GNPs with an aspect ratio of ≈200 (length≈ 0.35 μm, 

thickness≈ 1.7 nm) has a thermal conductivity a 620% higher than that of neat 

epoxy. However, the improvement in the composite with graphite microfiller with 

a) b)
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an aspect ratio of ≈3 (length≈30 μm, thickness≈10 μm) is only a 170%, compared 

to neat epoxy.  

To sum up, carbon materials are excellent candidates to be added to polymers in 

order to obtain composites with improved mechanical, electrical and thermal 

properties. Thus, in the following three chapters of this thesis, the effect of graphite 

nanoplatelets, carbon nanotubes and a novel carbon microfiller in polypropylene 

matrices is studied and discussed.   

In spite of the outstanding properties of carbon fillers, some applications may 

require composites with certain properties which are extremely difficult to obtain 

with a single filler. For instance, in electronic packaging applications, electrically 

insulating materials with high thermal conductivity are required [146]. Some 

authors had reported that by covering carbon nanotubes with a layer of silica 

(Figure 2.12a), the resulting epoxy composites showed enhanced thermal 

conductivity while retaining the electrically insulating behaviour of the matrix 

[147], as it can be observed in Figure 2.12b.  

 

Figure 2.12 a) Schematic of the composite consisting in carbon nanotubes, covered by a silica shell, 

dispersed within an epoxy resin, b) Thermal conductivities and electical resistivities of the neat 

epoxy and the composites with “as-received” CNTs (r-MWCNT) and carbon nanotubes covered by a 

silica shell (MWCNT@SiO2) [147].  

Therefore, the combination of carbon materials with a secondary material, to 

obtain hybrid polymer composites, is a promising approach to achieve new 

materials with an unusual combination of properties or higher properties 

improvements, compared to the composites with the isolated fillers. Therefore, in 

a) b)
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the next section a brief review of hybrid fillers for polymer composites was done. 

In Chapter 6, the hybrid filler obtained after growing carbon nanotubes in the 

presence of alumina nanoparticles is presented. The effect of this filler on the 

mechanical, thermal and electrical properties of an epoxy matrix is studied and 

discussed. In Chapters 7, the hybrid filler consisting in hollow glass microspheres 

with carbon nanofibres grown on their surface is presented. The effect of this 

hybrid filler the thermal and electrical behaviour of a high temperature resin is 

studied and discussed.  

2.4  Hybrid polymer composites 

The definition of hybrid material it is still not clear. It can be a material that 

commonly includes an inorganic and an organic compound blended at the 

molecular scale [148]. This definition is similar to that given by the IUPAC, which 

states that hybrids are composed by a mixture of organic, inorganic or both types 

of components, interpenetrating on a sub-micron scale [149]. In this work, it will 

be assumed that “a hybrid material is a combination of two or more materials in a 

predetermined geometry and scale, optimally serving a specific engineering 

purpose” [150] and that a hybrid polymer composite is the material obtained by 

dispersing two or more materials within a polymeric matrix. For instance, a hybrid 

polymer composite could be the fibre-reinforced polymer in which the matrix has 

been modified with a nanofiller. In this review, the attention will be focused on 

hybrid composites where at least one of the components is a carbon-based 

material.  

In the available literature, the most straightforward approach to obtain hybrid 

polymer composites is by directly adding two or more different fillers to the 

matrix. Moreover, the fillers can have sizes in different scales, what is known as the 

multi-scale approach [151]. 

There are several works reporting hybrid composites made up of conventional 

fibres and carbon-based fillers embedded within a polymeric matrix to give hybrid 

FRPs. Thus, the fillers could be dispersed within the matrix [66,152,153], sprayed-

up (Figure 2.13a) [154–156] or placed by electrophoretic deposition (Figure 

2.13b) [157,158] on the surface of the fibres. Other approaches consist in using 
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CNTs or CNFs to obtain yarns or fibres that are braided around fibre bundles 

(Figure 2.13c) [53,159] or mats, layers or forests which are placed between the 

laminate plies (Figure 2.13d) [160–163].  

 

Figure 2.13 Several examples of hybrid polymer composites. SEM images of a) GNPs sprayed on the 

surface of CFs [155], b) CF with CNTs deposited by electrophoresis [164], image of c) glass fibre 

bundle braided with a CNT yarn [159],  and d) SEM image of a CNT forest placed on the surface of a 

CF prepreg ply [161]. 

In general, the resulting hybrid composites exhibit enhanced mechanical 

properties, especially mode I and II interlaminar fracture and interlaminar shear 

strength. As an example, some authors have transferred aligned CNT forests to pre-

impregnated plies of carbon fibre reinforced polymer in a way such they were 

located at the interlaminar crack front [163]. The modified laminate showed 

improvements on mode I and mode II fracture toughness of 31 and 161%, 

respectively, compared to those of the unmodified laminate. Other authors 

reported improvements in both the flexural and interlaminar shear strength of 11 

and 86%, respectively, for carbon fibre-epoxy composites with mats of carbon 

nanofibers at the interlaminar region [160]. In these composites, the authors also 

reported improvements in the through-thickness electrical conductivity of 

approximately 150%, compared to the unmodified composite. However, the 
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improvement in the in-plane direction was only of ≈20%. Thus, in the case of two-

dimensional carbon-fibre reinforced polymers upon the addition of a secondary 

carbon filler, the electrical conductivity in the through-thickness direction can be 

more significantly increased than in the in-plane direction [155,160].  

Hybrid polymer composites can also be obtained by mixing particles of different 

materials, shapes and/or sizes. A common system used in the rubber industry 

consists in a rubber matrix with carbon black and silica particles [165] or clay 

platelets [166]. Recently, a review on the reinforcement of epoxy resins with 

thermoplastic or elastomer microparticles and different nano-scaled fillers (as 

silica nanoparticles, clay nanoplatelets, CNTs, graphene and GNPs) has been 

published [21]. In a similar work, the results of hybrid epoxy composites with soft 

(rubber) and rigid (silica, clay, CNTs, graphene) particles have also been reviewed 

[167]. 

An important characteristic of polymer composites with a mixture of fillers is the 

possible synergistic effect that can take place, especially in the formation of a filler 

conductive network [168–170]. An example of this effect can be found in [169], 

where the authors reported that the thermal conductivity increased by adding up 

to 30 vol.% of either silane-modified SiC nanoparticles or functionalized CNTs. 

Moreover, the later gave the highest results. Interestingly, when they prepared 

composites with the mixture of both types of filler, in a 1:1 ratio, the resulting 

thermal conductivity was the highest, compared to that of the composites with the 

same amount of functionalized CNTs.  

Hybrid polymer composites can also be obtained by mixing two or more types of 

carbonaceous fillers. In this sense, the effect of carbon nanotubes and graphene-

based fillers on the mechanical [121,124,171], thermal [172–174] and electrical  

[124,171,174,175] properties of polymer composites has been extensively studied. 

 The CNTs may act as obstacles and reduce the agglomeration of the graphene-

based fillers. This could explain the higher reinforcing efficiency of the CNT+GNP 

mixture, reported in [121]. The epoxy composites with 0.5 wt.% of the mixture 

(CNT:GNP ratio of 9:1) exhibited the highest improvement in flexural modulus, a 

17%, compared to that of the composites with the same amount of neat CNT, a 9%, 
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and GNP, a 5%. A similar synergistic effect was reported for epoxy composites with 

0.1 wt.% of the CNT+GNP mixture (CNT:GNP ratio of 4:1) [124]. The achieved 

improvements, compared to neat epoxy, were a 17.5 and a 12.5% in flexural 

modulus and strength, respectively, which were the highest compared to the 

composites with the mixture at other ratios or with the pure CNTs and GNPs. In 

this work [124], the authors claimed that by combining one-dimensional CNTs 

with two-dimensional GNPs, the percolation threshold could be reached at lower 

filler content, i.e. 0.62 wt.%, than in the case of the single CNTs, a 0.84 wt.%, or 

GNPs, a 0.88 wt.%. 

 

Figure 2.14 a) Schematic of fillers and their mixtures and b) electrical conductivity, as a function of 

the total filler content, of composites with GNPs, GNPs+CB mixture and GNPs+CB+CNTs mixture as 

a function of the total filler content [176]. 

Furthermore, it has been reported that the addition of a third filler, in this case 

CNTs, to the mixture of GNPs and CB could lead to higher values of electrical 

conductivity than composites with the same filler content of the GNP+CB mixture, 

a)

b)
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as shown in  Figure 2.14. The synergistic effect can also be obtained for the thermal 

conductivity [172]. For epoxy composites with 10 wt.% of CNTs and GNPs, the 

thermal conductivities were 0.85 and 1.49 W/mK, compared to 0.201 W/mK of 

neat epoxy. However, when the authors added 10 wt.% of the GNP+CNT mixture 

(in a GNP:CNT ratio of 3:1), the resulting composite exhibited a thermal 

conductivity of 1.75 W/mK, corresponding to an enhancement of 800% compared 

to neat epoxy. 

Apart from the simple mixture of fillers, another approach to obtain hybrid 

polymer composites is to obtain a hybrid filler which can be thought of as a single 

material and then dispersing it within the matrix. An example of hybrid fillers are 

the core-shell structures consisting in a CNT as core and a polymeric shell, which 

could be obtained through in situ chemical polymerization [177]. Metallic particles 

covered by a carbon shell are also available, in this case, by thermolysis of metal-

containing monomers [178]. Oxide nanoparticles could be grown on the surface of 

CNTs by a precipitation method, showing these nanospheres better interaction 

than those mixed with the CNTs [179]. By means of a sol-gel process, carbon 

nanotubes covered by a layer of silica could be obtained as shown in Figure 2.12a 

[180]. In a similar approach, GNPs can be coated with alumina nanoparticles or 

nanolayers [181]. 

All the above mentioned techniques have in common that the initial material is the 

carbon-based filler and the synthesized one is the inorganic filler. However, hybrid 

fillers can also be obtained by synthesizing carbon structures. When dealing with 

the synthesis of carbon materials, the chemical vapour deposition (CVD) process is 

one of the most used techniques for the synthesis of carbon-based fillers because 

of the relatively low cost of the equipment, it is easily scalable and it can provide 

high production yields [182]. Therefore, it was the approach chosen to obtain the 

hybrid fillers presented in this thesis.  
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2.5  Hybrid fillers obtained by chemical 

vapour deposition (CVD)  

Among all the approaches for the synthesis of carbon structures, the chemical 

vapour deposition is one of the most popular and widely used [182–184]. During 

the chemical vapour deposition process, the thermal decomposition of a carbon-

containing molecule, as hydrocarbons, in the vapour phase, takes place at the 

surface of a catalyst. The result of this reaction is the deposition of a solid carbon-

based material. Due to the catalytic nature of the reaction involved in this process 

it is usually known as catalytic chemical vapour deposition (CCVD) [183,185]. The 

chemical vapour deposition process can be used to obtain a hybrid filler by using 

one material as substrate while the second one, i.e. the carbon-based, is grown 

during the CVD process.  

In the next sections, an overview of different hybrid materials obtained by CVD is 

presented. The hybrid fillers are classified depending on whether the substrate 

used was a micron-scaled conventional fibre (Figure 2.15a), a two-dimensional 

particle (Figure 2.15b) or a three-dimensional (spherical and non-spherical) 

particle (Figure 2.15c).  

 

Figure 2.15 Examples of different hybrid fillers consisting in a) micron-scaled fibres and CNTs [186], 

b) two-dimensional particles and CNTs [187] and c) three-dimensional particles and CNTs [188].  
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2.5.1 Micron-scaled fibres as substrates 

During the last decade, the synthesis of carbon nanotubes using micron-scaled 

fibres as substrate has been extensively studied (Figure 2.16a). An early work 

regarding the synthesis of carbon nanofibers on the surface of CFs [189] is the 

starting point of this approach.  

 

Figure 2.16 a) SEM image of CNTS grown by CVD on the surface of alumina fibres, b) schematic of a 

hybrid FRP comprosed by micron-sized fibers with aligned CNTs attahced to their surface [186], 

SEM images of c) micron-scaled hole left in an epoxy matrix by a pulled-out carbon fibre where the 

nano-scaled holes left by pulled-out CNTs could be observed [190] and d) carbon fibres with 

structures imilar to carbon black grown on their surface by CVD [191]. 

Later, multifunctional brushes were developed by synthesising CNTs on selected 

areas, i.e. fibre ends, of SiC fibres [192]. This idea was further extended to the 

growth of CNTs on the surface of SiC fibre fabric to obtain an architecture similar 

to that shown in Figure 2.16b [193]. This proved to be a promising approach to 

improve the capability of energy dissipation by adding toughening mechanisms as 

CNT pull-out (Figure 2.16c). Furthermore, the hybrid composites showed 

significant improvements of thermal and electrical conductivity in all directions, 

b)

CNTs

10 µm

a)

CNTs

5 μm 

c)

5 μm 

d)
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compared to the base composite, indicating an effective formation of a conductive 

network throughout the composite. The synthesis of CNTs on the surface of 

alumina an silica fibres [194–197] as well as the resulting hybrid composites have 

been investigated [194,198,199]. The thermal stability of ceramic fibres allows 

their use as substrates during the CVD process without significantly damaging the 

fibres. However, carbon fibres has also been explored as substrate for the growth 

of carbon fillers [190,200–203]. By selecting an appropriate catalyst treatment and 

processing conditions significant damage of the fibres could be avoided [204–206]. 

Recently, the growth of structures similar to carbon black on the surface of carbon 

fibres has been reported (Figure 2.16d) [191]. The resulting composites showed 

modest improvements on interlaminar shear and impact strength due to an 

increased interfacial adhesion between the CB-modified fibres and matrix.  

2.5.2 Two-dimensional particles as substrates 

Carbon nanotubes have been synthesized on different substrates since the late 90s, 

just few years after their discovery by Iijima in 1991 [39]. Alumina, silica, zeolite or 

CaCO3  microparticles have been used as supports for the growth of CNTs through 

the decomposition of different hydrocarbons [207–209]. SWNTs have been 

synthesized using alumina and silica nanoparticles as support for metallic particles 

acting as catalyst [210,211]. There is also a work reporting the synthesis of CNTs 

using a mixture of CB and a Co precursor [212]. However, in the above mentioned 

works the interest was not on the hybrid structures consisting in CNTs/substrate 

rather than in the subsequent purification of the CNTs, i.e. isolation of the CNTs 

from the catalyst/substrate.  

The literature related with hybrid fillers, obtained by the synthesis of carbon 

structures on particles, is scarce. However it has been slowly growing in the last 

years. In 2002, Gournis et al. reported the synthesis of CNTs on the surface of 2D 

clay platelets [213], claiming that the resulting hybrid material would be attractive 

for the processing of polymer composites with outstanding functionalities. Since 

then, several research groups have developed the synthesis of CNTs on 2D 

particles of clay [214–221], layered double hydroxide [187], SiC [222–225] or 
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graphite nanoplatelets [226,227] to obtain hybrid structures similar to those 

shown in Figure 2.17. 

 

Figure 2.17 a) Schematic of a hybrid filler consisint in layered double hydroxide platelets with CNTs 

grown on its surfaces [187]. and b) SEM image of a hybrid filler obtained after the CVD synthesis of 

CNTs from catalysts supported on the surfaces of graphite nanoplatelets (indicated by the arrow). 

The inset shows a lower magnification image of the hybrid filler [227]. 

In Table 2.1, the main results obtained for polymer composites with hybrid fillers 

based on two- and three-dimensional particles are summarized in terms of 

mechanical properties, DMA properties, glass transition temperature, electrical 

and thermal conductivity and other results of interest. It should be taken into 

account that hybrid filler refers to the hybrid material which can be thought of as a 

single material, instead of the simple mixture of components.  

From the results shown in Table 2.1, it can be said that the addition of hybrid fillers 

to different polymers usually leads to improved mechanical properties. The 

homogeneous dispersion and strong interaction between the filler and the matrix 

seem to be the responsible for this effect [228]. 

Polyurethane nanocomposites foams were prepared with as-received clay, as-

received CNTs and the hybrid filler. As it can be observed in Table 2.1, the later 

showed improvements in specific compressive modulus and strength of 33 and 

22%, respectively, compared to the unmodified foam. Thus, the hybrid filler 

a) b)

1 µm

200 nm
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showed a synergistic effect, since clays and CNTs did not show any reinforcing 

effect in their corresponding composites [218,229].  

In [187], the authors studied polyimide films reinforced with just 0.4 wt.% of 

layered double hydroxide-CNTs (Figure 2.17a). They reported significant 

improvements on the mechanical properties, especially in the strain at break 

which was enhanced by 124%. The tensile modulus and tensile strength were 

enhanced by 18 and 40%, respectively (Table 2.1). 

This effect was also observed, except of the strain at break which in this case 

decreased, on polyamide 6 composites with similar hybrid fillers, in this case clay-

CNTs, processed by a simple melt mixing [215]. In both works, the hybrid filler 

exhibited strong interaction with the polymeric matrix and a homogenous 

dispersion within the matrix, attributed to the three-dimensional structure of the 

filler, rather than the one- and two-dimensional structure of CNTs and clay 

platelets, respectively. The benefit provided by the hybrid fillers was evident from 

the fact that mechanical properties improvements were relatively higher when 

compared to those obtained in composites reinforced with neat CNTs or neat clay. 

This effect has also been observed on epoxy composites with hybrid nanoclay-

CNTs [230]. The hardness of composites with 2 wt.% of CNTs, nanoclay, mixture 

nanoclay/CNTs and the hybrid material increased by 19, 16, 21 and 40%, 

respectively, compared to that that of neat epoxy (Table 2.1). As it can be observed, 

the composite with the hybrid material rendered the highest improvement, which 

was even higher than that of the composite with the mixture of fillers.  

Concerning the glass transition, the hybrid filler could increase the mobility of the 

segments of the polymeric chains in the amorphous phase, thus lowering the Tg 

[231]. However, the opposite effect is also possible. The strong interfacial 

interaction between the hybrid filler and matrix could increase the hindrance of 

the segmental motion of polymer chains [228,232]. Finally, the addition of 

clay/CNTs hybrid fillers could also result in no significant changes on the Tg of the 

resulting composites [233]. Regarding the electrical conductivity, percolation 

thresholds as low as 0.57 wt.% of hybrid clay/CNTs can be achieved due to its 

three-dimensional structure [231]. 
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The addition of hybrid fillers seems to have a thermal stabilising effect during the 

decomposition process of the composites, as reported in Table 2.1. The stabilising 

effect could be explained due to a barrier effect of the filler for the diffusion of 

volatile degradation products or to the entrapping of free radicals during the 

oxidation/degradation process [231,234,235].   

As it can be observed in Table 2.1, the hybrid clay/CNTs seems to act as nucleating 

agent for the crystallization of polymers as polyethylene terephthalate [231], 

polyvinyl alcohol [232], polylactic acid [233] or polyamide 6 [228]. In the last case, 

it seems to promote the nucleation of a different phase. In general, it can be said 

that the addition of the hybrid clay/CNTs do not significantly affects the degree of 

crystallinity [228,231,233]. 

Regarding the multifunctional properties (Table 2.1), hybrid fillers (0.6-1.2 wt.%) 

consisting in SiC microplatelets with vertically aligned CNTs grown on their 

surface, were dispersed in an epoxy resin to obtain conductive composites [223]. 

Thanks to the electrically conductive network formed by the filler, the authors 

were able to perform electrical resistance measurements, during a tensile test, to 

identify the elastic and plastic behaviour. Furthermore, the hybrid SiC-CNTs could 

be used to increase the dielectric permittivity and loss of polymers, as 

polyvinylidene fluoride [236]. The CVD process can be controlled to obtain CNTs 

on one or both sides of the SiC [222]. In polyvinylidene fluoride composites, the 

percolation thresholds are 0.7 vol.% for hybrid filler with CNTs mainly grown in 

one face, and 1.47 for hybrid filler with CNTs grown on both faces. These 

percolation thresholds are significantly lower than the 10 vol.% of similar 

composites with neat CNTs. 

The advantages of the hybrid fillers over the isolated fillers or their mixtures is 

clear from the results presented in Figure 2.18 [227,237]. In the first example 

(Figure 2.18a), by adding the same amount, i.e. 6.6 wt.%, of CNTs or GNPs to 

polyvinylidene fluoride, the AC conductivity of the resulting composites is similar 

to that of the matrix. When the CNT+GNP mixture is added, there is an increase in 

the AC conductivity of about one order of magnitude. However, the composites 

remain exhibiting an insulating behaviour. Finally, when the hybrid filler, i.e. CNT-
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GNP thought of as a single filler, is added, the conductivity significantly increases 

up to 10-4 S/m. The same effect can be found in the mechanical properties of epoxy 

composites (Figure 2.18b). Upon the addition of CNTs or GNPs (0.5 wt.%), a slight 

improvement of the tensile modulus and strength, compared to those of neat 

epoxy, takes place. By adding a mixture of 0.24 wt.% CNTs and 0.26 wt.% GNPs, the 

increase is somewhat higher than in the previous two cases. However, the strain at 

break significantly decrease with any filler or mixture of fillers. Interestingly, the 

composites with the hybrid CNT-GNP presents the highest improvements in tensile 

modulus and strength, while maintaining a strain at break similar to that of neat 

epoxy. 

 

Figure 2.18 a) AC conductivity, as a function of the frequency, of PVDF and its composites with 6.6 

wt.% of GNPs, CNTs and hybrid CNG-CNT, respectively, as well as the compossite with the mixture 

3.46 wt.% CNTs and 3.14 wt.% GNPs [227], b) Strain-stress cruves of a tensile test of neat epoxy 

and its composites with 0.5 wt.% of GNPs, CNTs and hybrid CNT-GNP, respectively, as well as the 

composite with the mixture 0.24 wt.% CNTs and 0.26 wt.% GNPs [237]. 

 

2.5.3 Three-dimensional particles as substrates 

As it has been mentioned, the hybrid fillers developed in this thesis were obtained 

by using alumina nanoparticles and hollow glass microspheres as substrates. 

The addition of ceramic particles of TiO2 [238–242], alumina (Al2O3) [243–245], 

silica (SiO2) [246–249] or calcium carbonate (CaCO3) [250–253], has proved to be 

an effective approach to improve mechanical properties, among others, of 

polymers. In general, the modulus (tensile and flexural) of the resulting composites 

b)a)
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CNT
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increase as the modulus of the filler is relatively higher than that of the matrix. If 

the interface matrix-filler is weak, the addition of particles tends to reduce the 

strength [240,241]. Regarding the fracture process of polymers reinforced with 

inorganic ceramic particles, the toughening mechanisms due to the presence of 

particles have been extensively studied [61,243,253–258]. Crack deflection 

[61,243,259], crack pinning [61,243,260], shear yielding of the matrix 

[61,246,256,261] or debonding of the particles from the matrix and subsequent 

plastic void growth [246,262–264] are energy dissipating mechanisms responsible 

for the generally enhanced fracture toughness of polymer composites with rigid 

particles.  

Regarding the multifunctional properties, inorganic ceramic particles are 

electrically insulating materials [265]. Although the addition of this type of 

particles to polymeric matrices may result in a slightly increased electrical 

conductivity [242,266], the resulting composites exhibit an electrically insulating 

behaviour. Therefore, they have been studied for the development of advanced 

insulating materials to be used in the electronic industry [266–271]. 

In inorganic materials as ceramics, the heat is propagated through atomic 

vibrations (phonons), while the contribution of electron movement to the thermal 

conductivity can be neglected. This means that their thermal conductivity is lower 

than that of metals and carbon-based materials, where free electrons are more 

efficient in the heat propagation than phonons. However due to their structure, the 

thermal conductivity of inorganic (boron nitride, aluminium nitride, alumina, etc.) 

particles is higher than that of polymers [95,97,265,272]. Thus, the addition of this 

type of fillers to polymers is a very common approach followed to obtain thermally 

conductive, yet electrically insulating, composites to be used in electronic 

packaging and printed circuit board substrates [95,97,268,270,273]. 

Ceramic particles are available in different morphologies, for instance they can be 

hollow and filled by a gas. In this sense, hollow glass microspheres (HGMs) have 

been widely used in polymer composites due to their resulting low density, low 

thermal conductivity and dielectric constant, low moisture absorption and low 

coefficient of thermal expansion [274–278]. However, in thermoset composites, 
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the addition of the HGMs often results in decreased tensile, compressive or flexural 

strength. Regarding the modulus, it can be maintained or even increased by 

controlling the density, i.e. the wall thickness, of HGMs [279–281]. 

In conclusion, inorganic particles have proved to be effective fillers to improve the 

mechanical properties of polymer composites. If an appropriate filler-matrix 

interaction is achieved. Furthermore, due to the relatively higher thermal 

conductivity of inorganic (bulk) materials, compared to that of polymers, the 

resulting composites usually exhibits enhanced thermal conductivity. 

However, these fillers failed when an electrically conducting materials is needed, 

due to their inherent insulating behaviour. The hybridization with carbon 

materials is a promising approach to increase the electrical conductivity of 

polymer composites with inorganic ceramic particles. As it was mentioned for 

composites with hybrid fillers based on two-dimensional particles and CNTs, the 

resulting hybrid fillers seemed to have strong interfacial interaction with the 

matrix [187,228]. Therefore, the hybrid fillers obtained with three-dimensional 

inorganic particles may also benefit from an enhanced interaction with the 

polymeric matrix. 

In the available literature there are works reporting the synthesis of carbon 

nanotubes on mm-sized inorganic oxide (SiO2, Al2O3 and ZrO2) spheres [282–284], 

micron- and sub-micron-sized silica spheres [285,286], porous silica microspheres 

[287], alumina microspheres [188,224,225,288,289], stainless steel nanospheres 

[290], nanospheres of alumina and iron oxide [291]. Furthermore, it has also been 

reported the synthesis of hybrid structures consisting in micron-scaled irregular 

SiC particles-CNTs [292], fibrous hydroxyapatite-CNTs [293], micron-sized 

alumina particles [294,295] or micron-scaled BaTiO3 particles [296]. 

An example of the different morphologies of the grown CNTs that can be obtain by 

controlling the parameters of the CVD process are shown in Figure 2.19. 
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Figure 2.19 SEM images of CNTs grown on alumina microparticles showing a) short CNTs covering 

the whole surface of the microparticle and b) CNTs forming independent branches uniformly 

distributed in six directions [188,288]. 

As shown in Table 2.1, some authors have reported the synthesis of hybrid fillers 

consisting in alumina microspheres and CNTs with different aspect ratios, i.e. CNT 

content, [297]. They performed the tensile characterization of epoxy composites 

with 0.5 wt.% of filler and found that both the tensile modulus and strength 

increased for all aspect ratios analysed. However, the optimum aspect ratio was 

2000, i.e. 26 wt.% of CNTs, which resulted in improvements of 27 and 38% in 

modulus and strength, respectively, compared to neat epoxy. Interestingly, the 

hybrid filler with aspect ratio of 2000 also yielded the lowest percolation threshold 

of the CNTs in the composites, a 0.12 wt.% (Table 2.1). The composites with the 

hybrid fillers with the highest aspect ratios, i.e. 2000 and 3200, showed the 

possibility to be monitored during the tensile tests to identify the elastic and the 

plastic behaviour. This strain sensing ability is similar to that previously reported 

for composites with SiC-CNTs [223] and GNPs-CNTs [237] (Table 2.1). 

Zakaria et al. have developed a hybrid filler composed by alumina microparticles 

and carbon nanotubes, which they used as filler in epoxy composites [298–300]. As 

it can be observed in Table 2.1, they reported the reinforcing effect of the hybrid 

filler in the tensile, flexural and compressive properties; being this last case the 

one in which the filler exhibited its best reinforcing effect. At a filler loading of 5 

a) b)

1 μm 3 μm
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wt.%, the compressive modulus and strength increased by 148 and 117%, 

respectively, compared to neat epoxy [300]. Moreover, this composite showed 

improved thermal stability [300] and a thermal conductivity a 20% higher than 

that of the unmodified resin [298].  

