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A proof of uniform convergence over time for a distributed
particle filter
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1. Introduction

Distributed signal processing algorithms have become a
hot topic during the past years, propelled by fast techno
logical developments in the fields of parallel computing,
on one hand, and wireless sensor networks (WSNs), on the
other. In parallel computing, algorithms are optimized to
run fast on a set of concurrent processors (e.g., in a gra
phics processing unit (GPU) [39]), while signal processing
methods for WSNs are designed for their implementation
over a collection of low power nodes that communicate
wirelessly and share the processing tasks [36]. Popular
techniques in the WSN arena include consensus based
estimators [18,27,26], diffusion based adaptive algo
rithms [30,6,7] and distributed stochastic filters, including
Kalman filters [38,37] and particle filters (PFs)
[24,28,15,16]. While consensus and diffusion algorithms
require many iterations of message passing for con
vergence, PFs are a priori better suited for online estima
tion and prediction tasks. Unfortunately, most distributed
PFs (DPFs) rely on simplifying approximations and their
convergence cannot be guaranteed by the classical theo
rems in [9,13,3]. One exception is the Markov chain dis
tributed particle filter (MCDPF), for which analytical
results exist [28]. However, the MCDPF converges asymp
totically as sets of samples and weights are retransmitted
repeatedly over the network according to a random
scheme. From this point of view, it is as communication
intensive as consensus algorithms and, therefore, less
appropriate for online processing compared to
classical PFs.

The implementation of PFs on parallel computing sys
tems has received considerable attention since these
methods were originally proposed in [19]. The efficient
implementation of PFs on parallel devices such as GPUs
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and multi core CPUs is not as straightforward as it seems a
priori because these Monte Carlo algorithms involve a
resampling step which is inherently hard to parallelize.
This issue is directly addressed in [5], where two parallel
implementations of the resampling step are proposed.
While the approach of [5] is sound, the authors focus on
implementation issues and no proof of convergence of the
resulting PFs is provided. Only very recently, a number of
authors have proposed distributed particle filtering
schemes with provable convergence [41,40]. These meth
ods have a fairly broad scope (the methodology in [41] can
actually be seen as a generalization of the techniques in
[5]) yet they appear to be less suitable for practical
implementations under communications or computing
power constraints, as they involve considerable paralleli
zation overhead [40] or depend on the centralized com
putation of certain statistics that involve the whole set of
particles in the filter [41].

The goal of this paper is to provide a rigorous proof of
convergence for a DPF that relies on the distributed
resampling with non proportional weight allocation
scheme of [5] (later adapted for implementation over
WSNs in [36]). Under assumptions regarding the stability
of the state space model underlying the PF, we prove that
this algorithm converges asymptotically (as the number of
particles generated by the filter increases) and uniformly
over time. Time uniform convergence implies that the
estimation errors stay bounded without having to increase
the computational effort of the filter over time. We provide
explicit convergence rates for the DPF and discuss the
implications of this result and the assumptions on which
the analysis is based. The theoretical investigation is
complemented by computer simulations of an indoor tar
get tracking problem. For this specific system, we first
show that the performance of the centralized and dis
tributed PFs is very similar and then proceed to validate
numerically a key assumption used in the analysis, related
to the degree of cooperation among processing elements
in the distributed computing system on which the algo
rithm is run.

The rest of the paper is organized as follows. In Section 2
we describe the DPF of interest. In Section 3 we prove a
uniform convergence result for this filter and discuss the
implications of such result. Computer simulations are pre
sented in Section 4 and, finally, Section 5 is devoted to the
conclusions.
2. A distributed particle filtering algorithm

2.1. State space systems and the standard particle filter

The stochastic filtering problem consists in tracking the
posterior probability distribution of the state variables of a
random dynamic system. Often, the problem is restricted
to the (broad) class of Markov state space systems with
conditionally independent observations. Let fXngnZ0

denote the discrete time random sequence of the system
state variables, taking values on the dx dimensional set
XDRdx , and let fYngnZ1 denote the corresponding
sequence of observations, taking values on Rdy . The
systems of interest are modeled by triplets of the form
τ0ðdxÞ; τnðdxjxn�1Þ; gnðynjxnÞ
� �

nZ1, where τ0 is the
prior probability measure associated to the random vari
able (r.v.) X0, τnðdxjxn�1Þ is a Markov kernel that deter
mines the probability distribution of Xn conditional on
Xn�1 ¼ xn�1, and gnðynjxnÞ is the conditional probability
density function (pdf) of the random observation Yn, given
the state Xn ¼ xn, with respect to (w.r.t.) the Lebesgue
measure. The latter is most often used as the likelihood of
Xn ¼ xn given the observation Yn ¼ yn. We write gn as a
function of xn explicitly, namely gynn ðxnÞ9gnðynjxnÞ, to
emphasize this fact.