The main characteristic of the hybrid fillers analysed on Table 2.1 is that the 

substrates (i.e. two- and three-dimensional particles) have sizes in the micron-

scale. First, the CNTs grown in the surface of the micron-scaled particles may help 

to improve the interfacial strength between the filler and the matrix. In second 

place, the substrates may reduce the agglomeration of CNTs and helping to obtain 

a homogenous distribution of the nanofiller within the matrix [290]. Furthermore, 

the three-dimensional morphology of the hybrid filler may result in the formation 

of the conducting network at lower fillers content, compared to the neat CNTs 

[287,301] or the simple mixture of components [298]. 

As it has been reviewed, none of the reported works deals with the synthesis of 

hybrid fillers using nano-scaled particles as substrates.  

In chapter 6 a novel hybrid filler composed by alumina nanoparticles and carbon 

nanotubes is presented. The homogeneous dispersion of the resulting hybrid 

nanofiller proved to be difficult, and agglomerates were observed in the produced 

composites. This poor dispersion resulted in epoxy composites with similar or 

slightly improved flexural and fracture behaviour, compared to neat epoxy. 

However, the composites with the hybrid filler showed enhanced thermal and 

electrical conductivity compared to the epoxy resin and the composites with the 

as-received nanoparticles. 

Finally, a novel hybrid filler based on hollow glass microspheres and carbon 

nanofibres grown on their surface are developed to obtain lightweight polymer 

composites with increased electrical conductivity while maintaining or improving 

their thermal insulting behaviour.  
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Table 2.1 Summary of main properties of polymer composites with hybrid fillers based on CNTs grown on 2D, spherical and non-spherical particles.  

Matrix 

Hybrid 

substrate-

grown filler 

(wt.% of grown 

filler) 

Mechanical properties 
DMA 

properties 

Glass 

transition 

temperature 

Electrical and 

thermal 

conductivity 

Others Ref. 

Epoxy 

Clay-CNTs 

(-) 

↑ HV as ↑wt.%, +40% 

for 2 wt.%, 

(HV0=10.8) 

- - - - [230] 
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PA-6 

Clay-CNTs 

(40 wt.%) 

↑ET and σT, ↓𝜀𝑏 as 

↑wt.%, 

+290% and +153%, >-

20% respectively, for 

1 wt.% (ET0=0.4 GPa 

and σT0=18.5 MPa, 

𝜀𝑏0>200%) 

- - - - [215] 

Epoxy 
Clay-CNTs 

(48.5 wt.%) 

↑ Vicker’s hardness 

+36% for 1 wt.% 

(HV0=16), ↑ Impact 

strength a 110% for 1 

wt.% (I0=20.2 kJ/m2) 

- - - - [302] 
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PVA Clay-CNTs (-) - 

↑E’ as ↑wt.%, 

@50°C +138% 

for 7 wt.% 

(E’0=2 GPa) 

↑ Tg as ↑wt.%, 

+14°C for 7 

wt.% 

(Tg0=57.5°C) 

- 

↑T5% (N2) as ↑wt.%, 

+16°C for 2 wt.% (T5% 

0=230°C) 

Nucleating effect of the 

filler, higher XC for all 

wt.% 

[232] 

PI 

LDHs-CNTs 

(36 wt.%) 

↑ET, σT and 𝜀𝑏 as 

↑wt.%, +18%, +40% 

and +124%, 

respectively, for 0.4 

wt.% 

(ET0=0.65 GPa, 

σT0=78.1 MPa, 

𝜀𝑏0=26.6%) 

- - - - [187] 
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PA-6 

Clay-CNTs 

(40 wt.%) 

↑ET and σT as ↑wt.%, 

+325% and +170%, 

respectively, for 2 

wt.% (ET0=0.4 GPa 

and σT0=18.5 MPa) 

↑E’ as ↑wt.%, 

+55% (-50°C) 

+120% 

(100°C) for 2 

wt.% (E’0=3 

GPa(-50°C), 

E’0=0.3 GPa 

(100°C)) 

↑Tg as ↑wt.%, 

+17.2°C for 2 

wt.% 

(Tg0=27.2°C) 

- 

↑T5% (air and N2) as 

↑wt.%, 

+26°C (air)  and +18°C 

(N2) for 2 wt.% 

(T5% 0=382°C (air), 393 

(N2)). 

Filler acts as α-phase 

nucleating agent 

[228] 

PLA 
Clay-CNTs 

(58.1 wt.%) 

↑E as ↑wt.%, 

+17% for 3 wt.% 

(G’0=2.2 GPa) 

- 

No significant 

changes with 

the addition of 

filler 

(Tg0=58°C) 

𝜎𝐷𝐶=0.7 S/m 

for 5 wt.% 

↓T5% (air) with hybrid 

filler, -41°C for 5 wt.% 

(T5% 0=321°C) 

Nucleating effect of the 

filler, no changes in XC 

[233] 
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PU 
Clay-CNTs (22 

wt.%) 

↑EC/ρ and σC/ρ as 

↑wt.%, +33% and 

+22%, respectively, 

for 1 wt.% 

(EC0/ρ0=0.33 

MPa/kgm3, σC0/ρ0=9.8 

kPa/kgm3) 

- - - 
↑Ti (N2)  as ↑wt.%, +8°C 

for 1 wt.% (Ti 0=274°C) 
[229] 

PET 
Clay-CNTs 

(58.1 wt.%) 
- 

↑E’ @RT a 

+27% and 

+46% for 1 

and 3 wt.%, 

respectively 

(E’0=260 Pa) 

↓Tg as ↑wt.%, 

≈-5°C for 3 

wt.% 

(Tg0=68°C) 

𝜎𝐷𝐶=3x10-7 

S/m for 3 

wt.%; 𝜙𝐶=0.57 

wt.% (0.33 

wt.% CNTs) 

↑T5% (air) as ↑wt.%, 

+16°C for 2 wt.% 

(T5% 0=382°C) 

Nucleating effect of the 

filler, no significant 

changes in XC 

[231] 
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Epoxy 

Clay-CNTs 

(30 wt.%) 

↑ET and σT as ↑wt.%, 

+135% and +87%, 

respectively, for 5 

wt.% (ET0=0.9 GPa 

and σT0=34 MPa), ↑ 

mHV as ↑wt.%, +14% 

for 5 wt.%, 

(mHV0=14.6) 

- - - - [303] 

PVDF 
2D SiC-CNTs 

(27 wt.%) 
- - - 

𝜎𝐴𝐶=10-2 S/m 

for 8.8 wt.%, 

𝜙𝐶=5.65 wt.% 

(1.53 wt.% 

CNTs) 

↑𝜀𝑟 for high charge 

storage capacitors, or ↑𝜀𝑟 

and ↑ loss tangent for EM-

wave absorption 

[236] 



59 
 

Epoxy 

2D SiC-CNTs 

(-) 

- - - 

Electrically 

conductive 

composites 

for 0.6-1.2 

wt.% 

in situ strain sensing 

(identification of elastic 

and plastic behaviour 

during tensile test) 

[223,

297] 

PVDF 

2D SiC with 

CNTs in one or 

both faces 

(-) 

- - - 

𝜎𝐴𝐶=10-3 S/m 

for 1.5 vol.%, 

CNTs, 𝜙𝐶=0.7 

vol.% CNTs 

(one side), 

𝜎𝐴𝐶=10-2 S/m 

for 2.25 vol.% 

CNTs, 𝜙𝐶=1.47 

vol.% CNTs 

(both sides) 

𝜙𝐶  can be adjusted by 

controlling the synthesis 

of CNTs on SiC: CNTs 

grown on one side or on 

both sides 

[222] 
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PVDF 
GNPs-CNTs (52 

wt.%) 
- - - 

𝜎𝐴𝐶=10-4 S/m 

for 6.6 wt.% 

↓Ti  with hybrid filler, -

15°C for 6.6 wt.%, 

(Ti 0=464°C) 

Reduced XC, competition 

between nucleating effect 

and restricted motion of 

polymer chains 

[227] 

Epoxy 

GNPs-CNTs 

(48 wt.%) 

↑ET and σT as ↑wt.%, 

+40% and +36%, 

respectively, for 0.5 

wt.% (ET0=2.2 GPa 

and σT0=50 MPa), 

similar 𝜀𝑏 to that of 

neat epoxy 

- - 

Electrically 

conductive 

composites 

for 0.5 wt.% 

in situ strain sensing 

(identification of elastic 

and plastic behaviour 

during tensile test) 

[237,

297] 
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Epoxy 

Alumina 

microspheres-

CNTs 

(20 wt.%) 

- - 

No significant 

changes up to 

0.15 wt.% 

CNTs, ↑ for 

higher wt.%, 

+46°C for 0.36 

wt.% 

(Tg0=74°C) 

↑k and 𝛼 as 

↑wt.%, +130% 

and +115%, 

respectively, 

for 0.15 wt.% 

CNTs (k0=0.17 

W/mK, 

𝛼0=0.13 

mm2/s) 

- [301] 

PVA 

Silica 

microspheres-

CNTs (33.6 

wt.%) 

- - - 

𝜎𝐴𝐶=10-2 S/m 

for 20 wt.%, 

𝜙𝐶=0.62 wt.% 

(0.20 wt.% 

CNTs), 

- [287] 
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Epoxy 

Alumina 

microspheres-

CNTs with 

different AR: 

500, 1200, 

2000 and 3200 

(14, 25, 26 and 

62.5 wt.%, 

respectively) 

↑ET and σT with hybrid 

filler addition for all 

AR, +27% and +38%, 

respectively, for 0.5 

wt.% hybrid with 

AR=2000 (26 wt.% 

CNTs) (ET0=2.2 GPa 

and σT0=50 MPa) 

- - 

𝜙𝐶=0.27, 0.24, 

0.12 and 0.25 

wt.% CNTs for 

hybrids with 

AR of 500, 

1200, 2000 

and 3200, 

respectively 

For composites with 

hybrids with AR of 2000 

and 3200: in situ strain 

sensing (identification of 

elastic and plastic 

behaviour during tensile 

test) 

[297] 

PVDF 

BaTiO3 

microspheres-

CNTs 

(11 wt.%) 

- - - - 
↑𝜀𝑟 and ↑ loss tangent as 

↑wt.%, 𝜙𝐶=10 vol.% 
[296] 
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Epoxy 

Alumina 

microspheres-

CNTs 

(20 wt.%) 

↑ET and ↓𝜀𝑏 as ↑wt.%, 

+26% and -20%, 

respectively, for 10 

wt.%, (ET0=2.12 GPa 

and 𝜀𝑏0=n.a.),  similar 

σT to that of neat 

epoxy 

- - 

𝜎𝐴𝐶=10-3 S/m 

for 10 wt.% (2 

wt.% CNTs), 

𝜙𝐶=0.76 vol.% 

CNTs (1.3 

wt.% CNTs), 

↑k and 𝛼 as 

↑wt.%, +56% 

and +92%, 

respectively, 

for 10 wt.% 

(k0=0.25 

W/mK, 

𝛼0=0.147 

mm2/s) 

↑𝜀𝑟 and ↑ loss tangent as 

↑wt.% 
[304] 
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PU 

Stainless steel 

nanospheres-

CNTs 

(-) 

↑ET and σT with hybrid 

filler, +34% and 

+19%, respectively, 

for 5 wt.% (ET0=2.18 

GPa and σT0=52.5 

MPa) 

- - - - [290] 

Epoxy 

Alumina 

microparticles-

CNTs 

(60 wt.%) 

↑ET and σT with hybrid 

filler, +47% and 

+34%, respectively, 

for 1 wt.% (ET0=1.12 

GPa and σT0=19.6 

MPa), similar 𝜀𝑏 to 

that of neat epoxy 

- - - - [294] 
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HDPE 

Alumina 

microparticles-

CNTs 

(60 wt.%) 

↑ET and σT,  ↓𝜀𝑏 as 

↑wt.%, 

+100% and +66%, -

87% respectively, for 

5 wt.% (ET0=0.36 GPa 

and σT0=17.5 MPa, 

𝜀𝑏0=67%) 

- - - - [305] 

Epoxy 

Alumina 

microparticles-

CNTs 

(12 wt.%) 

↑ET and σT with 

addition of hybrid, 

+39% and +30%, 

respectively, for 3 

wt.% (ET0=1.92 GPa 

and σT0=51 MPa) 

similar 𝜀𝑏 to that of 

neat epoxy 

- 

↑Tg as ↑wt.%, 

+25°C for 5 

wt.% 

(Tg0=101°C) 

↑k as ↑wt.%, 

+20% for 5 

wt.% (k0=0.2 

W/mK) 

↓CTE as ↑wt.% in both the 

glassy and rubbery state, 

-11.5% and -3%, 

respectively, for 5 wt.% 

[298] 
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Epoxy 

Alumina 

microparticles-

CNTs 

(12 wt.%) 

↑EF and σF, ↓𝜀𝑏  with 

addition of hybrid, 

+35% and +30%, 

-38%, respectively, for 

5 wt.% (EF0=3.7 GPa, 

σF0=102 MPa, 

𝜀𝑏0=9%) 

- - - ↑𝜀𝑟 as ↑wt.% [299] 

Epoxy 

Alumina 

microparticles-

CNTs 

(12 wt.%) 

↑EC and σC with 

addition of hybrid, 

+148% and +117%, 

respectively, for 5 

wt.% (EC0=1.04 GPa 

and σC0=33.7 MPa) 

- - - 

↑Ti  with hybrid filler, 

+25°C for 5 wt.%, 

(Ti 0=295°C) 

[300] 

The sub-index 0 indicates the value for the neat polymer 

HV: Vicker’s hardness, mHV: Vicker’s microhardness  

ET: Tensile modulus, σT: Tensile strength, 𝜀𝑏:  Strain at break  
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EF: Flexural modulus, σF: flexural strength, 𝜀𝑏:  Strain at break. 

EC: Compressive modulus, σC : Compressive strength  

ρ: Density, AR: aspect (length to diameter) ratio 

E’: Storage modulus, Tg: Glass transition temperature  

𝜎𝐷𝐶: Direct current (DC) electrical conductivity, 𝜎𝐴𝐶: Alternating current (AC) electrical conductivity, 𝜙𝐶 : Percolation threshold 

k: Thermal conductivity, 𝛼: Thermal diffusivity, T5%: Temperature at which a 5 wt.% loss takes place, Ti=Starting temperature for 

decomposition 

XC: Degree of crystallinity, 𝜀𝑟: Dielectric permittivity 

CTE: Coefficient of thermal expansion 
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3 How do graphite nanoplates affect 

the fracture toughness of 

polypropylene composites? 

3.1  Introduction 

In the last decade, graphene-based nanostructures have been extensively studied 

as part of a novel generation of composite materials. Their outstanding mechanical 

properties and extraordinary surface area make these nanoscaled materials ideal 

as nanofillers. Although recent efforts have been made to scale-up the production 

of graphene [1] or modified graphene [2], only graphite nanoplates (GNPs), which 

consist of stacked graphene layers bound to each other by van der Waals forces, 

can currently be produced at the scales needed for use in composite materials and 

structural applications. 

The addition of a small amount of nanofiller can lead to a significant improvement 

in mechanical properties. Stiffness and strength can be enhanced when nanofillers 

are homogeneously dispersed [3] and a strong interphase between nanofillers and 

polymer matrix exists [4,5]. Tremendous research effort have been invested to 

determine how the nanofiller affects the mechanical and fracture behaviour of a 

polymer [6–11]. The most effective way to toughen semi-crystalline polymers is 

the cavitation or nucleation of voids [12,13]. One approach to achieve this 

toughening effect is the addition of nanoparticles. However, if these nanoparticles 

have a strong interaction with the host matrix then the cavitation or debonding 

and consequent void nucleation could be hindered [14]. Such materials would have 

extrinsic rather than intrinsic toughening mechanisms, i.e., crack bridging [15], 

crack deflection [16], etc. 

One of the main problems in analysing the effect of a nanofiller in a thermoplastic 

matrix is the difficulty in characterizing the fracture toughness. In the case of 

ductile polymers, fracture toughness is generally determined by the J-integral 

versus crack growth resistance (J–R) curve, in which the value of the J-integral is 

plotted against the crack extension. To measure the J–R curve, a multi-specimen 
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technique is commonly used [17]. A set of pre-cracked test specimens of the same 

size, geometry and material are tested until the crack grows to a certain length. As 

a single test is needed for each point of the J–R curve, a large number of tests and 

specimens are needed to obtain the whole curve. Additionally, in the case of 

polypropylene (PP), measurement of the crack extension is extremely difficult 

because of the presence of fine-scale fracture-surface features or microstructural 

inhomogeneities [18]. To overcome these drawbacks, Sharobeam and Landes 

proposed the Spb parameter method [19–21], in which the crack length is estimated 

indirectly throughout the whole mechanical test; only one single pre-cracked 

specimen plus one notched specimen are used to measure the whole J–R curve. 

This low material consumption makes this method ideal for materials produced in 

small batches, such as nanocomposites. 

In the work presented here, we analyse the toughening effect of graphite 

nanoplates in a polypropylene matrix made by a simple extrusion-compounding 

process, followed by an injection-moulding process. The Spb parameter method is 

used to analyse the fracture toughness of the resulting PP composites. To identify 

the plastic deformation zone that appears ahead of the crack tip in the specimen 

during the fracture test, a full-field strain analysis is carried out by digital image 

correlation. The fracture mechanism is identified by scanning electron microscopic 

(SEM) analysis of the fracture surfaces. 

3.2  Methods 

3.2.1 Materials and preparation of nanocomposites 

A commercial polypropylene homopolymer (Borealis HB601WG), with a density of 

900 kg/m3 and a melt flow index (230°C/2.16 kg) of 2.2 g/10 min, was used for the 

production of PP/GNP nanocomposites. Graphite nanoplates were purchased from 

Avanzare (Logroño, Spain) and used with no further treatment. The individual 

GNPs have a particle size of 2 × 5 µm and are less than 10 nm thick. 

Compounding and injection molding 

Polypropylene masterbatch with a content of 5 wt.% GNP was prepared using an 

industrial extrusion-compounding machine (Coperion ZSK 26, 26 mm diameter co-
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rotating twin-screw). The polymer pellets and the GNPs were introduced through 

the extruder’s main gravimetric feeder and side-feeder, respectively. The screw 

speed was 500 rpm and the temperature of mixture was increased from 170 °C in 

the feeding zone up to 190 °C at the nozzle. The compounding was extruded 

through a 2 mm diameter die at a constant output rate of 5 Kg/h, producing 10 kg 

of masterbatch. The extruded material was quenched immediately in a water bath 

at room temperature, dried, and cut into pellets. 

Masterbatch pellets were dried at 80 °C for 4 h prior to processing. Composites of 

different GNP weight fractions were prepared by diluting the masterbatch with 

neat PP using an injection moulding machine (JSW 85 EL II) with a 35 mm 

diameter reciprocating screw, at a screw speed of 120 rpm. The temperature 

profile was increased from 225 °C at the barrel up to 255 °C at the nozzle. A 

specific steel mould was used at 30 °C to obtain normalized specimens for flexural 

tests, by following the specifications of the standard ISO 178, in the form of 

prismatic bars with dimensions of 125 ×13 × 5 mm3. 

3.2.2 Analysis of the particle size and dispersion of the 

graphite nanoplates 

SEM analysis of the as received GNP was performed using an EVO MA15 Zeiss 

scanning electron microscope. The agglomerate size distribution was analysed 

with the help of the image processing software ImageJ. The lateral size and the 

thickness of a minimum of 200 GNP agglomerates were measured. For the analysis 

of the degree of dispersion, samples of the produced materials were cooled in 

liquid nitrogen and immediately broken at high speed by impacting with a Charpy 

pendulum. The cryo-fractured surfaces were analysed by using scanning electron 

microscopy (EVO MA15, Zeiss) after they had been sputter-coated with a thin layer 

of gold. 

3.2.3 Differential scanning calorimetry and dynamic 

mechanical analysis 

Differential scanning calorimetry (DSC) was performed on a DSC Q200 (TA 

Instruments), to obtain information about the effect of the nanofiller on the 
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crystallization behaviour of the PP matrix. During the measurements, the samples 

were heated from 20 to 220 °C at a rate of 10 °C/min, held at 220 °C for 0.5 min to 

eliminate any previous thermal history, and then cooled to 20 °C at a rate of 10 

°C/min. Then, after being kept at 20 °C for 0.5 min, the samples were heated to 220 

°C at a rate of 10 °C/min. 

Dynamic mechanical analysis (DMA) were carried out by using specimens with 

dimensions of 17.5 × 13 × 5 mm in single cantilever mode. The tests were 

performed on a Q800 (TA Instruments) in a temperature range of –150 to 150 °C, 

at a frequency of 3 Hz, and a heating rate of 1.5 °C/min. 

3.2.4 Mechanical characterization 

Characterization of flexural properties was conducted under ambient conditions 

by using a Zwick Roell Z 10KN. At least ten specimens of each composition were 

measured. Tests were carried out following standard ISO 178 with a cross-head 

speed of 2 mm/min. Specimens were tested in a three-point bending configuration 

with 57 mm between supports. 

The characterization of the fracture behaviour of PP nanocomposites was carried 

out by using a three-point bending test, at room temperature, using an Instron 

3384 at a cross-head speed of 1 mm/min. Single-edge-notch bending (SENB) 

specimens, with dimensions of 62.5×13×5 mm3, were tested with a span-to-width 

ratio of 4. To apply the Spb parameter method two types of specimens were tested, 

reference and pre-cracked specimens. A schematic representation of the SENB 

specimens tested is shown in Figure 3.4a. In this work, one reference and three 

pre-cracked specimens were tested for each GNP concentration. All the specimens 

had blunt notches machined with a disk-cutting machine. In the case of the 

references specimens the blunt notch length, ab, was 10.4 ± 0.1 mm. For the pre-

cracked specimens the blunt notch length, ab, was 3.3 ± 0.1 mm. Then, in the pre-

cracked specimens, the notch was sharpened by tapping with a razor blade to 

extend the crack length with a sharp crack with a length, asp, of 1 mm. Thus, the 

pre-cracked specimens had total crack lengths, ap, of 4.3 ± 0.2 mm, as was 

confirmed by examining every specimen with an optical microscope. A detailed 

explanation of the Spb parameter method can be found in [19–22]. 
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3.2.5 Fractographic analysis and digital image correlation 

To perform a digital image correlation (DIC) study, one side of every SENB 

specimen was painted white and then lightly sprayed with black paint to obtain the 

random speckle pattern that is required for DIC analysis. Images were taken every 

3 s during the test. The area of analysis (13×6.5 mm2) was located immediately 

ahead the root of the blunt notch (Figure 3.4a). The acquired images were 

evaluated by using the Vic-2D 2009 Digital Image Correlation software (VicSNAP, 

Correlated Solutions Inc., Columbia, SC, USA). 

After fracture tests, specimens were cooled in liquid nitrogen and immediately 

broken at high speed by impacting with a Charpy pendulum. This procedure 

ensured that brittle fracture surfaces were generated, to allow the easy 

identification of the ductile fracture surface generated during the fracture test. The 

surfaces of broken specimens were analysed by using scanning electron 

microscopy after they had been sputter-coated with a thin layer of gold.  

3.3  Results and discussion 

3.3.1 Agglomerate size distribution and dispersion of the 

graphite nanoplates 

Morphology of the as-received GNPs was characterized by SEM (Figure 3.1a). It 

was observed that GNPs were in an agglomerated state. The circle-equivalent 

diameter was calculated from the area of these GNP agglomerates. In the inset of 

Figure 3.1a is shown the equivalent diameter and thickness distribution. It was 

found that the agglomerates have an average equivalent diameter of 21 µm and an 

average thickness of 11 µm. 

The cryogenically fractured surfaces of neat PP and the nanocomposites with 0.5 

and 5 wt.% of GNPs are presented in Figure 3.1b-d. In the surface of a neat PP 

sample, the presence of some particles composed of silicon and oxygen among 

other elements can be observed; these elements may have been used to enhance 

the processability or heat stability of the particles. Figure 3.1c reveals that in the 

material with 0.5 wt.% of GNPs, the agglomerates have not been dispersed into 

individual plates, however they are well distributed within the matrix. In the case 
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of the nanocomposite with 5 wt.% GNP (Figure 3.1d), the highest nanofiller 

content produced in this study, contains more and bigger GNP agglomerates (with 

a diameter of between ca. 20 and 50 μm) than those observed in samples with 

lower GNP amount, as expected [7,23,24]. 

 

Figure 3.1 SEM images of a) the as-received GNP. The inset shows the equivalent diameter and 

thickness distribution of the GNP agglomerates. b) The cryogenically fractured surfaces of PP and 

nanocomposites with c) 0.5 and d) 5 wt.% of GNP are shown. In c) a good distribution of the GNPs 

can be seen, and small agglomerates are observable. However, in d) large GNP agglomerates can be 

observed. 

This analysis of the dispersion degree seems to indicate that the processing 

requires other parameters to achieve a higher dispersion degree of the 

agglomerates (e.g., melt temperature, mixing time, screw rotational speed, screw 

profile and diameter) to promote their break up [25–29]. Another approach to 

achieve the dispersion of the agglomerates would be to maintain the processing 

parameters but combining with other techniques as three roll mill, as suggested by 

Pötschke et al [30] or adding extra steps (i.e., extrusion compounding), However, it 

has to be taken into account that re-agglomeration of the nanofiller can occur, 

c) 0.5 wt.% GNP

25 μm 

d) 5 wt.% GNP

25 μm 

b) 0 wt.% GNP

25 μm 

a)

50 μm 

0 10 20 30 40 50
0

5

10

15

20

25
F

re
q

u
e

n
c
y
 (

%
)

Dimension (m)

 Eq. diameter

 Thickness

 

 



90 
 

being thermally-driven and shear-induced during the re-melting of the material. 

This effect has been reported by Alig et al.[24] and Jamali et al.[31]. 

3.3.2 DSC and DMA measurements 

The thermograms obtained from the DSC measurements are shown in Figure 3.2a. 

The melting and crystallization temperatures were taken as those corresponding 

to the maximum of the melting and crystallization peaks, respectively, of these 

thermograms. There is no change either in the crystallization (123.9 ± 0.3°C) or the 

melting (163.8 ± 0.6°C) temperature and peak profiles upon the addition of 

nanofiller. The degree of crystallinity (Xc) of the nanocomposites was calculated by 

following (Eq. 3.1) [32,33]: 

𝑋𝐶(%) =
∆𝐻𝑠

(1 − 𝜙)∆𝐻0
× 100 Eq. 3.1 

where ΔHs is the heat of fusion of the measured sample (obtained by integration of 

melting peaks [34]), ϕ is the weight fraction per unit of mass of the nanofiller, and 

ΔH0 is the heat of fusion of 100 % crystalline PP, taken as 209 J/g [32,35]. 

The degree of crystallinity of the matrix remained unaffected by the addition of 

nanofiller, with a value of 26.6 ± 0.3 % for all the different weight fractions. These 

results agree with previously reported results and confirm that, although GNPs 

may act as a nucleating agents for PP crystallization [33], Xc does not change with 

the addition of the nanofiller. The results obtained by DSC may indicate that the 

GNP–PP interphase does not significantly affect the crystallization or melting 

process, thus the intrinsic properties of the PP matrix do not seem to be affected by 

the addition of GNPs.  

Results obtained from the dynamic mechanical analysis are shown in Figure 3.2b. 

The three characteristic relaxations of polypropylene, α, β, and γ, have been 

observed for the loss tangent, tan δ [36]. The α relaxation peak is related to the 

motion within the crystalline phase of PP, particularly to the diffusion of defects in 

the crystals [36]. The β relaxation peak is associated with the glass transition of the 

amorphous fraction of PP. Finally, the γ relaxation peak varies little with the 
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crystallinity and has been attributed to local motions of the methyl groups within 

the amorphous phase of PP [36]. No significant changes are found in the 

relaxations described above for the different nanocomposites. For the 

nanocomposites with high GNP loads only, tan δ shows higher values, mainly after 

the γ peak. This rise in the tan δ could be associated with the mobility of the 

polymer chains in the surroundings of the GNP agglomerates, due to poor 

interaction between the nanofiller and the host matrix. 

 

Figure 3.2 a) DSC thermograms showing heating and cooling curves of GNP/PP nanocomposites. b) 

Storage modulus and tan δ (at a frequency of 3Hz) of the GNP/PP nanocomposites as a function of 

temperature. 

The amount of GNP present in the nanocomposite slightly affects the storage 

modulus at low temperatures. However, after the modulus drop due to the γ and β 

peaks, the storage modulus is quite similar in all nanocomposites. No significant 

modification of the polymeric matrix was detected due to the addition of GNP. 

Similar behaviour was also observed in other thermoplastic/clay composites [37]. 

In the case of a PP/GNP nanocomposite [32], a reduction in the storage modulus 

was reported. In both cases there was a slight variation of the crystallization and 

glass transition temperatures, which was explained in terms of a weak particle–

matrix interface and nanofiller agglomeration. 

3.3.3 Flexural and fracture toughness tests 

Results obtained from three-point-bending tests (Figure 3.3a) show no significant 

effect on the flexural and fracture toughness upon the addition of the GNP to the PP 

matrix, which could be attributed to a low dispersion degree of the nanofiller 

and/or poor interfacial bonding and interaction between the polymeric matrix and 
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the nanofiller [4]. However, there was a slight decrease in the flexural strength and 

modulus, for GNP content up to 1 wt.%, being this GNP amount a transition point 

as for higher GNP amount, both properties increases. 

The average value of the fracture toughness JIC calculated from the three specimens 

tested for each GNP loading is presented in Figure 3.3b. The analysis of the fracture 

behaviour of the GNP/PP nanocomposites shows that increasing the amount of 

GNPs, up to a maximum of 2.5 wt.%, increases the energy required for the 

initiation of the crack growth. An improvement of 25 % is achieved for a loading of 

1 wt.% of GNPs. However, a further increase in the proportion of GNPs leads to a 

significant decrease in this energy; the 5 wt.% GNP nanocomposite has a fracture 

toughness that is 20 % lower than that of neat PP. This decrease in mechanical 

properties for high volume fraction is expected and it is strongly related with the 

poor dispersion of the nanofiller in the matrix, as is widely reported in the 

literature [3,5].  

 

Figure 3.3 Normalized flexural modulus and strength as a function of the nanofiller content for the 

GNP/PP nanocomposites a). Crack-growth initiation energy, JIC, for the GNP/PP nanocomposites b). 

The fracture toughness increases for GNP loadings up to 2.5 wt.%, reaching its maximum for the 

nanocomposite with 1 wt.%. The fracture toughness of the material with the highest amount of 

GNPs has a value that is a 20 % lower than that of the neat PP. 

3.3.4 DIC study and SEM analysis of the fracture surfaces 

The strain in the principal direction, ε1, was calculated by using digital image 

correlation images from the pictures taken during the fracture test. This is the 

direction in which the major principal stresses take place, and in this case, is 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

0,5

0,6

0,7

0,8

0,9

1,0

1,1

E
F(pure PP)

=385 MPa

N
o

rm
a

liz
e

d
 f

le
x
u

ra
l 
m

o
d

u
lu

s
, 

E
F

 /
 E

F
p
u

re
 P

P

Nanofiller (wt.%)

 Modulus

0,90

0,95

1,00

1,05

1,10

1,15

N
o

rm
a

liz
e

d
 f

le
x
u

ra
l 
s
tr

e
n

g
th

, 

F

 /
 

F
p
u

re
 P

P


F(pure PP)

=13.1 MPa

 Strength

a)

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

0,50

0,75

1,00

1,25

1,50

J
IC (pure PP)

=5.4 kJ/m
2

N
o

rm
a

liz
e

d
 f

ra
c
tu

re
 t

o
u

g
h

n
e

s
s
, 

J
IC

 /
J
IC

 p
u

re
 P

P

Nanofiller (wt.%)

 

 

b)



93 
 

approximately equal to the longitudinal direction of the single edge-notched bent 

specimen. Comparison between the full-field strain measurements obtained for PP 

(Figure 3.4b) and the nanocomposites with 1 and 5 wt.% of GNPs (Figure 3.4c and 

d, respectively), at the moment of the fracture initiation, shows a change in size of 

the deformation zone ahead the crack tip. It must be taken into account that as the 

DIC images were obtained during the test, thus the strain provided by them has 

both an elastic and plastic component. However, the Spb parameter method, for the 

identification of the crack growth initiation, is correctly applied when plastic 

behaviour is fully achieved [19,20], so that the plastic component can be assumed 

to be the predominant component of the deformation shown in Figure 3.4. 

Additionally, for this comparison it was assumed that the plastic zone has a 

cylindrical shape along the thickness of the single edge-notched bend specimen, 

although it is well known that the shape of this zone changes with the transition 

from plain stress (at the specimen surface) to plain strain conditions (in the central 

interior portion of the sample) [38]. For comparison purposes, we have analysed 

the size of a region with a fixed deformation (4.5% for all the samples). 

In the case of neat PP, the size of the region with a deformation smaller or equal to 

4.5% is 90 mm3 (Figure 3.4b). The size of this region increases by 35%, up to 123 

mm3, in the nanocomposite with 1 wt.% of GNPs (Figure 3.4c). This increase in size 

may indicate that a large amount of plastic strain took place in the zone ahead of 

the crack tip. This result seems to be in agreement with those obtained from the 

flexural characterization; the nanocomposite with 1 wt.% of GNPs has the lowest 

value of strength and modulus out of neat PP and all our nanocomposites, which 

may suggest a lower plastic resistance [13]. In the case of the nanocomposite with 

5 wt.% of GNPs (Figure 3.4d), the size of this region decreases by 12 % compared 

to the case of neat PP, with a size of approximately 80 mm3.  
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Figure 3.4 Schematic representation of the two types of single-edge-notch bending specimens 

tested for the application of the Spb parameter method. The insets show the differences between the 

reference and the pre-cracked specimen. The reference specimen has a blunt notch with a length 

ab=10.4 mm and the precracked specimen has a blunt notch with a length ab=3.3 mm plus a sharp 

pre-crack with a length of asp=1 mm, giving a total crack length ap=4.3 mm. The red rectangle is the 

area of interest (AOI) analyzed by digital image correlation. The principal direction is approximately 

equal to the longitudinal direction of the single edge-notched bend specimen. The strain field in the 

principal direction, ε1, was obtained from the DIC study at the moment of fracture initiation during 

the fracture toughness tests for neat PP b), nanocomposite with 1 wt.% of GNP c); the material with 

the highest fracture toughness, and the 5 wt.% GNP nanocomposite d); the material with the lowest 

fracture toughness. 

A detailed analysis of the fracture surfaces of neat PP and nanocomposites was 

performed by using scanning electron microscopy. At low magnification, all the 

materials tested appear to have the same fracture surface features. As an example, 

the fracture surface of neat PP and the nanocomposite with 0.5 wt.% GNP is shown 

in Figure 3.5a and b. The region of the surface ahead the initial pre-crack can be 

divided into three different zones. First, there is a zone characterized by stretched 

polymeric fibrils (zone 1 in Figure 3.5a and b). Immediately after this first zone, 

there is a region where voids in the polymer are clearly observable (zone 2 in 

Figure 3.5b and c). Finally, a third zone with a smooth surface is observed, which is 

representative of a brittle fracture (zone 3 in Figure 3.5c).  
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Figure 3.5 Fracture surface of neat PP a) and 0.5 wt.% GNP/PP nanocomposite (a–c). The white 

arrow indicates the crack-growth direction, the dashed line indicates the transition between the 

ductile tearing zone 1 and the plastic deformation zone ahead of the crack tip (zone 2). An area 

similar to that marked by the square A is shown in c). The second line indicates the transition 

between the plastic deformation zone (2) and the unaffected polymer (3). An area similar to that 

marked by the square B is shown in d). 

The first two regions are characteristic of the fracture mechanism of PP known as 

crazing, which leads to the ductile tearing of the polymer by void nucleation and 

growth [12,38,39]. In neat PP, the voids that were nucleated at the intercrystalline 

regions of the polymer are the weakest points of the material [12,40]. The fracture 

surfaces of the neat PP and the nanocomposite with the highest fracture toughness, 

1wt.% GNP, were compared (Figure 3.6a and b). By the addition of 1 wt.% GNP, the 

stretched fibrils generated during the fracture process are oriented in the crack-

propagation direction; in addition to this it seems that there is a higher number of 

fibrils with a slightly longer length than is the case for neat PP. This result seems to 

indicate that these fibrils have been highly elongated up to failure, which leads to 

an improvement in fracture toughness due to the consumption of fracture energy 

[12,41]. The extensive plastic deformation suffered by the polymer in the region 
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ahead the crack tip can be noted from the DIC analysis, which shows a larger 

deformation area. As the DSC results do not show an increase in the degree of 

crystallinity, the apparently higher nucleation of voids and deformation of the 

polymer around them seems to be promoted by the addition of GNPs and the weak 

interface generated. In Figure 3.6c and d, it can be observed GNP agglomerates that 

have been debonded from the PP matrix. 

 

Figure 3.6 Ductile-tearing region (zone 1) in the fracture surface of the neat PP a), 1 wt.% GNP b) 

and 5wt.% GNP  c) nanocomposites. The arrow indicates the crack-growth direction. In b) the 

extensive plastic deformation of the fibrils can be observed. Large GNP agglomerates can be seen in 

c). In c) and d) debonded agglomerates in the 1 wt.% nanocomposites are shown. 

However, as the nanofiller content increases so does the number and/or size of 

agglomerates, as discussed earlier. This result can be seen in Figure 3.6c, where the 

fracture surface of the nanocomposite with 5 wt.% of GNP is shown. The surface is 

similar to that of the neat PP but contains GNP agglomerates, which seems to 

reduce the number of stretched polymeric fibrils; these are shorter and not 

oriented in the crack-growth direction (compared to the fibrils of the 1 wt.% GNP 

nanocomposite fracture surface), and thus do not provide evidence of extensive 
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plastic deformation. This result may indicate that as these bigger agglomerates are 

debonded, the stretched polymer around the agglomerate fails prior to experience 

extremely high elongation, because its deformability is restricted by the 

neighbouring agglomerates. The presence of large agglomerates within the 

polymeric matrix may be responsible for the reduction in deformability, 

represented by strain at break, of nanocomposites [10,42,43]. This result is in good 

agreement with the results obtained from the DIC analysis, which shows a 

reduction in the size of the plastic deformation zone for the nanocomposite with 5 

wt.% GNPs. Thus, an extensive plastic deformation upon the addition of the 

optimal amount of GNPs, which is promoted by nucleation of voids, can be 

identified as the mechanism responsible for the improvement of the fracture 

toughness. 

3.4  Conclusions 

Graphite nanoplates were added to the PP matrix by following an industrial 

approach known as the masterbatch technique. The addition of GNPs does not 

affect the PP matrix, as all the nanocomposites have practically the same glass 

transition, melting, and crystallization temperatures as well as degrees of 

crystallinity. The results obtained from the flexural tests show slight or no 

improvement in strength and modulus upon the addition of the nanofiller, which 

could be attributed to the weak interactions between filler and matrix and also the 

presence of GNP agglomerates and/or a poor dispersion of the filler. 

To measure the fracture toughness, the load separation Spb parameter method was 

successfully applied in nanocomposites for the first time. The fracture toughness, 

measured as JIC, is improved by the addition of GNPs up to a value of 2.5 wt.%. The 

highest fracture toughness value was obtained for the 1 wt.% GNP/PP 

nanocomposite (25% improvement over the neat PP specimens), which is also the 

material with the largest plastic deformation zone. At a 5 wt.% content of GNPs, 

the fracture toughness sharply decreases, which is attributed to the presence of 

large GNP agglomerates that constrain the plastic flow of polymeric fibrils [42].  

The presence of the GNPs promotes an intrinsic toughening mechanism that is 

mainly dependent on the matrix nature. The mechanical properties of the GNPs 
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seem to be irrelevant; only their weight fraction, dispersion, and/or size are 

important in this mechanism. The addition of GNPs, up to an optimal amount, 

promotes the void nucleation, which then triggers the plastic deformation. 

However, for higher loadings, the GNPs are poorly dispersed, which has a 

detrimental effect on the fracture behaviour and makes the crack propagation 

easier. 
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4 The effect of a semi-industrial 

masterbatch process on the carbon 

nanotube agglomerates and its 

influence in the properties of 

thermoplastic carbon nanotube 

composites 

4.1  Introduction 

It has been reported that addition of a small amount of nanofillers can lead to 

significant enhancement of properties in polymeric materials. Consequently, 

extensive research has been carried out in the field of nanocomposites that consist 

of a polymeric matrix and carbon-based nanofillers, such as carbon nanotubes 

(CNTs) [1–3] and nanofibers [4,5], graphene [3,6,7], graphite nanoplates [8–10], 

among others. To take advantage of these nanofillers, a homogeneous dispersion of 

the nanofiller in the matrix is necessary [11]. For thermoplastic polymers, solution 

mixing [12] or in situ polymerization [13] are probably the most effective 

techniques for nanosized filler dispersion. However, these techniques require a lot 

of reagents (monomers, solvents, chemical products for functionalization), are 

very time consuming (solvent removal, polymerization reaction, functionalization 

or grafting reaction), and typically environmentally unfriendly. 

From an industrial perspective, melt compounding is a highly desirable processing 

technique approach to produce thermoplastic nanocomposites because it is 

compatible with conventional processing techniques used in the thermoplastic 

industry, such as extrusion or injection moulding. Most of the studies reported 

used injection-moulding machines and a few grams of material, the processing 

characteristics of which do not correspond to industrial equipment [14–23]. The 

injection pressure, mould temperatures, and volume of sample are some of the 

parameters that will affect the characteristics of the material obtained. For CNTs 

thermoplastic composites, these process parameters affects the dispersion of the 
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nanofiller on the polymer matrix: CNTs agglomerate disentanglement and 

orientation, break-up and orientation of dispersed individual CNTs [24,25], 

formation of new secondary agglomerates [26,27], etc.  For example, injection-

moulded samples use to have anisotropic properties dependant on the polymer 

chains and filler processing-induced orientation [28–30]. 

However, the majority of these studies only analysed the electrical properties of 

thin films of CNTs composites but just a few of them also included 

mechanical -tensile and flexural- properties (strength, modulus and/or strain at 

break) and impact resistance properties [31–34]. As it is well known, impact tests 

cannot evaluate how a material will resist crack initiation and growth when loaded 

at low speed, i.e. quasi-statically. Recently, we performed one of the few studies in 

fracture toughness with a PP matrix reinforced with graphite nanoplates (GNP) 

[35].  

In this work, we have prepared and characterized PP/CNTs composites made by 

direct dilution of a highly loaded masterbatch. A highly concentrated mixture of 

polymer and nanofiller (masterbatch) is produced by extrusion compounding, 

followed by a direct dilution to achieve the desired concentration by injection 

moulding of the required amount of masterbatch pellets into the polymer matrix to 

achieve the nanocomposite with the desired nanofiller content. The use of 

masterbatches is highly desired by plastic converters as it avoids the direct 

handling of hazardous materials, this is more remarked when dealing with CNTs 

and other nanomaterials. The effect of the direct dilution on the injection machine 

will be evaluated in the present work to determine the limitations and drawbacks 

of the proposed solution. The aim of the present work is to demonstrate the 

feasibility of using a direct dilution of a CNT masterbatch on an injection machine. 

In general in literature there are several examples that are focused on the 

determination on how the filler agglomerates undergo dispersion by rupture and 

erosion mechanisms, which usually occur simultaneously [14,36,37]. These 

processes are based on the determination of the optimal conditions in the 

extruder, optimizing temperatures, profiles, etc. [38,39]. Although these studies 

have demonstrated that optimal conditions resulted in better performances, the 

effect of the extra steps required and the costs makes this process not always the 
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most efficient. There are examples in literature that are focused on the 

determination of the use of the direct dilution of masterbatches in injection 

processes [40]. From an industrial point of view the elimination of extra steps in 

the use of nanocomposites is envisaged for the industry as it reduces costs and 

negative impacts. The present works aims to determine the potential use of direct 

dilution of masterbatches as a cost effective process for nanocomposites adoption.  

In our study the results pointed out some benefits of the direct dilution as the 

electrical conductivity obtained are among the highest described in literature for 

PP nanocomposites. 

The CNT dispersion was studied by scanning and transmission electron 

microscopy (SEM and TEM). The anisotropy of the injection-moulded specimens 

was analysed by measuring the electrical conductivity in three dimensions. 

Analysis of the fracture behaviour of the PP/CNTs composites produced was also 

carried out by applying the same method as in our previous work, the Spb 

parameter method [35]. The fracture study included a digital image correlation 

(DIC) analysis of the deformation zone in front of the crack tip, during fracture 

tests, and a fracture surface analysis by SEM. 

4.2  Experimental 

4.2.1 Materials 

Commercially available PP impact copolymer (Hifax EP3080), acquired from 

Lyondell Basell, with a density of 900 kg/m3 and a melt flow index (230°C/2.16 kg) 

of 7.5 g/10min (ISO 1133), was used for the production of the PP/CNTs 

nanocomposites. The commercially-acquired 90% purified multi-walled CNTs 

(NC7000), produced by catalytic chemical vapour deposition, were available 

commercially from Nanocyl S.A., and were used with no further treatment. The 

individual CNT had an average diameter of 9.5 nm and an average length of 1.5μm. 

Masterbatch production by extrusion-compounding 

A polypropylene masterbatch with 10 wt.% of CNTs was prepared by using an 

industrial extrusion-compounding machine (Coperion ZSK 26) equipped with a 26 
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mm diameter co-rotating twin-screw and with two Brabender gravimetric feeders. 

The optimal conditions were selected using different screw configurations, 

processing conditions and evaluating their results on CNT dispersion. 

Temperature profile and high shear screw profile were used to ensure proper 

dispersion. The polymer pellets and the powdery CNTs were introduced by the 

main feeder and the side feeder, respectively. The molten polymer and nanofiller 

were mixed at a screw speed of 500 rpm. The temperature of the resulting mixture 

was increased from 170°C in the feeding zone to 190°C at the nozzle. The 

compounding was extruded through a 2 mm diameter die at a constant output rate 

of 5 kg/h to give 10 kg of masterbatch. The extrudate strand was quenched 

immediately in a water bath at room temperature, dried and cut into small pellets. 

For the pure PP samples, PP pellets were also extruded following the same process. 

Sample preparation by injection-moulding 

Dog-bone shaped specimens (type 1A) for tensile tests, under ISO 527 [41,42], and 

specimens for flexural tests, under ISO 178 [43], were injected into a specific 

mould made in tool steel 1.2790, at a temperature of 30°C. The masterbatch pellets 

were dried at 80°C for 4 hours prior to processing. Composites were prepared by 

diluting the masterbatch with neat PP until the desired concentration (0.5, 1.0, 2.5 

and 5.0 wt.%) and the specimens produced by injection moulding through a JSW 

85 EL II injection machine with a 35 mm diameter reciprocating screw, at a screw 

speed of 131 rpm. The temperature of the mixture was increased from 225°C at 

the barrel to 255°C at the nozzle. Pure PP samples were also prepared using the 

extruded PP to be used as reference.  

4.2.2 Morphological analysis of the samples 

The microstructural analysis of the as received flexural test specimens was 

performed by scanning electron microscopy (Helios NanoLab 600i). To analyse the 

agglomerates in the transverse direction the specimen, two notches were 

machined on both sides of specimen to create a flat crack surface. The specimen 

was cooled in liquid nitrogen and immediately broken transversally into two 

halves at high speed by impacting it with a hammer. A similar process have been 

followed to analyse the agglomerates in the longitudinal direction of the specimen. 
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The surfaces of the broken specimens were analysed by SEM using both secondary 

and backscattered electron detectors (Figure 4.1). To study the CNTs agglomerates 

morphology, it has been measured from SEM micrographs the equivalent planar 

diameter d = (4×area/π)1/2, and the shape factor defined as: 

𝐹 =
4𝜋 𝑥 𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 Eq. 4.1 

Note that F ranges between 1 and 0. F=1 corresponds to a circle and it decreases as 

particles becomes elongated. Such measurements were performed parallel and 

perpendicular to the injection flow direction.  

Thin samples (40 nm thickness) were also prepared by ultra-microtomy under 

cryogenic conditions and observed by Transmission electron microscopy (TEM, 

JEOL-2000 FXIIa). 

4.2.3 Electrical conductivity characterization 

The electrical conductivity of the injection-moulded nanocomposites was 

measured in the three dimensions of the sample. To perform these measurements, 

cubic samples with a side of 5 mm were cut from the prismatic bars injected for 

flexural tests. The faces perpendicular to the desired direction, in which the 

electrical conductivity was to be measured, were subjected to a polishing process 

to ensure a smooth surface. The samples were then cleaned in an ultrasound bath 

with ethanol to remove the abrasive particles left behind as a result of the 

polishing process. The polished surfaces were coated with silver paint to ensure 

good contact between the sample surface and the electrode. The sample was 

sandwiched between two copper electrodes connected to a digital multimeter 

(Agilent 34410A 6 1/2 Digit multimeter). At least three samples were measured 

per material. The electrical conductivity (σ) was calculated following Eq. 4.2: 

𝜎 =
𝐿

𝑅𝐴
 Eq. 4.2 
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Where L is the length of the specimen (distance between the surfaces coated with 

silver paste), R is the resistance measured by the multimeter and A is the area of 

the sample (area of the faces coated with silver paste). 

4.2.4 Mechanical and thermal characterization 

Analysis of tensile and flexural properties was conducted under ambient 

conditions with a Zwick Roell Z 10KN. At least 10 specimens were measured for 

each composite. Tensile tests were carried out in accordance with standard ISO 

527 with an initial gauge length of 50mm and a crosshead speed of 1 mm/min 

during linear tensile stretching, which was increased to 50 mm/min until failure. 

Flexural tests were carried out in accordance with standard ISO 178 with a cross-

head speed of 2 mm/min. Specimens were tested in a three-point bending 

configuration with a distance of 57 mm between supports. 

Differential scanning calorimetry (DSC) measurements were performed on 

samples cut from the dog-bone specimens and measured on a DSC Q200 (TA 

Instruments). During analysis, samples were heated 20–220°C at a rate of 

10°C/min, held at 220°C for 0.5 min and then cooled to 20°C at a rate of 10°C/min. 

Then, after being kept at 20°C for 0.5 min, samples were heated to 220°C at a rate 

of 10 °C/min [35]. The crystallinity of the nanocomposites has been determined by 

the integration of the melting region of the DSC curve on the second heating curve 

in order to suppress any thermal history.  

Analysis of the quasi-static fracture behaviour of PP nanocomposites was carried 

out by following a three-point bending test, with a span to width ratio of 4, by 

using single edge-notch bending specimens with a length of 62.6 mm, a width of 13 

mm, and a thickness of 5 mm. To apply the Spb parameter, blunt-notched and pre-

cracked specimens have to be tested. A detailed explanation of the Spb parameter 

method can be found elsewhere [44–47]. 

To analyse the PP/CNTs nanocomposites, one blunt-notched reference specimen 

and two pre-cracked specimens were tested for each concentration. The reference 

specimens had blunt notches 10.5±0.1 mm in length, which were made with a disk-

cutting machine. The pre-cracked specimens were prepared from an initial blunt 



107 
 

notch, of 3.0±0.2 mm by sharpening the notch by tapping with a razor blade to 

extend the crack length to 3.9±0.2 mm. Fracture tests were performed by an 

universal electromechanical testing machine (Instron 3384) at room temperature 

and with a crosshead speed of 1 mm/min  [35,44]. 

4.2.5 Fractographic analysis and digital image correlation 

After fracture tests, the specimens were cooled down in liquid nitrogen and 

immediately shattered to generate a brittle fracture surface to allow easy 

identification of the ductile fracture surface generated during the fracture test. The 

surfaces of the broken specimens were sputter-coated with a thin layer of gold (~ 

20 nm) and analysed by SEM (EVO MA15, Zeiss) [35]. 

To identify the plastic deformation zone that is generated in front of the crack tip 

during the fracture toughness test, one side of every specimen was painted white 

and a random black speckle pattern was painted for DIC analysis [35]. Images were 

recorded every 3 s during the test. The area of interest was located immediately in 

front of the root of the blunt notch (13x6.5 mm2). Evaluation of the acquired 

images was carried out using the Vic-2D 2009 software (VicSNAP, Correlated 

Solutions Inc.). 

4.3  Results 

4.3.1 CNT dispersion and electrical conductivity 

SEM of the cryogenically fractured surface of all the samples were analysed. The 

neat PP sample showed some micron-scaled platelets. These platelets were 

composed of silicon and oxygen among other elements, which have been added to 

enhance the processability or heat stability of the raw material.  

For all the composite samples, CNT agglomerates were observed (Figure 4.1). The 

surface image of the 5 wt.% CNT composite is shown in Figure 4.1b, in which large 

agglomerates wide were observed. These agglomerates may have been formed 

during the re-melting corresponding to the injection-moulding step, as the re-

agglomeration process of CNTs can be thermally activated and accelerated by 

shear flow [37,48].  
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Interestingly, these agglomerates seem to have a preferred orientation as seen in 

Figure 4.1. It is well known that the injection process produces an anisotropy in 

the filler distribution, for CNTs [28–30], carbon nanofibres [21], talc [49], and 

short carbon and glass fibre [50] polymer composites. Because of the high shear 

forces produced during injection and the high viscosity of the molten polymer, the 

agglomerates seems to be elongated following the polymer flow [24]. The shape 

factor have been calculated for the 5 and 10 wt.% CNT samples. For the other 

materials, it have not been possible to find enough agglomerates to have a statistic.  

 

Figure 4.1 a) Scheme of the surfaces analyzed. b) and c) Backscattered electron SEM  micrographs of 

the cryogenically fractured surfaces of a 5wt.% CNTs specimen observed along and perpendicular 

to the injection direction, respectively. The CNTs agglomerates are clearly aligned along the 

longitudinal direction (red surface, X-axis). Inset shows a high-magnification image of an 

agglomerate. 

No significant changes have been found in the agglomerate size for both the 5 and 

10 wt.% CNT composites. As the 5 wt.% CNT sample have been diluted with raw 

PP, it seems that during the dilution process there are not build-up or destruction 

[26] of agglomerates. On the other hand, the shape factor remained unaffected by 

the dilution process, with a value of 0.4 and 0.8 along the longitudinal and 
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transverse direction respectively, for both 5 and 10 wt.% composites (Table 4.1 

and Figure 4.1a). This indicates a clear elongation of CNTs agglomerates along the 

injection flow direction (F=0.4) compared to the transverse direction (F=0.8), 

which is undoubtedly generated by the geometry of the injection process. 

Table 4.1 Size and shape factor of the CNTs agglomerates presented in the longitudinal (longit.) and 

transverse direction (trans.) 

Material Direction Agglomerate size (µm) Shape factor 

PP + 5 CNTs Longit. 40.8 ± 13.7 0.42 ± 0.07 

PP + 10 CNTs Longit. 41.8 ± 15.5 0.44 ± 0.08 

PP + 5 CNTs Trans. 45.2 ± 20.8 0.81 ± 0.03 

PP + 10 CNTs Trans. 44.1 ± 17.4 0.80 ± 0.04 

 

The TEM micrographs confirmed a good dispersion and homogeneous distribution 

of the CNTs within the composite for all the samples (Figure 4.2). No significant 

changes have been found for the agglomerates presented in the undiluted and 

diluted samples indicating that the direct dilution of the masterbatch on the 

injection process results effective. Thus, we can conclude that the presented 

strategy can be directly implemented by the plastic sector as no specific dispersion 

approaches are required. The benefits of using masterbatches in direct dilution 

had been already highlighted in the introduction. 
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Figure 4.2 TEM micrograph of a thin film obtained by ultra-microtomy of nanocomposite with 10 

wt.% concentration. The micrograph shows the dispersion degree of the CNTs obtained in the 

masterbatch with individual tubes and small aggregates and the presence of larger aggregates 

As expected, CNT orientation affects the properties of the sample. For electrical 

conductivity, highly anisotropy behaviour has been measured. Depending on the 

direction of the sample (Figure 4.3), the amount of filler at which the material 

experiences a sharp increase in the electrical conductivity, known as the 

percolation threshold, is 2.5-5 wt.% of CNTs for the X and Y direction and 5-10 

wt.% of CNTs for the Z direction. The electrical conductivity obtained for the 10 

wt.% sample is comparable to other CNTs composites [2,20,23,29,34,51–54]. At 

the present work, the high conductivity obtained at industrial scale is relevant for 

industrial applications. This value may result from the large elongated 

agglomerates formed and the anisotropy effect, in which the conductivity in the X 

direction is 6 x 10–2 S/cm, but only 2x10-2 S/cm and 2x10–5 S/cm in the Y and Z 

directions, respectively. 
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Figure 4.3 Electrical conductivity measurements obtained in this work for the PP/CNTs composites, 

compared to some values reported for PP composites made by melt mixing [2,20,23,29,34,51–54]. A 

schematic representation of the injection moulded bars and the three directions for which electrical 

conductivity was measured are shown. The injection-moulding direction corresponds to the X axis, 

the width corresponds to the Y axis, and the thickness corresponds to the Z axis. The values of 

electrical conductivity obtained are comparable to those reported in works that have use treated 

CNTs [34], different injection moulding velocities [29], two-roll mill [53] or small-scale mixing 

machines [20,23]. 