The goal in the stochastic filtering problem is to
sequentially compute the posterior probability measures
of Xn given the observations Y1:n ¼ y1:n, denoted πnðdxÞ, for
n¼ 0;1;… (note that π0 ¼ τ0). Except for a few particular
cases, e.g., the Kalman [25,2] and Beneš [3] filters, πn
cannot be computed exactly and numerical approxima
tions are pursued instead. PFs are recursive Monte Carlo
algorithms that generate random discrete approximations
of the probability measures fπn;nZ1g [9,13,3]. At time n a
typical particle filtering algorithm produces a set of N
random samples (often termed particles) and associated
importance weights, Ωn ¼ fxðiÞn ;wðiÞ�

n gNi 1 with Wn ¼
P

N
i 1w

ðiÞ�
n , and approximate πn by the way of the random

probability measure πNn ¼ ð1=WnÞ
PN

i 1 w
ðiÞ�
n δxðiÞn

, where δx
denotes the Dirac (unit) delta measure located at x.

It is common to analyze the convergence of PFs in
terms of the approximation of integrals w.r.t. πn
[14,9,3,13,33]. To be specific, let f :X-R be a real function
integrable w.r.t. πn. Then we denote

ðf ; πnÞ9
Z

f ðxÞπnðdxÞ

and approximate the latter integral (generally intractable)
as

f ; πnð Þ � f ; πNn
� �¼ Z

f xð ÞπNn dxð Þ ¼ 1
Wn

XN
i 1

wðiÞ�
n f xðiÞn
� �

:

2.2. A distributed particle filter

We describe a PF based on the distributed resampling
with non proportional allocation (DRNA) scheme of
[5, Section IV.A.3] (see also [32,4,36]). Assume that the set
of weighted particles

Ωn ¼ fxðiÞn ;wðiÞ�
n gNi 1

can be split into M disjoint sets,

Ωm
n ¼ fxðm;kÞ

n ;wðm;kÞ�
n gKk 1; m¼ 1;…;M; such that

Ωn ¼ [M
m 1 Ω

m
n ;each of them assigned to an independent

processing element (PE). The total number of particles is
N¼MK, whereM is the number of PEs and K is the number
of particles per PE. At the m th PE, m¼ 1;…;M, we addi
tionally keep track of the aggregated weight

W ðmÞ�
n ¼

XK
k 1

wðm;kÞ�
n

for that PE.
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Every n0 time steps, the PEs exchange subsets of par
ticles and weights by using some communication network
[5]. We formally represent this transfer of data among PEs
by means of a deterministic one to one map

β: f1;…;Mg � f1;…;Kg-f1;…;Mg � f1;…;Kg
that keeps the number of particles per PE, K, invariant. To
be specific, ðu; vÞ ¼ βðm; kÞ means that the k th particle of
the m th PE is transmitted to the u th PE, where it
becomes particle number v. Typically, only subsets of
particles are transmitted from one PE to a different one,
hence βðm; kÞ ¼ ðm; kÞ for many values of k and m. The DPF
of interest in this paper can be outlined as follows.

Algorithm 1. DPF based on the DRNA scheme of [5,
Section IV.A.3], with M PEs, K particles per PE and periodic
particle exchanges every n0 time steps.

1. For m¼ 1;…;M (concurrently) draw xðm;kÞ
0 � τ0ðdxÞ,

k¼ 1;…;K , and set wðm;kÞ�
0 ¼ 1

MK and W ðmÞ�
0 ¼ 1=M.

2. Assume that fxðm;kÞ
n�1 ;w

ðm;kÞ�
n�1 gKk 1 and W ðmÞ�

n�1 are available
for each m¼ 1;…;M.

(a) For m¼ 1;…;M (concurrently) and k¼ 1;…;K ,

draw xðm;kÞ
n � τnðdxjxðm;kÞ

n�1 Þ;
compute wðm;kÞ�

n ¼wðm;kÞ�
n�1 gynn ðxðm;kÞ

n Þ;

and W
ðmÞ�
n ¼

XK
k 1

wðm;kÞ�
n :

(b) Local resampling: for m¼ 1;…;M (concurrently) set
~xðm;kÞ
n ¼ xðm;jÞ

n with probability

wðm;jÞ
n ¼wðm;jÞ�

n =W
ðmÞ�
n ;

for k¼ 1;…;K and jAf1;…;Kg. Set ~wðm;kÞ�
n ¼W

ðmÞ�
n =K

for each m and all k.
(c) Particle exchange: If n¼ rn0 for some rAN, then set

xβðm;kÞ
n ¼ ~xðm;kÞ

n and wβðm;kÞ�
n ¼ ~wðm;kÞ�

n

for every ðm; kÞAf1;…;Mg � f1;…;Kg. Also set
W ðmÞ�

n ¼ PK
k 1 w

ðm;kÞ�
n for every m¼ 1;…;M. Other

wise, if narn0, set xðm;kÞ
n ¼ ~xðm;kÞ

n , wðm;kÞ�
n ¼ ~wðm;kÞ�

n ,
W ðmÞ�

n ¼W
ðmÞ�
n .