4.3.2 Mechanical properties 

The tensile modulus and tensile strength increases with CNT content (Figure 4.4a). 

The tensile strength improvements (10% for the composite with 10 wt.% CNT) 

seem to indicate that the debonding of particles does no takes place prior to the 

start of plastic deformation [55]. Both the flexural modulus and flexural strength 

show similar trends with slight increases too with CNT weight fraction (Figure 

4.2b). 

This modest enhancement in mechanical properties, relative to some reported in 

the literature [33,56], can be attributed, among others, to the presence of 
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agglomerates and the relatively weak effect of the CNTs on crystallization 

behaviour [12]. The melting temperature (Tm) of neat PP is 164.1°C, whereas for 

the PP/CNTs composites it is 163.8±0.1°C. The crystallization temperature (Tc) of 

neat PP is 123.6°C, which is similar to the Tc of the composites 124.1±0.3°C. From 

calculations we find that the degree of crystallinity (Xc) [35] is almost the same for 

the PP and PP/CNTs samples (27.7 and 28.6%±2.1%, respectively). There is no 

significant effect of the CNTs on the melting and crystallization of PP [28,34,56]. 

Thus, based on the results obtained, there is no nucleating effect and change on the 

crystalline phase of the polymeric matrix. 

In Figure 4.4c, the average value of the fracture toughness, JIC, calculated from the 

two specimens tested for each CNT content is presented. The best result, a fracture 

toughness a 55% higher than that of neat PP, with a loading of just 0.5 wt.% CNTs, 

is larger than the highest improvement obtained for PP/GNPs composites [35]. 

Ganß et al. [28] analysed the resistance to quasi-static crack growth initiation on 

PP/CNTs composites in which the CNTs have a higher dispersion degree than 

those in the present study. They found that resistance decreased with addition of 

up to 5 wt.% CNTs, except for 1.5 wt.% at which an increase of 25% was measured. 

This effect was attributed to hindrance of the ductile yield as a result of polymer 

wrapping and the immobilized polymer layer at the polymer-nanofiller interface. 

However, in the present study, the JIC values obtained by application of the Spb 

parameter method show that by increasing the amount of CNTs from 0.5 to 10 

wt.%, the improvements were not as good as those achieved for 0.5 wt.% CNTs, 

even though the composites have a higher fracture toughness than the neat matrix.  
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Figure 4.4 a) Normalized tensile modulus and strength; b) normalized flexural modulus and 

strength as a function of nanofiller content for PP/CNTs nanocomposites: c) Crack growth initiation 

energy, JIC, for PP/CNTs nanocomposites. The fracture toughness increases with the addition of 

CNTs. The maximum increase is achieved for a nanocomposite is 0.5 wt.% CNTs, which has a value 

55% higher than neat PP. 

 

4.3.3 Digital image correlation (DIC) and SEM analysis of 

fracture surfaces 

Pictures taken during the fracture tests were processed by DIC to obtain the strain 

field in the principal direction, ε1. This is the direction in which the major principal 

stresses take place and, in the testing configuration of the fracture tests, this 

direction is approximately equal to the longitudinal direction of the single edge-

notched bend specimen (Figure 4.5a). A comparison performed between the full-

field total strain obtained for PP (Figure 4.5b) and the nanocomposites with 0.5 

and 10 wt.% of CNTs (Figure 4.5c and d, respectively) at the moment of the 

fracture initiation shows a change in size of the deformation zone in front of the 

crack tip. The strain provided has both an elastic and plastic component. However, 

a) b)

c)
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to identify the crack growth initiation by the Spb parameter method, it is necessary 

to fully reach the plastic zone [45,46]. Because this requirement was met for all the 

materials analysed, the plastic component is assumed to be the predominant 

component of the deformation shown in Figure 4.5. It is well known that the shape 

of the plastic zone in front of the crack tip changes with the transition from plain 

stress conditions at the specimen surface, to plain strain conditions at the mid-

thickness section [57]. However, for this comparison it is assumed that the plastic 

deformation zone has a cylindrical shape along the thickness of the single edge-

notched bend specimen. 

 

Figure 4.5 Results obtained from DIC analysis. a) Area of interest analysed by DIC. The inset shows 

the root of the blunt notch and the sharp pre-crack (indicated by the dotted line). The principal 

direction is approximately equal to the longitudinal direction of the single edge-notched bend 

specimen; b) Strain field in the principal direction, ε1, obtained by DIC at the moment of fracture 

initiation during the fracture toughness tests for neat PP; c) Nanocomposite with 0.5 wt.% of CNTs, 

which is the material with the highest fracture toughness; and d) 10 wt.% CNT nanocomposite. 

In the PP matrix, the region of the specimen with a deformation smaller or equal to 

4.5% is 54 mm3 (Figure 4.5b). The volume of this region increases by 145% to 132 

mm3 in the nanocomposite with 0.5 wt.% of CNTs (Figure 4.5c). This increase in 

size may indicate that large plastic strain has taken place in the zone in front of the 
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b) 0 wt.% CNT 

2 mm

sharp
pre-

crack

blunt notch
2 mm1 

2 

a) 

15

ε₁ [%]
300



115 
 

crack tip. In the case of the 10 wt.% CNT nanocomposite (Figure 4.5d), the size of 

this region increases by 50% relative to neat PP, with a volume of approximately 

80 mm3. These results are in agreement with those obtained in our previous work 

for PP/graphite nanoplates composites [35] in which an increase in fracture 

toughness corresponds to an increase in size of the deformed region. 

 

Figure 4.6 Ductile tearing region in the fracture surface of a) neat PP; b) 0.5 wt.% CNT 

nanocomposite; and c) 10 wt.% CNT nanocomposite in which large CNT agglomerates can be seen. 

The arrow indicates the crack growth direction. 

Once the fracture toughness tests were complete, the fracture surfaces of the 

specimens were analysed by SEM. By observation of the fracture surface of PP 

(Figure 4.6a) the failure mechanism was seen to be polymer ductile tearing by void 

nucleation and growth. This mechanism was also observed in the fracture surfaces 

of nanocomposites (Figure 4.6b and c). The fracture mechanism of the 

nanocomposites is matrix ductile tearing, which has been reported for PP 

composites with graphite nanoplates [35], Al2O3 nanoparticles, SiO2 nanoparticles, 

nanoclays, CaCO3 microparticles [58], and PE composites with CaCO3 

microparticles [59]. However, relative to our previous work on PP/graphite 

nanoplatelets composites, the CNT agglomerates were not completely debonded 

after the fracture test, as confirmed by SEM (Figure 4.7). It seems that stress 

concentrates around the CNT agglomerate during fracture tests, which acts as a 

soft particle during this process [60,61]. Thus, the high stress state generated is 

released by deformation of the polymer around the agglomerate. The polymer 

b) 0.5 wt.% CNTa) 0 wt.% CNT c) 10 wt.% CNT

200 μm 
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around the CNTs agglomerates can be deformed plastically into fibrils, however 

the CNTs of the surface of the agglomerate remained bonded to the polymer 

(Figure 4.7a). As the polymer around the agglomerate plastically deforms, there is 

somehow a slight load transmission from the matrix to the CNTs. The process 

allows dissipation of energy, which may explain the improvement of the fracture 

toughness of the PP/CNTs composites relative to neat PP. It is known that the 

number and size of nanofiller agglomerates increase with increased nanofiller 

loading [28,56,62]. Thus, after the fracture toughness reaches its maximum at 0.5 

wt.% CNTs, the JIC decreases because this value is the result of two important 

facts: the energy dissipated by deformation of the polymer around the 

agglomerates versus the effect of the larger agglomerates as sources of secondary 

cracks [59]. For CNT weight fractions higher than 0.5%, the net balance between 

both effects seems to be positive because all the values for fracture toughness are 

higher than that of neat PP. 

 

Figure 4.7 a) SEM image of a CNT agglomerate located within the deformation zone in front of the 

crack tip in a 0.5 wt.% CNT composite; b) Inset from a) in which the external CNTs of the 

agglomerate are still bonded to the plastically deformed polymer around the agglomerate. 

4.4  Conclusions 

Commercial-grade CNTs were efficiently integrated into a PP matrix by following a 

solvent-free approach known as the masterbatch technique. The obtained 

materials show good and homogeneous distribution of the CNT, however it was 

not possible to completely break up and disperse these agglomerates in the matrix. 

Despite the presence of these agglomerates, the electrical conductivity obtained 

above the percolation threshold is among the highest conductivities reported in 

5 μm 

a) b) 

50 μm 
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the literature [2,20,23,29,34,51–54]. The electrical conductivity also shows that 

the processing method induced a certain anisotropy to the samples obtained, 

which is in agreement with the elongation of the agglomerates presented in matrix. 

Also the agglomerate size and orientation seem not to be affected by the dilution 

process. 

Moderate improvements in tensile and flexural properties as CNT content 

increases indicates that the addition of CNTs does not significantly affect the PP 

matrix, because all the materials have almost the same glass transition, melting 

and crystallization temperatures as well as similar degrees of crystallinity. 

Addition of CNTs improves the fracture toughness of PP, for all nanofiller loadings 

up to 55% higher for the 0.5wt.% PP/CNTs composite, which turned out to have 

the largest deformation zone. It was seen that CNT agglomerates promote plastic 

deformation of the matrix during the fracture process, similarly as the cavitation or 

debonding mechanism of microparticles dispersed in a thermoplastic polymer. 

This, along with the slight load transfer from the matrix to the CNTs, during 

deformation, explains the enhancement in fracture toughness. 
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5 Polypropylene composites with 

enhanced mechanical and thermal 

properties thanks to a novel carbon 

microfiller 
 

5.1  Introduction 

Polymer nanocomposites have focused tremendous scientific interest because 

significant mechanical properties improvements can be obtained upon the 

addition of small amounts of nano-scaled fillers [1–3], compared to conventional 

composites with micron-scaled fillers. In the last decade, carbon-based 

nanomaterials as carbon nanotubes (CNTs) and graphene have been extensively 

used as fillers in polymer nanocomposites due to their outstanding mechanical, 

thermal and electrical properties [4]. However, one of the main challenges is to 

achieve a large scale production of high quality nanofillers. Therefore, the 

development of carbon materials which could be produced at industrial scales [5–

7] is envisaged as an attractive approach that could represent a significant advance 

in the field of commercially available high-performance multifunctional 

composites. 

Moreover, in order to fully take advantage of the outstanding mechanical, thermal 

and electrical properties of fillers, as graphene or graphite nanoplatelets, the 

paramount concern is to achieve a homogeneous filler dispersion and a strong 

interaction filler-matrix to enhance the stress transfer. However, it is clear that 

using as-received nanofillers and applying conventional processing techniques to 

obtain polymer composites usually results in an agglomerated morphology of the 

nanofiller and modest mechanical properties improvements [8,9]. Thus, an 

alternative for the processing of polymer composites would be the use of micron-

scaled carbon fillers that could be easily dispersed within the matrix without the 

agglomeration tendency of the nanofillers.  
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In this work, a novel carbon-based micron-sized material was used as filler to 

produce polypropylene (PP) composites and its effect on the mechanical and 

thermal properties of the resulting composites was analysed. Polypropylene was 

chosen as matrix as it is a widely used commodity thermoplastic polymer. Its 

simplicity of processing, low cost and relatively good physical, chemical and 

mechanical properties makes it the ideal candidate to be used for industrial 

applications (household goods, food packaging, automobile, etc.) [10]. The carbon 

micron-scaled material was directly synthesized by a chemical vapour deposition 

process, using commercially available nickel microparticles as catalyst. The 

potential of the carbon material to be produced at large-scale has been previously 

reported [11]. Although having a high degree of heterogeneity, the synthesised 

carbon material showed interesting structures consisting in micron-scaled fibre-

like structures with a highly rough surface morphology. This feature could improve 

the stress transfer from the matrix to the filler due to the mechanical interlocking 

with the polymer chains [12–14]. Therefore, the synthesized carbon material also 

shows potential as reinforcement for polymer composites.  

PP composites were produced following a simple masterbatch technique as this 

approach has proved effective in improving the dispersion of fillers such as CNTs, 

graphite nanoplatelets or glass microspheres [15–17] compared to traditional melt 

mixing approach. The scale-up of this approach to a semi-industrial level was 

previously reported for the processing of PP composites with GNP and CNTs, 

which exhibited acceptable mechanical properties [8,9].  

The masterbatch approach resulted in the break-up of the as-synthesized 

structures, although the resulting carbon microfiller (CMF) showed good degree of 

dispersion within the matrix. Consequently, a 25% increase in flexural modulus 

and 7% increase in flexural strength are obtained for the composite with the 8.9 

wt.% of carbon microfiller. Furthermore, this material exhibited and enhanced 

thermal stability and conductivity. The obtained results makes the CMF/PP 

composite very attractive for the development of commercially available polymer 

composites with enhanced mechanical and thermal behaviour.  
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5.2  Experimental procedure 

5.2.1 Synthesis of carbon microfiller 

Nickel particles (Alfa Aesar), with an average particle size of 3.4 ± 2.2 μm [18] and 

99.9% purity, were used to synthesize the carbon-based micro-filler by means of a 

chemical vapour deposition (CVD) process. The particles were used as received, i.e. 

with no further treatment. 

The Ni microparticles (50 mg) were placed in an alumina boat, which was 

positioned in the middle of a quartz tube, heated by a mobile horizontal tube 

furnace that allows fast heat and cool down rates. A detailed explanation of the 

CVD system can be found elsewhere [19]. The particles were first conditioned for 

the growth of the carbon arms. This conditioning was done by heating particles at 

550 °C, under a flow of 100 sccm of H2 and 400 sccm of Ar, for 5 min. Afterwards, 

for the carbon nanostructures growth, the temperature was maintained at 550 °C 

and a flow of 100 sccm of H2, 400 sccm of Ar and 150 sccm of C2H4 was settled for 

360 min. After this process, the furnace was cooled down under a flow of 1000 

sccm of Ar. The material obtained after this process was the carbon micron-scaled 

material. 

5.2.2 Preparation of composites 

A commercial polypropylene homopolymer (ISPLEN®  PP070G2M, Repsol), with a 

density of 905 kg/m3 and a melt flow index (230°C/2.16 kg) of 12 g/10 min. Due to 

the different morphology of the material after the processing of composites, 

compared to the as-synthesized morphology, the filler is referred to as carbon 

microfiller (CMF). PP composites with 0.5, 1, 5 and 10 wt.% of CMF were 

processed. 

Polypropylene masterbatches containing 5 and 10 wt.% of CMF were produced 

using a co-rotating twin-screw micro-compounder (MC 15 Xplore) with a chamber 

capacity of 15 cm3. The as-received PP granules and the as-synthesized carbon 

material were dried at 100 °C for 4 h prior to masterbatch processing. The PP and 

the powdery filler were premixed and fed together in the hopper. The 
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compounding was done at a temperature of 210 °C for 5 min, with a screw speed of 

150 rpm. The extruded strand was cut into pellets.  

Composites with filler content of 0.5 and 1 wt.% of CMF were produced by diluting 

pellets of masterbatch (5 wt.% of CMF) with neat PP pellets, dried at 100 °C for 4 h,  

to achieve the desired filler content. The dilution process was done applying the 

same parameters and equipment as in the masterbatch processing (210 °C for 5 

min, with a screw speed of 150 rpm). The composites with the highest CMF 

content, i.e. 5 and 10 wt.%, were obtained by re-processing the masterbatches with 

the same parameters as those used in the dilution step (210 °C for 5 min, with a 

screw speed of 150 rpm). 

For comparison, neat PP was processed by following the same processing steps as 

those used for the composite, i.e. 2 cycles in the micro-compounder at 210 °C for 5 

min, with a screw speed of 150 rpm. The extruded strand was cut into pellets. 

Afterwards, prismatic bars with dimensions of 150×13×4 mm3 and discs, diameter 

of 30 mm and a thickness of 3.2 mm, were produced by compression moulding at 

200 °C. 

5.2.3 Characterization of carbon micron-scaled material 

The morphology of the as-received Ni microparticles and the synthesized carbon 

micron-scaled material were analysed by scanning electron microscopy (field 

emission gun-SEM Helios NanoLab 600i, FEI). For SEM, the particles were lightly 

pressed onto an adhesive carbon tape. 

The thermal stability, in air and nitrogen, of the as received Ni particles and the 

synthesized material, as well as its carbon content, was characterized by thermo-

gravimetric analysis (TGA) (Q50, TA Instruments). Approximately 10 mg of 

powdery material was heated at 10°C/min from room temperature to 800°C, 

under air or nitrogen atmosphere, respectively. 

The synthesized carbon material was placed on thin aluminium foils and analysed 

by Raman spectroscopy (Micro-Raman spectrometer Renishaw PLC), using a DPSS 

Nd:YAG green laser (532nm wavelength). At least four spectra were obtained for 
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15s exposure, 5 accumulations, over a range of 200-3500cm-1 and at a laser power 

of 5%. 

5.2.4 Characterization of composites  

Dispersion of the carbon microfiller, thermal stability and density of 

composites 

The degree of dispersion of the carbon microfiller was analysed by SEM. 

Specimens of the resulting composites were embedded in epoxy resin and polished 

with grinding paper, diamond paste and alumina suspension (0.3 μm). The 

surfaces of the samples were sputter-coated with a thin layer of gold to prevent 

charging. 

The thermal stability of composites in air and nitrogen was characterized by 

thermo-gravimetric analysis (Q50, TA Instruments). Samples, 10 mg, were 

extracted from the produced specimens and heated at 10°C/min from room 

temperature to 800°C, under nitrogen atmosphere, respectively. Three 

measurements, for each filler content, were performed. 

The density of the resulting composites was measured following the ASTM D792-

13 standard [20], through the application of the Archimedes’ principle. At least 

three cylindrical samples with a diameter of 30 mm and a thickness of 3 mm, for 

each filler content, were first weighted in air and then in distilled water. The 

theoretical density of composites was also obtained, by applying the rule of 

mixtures, in order to compare the values obtained with the experimentally 

measured densities of composites. 

Differential scanning calorimetry, X-ray diffraction and dynamic 

mechanical analysis  

Differential scanning calorimetry (DSC) was performed on a DSC Q200 (TA 

Instruments), to analyse the effect of the filler on the crystallization behaviour and 

degree of crystallinity of the PP matrix. Three measurements per material were 

performed. During which, the samples were heated from 20 to 220 °C at a rate of 

10 °C/min, held at 220 °C for 0.5 min to remove thermal history and cooled to 20 
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°C at a rate of 10 °C/min. Then, after being kept at 20 °C for 0.5 min, the samples 

were heated to 220 °C at a rate of 10 °C/min. 

X-ray diffraction (XRD) patterns were recorded (Empyrean, PANalytical) operating 

with a Cu Kα radiation source (wavelength λ= 1.5406 Å). The x-ray beam was 

generated at a voltage of 45 kV and a current of 40 mA. The measurements were 

performed over the range 2θ=10° to 60°, with a step of 0.026°, on the surface of the 

moulded discs with a diameter of 30 mm and a thickness of 3 mm. 

Dynamic mechanical analysis (DMA) were carried out by using specimens with 

dimensions of 17.5×12.65×3.2 mm3 in single cantilever mode. The tests were 

performed on a Q800 (TA Instruments) in a temperature range of –150 to 180 °C, 

at a frequency of 1 Hz, and at a heating rate of 1.5 °C/min. 

Thermal conductivity measurement 

The thermal conductivity of the neat PP and the CMF composites was measured at 

room temperature applying a transient plane source technique. For each material 

at least three measurements were performed, using cylindrical shaped samples, 

with a diameter of 30 mm and a thickness of 3 mm, in a hot disk thermal constants 

analyser TPS 2500 S (Hot Disk AB). In this technique, a thin heater/sensor, with a 

radius of 0.536 mm, was clamped between two identical samples. Then, the 

heater/sensor element was first used as a heat source to increase the temperature 

of the surrounding sample by applying an output power of 0.01 W. Afterwards, the 

temperature increase was monitored over a period of time of 3 s by measuring the 

resistance of the heater/sensor. In order to minimize the effect of the interfacial 

thermal resistance, the surfaces of the cylindrical samples were polished. A 

detailed description of the transient plane source technique and its theoretical 

background can be found in [53–55]. 

Flexural and fracture characterization 

The flexural tests were conducted under ambient conditions, using an Instron 

5966 (500 N load cell). At least five specimens of each composition were tested in a 

three-point bending configuration with 50 mm between supports. Tests were 

carried out at a cross-head speed of 1.25 mm/min.   
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For the fracture characterization of the resulting composites, three-point bending 

tests (Instron 5966) were carried out at room temperature. Single-edge-notch 

bending (SENB) specimens, with dimensions of 65×12.5×3.5 mm3, were tested 

with a span-to-width ratio of 4 at a cross-head speed of 1 mm/min.  

The SENB samples were prepares as reported in previous works [8,9]. Briefly, 

samples were notched with a wire-cutting machine. Then, a sharp pre-crack was 

generated by tapping with a razor blade before testing such that the ratio of 

specimen width to crack length was between 0.45 and 0.55. In order to construct 

the J-R curve of composites, the crack length of the specimens being tested was 

followed by taking images every second.  

5.3  Results and discussion 

5.3.1 Synthesis and characterization of carbon micron-scaled 

material 

The material obtained by chemical vapour deposition, the carbon micron-scaled 

material, was used as filler in the processing of PP-matrix composites. The amount 

of Ni microparticles placed in the alumina boat for each CVD batch was 55 mg. The 

pre-treatment was carried out at 550°C, for 5 min; while the growth step is done at 

550°C, for 6 hours, with a flow of ethylene of 150 ml/min. Further details of this 

process can be found elsewhere [11]. 

The morphology of the as-received Ni microparticles was analysed by SEM (Annex 

A: Supplementary information). The microparticles are almost spherical, with a 

diameter of 3.4 ± 2.2 μm. From the TGA performed under air atmosphere (Annex 

A: Supplementary information) of the as-received particles it was observed that 

the oxidation starts at 400°C, resulting in a weight increase of 26.4% at 900°C. 

The synthesized material exhibited a high degree of heterogeneity (Figure 5.1). 

The different structures where divided in two groups. The first morphology 

consisted in sub-micron sized structures (Figure 5.1a, white arrow, and b). 

However, the main characteristic of the synthesized material was the micron-sized 

fibre-like structures, as those observed in Figure 5.1a and c, which grew from 
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nickel microparticles (white arrow in Figure 5.1c). By analysing these fibre-like 

structures at higher magnification it was found that their surface exhibited a high 

roughness degree (Figure 5.1d). 

 

Figure 5.1 SEM images of the synthesized carbon microfiller a) low magnification image showing 

the heterogeneity of the filler, b) sub-micron sized filler, similar to that indicated by the arrow in a), 

c) nickel particle (indicated by the arrow) with micron-sized fibre-like structures, which had grown 

from it; and d) high magnification image of a fibre-like structure, the inset shows a structure that 

seems to be formed by layers.  

The carbon content of the as-synthesized material was analysed by TGA performed 

under air atmosphere (Annex A: Supplementary information). The oxidation of the 

carbon-based material takes place in a single process, which is started at ca. 550°C. 

The temperature at which the highest rate of sample’s weight loss takes place, i.e. 

oxidation temperature, corresponds to the maximum of the degradation peak in 

the first derivative of the weight curve, which is located at ca. 575°C. The carbon 

filler presented in this work has an excellent thermal stability, which can be 

compared to other carbon-based materials as MWNTs, with oxidation 

temperatures usually in the range from 400 to 600°C [21,22]. The residue left in air 
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at 900°C, ca. 2 wt.%, corresponds to the Ni microparticles. However it should be 

taken into account that during this analysis the microparticles have undergone 

oxidation. Taking into account this effect, it was obtained that the carbon micron-

scaled material was composed by a 98.5 wt.% of carbon. In the case of the thermal 

stability in nitrogen, it was obtained that the synthesized carbon material was 

thermally stable up to 900°C, suffering a weight loss of just 3% at this temperature. 

5.3.2 Characterization of composites 

Composite processing and thermal stability 

From the analysis by SEM of the polished surfaces (Figure 5.2), an important 

consequence of the processing on the morphology of the carbon material was 

observed. The micron-sized fibre-like structures (Figure 5.1a and c) were broken, 

resulting in structures with a lateral size less than ca. 10 μm, which will be referred 

to as carbon microfiller. It is worth to note that the processing approach resulted 

in a good dispersion of the carbon microfiller, as it was homogeneously distributed 

within the matrix (Figure 5.2c). From Figure 5.2d, it seems that the structural 

integrity of the carbon filler was lower than the adhesion with to the Ni particle, as 

some short carbon structures (dashed line in Figure 5.2d) remained attached to 

the Ni particle.  

The effect of the carbon microfiller on the thermal decomposition of PP in nitrogen 

was analysed by TGA (Figure 5.3a). The curve obtained for neat PP indicate that 

the non-oxidative thermal decomposition takes place in a single process, which 

starts at approximately 350°C. All the composites exhibited a similar behaviour, 

however, as the amount of CMF increased the temperature at which the 

decomposition starts increased. Therefore, to further characterize the stabilizing 

effect of the carbon microfiller, the temperature at which a weight loss of 5% takes 

place (T5%) and the temperature at a maximum rate of weight loss (TP) were 

identified for neat PP and the composites (Figure 5.3b). As it can be observed a 

considerable improvement of T5% is obtained upon the addition of the carbon 

microfiller. The largest increase, approximately 50°C compared to the T5% of PP, is 

obtained for the 8.9 wt.% CMF composites. However, with just a 0.6 wt.% of filler, 

an increase of ca. 7°C was obtained. An increasing trend of TP as the CMF content 
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increases is also observed. Although in this case, the effect of the filler addition is 

less pronounced than in the case of the T5%. 

 

Figure 5.2 SEM images of the polished surfaces of a) neat PP and composites with b) 0.6 and c-d) 8.9 

wt.% of CMF.  The dashed line in d) indicates the short carbon structures that remained attached to 

the Ni particle.  

As it was observed in Figure 5.2c, the CMF is homogeneously distributed within the 

PP matrix. This carbon microfiller network could restrict the emission of 

decomposition gases during the thermal degradation, thus resulting in a delayed 

degradation, i.e. shift of T5% toward higher temperatures, of the matrix [25–28]. As 

the filler content increase so does the network density. Therefore, the barrier 

effect would be more pronounced for the samples with higher filler content, which 

is in agreement with the observed behaviour. Another explanation could be the 

absorption of free radicals, generated during the decomposition of PP, by the 

surface of the carbon microfiller [26,29,30]. Another effect that could account for 

the increased thermal stability is the physical adsorption of PP chains at the rough 

surfaces of the filler (Figure 5.1d). Thus the degradation of the polymer around the 
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filler is delayed, compared to the bulk polymer, which could be observed by the 

increase in TP [28,31].  

Nonetheless, the stabilising effect of the carbon microfiller reported in this work is 

in agreement with that found for PP composites with carbon-based fillers 

[28,30,32–34]. Furthermore, an increase of 23 and 35°C was obtained for 8.4 and 

12.3 wt.% of graphene [32] and graphite nanoplatelets [33], respectively. In this 

work, the increase was 50°C for 8.9 wt.% of carbon microfiller, thus the higher 

stabilising effect of this filler, compared to graphene or graphite nanoplatelets, is 

demonstrated.  

The densities of PP and composites were measured and are available in the Annex 

A: Supplementary information. Moreover, the theoretical density of composites 

was calculated applying the rule of mixtures. For this analysis, the weight fractions 

of carbon microfiller on composites was obtained from the residues of TGA, the 

density of the matrix was the measured for neat PP, 𝜌𝑚=0.906 g/cm3; and the 

density of the carbon microfiller was 𝜌𝐶𝑀𝐹=2.024 g/cm3, which was calculated 

assuming a carbon density of 2 g/cm3 [35] and a Ni content of 1.5 wt.%, 𝜌𝑁𝑖=8.908 

g/cm3 as provided by the manufacturer. The experimental values fitted well with 

the theoretical linear behaviour as the filler content increases.  

 

Figure 5.3 a) Curves obtained from the TGA, corresponding to the weight (%) (in nitrogen, at a 

heating rate of 10 °C/min)  of the neat PP and the composites with CMF, b) Temperature at a weight 

a) b)
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loss of 5% (T5%) and temperature at maximum rate of weight loss (TP) as a function 

of the filler content, obtained from TGA. 

DSC, XRD and DMA 

Differential scanning calorimetry measurements were performed to study the 

effect of the carbon micro filler on the melting and crystallization behaviour of the 

PP matrix. The melting and crystallisation temperatures were taken as those of the 

maximum in the endothermic and exothermic peaks, respectively, in the heat flow 

curve. The melting temperature, for the first and second heating, are given in the 

Annex A: Supplementary information. It was observed that the addition of the 

carbon microfiller have no effect on the melting temperature of the PP matrix. The 

degree of crystallinity (Xc) of neat PP and composites was calculated by following 

[8,36]: 

𝑋𝐶(%) =
∆𝐻𝑠

(1 − 𝜙)∆𝐻0
× 100 Eq. 5.1 

where ΔHs is the enthalpy of fusion of the sample (obtained by integration of 

melting peak [37]), ϕ is the weight fraction of filler, and ΔH0 is the enthalpy of 

fusion of 100 % crystalline PP, taken as 209 J/g [8,38]. 

The Xc obtained from the first heating (Annex A: Supplementary information) did 

not significantly change upon the addition of CMF. This means that degree of 

crystallinity of the PP matrix after the processing of composites was not affected 

by the CMF. Furthermore, after removing the thermal history and subjecting the 

sample to a controlled crystallization process, the degree of crystallinity obtained 

from the second heating showed no effect of the carbon microfiller. This effect is in 

agreement with that reported for PP composites with carbon-based fillers as GNPs 

[8,26,39], graphite [33] or CNTs [36,40], which showed no or a slight effect of the 

filler on the degree of crystallinity of the PP matrix.  

The non-isothermal crystallisation process, i.e. cooling curve, is shown in Figure 

5.4. In this case, the Tc gradually increases as the CMF content increases; having 

the composite with a 8.9 wt.% of CMF a crystallisation temperature 7°C higher 

than that of neat PP (Figure 5.4a). This considerable effect indicates that the CMF 
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acts as nucleating agent of the crystallisation process of the PP matrix 

[32,36,39,41,42]. 

To further analyse the effect of the CMF on the crystalline structure of PP, X-ray 

diffraction measurements were carried out (Figure 5.4b). For neat PP, the peaks 

that appears at approximately 14, 17, 18.5, 21, 22, 25.5 and 28.5° correspond to 

the planes (1 1 0), (0 4 0), (1 3 0), (1 1 1), (1 3 1)+(0 4 1), (0 6 0) and (2 2 0), 

respectively, of the α-phase (monoclinic unit cell). The XRD patterns of PP and the 

CMF composites showed the complete absence of the β- and γ-phase [43], as no 

additional peaks was observed (Figure 5.4b). Therefore, the carbon microfiller 

acted as a purely α-nucleating agent during the crystallisation of PP. However, a 

change on the intensities of the peaks was observed upon the addition of the CMF. 

The ratio between the intensities of the (1 1 0) and the (0 4 0) planes indicates the 

orientation of the a and b axes of the α-phase unit cell. If the ratio is less than 1.3, 

the b axis lies predominantly parallel to the surface under analysis. If the ratio is 

higher than 1.5, then the a axis lies parallel to the analysed surface. Finally, a ratio 

between 1.3 and 1.5 indicates an isotropic mixture of crystallites [44–46]. In the 

case of neat PP, a I110/I040=1.18 was obtained, indicating an orientation of the b 

axis parallel to the surface of the moulded disc. Furthermore, this ratio decreases 

with increasing the CMF content, having the 8.9 wt.% composite an I110/I040=1.00. 

This seems to indicate that the CMF induces an orientation of the α crystallites in 

the plane of the moulded discs. This effect was previously reported for PP filled 

with talc [44], magnesium hydroxide [46] or graphite nanoplatelets [39]. 

The effect of the CMF on the thermo-mechanical behaviour of PP was analysed by 

dynamic mechanical analysis. Figure 5.4c show the storage modulus (E’) and tan δ 

curves, respectively, of neat PP and CMF composites as a function of the 

temperature. As it can be observed, the storage modulus of neat PP decreased with 

increasing temperature, suffering a drastic drop in the region near 0°C, which is 

associated with the glass transition of PP. The behaviour of CMF composites is 

similar to that of neat PP, although it was found that the E’ of composites increases 

with increasing the CMF content. This behaviour is indicative of a reinforcing effect 

of the carbon microfiller. Any reinforcing effect resulting from a variation in the 

degree of crystallinity or in the crystalline phase was excluded, taking into account 
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the results obtained by DSC and XRD. It is worth noting that the reinforcing effect 

can be observed in both the glassy, at -150°C, and rubbery state, at 50°C, (Annex A: 

Supplementary information). 

 

Figure 5.4 a) DSC thermograms showing the non-isothermal crystallization (at a cooling rate of 10 

°C/min) of PP and CMF composites. b) XRD patterns of neat PP and CMF composites. The planes 

associated with the main peaks are indicated with arrows. c) Storage modulus and tan δ (at a 

frequency of 1 Hz), as a function of temperature. d) thermal conductivity of neat PP and composites 

with CMF. 

In the tan δ curve (Figure 5.4c), two of the three relaxation processes of PP could 

be observed [47,48]. The γ relaxation peak, which appears at ca. -50 °C, was not 

observed probably due to overlapping with the β relaxation. The γ relaxation peak 

is related to local motions within the amorphous phase of PP. The β relaxation 

peak is associated with the glass transition of the amorphous phase of PP. As it can 

be observed, the intensity and position of the peak are not significantly affected 

upon the addition of CMF, being located between 7.5 and 8.5 °C for neat PP and 

CMF composites. Thus, the CMF is not significantly affecting the amorphous phase 

a) b)

c) d)
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of PP [8,32,41]. The α relaxation peak is related with motions within the crystalline 

phase of PP, particularly to the diffusion of defects in the crystals. In this case, the 

addition of CMF seems to be restricting the movement within the crystalline phase 

as the position of the α peak of composites shifts to higher temperature, 

overlapping with the onset of melting, and its intensity decreases [32]. Therefore, 

taking into account the results obtained by DSC and DMA it can be said that the 

addition of the carbon microfiller affects the crystalline phase of PP, while the 

amorphous phase remains unaffected.  

Thermal conductivity 

The effect of the carbon microfiller on the thermal behaviour of resulting materials 

was analysed by measuring the thermal conductivity of neat PP and CMF 

composites, the results are shown in Figure 5.4d. As it can be observed, the 

thermal conductivity of neat PP is 0.198 W/mK, while the thermal conductivity of 

CMF composites increased with increasing the filler content. The highest 

improvement was obtained for the composite with a 8.9 wt.% of CMF, which has a 

thermal conductivity a 15% higher than that of neat PP.  

This improvement seems to be low compared to that achieved in PP composites 

with graphene or exfoliated graphite nanoplatelets, where approximately a 100% 

increase was obtained for composites with 5 wt.% of filler [41,49]; however, it 

should be taken into account that graphene is amongst the materials with the 

highest thermal conductivities, i.e. 5000 W/mK [50]. The filler presented in this 

work is highly heterogeneous (Figure 5.1) and, as observed by transmission 

electron microscopy [11], the fibre-like structures have voids or discontinuities in 

the centre. Therefore, it seems reasonable to assume that the thermal conductivity 

of the carbon microfiller to be lower than that of graphene or exfoliated graphite 

nanoplatelets. Nonetheless, based on our results, it can be said that the addition of 

the carbon microfiller results in PP composites with improved thermal 

conductivity, compared to neat PP.  
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Flexural and fracture characterization 

Results obtained from the flexural characterization, performed by three-point 

bending tests, are presented in Figure 5.5. The stiffening effect of the carbon 

microfiller on the PP composites is clear as the flexural modulus exhibited 

approximately a linear increase with increasing the filler content. This effect is in 

agreement with the reinforcing effect obtained from the analysis of the storage 

modulus, in the rubbery state, by DMA (Annex A: Supplementary information). 

This effect could be explained in terms of a certain degree of mechanical 

interlocking between the polymer and the highly rough surface of the matrix, 

which improve the stress transfer from the matrix to the filler [8,9]. 

 

Figure 5.5 a) Flexural modulus and strength and b) strain at break, obtained from the flexural tests, 

and mode I fracture toughness of neat PP and CMF composites. 

In the case of the flexural strength, the addition of a small amount of CMF, i.e. 0.6 

and 1.1 wt.%, seems to have no or a somewhat detrimental effect. Nonetheless, for 

higher filler contents the flexural strength increased. The composite with 8.9 wt.% 

of CMF presented the best flexural properties, having an improvement in flexural 

modulus and strength of 25 and 7%, respectively, compared to neat PP.  

The strain at break followed a trend similar to that of flexural strength. At filler 

contents of 0.6 and 1.1 wt.%, it drastically decreased. However, for the composites 

with 4.7 and 8.9 wt.% of CMF, the strain at break was slightly higher than that of 

neat PP. The obtained results are comparable to those obtained for PP/graphene 

composites [32], where a good dispersion of the filler was achieved. 

a) b)
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The effect of the carbon microfiller on the fracture behaviour of the PP matrix was 

performed by testing single-edge notched specimens in a three-point bending 

configuration. The resistance of the polymer to slow stable crack grow after 

initiation from a sharp pre-crack, i.e. J-R curve, was obtained for PP and CMF 

composites. The value of J at a crack extension of 0.2 mm was taken as the critical 

mode I fracture resistance, JIC [51]. The obtained results are shown in Figure 5.5b. 

As it can be observed, the JIC follows the same trend as the strain at break, upon the 

addition of the carbon microfiller. This result was expected as the strain at break is 

a measure of the ductility of the samples, i.e. their ability to withstand plastic 

deformation until failure. 

The fracture surfaces of neat PP and CMF composites were analysed by scanning 

electron microscopy. From the images taken at low magnification (Figure 5.6a, c 

and e), it was observed that neat PP exhibits features that indicates a certain 

degree of plastic deformation during the fracture process. In the CMF composites, 

the size of the fracture features decreases with increasing the filler content. Higher 

magnification images are shown in Figure 5.6b, d and f. These features (indicated 

by a dotted line in Figure 5.6b) may be indicative of a fracture mechanism 

consisting in the ductile tearing of polymer through spherulites [52]. In the case of 

the composite with 0.6 wt.% of CMF, the same failure mechanism was observed. 

However, the size of the features seemed to be more heterogeneous (indicated by a 

dotted line in Figure 5.6d), compared to the neat PP. The fracture surface of the 

composite with 8.9 wt.% of CMF, showed plastic deformation of the matrix; 

although no features similar to those in were observed (Figure 5.6f). The stretched 

polymeric fibrils attached to the surface of a carbon microfiller (Figure 5.7) are 

indicative of a strong interaction between the filler and the PP matrix, what could 

result in a mechanical interlocking effect. 
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Figure 5.6 Fracture surfaces of a-b) neat PP and composites with c-d) 0.6 and e-f) 8.9 wt.% of 

carbon microfiller. The white arrow indicates the crack-growth direction. The characteristic 

features, which could be related to spherulites, are encircled by a dotted line. 

As obtained by DSC, the CMF act as nucleating agent for the PP matrix. Although no 

new crystalline phases were nucleated (Figure 5.4b), the addition of CMF could 

alter the size of the crystallites of the PP in the composites [39,42]. It has been 

reported that the spherulite size affects the mechanical properties of PP [52–56]. 

Thus, it is clear that further work should be done to understand the effect of the 
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carbon microfiller on the crystalline morphology of PP and, therefore, fully 

understand the mechanical behaviour of the CMF composites. 

 

Figure 5.7 a) High magnification SEM image of the fracture surface of the composite with 8.9 wt.% 

of CMF. b) detailed image, of the inset in a), where stretched polymeric fibrils, attached to the CMF, 

could be observed.  

 

5.4  Conclusions 

In this work, the potential of a novel carbon microfiller to be used as filler for 

polypropylene composites is explored. From the analysis of the filler morphology it 

is clear that further characterization should be done to identify the different 

synthesised structures and how to control it by adjusting the parameters of the 

chemical vapour deposition process. Nonetheless, the synthesized carbon 

structures showed potential to be used as fillers for mechanical reinforcing of 

polymeric matrices. 

The composites were produced by preparing and diluting a masterbatch through 

melt mixing. This processing technique result in the break-up of the micron-sized 

fibre-like structures, which were obtained after the synthesis process. 

Furthermore, it proved to be effective for the processing of CMF composites, as the 

resulting carbon microfiller exhibited a good dispersion degree within the PP 

matrix.  

The resulting composites exhibited enhanced thermal stability and flexural 

modulus, what could be due to the interaction between the polymer and the highly 

rough surface of the microfiller. It was found that the carbon microfiller improved 
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the thermal conductivity of the resulting composites and also acted as nucleating 

agent for the crystallization of PP, inducing a certain degree of orientation on the α 

crystallites, however the degree of crystallinity and the crystalline phase, as well as 

the amorphous region of the matrix were not affected by the filler. 

Further characterization work would be required in order to identify the effect of 

the filler on the crystalline morphology and understand the plastic deformation 

behaviour (strain at break and fracture resistance) of the of CMF composites. This, 

along with the potential of the filler to be produced at large-scale, make the 

presented carbon microfiller composite a good candidate to be a commercially 

available polypropylene material with enhanced mechanical and thermal 

behaviour. 
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6 Alumina nanoparticle/carbon 

nanotube hybrid filler and its 

application to epoxy composites 
 

6.1  Introduction 

High performance polymer nanocomposites are focusing a vast amount of research 

effort due to their potential to develop novel functionalities and, thus, satisfy the 

demand of industries, such the aerospace, for materials with sensing and actuating 

abilities, while maintaining their structural integrity [1].  

Epoxy resins have been extensively used as matrix in polymer composites due to 

their high specific strength and stiffness, chemical stability, low cost an ease of 

processing [2,3]. However, their main drawbacks are their electrical and thermal 

insulating behaviour and low fracture toughness. An approach followed to 

overcome these problems was the development of epoxy-based nanocomposites 

with different fillers, depending on which properties need to be improved [4–6]. 

Regarding the fracture toughness of epoxy, it has been demonstrated that 

significant mechanical properties improvements are achieved by adding rigid 

nanoparticles [7–9]. Generally, these rigid particles are made of metal oxides, as 

alumina or silica. Moreover, in the case of alumina, since it has a higher thermal 

conductivity (30 W/mK [10]), than the polymer matrix (0.1-1 W/mK [11]), the 

addition of alumina nanoparticles to a polymeric matrix results in composites with 

improved thermal conductivity [12,13]. However, the resulting composites are 

electrically insulating.  

Carbon nanotubes (CNTs) have been extensively used as fillers to obtain 

electrically conductive polymer-matrix composites, due to their outstanding 

electrical, thermal and mechanical properties [6,14,15]. Nonetheless, one of the 

main challenges in the processing of CNT composites is to achieve the required 

dispersion degree and interfacial CNT-matrix to fully harness the properties of the 

CNTs [16]. 
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When a desired combination of properties is needed, two different materials, with 

a determined shape and size, can be combined to obtain a single hybrid filler [17]. 

The effects of the hybrid fillers can be observed on improved electrical [18–20], 

thermal [21,22] and mechanical [18,21,23] properties, or new functionalities as 

self-sensing behaviour [24,25]. The development of hybrid fillers resulting from 

the combination of CNTs attached to fibres [26], platelets [23,27] or particles 

[28,29] has proved to be an effective approach to avoid the agglomeration of CNTs, 

achieving an homogeneous CNT dispersion within the matrix and strengthening 

the interaction between the filler, to which CNTs are attached,  and the matrix. 

Another advantage of using hybrid fillers is the reported synergistic effect on the 

formation of a conducting thermal and electrical network through the composite, 

compared to the composites with the single fillers [30,31]. However, there is 

scarce literature reporting nano-scaled hybrid fillers [32], being most of the 

available literature focused on multi-scaled hybrid fillers consisting in CNTs 

grafted on micron-sized platelets [23,27], in-plane size in the range of microns, or 

micron-scaled particles  [28,29].  

Thus, in this work, we report the development of a hybrid material consisting in 

alumina nanoparticles surrounded by an entangled network of CNTs. This is 

achieved by pre-treating the nanoparticles with a catalyst precursor by a cost-

effective method [26], followed by a chemical vapour deposition process to 

synthesize the CNTs. The resulting hybrid filler was dispersed in the epoxy matrix 

by three-roll milling, as it has been identified as an effective approach to disperse 

relatively high amounts of CNTs in thermosetting resins [33]. 

The resulting composites showed a slightly enhanced interaction of the hybrid 

filler with the matrix, i.e. composites with higher Tg, compared to the plain 

nanoparticles without carbon nanotubes. The mechanical properties were similar 

to that of the composite with alumina nanoparticles. However, the electrical 

conductivity was enhanced to 1 ± 0.3 × 10−3 S/m and the thermal conductivity a 

7.4%, compared to neat epoxy, for the composite with 5 wt.% of hybrid 

nanoparticles, which corresponds to a carbon nanotube content of 1 wt.%. 

Therefore, this work shows the potential to develop nano-scaled hybrid materials 
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to be used as fillers for polymer composites with desired thermal or electrical 

properties.  

6.2  Experimental procedure 

6.2.1 Synthesis of hybrid material 

Alumina spherical nanoparticles, (NanoDur, Nanophase Technologies Corporation) 

were used as substrate for the synthesis of carbon nanotubes and as filler for 

epoxy nanocomposites. The nanoparticles are crystalline and non-porous, with an 

average particle size of 50 nm and a specific surface area of 30 m2/g. Iron nitrate 

nonahydrate (Fe(NO3)3·9H2O) (Sigma-Aldrich, >98% purity) was used as catalyst 

precursor for the synthesis of carbon nanotubes. 

The as-received nanoparticles (NPs) were treated with the catalyst precursor by 

applying a scalable low-cost method, proposed in [26]. The powdery nanoparticles 

(0.025 g) were added to a solution (500 ml) of iron nitrate dissolved in 2-propanol, 

with a concentration of 50 mM, followed by sonication for 15 min and mechanical 

mixing for 2 hours. The resulting mixture was filtered overnight and dried at 150°C 

for 3 hours. 

For the carbon nanotube synthesis, 0.5 g of nanoparticles treated with the catalyst 

precursor were loaded in an alumina boat, which was placed in the centre of a 

quartz tube. Heated by a mobile horizontal tube furnace. Further explanation of the 

chemical vapour deposition system can be found elsewhere [34]. In first place, the 

furnace is purged with 1000 sccm (sccm stands for cm3/min at a standard 

temperature and pressure) of Ar for 5 min. After purging, the pre-treatment of the 

catalyst precursor is performed to create nanoscale clusters that would act as 

catalyst for the CNT growth at a temperature. The pre-treatment step involved 

setting a flow of 400 sccm of H2 and 100 sccm of Ar, while moving the furnace, at a 

temperature of 650°C, so that the alumina boat could be heated. After the pre-

treatment, the CNT growth was initiated by setting a flow of 100 sccm of H2, 400 

sccm of Ar and 200 sccm of C2H4, for 2 minutes. After this process, the furnace was 

cooled down under a flow of 1000 sccm of Ar. The material was obtained after this 
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process, consisting in alumina nanoparticles and carbon nanotubes, is referred to 

as hybrid nanoparticles (h-NPs). 

6.2.2 Preparation of nanocomposites 

The resin used as matrix in this work was a mono-component epoxy system 

(HexFlow RTM6, Hexcel Corporation) designed for resin transfer moulding and 

infusion processes in the aerospace industry. The technique chosen to disperse the 

as-synthesized hybrid nanoparticles in the epoxy resin was the three-roll milling 

(Exakt 80E, Germany). Afterwards, the resulting mixture was heated to 90°C to 

decrease its viscosity and then degassed for 1 hour. The degassed mixture was 

poured into steel moulds and cured for 2 hours at 180°C, as recommended by the 

manufacturer. 

6.2.3 Characterization of fillers 

Morphology 

The as-received nanoparticles and the as-synthesized hybrid nanoparticles were 

analysed by scanning (field emission gun-SEM Helios NanoLab 600i, FEI) and 

transmission electron microscopy (Talos F200X, FEI). The elemental composition 

of the as-received NPs was confirmed by energy dispersive spectroscopy (EDS). 

For scanning electron microscopy (SEM) the NPs and h-NPs were lightly pressed 

onto an adhesive carbon tape. For transmission electron microscopy (TEM), a 

small amount of the hybrid material and as-received NPs was dispersed in 

isopropanol by means of an ultrasonic probe (VC 505 Ultrasonic processor), for 3 

min and 1s pulse at 20% amplitude. A drop of the resulting solutions was carefully 

deposited on a TEM carbon coated Cu grid (LC300-Cu, EMS) and left to dry in a 

fume hood. The samples were viewed at an acceleration voltage of 200 kV. 

Thermo-gravimetric analysis, Raman spectroscopy and BET surface area 

The thermal stability of the as-received NPs and the thermal stability and carbon 

content of the h-NPs was studied using a thermogravimetric analyser Q50 (TA 

Instruments). Approximately 10 mg of powdery nanomaterial were heated under 

air atmosphere, at a heating rate of 10°C/min from room temperature to 800°C. 
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Raman spectroscopy was carried out using a Micro-Raman spectrometer Renishaw 

PLC, equipped with a DPSS Nd:YAG green laser (532 nm wavelength). The as-

received NPs and the synthesized hybrid fillers were placed on thin aluminium 

foils and three measurements were performed per sample. Spectra were obtained 

for 10 s of exposure, 10 accumulations, in the range of 500-3500 cm-1 and at a 

laser power of 5%. 

The specific surface area of the NPs and h-NPs were calculated by applying the BET 

(Brunauer-Emmett-Teller) method. The measurements of the isothermal 

adsorption of nitrogen at -196 °C were performed using a Gemini VII 2390 surface 

area analyser. Prior to the analysis, samples were subjected to a 120°C for 90 min 

to remove the adsorbed humidity.  

6.2.4 Characterization of nanocomposites 

Morphology, thermogravimetric analysis, differential scanning 

calorimetry and dynamic mechanical analysis 

The morphology of the resulting composites was assessed by analysing the 

fracture surfaces of the tested specimens by scanning electron microscopy (Helios 

NanoLab 600i, FEI). The surfaces of the samples were sputter-coated with a thin 

layer of gold to avoid electrostatic charge of the sample during the analysis. 

Thermo-gravimetric analysis (Q50, TA Instruments) was performed to study the 

thermal stability of the resulting nanocomposites. Samples (approximately 10 mg) 

were extracted from the cured specimens and heated at 10°C/min from room 

temperature to 800°C, under air atmosphere.  

In this work, DSC was performed (DSC Q200, TA Instruments) to determine the 

degree of cure of the sample, α, as well as its glass transition temperature. During 

the measurements, the samples were heated from 20 to 310°C at a heating rate of 

10°C/min, held at 310°C for 0.5 min and then cooled down to 20°C at a cooling rate 

of 10°C/min. Then, after being kept at 20°C during 0.5 min, the samples were 

heated to 310°C at a heating rate of 10°C/min. The degree of cure was calculated 

by applying the following equation [35]: 
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α = 1 −
∆𝐻𝑟

∆𝐻T
 Eq. 6.1 

Where ∆𝐻𝑟 is the residual heat of cure of the cured sample (obtained by 

integration of the exothermic peak in the first heating curve) obtained during the 

first heating curve, ∆𝐻T is the total enthalpy of the cure reaction, which was 

obtained from a cure process of an uncured sample in the DSC.  

Dynamic mechanical analysis (DMA) were carried out by using specimens with 

dimensions of 17.5×12.7×3 mm3 in single cantilever mode. The tests were 

performed on a Q800 (TA Instruments) in the temperature range from 20 to 

270°C, at a frequency of 1 Hz, and a heating rate of 3°C/min. 

Mechanical characterization of nanocomposites 

Characterization of flexural properties was conducted under ambient conditions 

by using an Instron 5966, equipped with a 500 N load cell. At least four specimens 

of each composition were tested in a three-point bending configuration with 52 

mm between supports. Tests were carried out at a cross-head speed of 2 mm/min.   

The characterization of the fracture behaviour of nanocomposites was carried out 

at room temperature, using a Zwick universal testing machine with a 2.5 kN load 

cell. The tests were carried out following the ASTM D5045 standard. Single-edge-

notch specimens, with dimensions of 50×8×4 mm3 were loaded in three-point 

bending with a span-to-width ratio of 4 and a cross-head speed of 1 mm/min. The 

samples were pre-cracked before testing such that the ratio of specimen width to 

crack length was between 0.45 and 0.55, as specified in the standard. 

Thermal and electrical conductivity measurement 

The thermal conductivity of the resulting nanocomposites was measure at room 

temperature applying a transient plane source technique. For each filler content 

and neat resin at least three measurements were performed. Cylindrical shaped 

samples, with a diameter of 30 mm and a thickness of 3 mm, were measured in a 

hot disk thermal constants analyser TPS 2500 S (Hot Disk AB). In this technique, a 

thin heater/sensor, with a radius of 2.001 mm, was clamped between two identical 

samples. Then, the heater/sensor element was first used as a heat source to 
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increase the temperature of the surrounding sample by applying an output power 

of 0.01 W. Afterwards, the temperature increase was monitored over a period of 

time of 20 s by measuring the resistance of the heater/sensor. In order to minimize 

the effect of the interfacial thermal resistance, the surfaces of the cylindrical 

samples were polished. A detailed description of the transient plane source 

technique and its theoretical background can be found in [36]. 

To perform the DC electrical conductivity measurements, the disc-shaped 

specimens used for the thermal conductivity measurements were cut into 3×3×3 

mm3 parallelepiped samples. Two opposite faces were coated with silver paint as 

non-guarded electrodes. The voltage applied to the electrodes was increased from 

15 to 40 V, and the slope of the intensity-voltage curve (Keithley SMU 2450 

Graphical series SourceMeter) was fitted with the least-squares method. Electrical 

conductivity was calculated from the measured slope of the V-I curve and the 

sample dimensions. 

6.3  Results 

6.3.1 Characterization of hybrid nanoparticles 

The morphology of the as-received nanoparticles and as-synthesized hybrid 

nanoparticles was analysed by SEM and TEM (Figure 6.1 and Annex B: 

Supplementary information). As it can be observed in the Figure 6.1a, the as-

received NPs are in an agglomerated state (Annex B: Supplementary information). 

After the CVD process, the NPs remain agglomerated; however, the entangled 

network of synthesised CNTs can be observed (Figure 6.1a). 

By TEM it was observed that the NPs have a spherical shape (Supplementary 

information), which they maintained after the CVD process (Figure 6.1c). It was 

also observed that the CNTs have grown forming an entangled network around the 

NPs. The synthesised CNTs were identified as multi-walled CNTs (Figure 6.1d). 