Every PE operates independently of all others except for
the particle exchange, step 2.c, which is performed every
n0 time steps. The degree of interaction can be controlled
by designing the map βðm; kÞ in a proper way. Typically,
exchanging a subset of particles with “neighbor” PEs is
sufficient, as illustrated by the following example.

Example 1. Consider a circular arrangement in which the
m th PE exchanges particles with PE ðm 1ÞmodM and
ðmþ1ÞmodM, where mod indicates the modulus opera
tion (amod b is the integer remainder of the division a=b).
To be explicit,

� for each m¼ 2;…;M 1, the m th PE exchanges parti
cles with two neighbours, namely PE number ðm 1Þ
and PE number ðmþ1Þ,

� PE number 1 exchanges particles with PE numberM and
PE number 2, and
� PE numberM exchanges particles with PE numberM 1
and PE number 1.

Next, assume for simplicity that each PE sends one
particle to each one of its neighbors (i.e., it sends out two
particles) and receives one particle from each one of its
neighbors as well (i.e., it gets two new particles) so that the
number of particles per PE, K remains constant. One choice
of map β that implements such an exchange is the fol
lowing:

βðm; kÞ≔
ðm; kÞ if 2rkrK 1;
ððm 1Þ mod M;KÞ if k¼ 1;
ððmþ1Þ mod M;1Þ if k¼ K:

8><
>:

In other words, for each PE m¼ 1;…;M,

� all particles with index k¼ 2;…;K 1 remain the same,
� the first particle (k¼1) is sent to PE m 1mod M and, in

exchange, the K th particle from that neighbor is
received, i.e., xðm;1Þ

n ¼ ~xððm�1Þ mod M;KÞ
n and wðm;1Þ�

n ¼
~wððm�1Þ mod M;KÞ�
n ,

� the last particle (k¼K) is sent to PE mþ1mod M and, in
exchange, the 1 st particle from that neighbor is
received, i.e., xðm;KÞ

n ¼ ~xððmþ1Þ mod M;1Þ
n and wðm;KÞ�

n ¼
~wððmþ1Þ mod M;1Þ�
n .

It is apparent that this instance of β preserves the
number of particles per PE K constant. More elaborate
schemes can be designed and in general this is related to
the structure of the communication network that inter
connects the PEs. As long as it is guaranteed that the
number of particles that a PE gives to its neighbors is the
same as the number of particles that it receives from these
neighbors, the number K of particles per PE remains
invariant.

Remark 1. The local resampling step 2.b is carried out
independently, and concurrently, at each PE and it does
not change the aggregate weights, i.e., W

ðmÞ�
n ¼PK

k 1 w
ðm;kÞ�
n ¼ PK

k 1 ~wðm;kÞ�. We assume a multinomial
resampling procedure, but other schemes (see, e.g., [3])
can be easily incorporated.

2.3. Measure and integral approximations

Let

wðm;kÞ
n

wðm;kÞ�
nPK

i ¼ 1 w
ðm;iÞ�
n

; ~wðm;kÞ
n

~wðm;kÞ�
nPK

i ¼ 1 ~wðm;iÞ�
n

and wðm;kÞ
n

wðm;kÞ�
nPK

i ¼ 1 w
ðm;iÞ�
n

be the locally normalized versions of the importance
weights and let

W
ðmÞ
n ¼ W

ðmÞ�
nPM

i 1 W
ðiÞ�
n

and W ðmÞ
n ¼ W ðmÞ�

nPM
i 1 W

ðiÞ�
n

be the globally normalized aggregated weights of the m th
PE before and after the particle exchange step, respec
tively. The DPF produces three different local
3



approximations of the posterior measure πn at each PE,
namely

πm;K
n ¼

XK
k 1

wðm;kÞ
n δ

x ðm;kÞ
n

; ~πm;K
n ¼ 1

K

XK
k 1

δ ~x ðm;kÞ
n

and

πm;K
n ¼

XK
k 1

wðm;kÞ
n δxðm;kÞ

n
;

corresponding to steps 2.a, 2.b and 2.c of Algorithm 1. The
normalized aggregate weights can be used to combine the
local approximations, which readily yields global approx
imations of the posterior measure, i.e.,

πMK
n ¼

XM
m 1

W
ðmÞ
n πm;K

n ; ~πMK
n ¼

XM
m 1

W
ðmÞ
n ~πm;K

n and

πMK
n ¼

XM
m 1

W ðmÞ
n πm;K

n : ð1Þ

Note that only the local normalization of the weights
wðm;kÞ

n , k¼ 1;…;K , is necessary for Algorithm 1 to run (as
they are needed in the local resampling step 2.b). The
computation of the wðm;kÞ

n 's, the W ðmÞ
n 's or πn

MK
are only

necessary when local or global estimates of πn are needed.
However, the computation of these estimates can be car
ried out concurrently with Algorithm 1, i.e., the DPF can
keep running in parallel with the computation of any
estimates.