It is worth noting that as the diameter of the spherical particles decrease from 

several hundreds of microns to several nanometres, the alignment of the CNTs 
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decrease and they are not attached to the surface of the particle due to their large 

curvature [37]. 

Form the thermogravimetric analysis (Annex B: Supplementary Information) it 

was obtained that the carbon content in the hybrid filler was approximately 20 

wt.%.  

 

Figure 6.1 SEM images of the a) as-received alumina nanoparticles and b) hybrid nanoparticles, 

composed by alumina nanoparticles and carbon nanotubes, obtained after the CVD process. c) TEM 

image of the hybrid nanoparticles, d) higher magnification TEM image showing some carbon 

nanotubes synthesised by CVD process. 

c)

100 nm 20 nm

d)

1 μm

b)

1 μm

a)
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6.3.2 Characterization of nanocomposites 

Nanocomposite processing 

The morphology of the resulting nanocomposites was analysed by SEM of the 

fractured surfaces of processed samples (Figure 6.2 and Annex B: Supplementary 

information). It was found that for low fillers contents, i.e. of up to 2 wt.%, the 

dispersion degree of both the hybrid filler and the alumina nanoparticles were 

relatively homogeneous, as it can be observed for the 0.5 wt.% composites (Figure 

6.2a and b). For the nanocomposites with 5 wt.% of NPs and h-NPs, agglomerates 

with a size in the range of several tenths of microns were observed (Figure 6.2c 

and d). However, the number of observed agglomerates was higher for the 5 wt.% 

h-NP composite than for the 5 wt.% NP composite. 

Higher magnification SEM images of the NP and h-NPs are available in the 

Supplementary information. From the observation of these images the adhesion 

between the NPs and the matrix seems to be weak, as the nanoparticle seem to be 

debonded. 
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Figure 6.2 Low magnification SEM images of the nanocomposites with a 0.5 wt.% of a) NPs and b) 

h-NPs and with 5 wt.% of c) NPs and d) h-NPs, where the dispersion of the filler can be observed. 

 

Thermogravimetric analysis 

The effect of the addition of hybrid nanoparticles on the thermal stability in 

oxidant atmosphere of the epoxy resin was analysed by TGA (Figure 6.3) and 

compared with the results obtained for the NP composites. The onset of 

degradation of the neat resin takes place at 310°C and the temperature at which a 

weight loss of 5% takes place (Td5%) is 337°C. The decomposition process is 

divided in two steps, with their corresponding peaks in the first derivative of 

weight curve at 385°C and 568°C, respectively (Annex B: Supplementary 

information).  

5 μm

a) 0.5 wt.% NPs

50 μm

c) 5 wt.% NPs

b) 0.5 wt.% h-NPs

5 μm

d) 5 wt.% h-NPs

50 μm
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Figure 6.3 Curves obtained from the TGA, corresponding to the weight (%) of the neat resin and the 

a) NP and b) h-NP composites. 

As it can be observed in Figure 6.3a and c and in the values listed in Table 6.1, the 

addition of the alumina nanoparticles has a slight detrimental effect on the thermal 

stability of the matrix of the resulting nanocomposites. This is in agreement with 

the results reported for epoxy composites with nanosized alumina particles that 

showed no [38–40] or a slight effect [41,42] of the nanofiller on the decomposition 

behaviour of the matrix. When the results obtained for the h-NPs composites were 

analysed, it was found that the decomposition behaviour of the epoxy matrix was 

somewhat improved. The Td5% is 10 and 13°C higher than those of neat epoxy and 

5 wt.% NP composite, respectively. 

In [43,44] the addition of CNTs or CNFs to an epoxy resin resulted in 

nanocomposites with similar temperatures at the onset of degradation. In polymer 

composites with CNFs [45] and CNTs [46], the filler improved the thermal stability. 

This effect was attributed to the capture of free radicals, generated during the 

thermo-oxidation process, by the CNT surface. In this work, the stabilizing effect of 

the hybrid particles, likely due to the presence of CNTs, is reported. As proposed by 

Goyat et al. [47,48], the addition of nanofillers can also affect the thermal stability 

by changing the crosslinking degree or the thermal conductivity of the resulting 

composite; or by binding with the network side-chains. These parameters will be 

discussed in the following sections.  

Table 6.1 Temperature at a loss of weight of 5 wt.% (Td5%) and residue left at 800°C by the 

neat resin and nanocomposites obtained from TGA; calculated filler content, degree of cure 

b)a)
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and glass transition temperature of neat resin and composites obtained from the DSC 

curves. 

Sample 
Td5% 

(°C) 

Residue 

(wt.%) 

Filler content 

(wt.%) 

Degree of 

cure, α 

Onset Tg , 1st 

heating (°C) 

Resin 337 0.00 0.00 0.95 189 

0.5 NPs 337 0.36 0.36 0.95 189 

1 NPs 335 1.25 1.25 0.95 190 

2 NPs 335 2.47 2.47 0.94 189 

5 NPs 334 4.22 4.22 0.95 190 

0.5 h-NPs 339 0.40 0.50 0.94 192 

1 h-NPs 342 0.77 0.96 0.93 194 

2 h-NPs 345 1.80 2.25 0.94 193 

5 h-NPs 347 3.51 4.38 0.93 192 

 

The amount of residue left after the TGA of composites was used to assess the 

amount of filler present in the nanocomposite. As obtained by TGA, the as-received 

NPs are thermally stable up to 900°C (Figure 6.3a), while the synthesized CNTs are 

completely oxidized at approximately 625°C. Thus, it has been assumed that the 

residue at 700°C corresponds exclusively to the NPs as at this temperature the 

resin left no measurable residue. The hybrid nanoparticles content was calculated 

taking into account that the NPs represent the 80 wt.% of the hybrid material. The 

obtained values are listed in Table 6.1. As it can be observed, the actual values of 

the filler content are close to the theoretical ones. For the sake of simplicity, the 

nanocomposites are named as per their theoretical amount of filler. Furthermore, 

the volume fractions of nanoparticles and carbon nanotubes on the resulting 

composites were calculated and are available in the Annex B: Supplementary 

information. 

Differential scanning calorimetry 

The DSC curves obtained in the first and second heating for the neat resin and the 

NP and h-NP composites are presented in the Annex B: Supplementary 

information. 
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As it can be observed in the graphs of the first heating (Annex B: Supplementary 

information), there is an exothermic peak for the neat resin and the 

nanocomposites, which is indicative of an incomplete cure of the sample [49]. The 

integration of the exothermic peak gives the residual heat of cure, ∆𝐻𝑟. It was 

obtained that the total enthalpy of the cure reaction, at a heating rate of 10°C/min 

up to 310°C, of the neat epoxy resin was 457 J/g. The degree of cure of the 

resulting nanocomposites, as well as that of neat resin, was calculated in order to 

detect any possible effect of the filler on the result after the cure reaction (Table 

6.1). It was obtained that the addition of the hybrid filler or the alumina 

nanoparticles to the epoxy resin does not significantly change the resulting cross-

linking degree, determined by the degree of cure, of the composites after being 

processed following the cure cycle recommended by the manufacturer.  

In the first heating curve, the endothermic shift in the heat flow curve, which is 

related with the glass transition of the resin, overlaps the exothermic cure peak. 

Thus, an exact value of the Tg from the first heating curve could not be obtained. 

However, it can be observed that the h-NPs composites exhibits a somewhat higher 

onset of Tg than the neat epoxy and the composites with as-received nanoparticles 

(Table 6.1).  

The effect observed for the NP composites is in agreement with that reported for 

epoxy composites with alumina NPs [42], where the addition of up to 5 wt.% of 

NPs had no effect on the degree of cure. Furthermore, in the case of epoxy 

composites with alumina NPs [50], similar to those used in this work, the sample 

with 5 wt.% of filler exhibited the same Tg as the neat resin; and the DSC showed 

that the samples were completely cured.  

In one hand, the shift of Tg to higher temperatures could be indicative of attractive 

matrix-particle interaction, which hinders the movement of polymer chains [51]. 

On the other hand, the shift of Tg to lower temperatures could be related with a 

reduced crosslinking degree of the epoxy matrix [48,52], an increase of the free 

volume of the resin [51] or particle agglomeration [53].  Thus, it can be said that in 

the NP composites obtained in this work, the nanoparticles does not have a strong 

interaction with the matrix.  
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In this work, the CNTs growth by the CVD process, comprised the 20 wt.% of the 

hybrid material, which possess with a specific surface area if 83 m2/g, compared to 

30 m2/g of alumina nanoparticles (Annex B: Supplementary information). Thus, 

the increased values of the Tg of the h-NP composites compared to the NP 

composites could be attributed to the stronger interaction between the CNT and 

the matrix, than interaction between the NP and the matrix, and/or the increased 

specific surface area of the hybrid filler [9].  

Dynamic mechanical analysis 

The storage modulus and the tan δ of the NP and h-NP composites are shown in 

Figure 6.4a and b, respectively. The glass transition temperatures, obtained from 

the different curves are available in the Supplementary information. The values 

obtained from the storage modulus show a slight effect on Tg as the amount of 

hybrid filler increases, being the Tg of the 5 wt.% h-NP composite 3°C higher than 

that of the neat resin. If the glass transition obtained from the tan δ curves is 

analysed, no significant effect due to the addition of h-NPs is observed. In the case 

of the NP composites, no change in the different values of Tg is observed as the NP 

content increases. The trend followed by the Tg upon the addition of NPs or h-NPs 

is similar to that obtained by DSC. 

The difference between the effect of the hybrid filler on the Tg values obtained 

from the E’ or tan δ curves could be explained due to a weak interaction between 

the filler and the matrix. As the material approaches the Tg region (Tg onset) from 

lower temperatures, the presence of h-NPs seems to weakly restrict the movement 

of polymeric chains. However, when the material has reached certain temperature, 

i.e. Tg tan δ, polymer chains have energy enough to move, overcoming the 

hindering effect of the filler.  
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Figure 6.4 Storage modulus and tan δ (at a frequency of 1 Hz) of a) NP and b) h-NP composites as a 

function of the temperature. c) Flexural modulus and d) strength of NP and h-NP composites as a 

function of the filler content. 

In the tan δ curve another peak apart from the Tg peak related with the α 

relaxation, can be observed in the range between 50 and 150°C (Annex B: 

Supplementary information). This peak is associated with a sub-Tg relaxation, 

known as as ω relaxation [54], due to molecular rearrangement of the crosslinked 

network due to the sorption of moisture [55]. As it can be observed, there is no 

effect of the NPs nor the h-NPs on the ω relaxation of the epoxy matrix. However, it 

is clear that the value of the tan δ is lower in the case of the NP and h-NP 

composites than in the neat matrix. The value of tan δ is related with the damping 

behaviour of the material [56]. The reduction found in this work is in agreement 

with the observed behaviour in composites with fillers that are relatively stiffer 

than the matrix [43,45,57].  

Regarding the storage modulus, at temperatures below Tg onset E’, the addition of 

h-NPs resulted in an increased modulus; being significantly higher the 

d)c)

a) b)
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improvement obtained for the 5 wt.% h-NP composite. In the case of the NP 

composites, the highest increase in E’ was obtained for a 5 wt.% of NPs, while for 

the rest of composites a lower reinforcing effect was obtained. The reinforcing 

effect of both the NPs and h-NPs was expected from results obtained for epoxy 

composites with carbon nanomaterials [43,44], silica NPs [58] or alumina 

microparticles [57] and nanoparticles [59,60]. 

The results indicate that the reinforcing effect of the hybrid filler was stronger than 

the reinforcing effect of the alumina nanoparticles. A possible explanation for the 

more efficient reinforcing effect of the h-NPs than the NPs could be the somewhat 

stronger interaction of the hybrid material with the matrix, due to the CNTs. This 

would be in agreement with the results obtained from DSC. 

Flexural properties 

The results obtained from the flexural characterization of the h-NP and NP 

composites, by three-point bending tests, are shown in Figure 6.4c and d.  

From the analysis of the flexural modulus (Figure 6.4c), it is obtained a behaviour 

similar to that found in the storage modulus by DMA. The stiffening effect of the 

filler is higher in the h-NP composites than in the NPs. The possible reasons to 

explain the higher stiffening effect of the hybrid filler could be the interaction 

between the filler and the matrix, as found by DMA and DSC; and/or the higher 

specific surface area of the hybrid filler compared to the as-received NPs. Lim et al. 

compared in [61] the effect of filler’s shape on the resulting mechanical properties 

of epoxy/alumina nanoparticles composites. They found that for the 

nanocomposites with rod-shape particles with a mean diameter of 6 nm, but 

having the highest specific surface area, the modulus was unaffected up to a filler 

content of 2.5 wt.%. However, for the rest of fillers (10 nm platelet-shape and 12 

nm rod shape), a considerable improvement was obtained at all filler contents. 

They attributed this effect to a higher efficiency in the stress transfer of the 

platelet-shaped filler than the rod-shaped filler. Therefore, the reduced stiffening 

effect of the NPs, compared to the h-NPs, could be explained in terms of a weak 

nanoparticle-matrix interaction, which results in a poor stress transfer. However, 
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it could be said that the flexural modulus is not significantly affected by the 

addition of alumina nanoparticles nor the hybrid material. 

Furthermore, in the case of the flexural strength (Figure 6.4d) there is no 

difference between the NP and the h-NP composites, which have a similar 

behaviour to that of neat resin. The high dispersion of results may be due to the 

presence of agglomerates, localized heterogeneous dispersion of the filler or 

inappropriate preparation of the tested samples. 

Fracture behaviour 

The addition of hybrid nanoparticles to the epoxy resin resulted in composites 

with similar fracture behaviour than the NP composites, as shown in Figure 6.5, 

which is better than that of neat resin. However, it seems that the effect of the 

CNTs in the hybrid material is negligible during the fracture process of composites. 

In order to further understand this process, the fracture surfaces of the samples 

were analysed. 

 

Figure 6.5 a) Mode I fracture toughness of NP and h-NP composites as a function of the filler 

content.  

In Figure 6.6 are shown the SEM images of the fracture surfaces, in the region 

immediately ahead the pre-crack, of the neat resin and the composites with 5 wt.% 
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of NPs and h-NPs. At low magnification (Figure 6.6a, c and e), the neat resin and 

both types of composites exhibits a relatively plane surface. By analysing images at 

higher magnification (Figure 6.6b, e and f), it was observed that neat resin presents 

a mirror-like fracture, characterized by a smooth surface, which is the typical 

surface of a brittle fracture (Figure 6.6b) [50]. However, when the surfaces of the 

composites were analysed, an increased surface roughness was observed due to 

the presence of alumina nanoparticles, in the NP composites; and alumina 

nanoparticles and carbon nanotubes, in the h-NP composites. Thus, the increased 

fracture surface roughness seems to indicate that crack deflection is the main 

toughening mechanism in the resulting composites [50,62]. 

By further analysis of the fracture surfaces of the NP composites, the following 

toughening mechanisms were identified (Figure 6.7). The first mechanism was 

crack deflection/pinning, indicated with the number 1 in Figure 6.7. Crack pinning 

is identified by the tails. In a growing crack, when the crack front reaches a rigid 

particle, it cannot break the particle and it remains pinned, thus the crack bows 

out, creating secondary cracks. After passing the particles, the secondary cracks 

unify generating the tails [63]. The crack deflection was observed by an increase in 

the surface roughness when compared to the smooth surface of the resin (inset in 

Figure 6.6b). However, these mechanisms are not the main toughening mechanism 

as in the case of a nanofiller, their size is not the adequate to pin or mechanically 

interact, i.e. deflect, the growing crack [58,62]. Thus, the main toughening 

mechanism were identified to be particle debonding and plastic void growth 

(indicated by numbers 2 and 3, respectively, in Figure 6.7). The high stress state 

that takes place in the region ahead the crack tip is slightly released by the 

debonding of the rigid particles. The stress state is further released by void growth 

due to the plastic deformation of the matrix [7–9,62]. This mechanism absorbs 

higher energy, compared to the debonding.  
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Figure 6.6 SEM images of the fracture surfaces of a-b) neat resin and the composites with 5 wt.% of 

c-d) nanoparticles and e-f) hybrid nanoparticles. The inset in b) shows a high magnification SEM 

image of the region showed in b). The white arrow indicate crack propagation direction. An increase 

in the fracture surface roughness of composites compared with the neat resin can be observed. 

In the case of the h-NP composites, the main toughening mechanisms were found 

to be crack pinning and deflection, as shown in Figure 6.6f and Figure 6.7c. As in 

the NP composites, an increased surface roughness, compared to that of neat resin 

(inset in Figure 6.6b), can be observed. Additional toughening mechanism were 

particle debonding and void growth (numbers 2 and 3 in Figure 6.7d). Some CNTs 

could be observed in Figure 6.7c and d (indicated by dashed arrows). Mirjalili and 

a) Resin

50 μm

c) 5 NP

50 μm

e) 5 h-NP

50 μm

d) 5 NP

5 μm

f) 5 h-NP

5 μm

5 μm

b) Resin

500 nm



163 
 

Hubert [64] found that no significant enhancement in fracture toughness can be 

achieved in composites with randomly dispersed CNTs at volume fractions lower 

than 2%. In this work the volume fraction of CNTs was calculated to be 

approximately 0.6% (Annex B: Supplementary information).Therefore, the 

negligible toughening effect of the CNTs reported in this work is in agreement with 

previously reported results [64].  

The fracture behaviour of h-NP composites is dominated by the presence of 

alumina nanoparticles. For the same filler content, the h-NP composites have lower 

amount of alumina nanoparticles than the NP composites. Therefore, the overall 

fracture behaviour of h-NPs composites is similar to that of the composites with 

NPs, having higher values of fracture toughness than neat resin at all filler 

contents.  

 

Figure 6.7 High magnification SEM images of the fracture surfaces of composites with 5 wt.% of a-b) 

NPs and c-d) h-NPs. The white solid arrows, near the scale, indicate crack growth direction. The 

toughening mechanism consisting in crack deflection (surface roughness), crack pinning (1), 

particle debonding (2), plastic void growth (3). CNTs can be observed in c and d) indicated by 

dashed arrows. 
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Thermal and electrical conductivity  

The thermal conductivity of the NP and h-NP composites were analysed (Figure 

6.8) by the hot disk technique. The thermal conductivity of alumina is 𝑘𝑁𝑃=30 

W/mK [10], while CNTs are supposed to have a thermal conductivity, 𝑘𝐶𝑁𝑇 , 

between 2000 and 3000 W/mK [14], which are relatively higher than that found in 

this work for neat resin, 𝑘𝑚=0.23 W/mK. Thus, the addition of NPs and h-NPs is 

expected to result in composites with an increased thermal conductivity. If the 

results of the NP and h-NPs are compared, it seems that the thermal conductivities 

of the later are somewhat higher that the former, likely due to the presence of 

CNTs. For a filler content of 5 wt.% of NPs and h-NPs, the thermal conductivity 

increase a 5.1 and 7.4%, respectively, compared to the neat resin. However, the 

obtained results showed only slight improvements for high filler contents. In [21], 

it was reported a 20% increment in the thermal conductivity for an epoxy filled 

with 5 wt.% of hybrid alumina/CNT. In this case, the hybrid consists in micron-

sized particles with a CNT content of ca. 12 wt.% [28]. A possible explanation for 

the low values of thermal conductivity obtained may be due to the reduced size of 

the filler that results in a higher surface area, which has an associated interfacial 

thermal resistance, than in the case of micron-sized fillers [11].  

 

Figure 6.8 Thermal conductivity of NP and h-NP composites as a function of the filler content.  
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The electrical conductivity of the neat resin, the NP composites and the h-NP 

composites up to 2 wt.% filler was lower than 1×10-7 S/m, which is the minimum 

value that can be measured with the equipment and the sample dimensions used.  

However, for the 5 wt.% h-NP composite a conductivity of 1 ± 0.3 × 10−3 S/m. 

Thus, it was found that the percolation threshold of the h-NP composites was 

between 2 and 5 wt.% of hybrid filler. If the results obtained from the TGA of the 

hybrid filler are taken into account, it could be said that the percolation threshold 

is between 0.4 and 1 wt.% of CNTs or 0.24 and 0.58 vol.% of CNTs (Annex B: 

Supplementary information). 

6.4  Conclusions 

An approach to develop a nano-scaled hybrid material is reported in this work. The 

approach consists in treating the as-received nanoparticles with a catalyst 

precursor by a low-cost method, followed by a chemical vapour deposition 

process. This approach allows the direct synthesis of an entangled network of 

carbon nanotubes surrounding the alumina nanoparticles. The amount and 

characteristics of the resulting CNTs can be tuned by adjusting the parameters of 

the CVD process. 

It was obtained that the resulting hybrid filler had a somewhat better interaction 

with the matrix, compared to the interaction between the as-received 

nanoparticles and the epoxy. This effect was observed in the slight shift to higher 

temperatures of the Tg. Furthermore, the h-NPs did not modify the processing of 

the epoxy resin, as after following the cure cycle recommended by the 

manufacturer, the degree of cure was the similar to that of the neat epoxy. The 

enhanced filler-matrix interaction in the h-NP composites was pointed as the 

responsible for the stabilizing effect on the thermal decomposition of 

nanocomposites.  

Regarding the mechanical properties, the hybrid nanoparticles exhibited a slightly 

better stiffening effect than the as-received nanoparticles. However, the effect of 

the hybrid nanomaterial and the alumina nanoparticles on the flexural properties 

of the epoxy matrix was not significant. 
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The increase in the fracture toughness, compared to the neat epoxy, were similar 

for both nanocomposites. However, it seems that the toughening mechanisms that 

took place during the fracture process of the composites changed from the NP to 

the h-NP composites. Being the particle debonding and plastic void growth the 

main mechanism in the NP composites; and crack pinning and deflection in the h-

NP composites.  

The nanocomposites with 5 wt.% of h-NPs exhibited higher thermal conductivity 

than the nanocomposites with the same content of NPs, and an electrical 

conductivity of 1 ± 0.3 × 10−3 S/m, while the later remained as insulators.  

Therefore, the results obtained in this work showed the potential to develop nano-

scaled hybrid materials to be used as fillers for composite materials with improved 

mechanical, thermal and electrical properties. However, further work should be 

done to improve the mechanical reinforcing efficiency and the formation of a 

thermally and electrically conducting network through the matrix. 
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7 Low thermal and high electrical 

conductivity in hollow glass 

microspheres covered with carbon 

nanofiber–polymer composites 
 

7.1  Introduction 

There is a need for high-performance polymers with high electrical and low 

thermal conductivity for aerospace, marine and energy applications. However, this 

combination of properties is really hard to obtain in a single material.  

By adding conducting fillers [1–4] to a polymer matrix, the thermal and electrical 

conductivity of the resulting composite can be increased. Once these fillers form a 

conductive network within the polymeric matrix, the electrons can flow through 

the composite, increasing the thermal and electrical conductivity of the composite.  

When electrically insulating fillers are added to a polymer [5–8] the thermal 

conductivity of the composite is modified but not the electrical conductivity.   

Opposed effects on the thermal and electrical conductivity can also be obtained by 

combining insulating and conducting fillers that are added to the matrix. By adding 

carbon-based nanomaterials and electrically insulating fillers to a polymer matrix; 

composites with improved thermal conductivity and high electrical resistivity are 

obtained [9–11]. This approach, based on the combination of fillers has been 

followed in the present work using hollow glass microspheres (HGMs) and carbon 

nanofibers.  

Composites containing hollow glass microspheres (HGMs) are very attractive due 

to their light weight, high thermal stability, and low thermal conductivity [12–15]. 

Depending on the density (wall thickness) of the HGMs, stiffer composites can be 

obtained. However, as the interaction between the matrix and HGMs is generally 

poor, the resultant composites suffer reduced strength, compared with the raw 

matrix [16,17]. On the other hand, the addition of HGMs to a polymer, e.g., epoxy 
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resin, results in a material with the same electrically insulating behaviour as the 

matrix but with reduced thermal conductivity [8,12].  

Carbon-based nanostructures, such as graphene, graphite nanoplates, graphite 

oxide, carbon nanofibers (CNFs) and nanotubes were extensively studied due to 

their outstanding mechanical, thermal and electrical properties, which make these 

nanosized structures ideal as nanofillers for aerospace or high-performance 

composites. To take advantage of both the low density and thermal conductivity of 

HGMs and the high mechanical and electrical conductivity of carbon-based 

nanofillers, both micro- and nano-sized fillers can be combined in a single 

composite material; for example, when 0.3 vol.% of CNFs is added to an epoxy 

composite with 50 vol.% of HGMs (0.46 g/cm3), the tensile modulus and strength 

are increased by 10 and 29%, respectively, compared to the unmodified HGM 

composite [18]. For an epoxy composite with 10 wt.% of CNFs and 15 vol.% of 

HGMs (0.22 g/cm3) the electrical resistance is reduced by 85% while the dielectric 

constant is increased by four orders of magnitude, compared to the neat resin [19]. 

The effect of CNFs on the viscoelastic properties [20], as well as on the degradation 

due to moisture exposure [21] or thermal expansion [22], was also studied.  

Several groups have directly grown CNTs on micron-diameter fibres [23–25] and 

solid particles of different sizes and materials, such as alumina/iron oxide 

nanoparticles [26], ceramic spheres [27], alumina microparticles [28,29] or silica 

microparticles [30,31]. However, to our knowledge, there is scarce literature on 

the growth of carbon nanotubes or nanofibers on micron-scaled hollow glass 

spheres [32] and only the mechanical (compression) and thermomechanical 

(dynamic mechanical analysis) properties of the produced composites were 

characterized.  

Here we present a method to develop a hybrid composite material with an unusual 

combination of properties such as improved electrical conductivity and low 

thermal conductivity. We tailored the composite properties by using a hybrid filler 

based on carbon nanofibers that were directly synthesized by chemical vapour 

deposition on micron-sized hollow glass spheres. We also compared our 
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experimental results with analytical models and found a good correlation between 

the results obtained from both approaches.  

7.2  Methods 

7.2.1 Synthesis of hybrid HGM-CNF particles 

Carbon nanofibers were synthesized on the surface of hollow glass microspheres 

(K20 Glass bubbles, 3M) by means of a chemical vapour deposition process. The 

catalyst precursor for the growth of carbon nanofibers was iron nitrate 

nonahydrate (Fe(NO3)3·9H2O) (Sigma-Aldrich, >98% purity). To coat the surface 

with the catalyst precursor [24], the microspheres were added to a solution of 50 

mM iron nitrate in isopropanol and mechanically mixed for 2 h. Then, the mixture 

was filtered for overnight and dried at 150°C for 3 h. After this process, the catalyst 

precursor-coated HGMs were stored until they were used as substrate for the 

growth of CNFs. 

The treated microspheres were placed in an alumina boat, which was positioned in 

the middle of a quartz tube and heated by a mobile horizontal tube furnace that 

allows fast heating and cooling rates. A detailed explanation of the CVD system can 

be found elsewhere [33]. For the conditioning of the catalyst, the furnace was 

heated to 600°C and a flow of 100 sccm of H2 and 400 sccm of Ar was passed 

through the quartz tube for 20 min. Afterwards, for the carbon nanofibers growth, 

the temperature was maintained at 600°C and a flow of 100 sccm of H2, 400 sccm 

of Ar and 200 sccm of C2H4 was maintained for 20 min. After this process, the 

furnace was cooled down under a flow of 1000 sccm of Ar.  

7.2.2  Composite preparation 

The resin used as matrix for the preparation of composites was a high-temperature 

urethane acrylate resin (Crestapol 1234, Scott Bader Company Ltd.). Methyl-ethyl-

ketone peroxide solution in diisobuthyl phthalate (Butanox LPT) was used as 

catalyst (2% by weight of resin) and a solution of cobalt octoate in styrene 

(Accelerator G) was used as accelerator (2% by weight of resin). 
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Composites containing 0, 2, 5 and 10 wt.% of HGM and the hybrid material, 

obtained by the CVD process (HGMs-CNFs), were produced. Resin, catalyst and 

accelerator were hand-mixed and degassed for 1 min. Then, the appropriate 

amount of filler was added to the resin and stirred by hand. Finally, the resulting 

mixture was cast in a silicone mould and cured at room temperature for 48 h, 

followed by a post-curing cycle of 5 h at 80°C and 3 h at 195°C.  

7.2.3 Characterization 

Morphology and Raman spectroscopy 

The morphologies of the as-received HGMs and the synthesized HGM-CNF particles 

were analysed by scanning (SEM equipped with an energy-dispersive 

spectrometer, EVO MA15, Zeiss) and transmission electron microscopy (TEM, JEOL 

JEM 3000F). The elemental composition of the as-received HGMs was analysed by 

energy-dispersive spectroscopy (EDS). For SEM and EDS, the particles were lightly 

pressed onto an adhesive carbon tape and for TEM, a small amount of the hybrid 

material was dispersed in isopropanol by means of an ultrasonic probe. A drop of 

the resulting solution was carefully deposited on a TEM carbon-coated Cu grid 

(LC300-Cu, EMS). 

The morphology of the resulting composites was assessed by analysing the 

fracture surfaces of the manually fractured specimens by light microscopy and 

scanning electron microscopy (Helios NanoLab 600i, FEI). For SEM, the surfaces of 

the samples were sputter-coated with a thin layer of gold to avoid electrostatic 

charge of the sample during the analysis. 

 The as-received HGMs and the synthesized hybrid fillers were placed on top of 

thin aluminium foils and analysed by Raman spectroscopy (Micro-Raman 

spectrometer Renishaw PLC), using a DPSS Nd:YAG green laser (532nm 

wavelength). Three measurements were performed per sample. Spectra were 

obtained for an exposure of 15 s, 5 accumulations, in the range of 200 – 3500 cm-1, 

applying a laser power of 5%. 
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Thermogravimetric analysis and density measurement 

The thermal stability of HGMs and the carbon content of the HGMs-CNFs, as well as 

the thermal stability of the resulting composites, were analysed by using a 

thermogravimetric analysis (Q50 TA Instruments), during which the samples were 

heated under air, at a heating rate of 10°C/min, from room temperature to 800°C. 

The residue obtained after the thermogravimetric analysis was used to calculate 

the actual amount of HGMs and HGMs-CNFs added to the composites. The 

procedure followed is explained in the Annex A. 

The density of the resulting composites was measured by following the ASTM 

D792-13 standard [34], through the application of the Archimedes’ principle. At 

least three cylindrical samples for each filler content, were first weighted in air and 

then in distilled water at 24°C. The theoretical density of composites was also 

obtained, by applying the rule of mixtures, to compare the experimentally 

measured densities of the composites with their theoretical densities. The HGM 

and HGM-CNF weight fractions used to calculate the theoretical densities were 

those obtained by TGA, as mentioned above. The equations used for the calculation 

of the filler volume fraction and the theoretical density are available in the Annex 

A. 

Thermal conductivity analysis 

The thermal conductivity and diffusivity and the volumetric heat capacity of the 

resulting composites were measured at room temperature by applying a transient 

plane source technique (TPS 2500 S, Hot Disk AB). A thin heater/sensor, with a 

radius of 2.001 mm, was placed between two identical samples (30 mm diameter 

and 3 mm thick). The heater/sensor element was first used as a heat source to 

increase the temperature of the surrounding sample by applying an output power 

of 0.01 W. Afterwards, the temperature increase was monitored over a period of 

time of 20 s by measuring the resistance of the heater/sensor. A detailed 

description of the transient plane source technique, as well as its theoretical 

background, can be found in references [35–37]. For each filler content and neat 

resin at least three measurements were performed. To minimize the effect of the 
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interfacial thermal resistance, the surfaces of the cylindrical samples were 

polished. 

To further analyse the thermal conductivity of the composites, Maxwell’s model 

was applied to predict the theoretical thermal conductivities of HGM and HGM-CNF 

composites.  

Electrical conductivity analysis 

To perform the DC electrical conductivity measurements, the disc-shaped 

specimens used for the thermal conductivity measurements were cut into 3×3×3 

mm3 parallelepiped samples. The electrical resistance was measured in the in-

plane and the through-thickness direction of the samples (Annex A). The 

corresponding two opposite faces were subjected to a polishing process to ensure 

a smooth surface. The polished surfaces were coated with silver paint as non-

guarded electrodes. The voltage (V) applied to the electrodes was increased 

between 15 and 40 V, and the I−V slope (Keithley SMU 2450 Graphical series 

SourceMeter) was fitted with the least-squares method. Electrical conductivity was 

calculated by normalizing measured slope with sample geometry. An estimation of 

the percolation threshold for the HGM-CNF composites was obtained. The 

procedure and equations applied are available in the Annex A. Three samples were 

measured per volume fraction of filler.  

7.3  Results and Discussion 

7.3.1 Characterization of the fillers 

Hollow glass microspheres 

The EDS analysis of the as-received HGMs, presented in Figure 7.1a, revealed that 

the chemical composition of the particles resemble that of soda-lime-borosilicate 

glass. The SEM images showed that the as-received HGMs have a size distribution 

of between approximately 20 and 100 μm. The microspheres were homogeneously 

dispersed on the carbon adhesive tape and no agglomerates were observed. Only a 

few of the as-received HGMs were broken (inset in Figure 7.1a). The HGMs are 
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thermally stable up to 800°C, which is well above the CVD synthesis temperature 

(600°C), as measured by TGA (Figure 7.2).  

 

Figure 7.1 a) EDS of the as-received HGMs, performed to analyse the chemical composition (in at.%) 

of the as-received microspheres. The inset shows a SEM image of the as-received HGMs. b) SEM 

images of the HGMs after the CVD process; the carbon-based nanostructures cover the surface of 

the HGMs, although not completely. c) High-magnification SEM images of the synthesized carbon 

nanofibers. d) TEM images of CNFs in the resulting hybrid material. 

 

Hollow glass microspheres–carbon nanofibers 

After the synthesis process, the glass microspheres maintained their spherical 

shape, as the softening temperature of the particles, i.e., the temperature at which 

the viscosity of the material reaches a value high enough to allow the deformation 

of the particle under its own weight [38], was not reached during the CVD process. 

A certain amount of carbon-based nanostructures, grown by the CVD process, 

seems to be covering the surface of HGMs (Figure 7.1b), although not completely. 

By SEM and TEM observation, it was found that the synthesized nanostructures 

were highly heterogeneous. Although most of the synthesized structures (Figure 

20 µm

b)

c)

400 nm

100 µm

a)

200 nm

d)
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7.1c) were identified as carbon nanofibers (Figure 7.1d), a small amount of 

different carbon-based architectures was also observed in the hybrid material 

obtained after CVD: hollow carbon nanofibers, nanotubes, and graphitic particles 

(see Annex C: Supplementary information). 

From the TGA measurements of the HGM-CNF samples (Figure 7.2) we obtained 

the carbon content of hybrid fillers and the thermal stability of the carbon 

nanostructures. The temperature at which the CNFs started to decompose (onset 

temperature), was ca. 535°C, similar to onset temperatures for MWNTs (400–

600°C) [39,40]. It was obtained that CNFs constituted 25 wt.% of the total amount 

of the HGM-CNF material. 

 

Figure 7.2 Weight change and derivative of weight change, as a function of the temperature, of the 

HGMs and the HGMs-CNFs. The thermal stability up to 800 °C is confirmed for the HGMs. The 

amount of CNFs, obtained by CVD, is 25 wt.% of the hybrid HGM-CNF material. 

7.3.2 Characterization of composites 

Morphology, thermal stability and density 

The morphology of the composites was characterized by optical and electronic 

microscopy of the fractured surfaces. The filler was homogeneously dispersed 

within the matrix of both HGM and HGM-CNF composites (Figure 7.3a-b and Annex 

C: Supplementary information), which was not expected as both fillers were 

dispersed by hand-stirring. A few microspheres appeared to be damaged, probably 

due to sample preparation and the manufacturing process. In the HGM-CNFs 
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composites, most of the synthesized CNFs remained located around the HGMs 

(Figure 7.3c-d), and thus was part of the interphase between the matrix and HGMs.  

 

Figure 7.3 SEM images of the fractured surfaces of the a) 10 wt.% HGM and b) 10 wt.% HGM-CNF 

composites; there is a homogeneous dispersion of the HGMs. c) A broken HGM shown in the 10 

wt.% HGM-CNF composite and d) the magnified view showing the glass shell and the synthesized 

CNFs on the HGM surface, which make up part of the HGM-matrix interface. Some CNF agglomerates 

are dispersed within the matrix and located near the HGM-CNFs. 

The thermal stability of composites was analysed by thermogravimetric analysis 

carried out in air. The TGA curves of the samples, presented in Figure 7.4, were 

used to analyse the thermal stability of the resulting composites and to confirm the 

amount of filler added to the matrix. As observed, the onset temperature of 

thermal degradation of the resin (357°C) is not significantly affected by the 

addition of HGMs (360–361°C for all the composites). In the case of the HGM-CNF 

composites, the onset temperature of thermal degradation was only slightly 

reduced by the addition of further CNFs; it was 361, 358 and 355°C for the 2, 5 and 

10 wt.% HGM-CNF composites, respectively.  

b)

300 µm

a)

300 µm

2 µm

d)

15 µm

c)

Glass shell

CNFs
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Figure 7.4 Weight change, as a function of the temperature, of the a) HGM and b) HGM-CNF 

composites. The residue left at 650 °C (Table 7.1), after the degradation process of polymer and 

CNFs has finished, was used to confirm the amount of HGMs that were added to the composites. 

 

Table 7.1 Analysis of the filler amount and density of the resulting composites. Residue, at 650 °C, 

obtained after the thermogravimetric analysis of neat resin, HGM, and HGM-CNF composites. The 

experimental densities were measured according to the ASTM D792-13 standard [34]. 

Filler amount 
(wt.%) 

Residue 
(wt.%) 

Experimental wt.% HGM/ 
wt.% CNF 

Experimental 
density 
(g/cm3) 

0 0.2 -/- 1.159 

HGMs 

2 2.2 2.1/- 1.056 

5 4.9 4.8/- 0.921 

10 10.4 10.3/- 0.752 

HGMs-
CNFs 

2 1.9 1.7/0.6 1.101 

5 3.9 3.7/1.2 1.004 

10 7.9 7.7/2.6 0.823 

 

The results obtained from the TGA allowed us to confirm the filler content by 

measuring the residue left at 650 °C, after the degradation process of polymer and 

CNFs have finished (Table 7.1). The addition of HGMs and HGMs-CNFs to the 

polymeric matrix led to a decrease in the density of the material. As expected, the 

lowest densities were obtained for the composites with the largest amounts of 

filler, which were 35% (10% wt. HGM) and 29% (10 wt.% HGM-CNF) lower than 

a) b)
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the density of the neat matrix. The differences between the theoretical (Table 7.1) 

and the experimental amount of filler could be attributed to errors during 

weighing the filler to be mixed with the resin, porosity of the matrix, or localized 

heterogeneous dispersion of the filler within the matrix [41,42].  

Thermal behavior 

The effect of the HGMs and the HGMs-CNFs on the thermal behaviour of the neat 

resin was analysed by the hot-disk technique. The values obtained for the thermal 

conductivity, k, and thermal diffusivity, 𝜆, are shown in Figure 7.5 and Figure 7.6. 

The thermal conductivity of composites decreases with an increased amount of 

HGMs and HGMs-CNFs added. The neat resin had a thermal conductivity,  km, of 

0.228 W/mK. 

For composite materials formed by two phases, i.e. resin and HGMs, Maxwell 

model was applied to analyse the effective thermal conductivity of the HGM 

composites. Maxwell model assumes randomly dispersed and non-interacting 

spheres [43], thus it is only valid for low volume fractions of filler (<10 vol.%) [44]. 

As observed in Figure 7.5a, the results obtained by the application of Maxwell’s 

equation are well in agreement with those experimentally obtained. 

For the HGM-CNF composites, the thermal conductivity of the resulting material 

decreased with the addition of filler. Nevertheless, the thermal conductivity of 

HGM-CNFs composites is higher than that of the HGM composites for the same 

amount of filler. This higher thermal conductivity of HGM-CNF composites than 

HGM composites should be due to the high thermal conductivity of the CNFs [45] 

and the lower content of HGM per volume fraction of HGM–CNF (Figure 7.5), 

compared with the HGM composite with the same wt.% of filler. For the 10 wt.% 

HGM composite (ca. 40 vol.% HGM) we obtained a thermal conductivity that was 

31% lower than for the neat resin, which is in agreement with the values reported 

for HGM–epoxy [14]. In the case of the composite with 10 wt.% of HGMs-CNFs (ca. 

34 vol.% HGM) the measured thermal conductivity (0.172 W/mK) is 25% lower 

than that of neat resin. The same reduction has also been reported for 30 vol.% of 

HGMs in epoxy composites [14]. It is clear that, regardless of the presence of CNFs 
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within the matrix, the main contribution to the thermal conductivity of the 

composite is the presence of HGMs.  

We also applied the Maxwell model to estimate the thermal conductivity of the 

resulting HGM-CNF composites. This estimation was done by adjusting the 

theoretical values obtained from the Maxwell equation (Annex C: Supplementary 

information) to the experimental thermal conductivity values of the HGM-CNF 

composites. As mentioned, the Maxwell model is only valid for low volume 

fractions of filler, thus the value of 𝑘𝐻𝐺𝑀−𝐶𝑁𝐹 used for the application of the series 

and parallel models corresponded to the composite with 2 wt,% of HGM, i.e., 

𝑘𝐻𝐺𝑀−𝐶𝑁𝐹= 0.104 W/mK (Annex C: Supplementary information). The obtained 

results are in agreement with the experimental values, as observed in Figure 7.5b.  

 

Figure 7.5 Analysis of the thermal conductivity of the a) HGM and b) HGM-CNF composites. The 

experimental results were obtained from the measurements of a hot disk process. The values 

obtained by the application of the series, parallel and Maxwell’s models are also shown for 

comparison with the experimental values. 

Along with the addition of HGMs, there are several mechanisms that account for 

the reduction of the thermal conductivity of HGM-CNF composites. The structure 

and quality of the CNFs affect the resulting thermal conductivity as defects and 

presence of amorphous carbon can strongly affect heat conduction [46]. Thermal 

conductivity is reduced due to the presence of contacts between CNFs and 

between HGMs and the effect of the interfacial thermal resistance or Kapitza 

resistance between the CNFs and the matrix, the CNFs and the HGMs, and HGMs 

and the matrix, which were not taken into account in the applied models [47–50]. 
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The thermal diffusivity, 𝜆, of an homogeneous and isotropic material is given by 

the ratio between its thermal conductivity and the product of its density and 

specific heat capacity, 𝑐, Eq. 7.1. 

𝜆 =
𝑘

𝜌𝑐
 Eq. 7.1 

Thus, the thermal diffusivity, , can be understood as the ratio between the ability 

of heat to flow through the material and its ability to store thermal energy [51].  

In the case of HGM composites, it can be observed that the 2 wt.% composite have 

a 𝜆=0.166 mm2/s, which does not significantly differs from that of neat resin 

(0.167 mm2/s). However, for the 5 and 10 wt.% composite, 𝜆 increases reaching a 

maximum value of 0.184 mm2/s for the 10 wt.%.  

 

Figure 7.6 a) Thermal diffusivity and b) volumetric heat capacity of the HGM and HGM-CNF 

composites, obtained by hot disk technique.  

A HGM consists in a spherical glass shell filled by a gas. The thermal diffusivity of 

glass is approximately 0.56 mm2/s, while light gases such as air or He typically 

have higher thermal diffusivity (22 and 137 mm2/s, respectively) [51]. Thus, it is 

reasonable to assume that the thermal diffusivity of HGMs is higher than that of 

neat resin. This explains the increase in thermal diffusivity of the resulting 

composites when the HGMs are dispersed within the polymeric matrix. On the 

other hand, in the case of the HGM-CNF composites, the thermal diffusivity of the 

samples rapidly increases as the amount of hybrid microspheres increases (Figure 

a) b)
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7.6a). According to results reported for polymers filled with CNTs [52–55], the 

addition of CNTs resulted in an increased thermal diffusivity of the composite. 

The ability to store thermal energy is expressed by the volumetric heat 

capacity, 𝜌𝑐. For the matrix, it was found that 𝜌𝑐 = 1.37 × 10−6 J/m3K. The value of 

𝜌𝑐 for the HGMs is unknown. However, it is known that glass has a 𝜌𝑐 of 1.98 ×

10−6 J/m3K while light gases presents extremely low values of volumetric heat 

capacity, i.e. 1.2 × 10−8 for air and 1.1 × 10−8 for Ar [51].  

Thus, the HGM composites exhibit a lower ability to store thermal energy than the 

matrix (Figure 7.6b). From the volumetric heat capacity values measured for the 

HGM-CNF composites, it was obtained that the behaviour was similar to that of the 

HGM composites, although the values were slightly lower than in the HGM 

composites, probably due to the CNFs. Further work should be done to understand 

the behaviour and properties of the hybrid material. 

Electrical conductivity 

The electrical conductivity of the resin, the HGM composites and the 2 and 5 wt.% 

HGM-CNF was lower than 1×10-7 S/m, which is the minimum value that can be 

measured with the equipment and the sample dimensions used.  In the case of the 

HGM-CNF composites, an electrical conductivity of 7±3×10–4 S/m and 3±2×10–4 

S/m was obtained for the 10 wt.% HGM-CNF composite in the through-thickness 

and in-plane directions, respectively (Annex C: Supplementary information). 

Taking into account the results obtained from the TGA of the hybrid materials 

obtained by CVD, this result implies that the critical amount of HGM-CNF at which 

takes place the formation of a continuous electrically conducting network within 

the resin [45] is between about 1.25 and 2.5 wt.% of CNFs, which corresponds to 

the composites with 5 and 10 wt.% of HGMs-CNFs, respectively. By assuming that 

the CNFs synthesized by CVD had mainly grown on the surface of the HGMs, an 

HGM-CNF can be modelled as a hybrid particle of single-phase material.  The 

theoretical percolation threshold should be 4.9 wt.%. The followed procedure and 

the applied equations are available in the Annex C: Supplementary information. 

The experimental percolation threshold obtained in this work is higher than the 

theoretical value; this could be because the CNFs do not completely cover the 
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surface of the HGMs, or due to the size distribution of HGM. The obtained result is a 

good first approximation to the experimental percolation threshold obtained in 

this study, which is located between 5 and 10 wt.% of HGMs-CNFs.   

7.4  Conclusions 

The thermal and electrical behaviour of as-received HGMs and synthesized HGMs-

CNF composites were studied to assess the effect of the HGMs on the resin and the 

effect of the CNFs on the HGM composites. These HGMs-CNFs mainly consist of 

HGMs surrounded by carbon nanofibers and were synthesized in our lab by using 

chemical vapour deposition. 

Both types of composites were directly prepared by hand mixing. Although the 

hybrid microspheres have carbon-based nanomaterials, no further dispersing step 

or dispersing aiding agents were needed. The quality of both composites, in terms 

of matrix porosity and filler dispersion, was similar to that in the reported 

literature.  

By adding 10% wt. HGM-CNFs to a high temperature resin (thermal stability up to 

ca. 350 °C) we can obtain a low density (0.823 g/cm3), low thermally (0.172 

W/mK) and good electrically conducting (7±3×10–4 S/m) composite. This material 

presents an unusual combination of properties, such as a low thermal conductivity 

and a relatively high electrical conductivity. This new generation of hybrid 

nanofillers paves the way to unique composite materials with properties that are 

currently hard to combine in a single material. 
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8 Concluding remarks and future 

work 
 

The development of industries as aerospace or energy require the development of 

a new generation of polymer composites. These materials should have improved 

mechanical properties, compared to conventional composites, and at the same 

time should have the desired levels of thermal and electrical conductivity, 

depending on the application for which they are required. Two-dimensional fibre-

reinforced polymers are widely used in industries as transport (aerospace, marine, 

automobile), sport or even civil engineering. They are designed to maximize the in-

plane specific stiffness and specific strength. However, they suffer from low 

mechanical properties and lack of multifunctionality (i.e. thermal and electrical 

conductivity) in the through-thickness direction. 

The modification of polymeric matrix with carbon-based fillers to obtain hybrid 

fibre-reinforced polymers is a promising approach for the development of 

multifunctional composites.  

In this thesis, the effect of three different fillers on the properties of polypropylene 

has been studied. In first place, it was concluded that the proposed processing 

approach, based on the masterbatch technique, was not appropriate for the 

individual homogeneous dispersion of nanofillers, e.g. graphite nanoplatelets and 

carbon nanotubes. Agglomerates or clusters of GNPs and CNTs were observed on 

the resulting composites. Regarding the novel micron-scale carbon filler, the 

masterbatch processing resulted in the break-up of the as-synthesized structures. 

Nonetheless, the resulting carbon microfiller was homogeneously dispersed within 

the matrix. 

Regarding the mechanical properties it can be said that CNTs exhibited the best 

reinforcing and toughening performance (Figure 8.1), although it should be kept in 

mind that the composites have different matrices. 
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The flexural modulus (Figure 8.1a) and strength (Figure 8.1b) increased with 

increasing the CNT content. Enhancements of 17 and 8% in flexural modulus and 

strength, respectively, were achieved for the composite with 10 wt.% of CNTs. 

Concerning the fracture behaviour, an improvement of more than 50%, compared 

to unmodified PP, can be obtained upon the addition of just 0.5 wt.% of CNTs.  

From the observation of Figure 8.1a and b, it can be said that the flexural modulus 

of the CMF composites follows a similar behaviour to that of the CNT composites. 

However, the behaviour of the flexural strength of the CMF composites is similar to 

that of the GNP composites. In order to fully understand the behaviour of the CMF 

composites, further work must be done to further characterize the filler and their 

effect on the morphology of the resulting composites, i.e. crystalline structure, as 

well as their mechanical behaviour. 

 

Figure 8.1 Relative mechancial properties of PP composites with GNPs, CNTs and CMF: a) Flexural 

modulus, b) Flexural strength and c) Mode I fracture resistance. 

a) b)

c)
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Regarding the electrical conductivity, the percolation threshold was not reached in 

the GNP nor in the CMF composites. Although in the case of the CNT composites, 

the electrical conductivity of the composites with the highest filler content was 

among the highest of those available in previously reported results. The 

characterisation of the thermal behaviour of the CMF composites showed that the 

thermal conductivity increased with increasing the filler content, up to a 15% for 

the composite with 8.9 wt.% of CMF. The thermal behaviour of the polypropylene 

composites with GNPs and CNTs was not analysed in this thesis, thus it is proposed 

as future work.  

The second main objective of this thesis was the development of hybrid fillers 

through the synthesis of carbon structures by chemical vapour deposition, using 

different particles as substrates. It was concluded that by appropriately selecting 

the substrate particles, different resulting properties can be achieved. 

In one hand, using nanoparticles as substrate, the synthesis of carbon nanotubes 

was performed. In this case, due to the size of the nanoparticles, the CNTs formed 

and entangled network with the nanoparticles, rather than being attached to them. 

The homogeneous dispersion of the resulting hybrid nanofiller proved to be 

difficult, as confirmed by the agglomerates observed in the composites with the 

highest filler contents. This poor dispersion resulted in epoxy composites with 

similar or slightly improved mechanical behaviour, compared to neat epoxy. 

Nonetheless, the addition of the hybrid material to an epoxy result resulted in 

composites with improved thermal and electrical conductivity. However, further 

work can be done to achieve a homogeneous dispersion of the hybrid filler and/or 

the interaction between the filler and the matrix. This would lead to composites 

with significantly higher improvements in mechanical properties. Moreover, the 

formation of a contacting network could be achieved at lower filler contents, 

resulting in an improved thermal and electrical behaviour.  

On the other hand, using micron-scaled hollow particles as substrate, carbon 

nanofibers were grown. The resulting hybrid filler could be easily dispersed within 

the matrix. Since the carbon nanofibers were mainly attached to the surface of the 

microspheres, the resulting morphology favoured the homogeneous dispersion of 
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the hybrid filler. The combination of the low density, thermal insulating 

microspheres with the electrically conducting carbon nanofiller resulted in a 

hybrid filler that was used to obtain lightweight, thermal insulating and electrically 

conducting polymer composites. Further work should be done to increase the yield 

obtained after each CVD process. This would allow to further characterize the 

effect of the hybrid filler on the polymeric resin, e.g. the mechanical properties of 

the resulting composites.  

To sum it up, the hybrid fillers developed in this thesis proved to be promising 

materials to be used for the development of polymer composites with improved 

mechanical behaviour, while having the desired levels of thermal and electrical 

conductivity. In the case of the composites with the nanoscaled fillers (alumina 

nanoparticles, hybrid nanoparticles, GNPs or CNTs), it was concluded that the 

dispersion should be improved to fully take advantage of the properties of the 

filler. Nevertheless, it can be said that the presented polymer composites showed 

potential to be used as modified matrices for the development of hybrid fibre-

reinforced polymers.  

  



194 
 

Annex A: Supplementary 

Information for Chapter 5 

A1 Results 

 

Figure A.1 a) SEM image of the as-received Ni microparticles and b) curves obtained from the TGA 

performed in air, corresponding to the weight (%) and first derivative of the weight (%/°C) of the as 

received microparticles. 

 

 

Figure A.2 a) Curves obtained from the TGA performed under air and nitrogen, corresponding to the 

weight (%) and first derivative of the weight (%/°C) of the CMF. b) Raman spectra of hybrid 

microparticles showing the characteristic peaks of carbon-based materials. Region 1 is a spectra 

aquired for the micron-sized fibre-like structures, and region 2  is a spectra aquired for the sub-

micron sized structures. 

Raman spectra, in the range from 500 to 3500 cm-1, were acquired to study the 

quality of the synthesized carbon microfiller (Figure A.2b). The characteristic 

peaks of carbon allotropes can be observed in the acquired spectra [1]. The 

20 μm

a)

50 μm

b)

b)a)
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relative quality of the two different morphologies identified in the synthesized 

filler is analysed by comparing their ID/IG ratio [2]. For the micron-sized fibre-like 

fillers (region 1 in Figure A.2) the ID/IG ratio was 1.53±0.03, while for the sub-

micron sized structures ID/IG=1.12±0.09 (region 2 in Figure A.2). Therefore, it was 

obtained that the structures with a sub-micron size have higher quality than the 

fibre-like structures with a size in the range of microns. 

 

Figure A.3 Measured densities of PP and composites and theoretical values obtained by the rule of 

mixtures as a function of the filler content, obtained from TGA. 

 

Table A.1 Melting temperature (Tm), degree of crystallinity (XC) and crystallisation temperature (Tc) 

of neat PP and CMF composites, obtained by DSC. 

CMF 

content 

(wt.%) 

Tm (°C) XC (%) 

Tc (°C) 

1st heating 2nd heating 1st heating 2nd heating 

0 164.6±1.1 161.8±0.6 46.5±0.6 45.5±0.5 116.7±0.2 

0.6 165.0±0.4 162.0±0.9 47.0±1.3 46.1±1.1 120.2±0.2 

1.1 165.4±0.9 162.4±0.6 47.1±0.8 46.6±1.0 121.1±0.1 

4.7 165.8±1.2 162.7±0.5 47.2±1.1 47.2±0.4 123.0±0.0 

8.9 165.7±1.1 164.2±0.2 48.0±0.6 47.3±0.4 124.1±0.1 
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Table A.2 Storage modulus (E’), in the glassy state and in the rubbery state, of neat PP and CMF 

composites. In parentheses are indicated the increment (in %) compared to the neat PP 

CMF content 

(wt.%) 

E’ glassy state, at -150 °C (MPa), 

increment (%) 

E’ rubbery state, at 50 °C (MPa), 

increment (%) 

0 4916 (-) 1419 (-) 

0.6 4812 (-2.1) 1393 (-1.8) 

1.1 5091 (+3.6) 1510 (+6.4) 

4.7 5267 (+7.1) 1616 (+13.9) 

8.9 5398 (+9.8) 1751 (+23.4) 

 

A2 References 

[1] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the 
properties of graphene, Nat. Nanotechnol. 8 (2013) 235–246. 
doi:10.1038/nnano.2013.46. 