Remark 2. Algorithm 1 enjoys some relatively straight
forward properties that should be highlighted, as they are
relevant for the analysis in Section 3.

1. The particle exchange step does not change the particles
or their weights. It only “shuffles” the particles among
the PEs and updates the aggregate weights accordingly.
As a result, πMK

n ¼ ~πMK
n , since the individual particles and

weights are not changed.
2. A random exchange (i.e., a random β) is also possible,

although it makes certain practical implementations
harder [5]. We abide by a deterministic map β for the
sake of conciseness, although the analysis can be
extended to account for random schemes in a relatively
straightforward manner.

3. The ensemble of local resampling steps keeps the local
and aggregate importance weights proper and is glob
ally unbiased [36].

The goal of this paper is to analyze the approximation
of integrals using the random measure πn

MK
in (1). We look

into the Lp norm of the approximation errors, namely
J ðf ; πMK

n Þ ðf ; πnÞJp for pZ1, where f :X-R is an integr
able real function on X and J � Jp ¼ E½j � jp	1=p. The expec
tation is taken w.r.t. the distribution of the r.v. πn

MK
.

3. Analysis

3.1. Assumptions, preliminary results and notations

Let PðX Þ be the set of probability measures on
BðXÞ;Xð Þ, where BðX Þ is the Borel σ algebra of open sub
sets of the state space X . Choose a measure αAPðX Þ and
let h:X-R be a real function integrable w.r.t. α. We define
the measure valued map Ψn:PðXÞ-PðXÞ as

h;Ψn αð Þð Þ9 ðhgynn ; τnÞ; α
� �
ðgynn ; τnÞ; α
� �

and it is not difficult to show that Ψn is the transformation
that converts the filter measure at time n 1 into the filter
at time n, i.e., πn ¼ Ψnðπn�1Þ [13,3]. Composition of maps is
denoted Ψnjs9Ψn○Ψn�1○⋯○Ψ sþ1, for son, hence
Ψnjn�1ðαÞ ¼ΨnðαÞ, and we adopt the convention
ΨnjnðαÞ ¼ α. We also define the functional Γnjs: X-Rð Þ-
X-Rð Þ, recursively, as
ΓnjnðhÞ9h;

Γnjn� rðhÞ9 gyn rþ 1
n� rþ1Γnjn� rþ1ðhÞ; τn� rþ1

� �
; rZ1;

for srn, and it is not difficult to show that [13]

h;Ψnjn� rðαÞ
� �¼ Γnjn� rðhÞ; α

� �
Γnjn� rð1Þ; α
� �; ð2Þ

where 1ðxÞ ¼ 1 is the constant unit function.
For conciseness, we denote the set of bounded real

functions over X as BðXÞ, i.e., hABðX Þ if, and only if, h is a
map of the form X-R and JhJ1 ¼ supxAX jhðxÞjo1. In
the sequel, we analyze the asymptotics of the approx
imation errors jðh; πMK

n Þ ðh; πnÞj, where hABðX Þ, subject to
the following assumptions.

Assumption 1. There exists a bounded sequence of posi
tive real numbers fangnZ0 such that 1

an
rgynn xð Þran, for

every xAX , and a¼ supnZ0ano1.

Assumption 2. For any probability measures α; ηAPðX Þ
and every hABðX Þ,
Eðh; TÞ ¼ sup

nZ0
ðh;ΨnþT jnðαÞÞ ðh;ΨnþT jnðηÞÞ
�� ��o1; and

lim
T-1

Eðh; TÞ ¼ 0:

Assumption 1 states that the likelihood functions are
upper bounded as well as bounded away from 0.
Assumption 2 states that the optimal filter πn for the given
state space system is stable. A detailed study of the sta
bility properties of optimal filters for the class of state
space models of interest here can be found in [13] (see also
[22,21] for recent developments), including conditions on
the kernels τn and the likelihoods gynn which are sufficient
to ensure stability.

Assumption 3. The particle exchange step, with period n0,
guarantees that

E sup
1rmrM

W ðmÞ
rn0

	 
q� �
r cq

Mq� ϵ; for every rAN ð3Þ

and some constants co1, 0rϵo1 and qZ4 indepen
dent of M.

Intuitively, Assumption 3 says that the aggregate
weights remain “sufficiently balanced” (i.e., no PE takes
too much weight compared to others). We also introduce
the lemma below which, combined with Assumption 3, is
key to the analysis of the approximation errors, as it
4



enables us to obtain tractable bounds for the aggregate
weights.

Lemma 1. Assume that

E sup
1rmrM

W ðmÞ
n

	 
q� �
r cq

Mq� ϵ; ð4Þ

for some qZ2, c40 and 0rϵo1 constant w.r.t. M. Then,
there exists a non negative and a.s. finite random variable Un

ε
,

independent of M, such that

sup
1rmrM

W ðmÞ
n r Uε

n

M1� ε
; ð5Þ

where 1þϵqoεo1 is also a constant w.r.t. M. Moreover,
there is another constant uε;qo1 independent of n and M
such that supnZ0E Uε

n

� �qh i
ouε;q:

Proof. See Appendix A.

Remark 3. The r.v. Un
ε
can be written as

Uε
n ¼

X1
M 1

Mq�1� γ sup
1rmrM

W ðmÞ
n

	 
q

(see (A.1) in Appendix A), where ϵoγoq 1 is constant w.
r.t. M. If we also note that the aggregate weights after the

particle exchange step, fW ðmÞ�
n gMm 1, can be computed

deterministically1 given the aggregates before the

exchange, fW ðmÞ�
n g

M

m 1, then it follows that Un
ε
is measur

able w.r.t. the σ algebra F1
n ¼⋃MZ1FM

n , where each term
in the countable union is a generated σ algebra, namely

F M
n ¼ σ xðm;jÞ

0:n�1; x
ðm;jÞ
0:n ; 1rmrM; 1r jrK

� �
.

Finally, we introduce a simple inequality that will be
repeatedly used through the analysis of Algorithm 1. Let
α; β; α; βAPðX Þ be probability measures and let f ;hABðX Þ
be two real bounded functions on X such that ðh; αÞ40
and ðh; βÞ40. If the identities ðf ;αÞ ¼ ðfh; αÞ=
ðh; αÞ and ðf ; βÞ ¼ ðfh; βÞ=ðh; βÞ hold, then it is straight
forward to show (see, e.g., [9]) that

�� f ; αð Þ f ; βð Þ
��r 1

ðh; αÞ ðfh; αÞ ðfh; βÞ
�� ��þ J f J1

ðh; αÞ ðh;αÞ ðh; βÞ
�� ��:

ð6Þ

3.2. Uniform convergence over time

In this section we rigorously prove that J ðh; πMK
n Þ

ðh; πnÞJp-0, as M-1 and K remains fixed, uniformly over
time. The key result is Lemma 2 below, on the propagation of
errors across the map Ψn. From this result, we then obtain the
main theorem on the convergence of Algorithm 1.

Lemma 2. Let Ko1 be fixed. If Assumption 1 holds, with
ao1, and Assumption 3 holds, with 0oϵo1 and qZ4,
then there exist constants uεo1 and ~co1, independent of
1 Because the map βðm; kÞ used for the particle exchange is
deterministic.
M, such that

J h;Ψnjn k πMK
n k

� �� �
h;Ψnjn k 1 πMK

n k 1

� �� �
Jpr

8akþ2uεc JhJ1
M

1
2 εK

1
2

; ð7Þ

for every hABðX Þ, krn, prq, and εA 1þ ϵ
q ; 12

� �
.

Proof. Let us write πNn ¼ πMK
n in the remaining of the proof

for conciseness. We can use the relationship (2) to rewrite
the Lp norm of the approximation error
ðh;Ψnjn�kðπNn�kÞÞ ðh;Ψnjn�k�1ðπNn�k�1ÞÞ as
J h;Ψnjn�k πNn�k

� �� �
h;Ψnjn�k�1 πNn�k�1

� �� �
Jpr

r ðΓnjn�kðhÞ; πNn�kÞ
ðΓnjn�kð1Þ; πNn�kÞ

ðΓnjn�kðhÞ;Ψn�kðπNn�k�1ÞÞ
ðΓnjn�kð1Þ;Ψn�kðπNn�k�1ÞÞ













p

and applying (6) together with Assumption 1 in the
equation above, we readily find an upper bound of the
form

J ðh;Ψnjn�kðπNn�kÞÞ ðh;Ψnjn�k�1ðπNn�k�1ÞÞJp
rak JeNn;kðhÞJpþ JhJ1 JeNn;kð1ÞJp

h i
; ð8Þ

where

eNn;kðhÞ ¼ ðΓnjn�kðhÞ; πNn�kÞ ðΓnjn�kðhÞ;Ψn�kðπNn�k�1ÞÞ ð9Þ
(note that Γnjn�kð1ÞZa�k).
The two terms between square brackets on the right

hand side (rhs) of (8) have the same form. To upper bound
them, we need to find bounds for errors of the form
J ðv; πNn�kÞ ðv;Ψn�kðπNn�k�1ÞÞJp, where vABðX Þ. To do this,
we first split the Lp norm of the error using a triangle
inequality,