[2] R.A. DiLeo, B.J. Landi, R.P. Raffaelle, Purity assessment of multiwalled carbon nanotubes 
by Raman spectroscopy, J. Appl. Phys. 101 (2007) 064307. doi:10.1063/1.2712152.  
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Annex B: Supplementary 

Information for Chapter 6 

B1 Synthesis and characterization of hybrid 

nanoparticles 

The effect of the duration of the pre-treatment of the catalyst precursor was 

analysed. The aim of the pre-treatment is to decompose and reduce the Fe-salt 

used as catalyst precursor to obtain Fe nanoparticles required for the CNT growth 

[1–4]. The pre-treatment and growth temperature was 650 °C and the growth 

reaction time was 1 min. Four CVD processes with conditioning treatments of 5, 7, 

10 and 20 min were carried out. The amount of alumina nanoparticles placed in 

the alumina boat for each CVD batch was 50 mg.  

 

Figure B.1 Curves obtained from the TGA, corresponding to the a) weight (%) and b) first derivative 

of the weight (%/°C) of hybrid nanoparticles obtained after a CVD process with a catalyst precursor 

a) b)

c)
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pre-treatments of 5, 7, 10 and 20 min. c) carbon content and oxidation temperature, respectively, as 

a function of the pre-treatment duration. 

The carbon content and oxidation temperature, To, of the CNTs in the hybrid 

material obtained after the CVD processes were calculated from the obtained TGA 

curves (Figure B.1). The decomposition temperatures of MWNTs are usually in the 

range from 400 to 600 °C [5,6]. As it can be observed in Figure B.1a the alumina 

nanoparticles are thermally stable up to 900 °C. Therefore, the weight loss of the 

samples upon heating during the TGA is associated with the decomposition of 

CNTs and the lost wt.% is taken as the CNT content of the hybrid material. 

The temperature at which the highest rate of sample’s weight loss takes place is 

the oxidation temperature and it corresponds to the maximum of the degradation 

peak in the first derivative of the weight curve (Figure B.1b). It can be observed in 

Figure B.1c, as the duration of the catalyst precursor treatment under H2 increases 

from 5 to 10 min, the amount of carbon in hybrid materials increases, reaching a 

maximum value of 14.6 wt.% of C. However, for a catalyst precursor treatment of 

20 min, just a 10.8 wt.% of carbon is obtained for the h-NPs. 

The oxidation temperature of the synthesized CNTs (Figure B.1c) is located in the 

range from 500 to 550 °C and it follows a similar trend to that of the carbon 

content, i.e. To reaches its maximum for the h-NPs obtained after the CVD process 

with a catalyst pre-treatment of 10 min.  

When comparing carbon-based nanomaterials, a higher decomposition 

temperature is indicative of purer or less defective material [5–8]. Regarding this 

parameter, in order of increasing temperature, amorphous carbon decomposes 

first, followed by SWNTs and, finally, the MWNTs and graphitic particles. Thus, the 

decomposition temperatures obtained in this work are similar to those 

corresponding to MWNTs, which generally are between 400 and 600 °C [5,6]. 

The results obtained from the BET surface area analysis showed that the as-

received alumina nanoparticles have a specific surface area of 29.8 m2/g, in 

agreement with the value provided by the manufacturer. The specific surface area 

obtained for the h-NPs are shown in Figure B.2d. It can be observed that the 
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specific surface area of h-NPs follows the same trend as that of the carbon content 

as a function of the pre-treatment duration. 

 

Figure B.2 a) Raman spectra of hybrid nanoparticles obtained after a CVD process with a catalyst 

precursor pre-treatments of 5, 7, 10 and 20 min. b) isothermal adsorption curves obtained from the 

BET surface area measurements and c) ID/IG and I2D/IG ratios obtained from the peaks in the Raman 

spectra (left axis); and BET surface area of h-NPs (right axis). 

Raman spectroscopy was performed to study the quality of the synthesized CNTs. 

The spectra were acquired in the range from 500 to 3500 cm-1 (Figure B.2a). The 

characteristic peaks associated with the presence of carbon allotropes [5,9,10] can 

be observed in the acquired spectra. 

The ratio between the intensity of the D peak to the intensity of the G peak (ID/IG) 

has been extensively used as a way to assess the purity or quality of carbon 

nanotubes [5,11,12]. In this work, the ID/IG ratio of the h-NPs increases as the pre-

a)

c)b)
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treatment duration increases, from 1.05, for 5 min of pre-treatment, to 1.15, for 20 

min of pre-treatment. Alternatively, it has been proposed that the ratio I2D/IG could 

also be used to qualitatively quantify the amount of CNTs in a sample, as the 2D 

peak intensity is drastically enhanced by the presence of CNTs while being less 

sensitive to defects than the D peak [11]. Thus, it is observed that the I2D/IG ratio 

experiences a similar trend to that of the ID/IG ratio; varying from 0.13 (5 min of 

pre-treatment) to 0.24 (20 min of pre-treatment). However, the relative variation 

is significantly higher than that experienced by the former ratio.  

 

Figure B.3 Curves obtained from the TGA, corresponding to the a) weight (%) and first derivative of 

the weight (%/°C), b) isothermal adsorption curves obtained from the BET surface area 

measurements and c) Raman spectra of hybrid nanoparticles obtained after a CVD process with 

growth steps of 1 and 2 min.  The tables give in a) the carbon content and oxidation temperature, in 

b) the specific surface area and in c) the ID/IG and I2D/IG ratios obtained from the peaks in the 

Raman spectra, for the h-NPs obtained after growth steps of 1 and 2 min of duration. 

a) b)

c)
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In [13] the authors had synthesized CNTs on ceramic microspheres, obtaining an 

ID/IG value of 0.72 for a growth temperature of 800 °C. When this temperature is 

reduced to 700 °C, the ID/IG value increases up to 1.35. The authors attributed this 

increase due to a higher defect density. In a work reporting the growth of CNTs on 

alumina microparticles it was found that the ID/IG value of the CNTs decreases with 

increasing the temperature of synthesis [14].  

Regarding the quality of the synthesized CNTs, analysed by Raman spectroscopy, it 

seems that as the pre-treatment duration increase the amount of CNTs also 

increase, however the quality of these CNTs decrease. 

Thus, taking into account the above presented results it was decided that a pre-

treatment of the catalyst of 10 min of duration was the optimal for the subsequent 

CNT growth as it provides the highest amount of carbon nanotubes, which are also 

the most thermally stable. Moreover, the chosen pre-treatment gives as a result the 

h-NPs with the highest surface area.  

For the synthesis of h-NPs to be used as filler in epoxy composites, the duration of 

the growth step was increased from 1 to 2 min, in order to obtain a higher amount 

of CNTs (Figure B.3a). This was successfully achieved as the carbon content after a 

growth step of 2 min is 21 wt.%. However, increasing the growth duration results 

in a reduction of the specific surface area, as observed in Figure B.3b. Regarding 

the quality, it can be observed that both hybrid materials exhibits similar Raman 

spectra, thus, similar ID/IG and I2D/IG ratios (Figure B.3c). 

B2 Nanocomposite characterisation  

The morphology of the as-received alumina nanoparticles was analysed by SEM 

(Figure B.4a) and TEM (Figure B.5). Furthermore, an SEM image of the 

agglomerated hybrid material is shown in Figure B.4b. 

High magnification SEM images of the NP and h-NP composites are shown in 

Figure B.6. In the NP composite, the individual spherical nanoparticles can be 

observed. From the observation of Figure B.6c the adhesion between the NPs and 
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the matrix seems to be weak, as the nanoparticle seem to be debonded. In the h-NP 

composites, the individual NPs can also be observed in Figure B.6d. Furthermore, 

in this image carbon nanotubes which are not attached to the nanoparticles are 

indicated by the white arrows. 

 

Figure B.4 Low magnification SEM images of the a) as-received alumina nanoparticles and b) hybrid 

nanoparticles, composed by alumina nanoparticles and carbon nanotubes, obtained after the CVD 

process. 

 

 

Figure B.5 TEM image of the as-received nanoparticles. 

The NP and CNT volume fractions, 𝜙𝑁𝑃 and 𝜙𝐶𝑁𝐹 , respectively; were estimated 

using a matrix density of 𝜌𝑚 =1.14 g/cm3, an alumina density of 𝜌𝑁𝑃 =3.97 g/cm3, 

as provided by the manufacturer, and a CNT density of 𝜌𝐶𝑁𝑇 =1.9 g/cm3 [15]. The 

values were obtained applying the rule of mixtures (Eq. B.1 and Eq. B.2): 

50 μm

a)

50 μm

b)

100 nm
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𝜙𝑁𝑃 =
𝑤𝑁𝑃

𝑤𝑁𝑃 + 𝑤𝑚
𝜌𝑁𝑃

𝜌𝑚
+ 𝑤𝐶𝑁𝑇

𝜌𝑁𝑃

𝜌𝐶𝑁𝑇

 Eq. B.1 

  

𝜙𝐶𝑁𝐹 =
𝑤𝐶𝑁𝑇

𝑤𝐶𝑁𝑇 + 𝑤𝑚
𝜌𝐶𝑁𝑇

𝜌𝑚
+ 𝑤𝑁𝑃

𝜌𝐶𝑁𝑇

𝜌𝑁𝑃

 Eq. B.2 

Where 𝑤𝑚, 𝑤𝑁𝑃 and 𝑤𝐶𝑁𝑇  are the matrix, nanoparticles and CNT weight fraction, 

respectively. In the case of the h-NP composites, it was taken into account the 

results obtained by TGA which indicated that 𝑤𝐶𝑁𝑇 = 0.8 𝑤ℎ−𝑁𝑃. The calculated 

filler volume fractions are given in Table B.1. 

 

Figure B.6 High magnification SEM images of the nanocomposites with a 0.5 wt.% of a) NPs and b) 

h-NPs and with 5 wt.% of c) NPs and d) h-NPs, where the dispersion of the filler can be observed. In 

c) and d) the individual NPs and CNTs dispersed within the matrix could be observed. 

The glass transition temperatures, calculated from the different curves obtained by 

DMA, are listed in Table B.2.  

a) 5 NPs

2 μm

b) 5 h-NPs

2 μm

c) 5 NPs

500 nm 500 nm

d) 5 h-NPs
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The curves obtained from the TGA, corresponding to the first derivative of the 

weight (%/°C) of the neat resin and the NP and h-NP composites are presented in 

Figure B.7.  

Table B.1 Estimated volume fractions of nanoparticles and carbon nanotubes on the 

resulting nanocomposites. 

Sample Total nanofiller 

content (wt.%) 

NP content (vol.%) CNT content (vol.%) 

0.5 NPs 0.5 0.14 - 

1 NPs 1 0.29 - 

2 NPs 2 0.58 - 

5 NPs 5 1.49 - 

0.5 h-NPs 0.5 0.12 0.06 

1 h-NPs 1 0.23 0.12 

2 h-NPs 2 0.47 0.24 

5 h-NPs 5 1.19 0.58 

 

Table B.2 Glass transition temperature of neat resin, NP and h-NPs composites 

obtained from the storage modulus and tan δ curves. 

Sample Tg onset (°C) Tg E’ (°C) Tg tanδ (°C) 

Resin 192.2 203.7 227.1 

0.5 NPs 191.8 202.9 226.5 

1 NPs 192.2 203.6 226.0 

2 NPs 193.2 204.3 226.6 

5 NPs 193.2 204.8 227.0 

0.5 h-NPs 193.2 204.5 227.0 

1 h-NPs 194.5 205.6 226.9 

2 h-NPs 194.5 205.3 227.3 

5 h-NPs 195.4 206.3 227.0 
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Figure B.7 Curves obtained from the TGA, corresponding to the first derivative of the weight (%/°C) 

of the neat resin and the a) NP and b) h-NP composites. 

In Figure B.8 it can be observed the DSC thermograms showing the first and 

second heating cycles for NP and h-NP composites. 

 

Figure B.8 DSC thermograms showing the first heating curve of a) NP and b) h-NP composites.  

The sub-Tg relaxation, known as ω relaxation, observed in the range between 50 

and 150°C is shown in Figure B.9.  

a) b)

a) b)
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Figure B.9 Tan δ (at a frequency of 1 Hz) showing the ω relaxation of the a) NP and b) h-NP 

composites. 
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Annex C: Supplementary 

Information for Chapter 7 
 

C1 Morphology and Raman spectroscopy of 

the synthesized carbon-based structures 

The morphology of the carbon-based materials, which were synthesized by the 

chemical vapour deposition process, were analysed by using transmission electron 

microscopy. The predominant material observed was amorphous carbon 

nanofibers (Figure C.1a and b), although hollow carbon nanofibers (Figure C.1c 

and d), carbon nanotubes (Figure C.1e and f), and graphitic particles (Figure C.1g 

and h) were also identified. 

The Raman spectrum of the synthesized hybrid fillers (Figure C.2) presents three 

main peaks associated with the presence of sp2-bonded carbon allotropes [1–3]. 

The peak that appears at ca. 1340 cm–1 is the D peak, which is a disorder-induced 

peak caused by the presence of defects in the graphitic structure of the CNFs [1]. 

The peak at ca. 1590 cm–1 is a combination of the G peak, which arises from the 

tangential vibrations of carbon atoms and is indicative of a graphitized carbon 

structure, and the D′ peak, which is a double resonance process that arises from 

the presence of defects [1]. At ca. 2680 cm–1 the 2D peak appears; this is the D 

peak overtone, which results from a second-order scattering process, and is 

indicative of long-range order in the carbon-based structures synthesized. The 

peak that appears at ca. 2920 cm–1 is known as the D + D′ peak because it 

originates from a two-phonon defect-assisted process that involves one intervalley 

and one intravalley phonon. The 2D′ peak, at ca. 3180 cm–1, is the second-order D′ 

peak overtone. 
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Figure C.1 Different carbon structures identified by TEM. a) and b) show different amorphous 

carbon nanofibers. c) Hollow carbon nanofiber, d) shows the boxed area of (c), magnified, where the 

nanofiber walls can be observed at higher magnification. In e) a CNT is shown; the graphitic walls 
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can be observed in f). In g) graphitic particles may be formed by concentric graphitic layers around 

catalyst particles. A higher magnification image, corresponding to the inset in g), is shown in h). 

 

 

Figure C.2 Raman spectra of the as-received HGMs and the HGMs-CNFs, showing the characteristic 

D, G, and 2D peaks of carbon-based nanomaterials. 

The ratio between the intensity of the D peak to the intensity of the G peak (ID/IG) 

was extensively used as a way to assess the purity or quality of carbon nanotubes 

[3,4]. In reference [5] the authors synthesized CNT on ceramic microspheres and 

obtained an ID/IG value of 0.72 for a growth temperature of 800 °C. When this 

temperature was reduced to 700 °C, the ID/IG value increased up to 1.35. The 

authors attributed this increase due to a higher defect density. He et al. reported 

[6] the growth of CNT on alumina microparticles and they found that the ID/IG 

value of the CNTs decreases with increasing the temperature of synthesis. Nguyen 

et al. [7] studied the synthesis of CNTs on stainless steel nanoparticles. They also 

reported that the degree of graphitization of the CNTs increases with increasing 

the growth temperature, with ID/IG values of approximately 1.15, 0.95, 0.9 and 0.7 

for growth temperatures of 600, 650, 750 and 800 °C, respectively. Othman et al. 

[4] characterized the growth of CNTs on silica microparticles at 760 °C, by varying 

the synthesis time. From the Raman spectra, they deduced that the intensity of the 

D peak was similar to that of the G peak, ID/IG ≈1, as observed in the above-

mentioned works. In the present study, a ID/IG value of 1.14 ± 0.8 was obtained. 
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This is in good agreement with the values reported in the available literature for 

similar growth temperatures (600 °C in this work). 

C2 Density of hybrid microspheres 

Assuming that a hybrid microsphere is composed of a HGM that is completely 

covered by a layer of CNFs, then the volume fraction of CNFs, over the total volume 

of the HGM-CNF, is given by Eq. C.1: 

𝜙𝐶𝑁𝐹 =
𝑤𝐶𝑁𝐹

𝑤𝐶𝑁𝐹 + (1 − 𝑤𝐶𝑁𝐹)
𝜌𝐶𝑁𝐹

𝜌𝐻𝐺𝑀

 
Eq. C.1 

Where 𝑤𝐶𝑁𝐹 is the weight fraction corresponding to the CNFs, which is 0.25, as 

obtained from the TGA (Figure 7.2); 𝜌𝐻𝐺𝑀 is the density of HGMs, and 𝜌𝐶𝑁𝐹  is the 

density of CNFs, which is taken as 2.0 g/cm3 [8]. 

The theoretical density of the hybrid microspheres, 𝜌𝐻𝐺𝑀−𝐶𝑁𝐹=0.258 g/cm3, can be 

obtained by application of the rule of mixtures [9,10], Eq. C.2: 

𝜌𝐻𝐺𝑀−𝐶𝑁𝐹 = 𝜙𝐻𝐺𝑀𝜌𝐻𝐺𝑀 + 𝜙𝐶𝑁𝐹𝜌𝐶𝑁𝐹   Eq. C.2 

 

C3 Density and morphology of composites 

As obtained by TGA (Figure 7.2), HGMs do not exhibit weight changes when heated 

up to 800 °C. Thus, it is assumed that the residue left after the TGA of composites 

corresponds to the HGMs that were added to the matrix for the production of 

composites. For the neat resin, a residue of 0.2 wt.% is obtained. Thus, the 

following expression is used to determine the amount of HGMs, taking into account 

the residue that corresponds to the matrix [11]: 

𝑤𝐻𝐺𝑀 = 𝑟𝑐 − 𝑟𝑚𝑤𝑚 Eq. C.3 
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where 𝑤𝐻𝐺𝑀 and 𝑤𝑚 are the weight fraction of HGMs and matrix, respectively, and 

𝑟𝑐 and 𝑟𝑚 are the residue obtained by TGA for the composites and the matrix, 

respectively. In the case of the HGM-CNF composites, the TGA results (Figure 7.2) 

showed that the amount of CNFs grown by CVD was approximately 25 wt.% of the 

HGMs-CNFs. Thus, the value of 𝑤𝐻𝐺𝑀 was divided by 0.75, to obtain the total 

content of HGMs-CNFs that was added to the matrix. 

The experimental density of composite materials was calculated by applying the 

following equation, Eq. C.4:  

𝜌𝑚 =
𝑊𝑎

𝑊𝑎 − 𝑊𝑤
𝜌𝑤  Eq. C.4 

where 𝜌𝑚 is the measured density of the material and 𝜌𝑤 is the density of distilled 

water or absolute ethanol at 24 °C, and 𝑊𝑎 and 𝑊𝑤 are the weight of the sample in 

air and immersed in water or ethanol, respectively. 

The theoretical density of the composite materials is obtained by application of the 

rule of mixtures [9,10], Eq. C.5:  

𝜌𝐶 = 𝜙𝑚𝜌𝑚 + 𝜙𝑓𝜌𝑓  Eq. C.5 

The filler’s volume fraction, 𝜙𝑓 , of composites was obtained by applying the 

following equation [12,13], Eq. C.6: 

𝜙𝑓 =
𝑤𝑓

𝑤𝑓 + (1 − 𝑤𝑓)
𝜌𝑓

𝜌𝑚

 
Eq. C.6 

where 𝑤𝑓 and 𝑤𝑚 are the weight fraction of filler and matrix, and 𝜌𝑓 and 𝜌𝑚 are the 

density of filler and matrix, respectively. 𝑤𝑓 and 𝑤𝑚 are the weight fractions 

obtained by TGA (Table C.1). 

Generally, the experimental density of the composites is lower than the 

theoretically calculated density. Some authors explain this difference in terms of 
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porosity, which tends to lower the density, or by break up of HGMs, which tends to 

increase it [11,14,15]. The porosity is the air entrapped within the resin at the 

moment of the mixing step, during the processing of the composite. During the 

processing, some HGMs may be broken due to mixing forces. The difference 

between the theoretical and the experimental density, in volume fraction, is 

calculated as follows (Eq. C.7): 

𝛷𝑝 =
𝜌𝑡ℎ − 𝜌𝑒

𝜌𝑡ℎ
× 100 Eq. C.7 

where 𝜌𝑡ℎ and 𝜌𝑒 are the theoretical and experimental density of the composites. 

The value of 𝛷𝑝 is –0.2, 2.3 and 3.2 vol.% for the 2, 5, and 10 wt.% HGM 

composites, respectively. For the HGM-CNF composites, 𝛷𝑝 is –2.6, –1.6 and 3.5 

vol.% for the composites with 2, 5, and 10 wt.% of HGM-CNF. 𝛷𝑝, considered to be 

matrix porosity, increases with an increasing amount of filler. The matrix porosity 

reaches its maximum for the composites with the highest amount of filler, i.e. 10 

wt.%. This seems reasonable because the composite processing becomes more 

difficult as the amount of filler increases, due to the drastic increase in the mixture 

viscosity. The negative values may be produced by HGM fracture during processing 

or error in the estimation of the CNF density.  

Table C.1 Theoretical density calculated for the different composites and difference between the 

theoretical and the experimental density 

Filler amount (wt.%) Theoretical density (g/cm3) Difference (vol.%) 

0 - 0.0 

HGMs 

2 1.054 –0.2 

5 0.943 2.3 

10 0.776 3.2 

HGM-CNFs 

2 1.073 –2.6 

5 0.988 –1.6 

10 0.853 3.5 
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In the case of epoxy composites, Lin et al. [11] reported matrix porosities between 

2.0 and 6.3 vol.%, for composites with 30 and 40 vol.% of HGMs. Tagliavia et al. 

[16] and Gupta et al. [17] produced composites consisting of a vinyl ester matrix 

with HGMs. For a 30 and 40 vol.% of HGMs, the composites had porosity values 

between 2.6 and 9.3 vol.% [16], and 0.0 and 8.7 vol.% [17]. , Shunmugasamy et al. 

[15,18] reported, for a 30 and 40 vol.% of HGMs dispersed within a vinyl ester 

resin, porosity values of between 1.2 and 4.6 vol.%. In the case of composites with 

HGMs and CNFs, Poveda et al. [19] produced composites with 1 wt.% of CNFs and 

30 to 50 vol.% of HGMs, obtaining porosity values between 0.7 and 3.7 vol.%. All of 

these works used HGMs (3M Glass microspheres) similar to those in the present 

study. The HGMs have densities (g/cm3)/average diameter (µm) ratios of 

0.220/35, 0.320/40, 0.370/40, 0.380/40 and 0.460/40. In this work, the 

composites with the highest amount of filler have 10.4 wt.% of HGM and 10.3 wt.% 

of HGM-CNF, which corresponds to 40 and 34 vol.%, respectively. As discussed 

above, the values of matrix porosity obtained for the materials produced in the 

present study are comparable to those in the available literature for similar 

composites [11,15–19]. 

The two different directions defined in this work, for the samples produced, can be 

observed in Figure C.3. 

 

Figure C.3 Schematic representation of the two different directions defined for all the samples 

processed. 

The distribution of the as-received and hybrid microspheres, for all the composites 

processed in this work, can be observed in Figure C.4. The white arrow indicates 

the through-thickness direction. 

mold

Through-thickness

In-plane

sample
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Figure C.4 Light microscope image showing the transverse section of the composites. a) 2, c) 5 and 

e) 10 wt.% of HGMs. And the composites with b) 2, d) 5 and f) 10 wt.% of HGMs-CNFs. The arrow 

indicates the top surface of the sample. 
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In Figure C.5 SEM images are shown of the hand-fractured surfaces of composites 

with HGM and HGM-CNFs. In these images the dispersion of the filler can be 

observed. 

 

Figure C.5 SEM images showing the dispersion of the processed composites. a) 2 wt.% HGM b) 2 

wt.% HGM-CNF, c) 5 wt.% HGM, d)5 wt.% HGM-CNF, e) 10 wt.% HGM and f) 10 wt.% HGM-CNF. 

C4 Thermal conductivity of composites 

The series, parallel, and Maxwell models were applied to calculate the theoretical 

thermal conductivity of the resulting HGM-CNF composites. 
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The parallel circuit model, applied to a composite material (Eq. C.8), represents the 

formation of a thermally conductive network that is parallel to the direction of heat 

flow. As this network offers the minimum resistance to heat transfer, this model 

gives the upper bound of the effective thermal conductivity that can be achieved 

for the resulting composite. The effective thermal conductivity of the composite, 

𝑘𝑐, is given by Eq. C.8: 

𝑘𝑐 = 𝜙𝑚𝑘𝑚 + 𝜙𝑓𝑘𝑓 Eq. C.8 

where 𝜙𝑚 and 𝑘𝑚 are the volume fraction and thermal conductivity of the matrix, 

respectively; and 𝜙𝑓  and 𝑘𝑓 are the volume fraction and thermal conductivity of 

the dispersed phase, i.e. filler [20–22]. In this work 𝑘𝐻𝐺𝑀 has a value of 0.07 W/mK, 

as provided by the HGM’s manufacturer. 

The series circuit model (Eq. C.9) represents a configuration where the phases of 

the composite are arranged perpendicular to the heat flow. This configuration 

provides the maximum insulating behavior, thus representing the lower bound for 

the effective thermal conductivity of the composite. 

𝑘𝑐 =
1

𝜙𝑚

𝑘𝑚
+

𝜙𝑓

𝑘𝑓

 
Eq. C.9 

The Maxwell model, applied to predict the thermal conductivity of a material 

consisting in randomly dispersed and noninteracting spheres within a continuous 

phase [23], is given by Eq. C.10: 

𝑘𝑐 = 𝑘𝑚 (
2𝑘𝑚 + 𝑘𝑓 − 2𝜙𝑓(𝑘𝑚 − 𝑘𝑓)

2𝑘𝑚 + 𝑘𝑓 + 𝜙𝑓(𝑘𝑚 − 𝑘𝑓)
) Eq. C.10 

Assuming that the HGM-CNF composites follows the Maxwell model, Eq. C.10 was 

used to obtain the effective thermal conductivity of the HGMs-CNFs as follows, Eq. 

C.11: 
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𝑘𝐻𝐺𝑀−𝐶𝑁𝐹 =
2𝑘𝑚(1 − 𝜙𝐻𝐺𝑀−𝐶𝑁𝐹) − 𝑘𝑐(2 + 𝜙𝐻𝐺𝑀−𝐶𝑁𝐹)

𝑘𝑐

𝑘𝑚
(1 − 𝜙𝐻𝐺𝑀−𝐶𝑁𝐹) − 2𝜙𝐻𝐺𝑀−𝐶𝑁𝐹 − 1

 
Eq. C.11 

C5 Electrical conductivity of HGM-CNF 

composites 

To further understand the electrical behavior of our material, we performed some 

simple calculations. First, we assumed that all of the HGMs are completely covered 

by the CNFs, that the thickness of the layer of CNFs is constant and that the HGM-

CNF particles have the same particle size. In this case we can assume that, as 

reported  for a particulate-filled continuum matrix composite [24], the percolation 

threshold corresponds to a volume fraction of HGM-CNF, 𝜙𝑡ℎ/𝐻𝐺𝑀−𝐶𝑁𝐹 , of 0.187. 

The weight fraction of HGM-CNF corresponding to the percolation threshold can be 

obtained from the following equation: 

𝑤𝐻𝐺𝑀−𝐶𝑁𝐹 =
𝜙𝑡ℎ/𝐻𝐺𝑀−𝐶𝑁𝐹

𝜌𝐻𝐺𝑀−𝐶𝑁𝐹

𝜌𝑚

1 − (1 −
𝜌𝐻𝐺𝑀−𝐶𝑁𝐹

𝜌𝑚
) 𝜙𝑡ℎ/𝐻𝐺𝑀−𝐶𝑁𝐹

 Eq. C.12 

The calculated weight fraction, corresponding to the percolation threshold is 4.9 

wt% of HGMs-CNFs. The results obtained from the electrical conductivity 

measurements indicates that the percolation threshold of the HGMs-CNF 

composites was between a 5 and a 10 wt.% of HGMs-CNFs. Thus, the result 

obtained from the simple approximation presented above is in agreement with the 

experimental results.  
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