Jðv; πNn kÞ ðv;Ψn kðπNn k 1ÞÞJpr J ðv; πNn kÞ ðv; πN
n kÞJp

þ J ðv; πN
n�kÞ ðv;Ψn�kðπNn�k�1ÞÞJp: ð10Þ

To deduce a bound for the first term on the rhs of (10), let
us recall that the particle exchange step does not modify
the individual particle weights, only the aggregates, hence
πNn ¼ ~πN

n . Then, we can readily write the conditional
expectation of jðv; πNn�kÞ ðv; πN

n�kÞjp (given F1
n�k, see

Remark 3) as

E ðv; πNn kÞ�ðv; πN
n kÞ

�� ��pjF1
n k

h i
E ðv; ~πN

n kÞ�ðv; πN
n kÞ

�� ��pjF1
n k

h i

E
XM
m ¼ 1

W
ðmÞ
n k

K

XK
j ¼ 1

Z
ðm jÞ
n k

������
������
p��F1

n k

2
4

3
5; ð11Þ

where the r.v.'s Z
ðm;jÞ
n�k ¼ vð ~xðm;jÞ

n�kÞ ðv; πN
n�kÞ are conditionally

independent (given F1
n�k), zero mean (since E½vð ~xðm;jÞ

n�kÞ
jF1

n�k	 ¼ ðv; πN
n�kÞ) and bounded (namely, JZ

ðm;jÞ
n�k J1r

2JvJ1 for all n, k, m and j). Additionally, from step 2.a) of
Algorithm 1 it follows that the normalized aggregate

weights W
ðmÞ
n�k, m¼ 1;…;M, have the form

W
ðmÞ
n k

PK
j ¼ 1 g

yn k
n k ðx

ðm jÞ
n kÞw

ðm jÞ�
n k 1PM

l ¼ 1
PK

i ¼ 1 g
yn k
n k ðx

ðl;iÞ
n kÞw

ðl;iÞ�
n k 1

r
a2
PK

j ¼ 1 w
ðm jÞ�
n k 1PM

l ¼ 1
PK

i ¼ 1 w
ðl;iÞ�
n k 1

ð12Þ

¼ a2W ðmÞ
n�k�1 ð13Þ

where the inequality (12) is a consequence of Assumption 1,
while (13) follows immediately from the definition of the
weights in Algorithm 1. However, given (13) and provided
5



that there is no particle exchange at times
n k 1;n k 2;… (exchanges occur periodically with
period n0) we readily obtain a straightforward relationship
in the sequence of aggregate weights, namely

W
ðmÞ
n kra2W ðmÞ

n k 1 a2W
ðmÞ
n k 1ra4W ðmÞ

n k 2 a4W
ðmÞ
n k 2r⋯

ð14Þ

Since the most recent particle exchange was carried out at
most n0 time steps earlier, we can readily iterate (14) to
obtain

W
ðmÞ
n�kra2W

ðmÞ
n�k�1r⋯ra2 n�k�n0⌊ðn�kÞ=n0cð ÞW ðmÞ

n0⌊ðn�kÞ=n0c

ra2n0W ðmÞ
n0⌊ðn�kÞ=n0c: ð15Þ

However, the inequality (15) combined with Assumption 3
yields

E sup
1rmrM

W
ðmÞ
n k

	 
q� �
ra2n0qE sup

1rmrM
W ðmÞ

n0⌊ðn kÞ=n0c

	 
q� �
r ða2n0cÞq

Mq ϵ

ð16Þ

for some qZ4, where c40, n0Z1 and 0rϵo1 are con
stants independent of M, K and n. In turn, the inequality
(16) enables the application of Lemma 1, which states that
there exists an a.s. finite r.v. Uε

n�k, independent of M, such
that

sup
1rmrM

W
ðmÞ
n�kr

Uε
n�k

M1� ε
; ð17Þ

where 1þϵ=qoεo1=2 is also constant w.r.t. M. Substitut
ing (17) back into Eq. (11) we arrive at

E ðv; πNn kÞ ðv; πN
n kÞ

�� ��pjF1
n k

h i
rE

Uε
n kM

ε

MK

XM
m ¼ 1

XK
j ¼ 1

Z
ðm jÞ
n k

������
������
p

jF1
n k

2
4

3
5:
ð18Þ

Since Uε
n�k is measurable w.r.t. F1

n�k (see Remark 3) and

the r.v.'s Z
ðm;jÞ
n�k are conditionally independent, have zero

mean and upper bound 2JvJ1, it is an exercise in combi
natorics to show that

E ðv; πNn�kÞ ðv; πN
n�kÞ

�� ��pjF1
n�k

h i
r ð2Uε

n�kM
ε ~c JvJ1Þp

ðMKÞp2
ð19Þ

for some constant ~co1 independent of n, M and K (actu

ally, independent of the distribution of the Z
ðm;jÞ
n�k's). Taking

unconditional expectations on both sides of the inequality
in (19) yields

E ðv; πNn�kÞ ðv; πN
n�kÞ

�� ��ph i
rE Uε

n�k

� �ph i ð2~c JvJ1Þp

Mp 1=2� εð ÞKp=2
; ð20Þ
where 1=2 ε41=2 2=qZ0 (see Lemma 1), since qZ4 in
Assumption 3. Moreover, from Lemma 1, there exists a

constant uε;qo1 such that supnZ0E Uε
n

� �qh i
ouε;qo1 for

some qZ4. Therefore, for any prq there exists uε;p such

that supnZ0E Uε
n

� �ph i
ouε;po1 and

E ðv; πNn�kÞ ðv; πN
n�kÞ

�� ��ph i
ruε;pð2~c JvJ1Þp

Mp 1=2� εð ÞKp=2
;

which readily yields, for any vABðXÞ,

J v; πNn�k

� �
v; πN

n�k

� �
Jpr

2uε ~c JvJ1
M1=2� εK1=2; ð21Þ

for any εA 1þϵ=q;1=2
� �

, any prq and where

uε ¼ ðuε;pÞ1=po1 is constant w.r.t. M, K and n.
We handle the second term in (10) by way of a similar

argument. Let us define the σ algebra F1
n�k�1 ¼

⋃MZ1FM
n�k�1, where each term in the countable union is

a generated σ algebra, namely

FM
n�k�1 ¼ σ xðm;jÞ

0:n�k�1; x
ðm;jÞ
1:n�k�1; 1rmrM; 1r jrK

� �
and recall that ~πN

n ¼ πNn for every n (see Remark 2). For any
vABðXÞ, we can decompose the integrals in the second
term of (10) as follows. On one hand, for ðv;Ψ n�kðπNn�k�1ÞÞ
we readily obtain

v;Ψn k πNn k 1

� �� �
v;Ψn k ~πN

n k 1

� �� �
∑M

m¼1∑
K
j¼1E½v xðm jÞ

n k

� �
gyn k
n k xðm jÞ

n k

� �
F∞

n k 1

�� �W ðmÞ�
n k 1

K

∑M
l¼1∑

K
i¼1E½g

yn k
n k xðl;iÞn k

� �
F∞

n k 1

�� �W ðlÞ�
n k 1

K

E vgyn k
n k jF∞

n k 1

� �
; ξNn k

� �
E gyn k

n k jF∞
n k 1

� �
; ξNn k

� � ; ð22Þ

where

ξNn�k ¼
XM

m 1

XK

j 1

W ðmÞ
n�k�1
K

δ
x ðm;jÞ
n k

On the other hand, the integral ðv; πN
n�kÞ can be similarly

written as

v; πN
n�k

� �¼
PM

m 1
PK

j 1 vðxðm;jÞ
n�kÞg

yn k
n�k ðx

ðm;jÞ
n�kÞw

ðm;jÞ�
n�k�1PM

s 1
PK

i 1 g
yn k
n�k ðx

ðs;iÞ
n�kÞw

ðs;iÞ�
n�k�1

;

where the weights wðm;jÞ�
n�k�1 are obtained after the

exchange step. Since the map β used for the exchange is
deterministic and one to one, we can readily compute
ðl; rÞ ¼ β�1ðm; jÞ and, tracing back the particle exchange, we
arrive at

wðm;jÞ�
n�k�1 ¼ ~wðl;rÞ�

n�k�1 ¼
W

ðlÞ�
n�k�1

K
:

As a consequence, it is possible to rewrite the integral
ðv; πN

n�kÞ as

v; πN
n�k

� �¼
PM

l 1
PK

r 1 vðxβðl;rÞn�kÞg
yn k
n�k ðx

βðl;rÞ
n�kÞW

ðlÞ�
n�k�1PM

s 1
PK

i 1 g
yn k
n�k ðx

βðs;iÞ
n�kÞW

ðsÞ�
n�k�1

¼ ðvgyn k
n�k ; ξ

N
n�kÞ

ðgyn k
n�k ; ξ

N
n�kÞ

: ð23Þ

Combining (22) and (23), and after some straigh
tforward algebraic manipulations, the difference
6



ðv; πN
n�kÞ ðv;Ψn�kðπNn�k�1ÞÞ can be rewritten as

v; πN
n�k

� �
v;Ψn�k πNn�k�1

� �� �¼
1

ðgyn k
n�k ; ξ

N
n�kÞ

� ðvgyn k
n�k ; ξ

N
n�kÞ E vgyn k

n�k jF1
n�k�1

� �
; ξNn�k

� �� �

þ JvJ1
ðgyn k

n�k ; ξ
N
n�kÞ

� ðgyn k
n�k ; ξ

N
n�kÞ E gyn k

n�k jF1
n�k�1

� �
; ξNn�k

� �� �
:

Resorting to Minkowski's inequality, Assumption 1 and the
fact that all integrals are computed w.r.t. the same mea
sure, ξNn�k, the equality above easily yields the bound

ðv; πN
n�kÞ ðv;Ψn�kðπNn�k�1ÞÞ



 


p

ra vgyn k
n�k E vgyn k

n�k jF1
n�k�1

� �
; ξNn�k

� �

 


p

þaJvJ1 gyn k
n�k E gyn k

n�k jF1
n�k�1

� �
; ξNn�k

� �

 


p:

However, the integral vgyn k
n�k E vgyn k

n�k jF1
n�k�1

� �
; ξNn�k

� �
with vABðXÞ reduces to

vgyn k
n�k E vgyn k

n�k jF1
n�k�1

� �
; ξNn�k

� �¼ XM
m 1

XK
j 1

W
ðmÞ
n�k�1

K
�Z
ðm;jÞ
n�k;

ð24Þ
where, for all mAf1;…;Mg and jAf1;…;Kg,
�Z
ðm;jÞ
n�k ¼ vðxðm;jÞ

n�kÞg
yn k
n�k ðx

ðm;jÞ
n�kÞ E½vðxðm;jÞ

n�kÞg
yn k
n�k ðx

ðm;jÞ
n�kÞjF1

n�k�1	;

are conditionally independent r.v.'s, with zero mean and

bounded as j �Z ðm;jÞ
n�k�1jr2aJvJ1 (recall that Jgynn J1oa for

every n, from Assumption 1). Therefore, using exactly the
same argument that led us from Eq. (11) to the inequality
(21) (involving the use of Assumption 3 to upper bound
the aggregate weights) now we arrive at

ðv; πN
n�kÞ ðv;Ψn�kðπNn�k�1ÞÞ



 


pr

4a2uε ~c JvJ1
M

1
2� εK

1
2

; ð25Þ

for any 1þϵ=qoεo1=2 and prq, where ~co1, ao1
and uεo1 are constants w.r.t. M, K and n.
Next, we substitute backwards to complete the proof.

First, we insert (21) and (25) into the triangle inequality
(10), to obtain

J v; πNn�k

� �
v;Ψn�k πNn�k�1

� �� �
Jpr

8a2uε ~c JvJ1
M1=2� εK1=2 ; ð26Þ

which yields a bound for error terms of the form in (9), by
simply taking v¼ Γnjn�kðhÞ. Using this bound in (8) we
arrive at inequality (7) in the statement of Lemma 2.□

Theorem 1. Let Ko1 be fixed. If Assumptions 1, 2 and 3
hold, then the approximate measures computed via the DRNA
algorithm converge uniformly over time in Lp. To be specific,

lim
M-1

sup
nZ0

ðh; πMK
n Þ ðh; πnÞ



 


p ¼ 0 ð27Þ

for any hABðX Þ and every 1rprq, where qZ4 is given by
Assumption 3.

Proof. Again, we write πNn ¼ πMK
n for conciseness. The proof

follows the same kind of argument as in [13]. Let us choose
an arbitrary integer T41 and look into the error terms for
nrT and n4T separately. For nrT , the difference
ðh; πNn Þ ðh; πnÞ can be easily decomposed as

ðh; πNn Þ ðh; πnÞ
Xn 1

k ¼ 0

ðh;Ψnjn kðπNn kÞÞ ðh;Ψnjn k 1ðπNn k 1ÞÞ
 !

þðh;Ψnj0ðπN0 ÞÞ ðh;Ψnj0ðπ0ÞÞ

hence we readily find an upper bound for the approx
imation error in Lp with a similar structure, namely

Jðh; πNn Þ ðh; πnÞJpr
Xn 1

k ¼ 0

J ðh;Ψnjn kðπNn kÞÞ ðh;Ψnjn k 1ðπNn k 1ÞÞJp

þ J ðh;Ψnj0ðπN0 ÞÞ ðh;Ψnj0ðπ0ÞÞJp: ð28Þ

For the second term on the right hand side (r.h.s.) of (28)
we have

J h;Ψnj0 πN0
� �� �

h;Ψnj0 π0ð Þ� �
Jp

ðΓnj0ðhÞ; πN0 Þ
ðΓnj0ð1Þ; πN0 Þ

ðΓnj0ðhÞ; π0Þ
ðΓnj0ð1Þ; π0Þ













p

ð29Þ

Jðh;Ψnj0ðπN0 ÞÞ ðh;Ψnj0ðπ0ÞÞJpran JðΓnj0ðhÞ; πN0 Þ ðΓnj0ðhÞ; π0ÞJp
þan JhJ1 J ðΓnj0ð1Þ; πN0 Þ ðΓnj0ð1Þ; π0ÞJp; ð30Þ

where the equality (29) follows from Eq. (2) while (30) is a
consequence of the inequality (6) together with Assump
tion 1. Since it is straightforward to show that Γnj0ðhÞ and
Γnj0ð1Þ are bounded, namely

JΓnj0ðhÞJ1ran JhJ1 ðhence JΓnj0ð1ÞJ1ranÞ;
and π0

N
is built with independent and identically dis

tributed (i.i.d.) samples from π0, we readily obtain the
usual Monte Carlo bound for the approximation error of
ðh;Ψnj0ðπN0 ÞÞ, i.e.,

J h;Ψnj0 πN0
� �� �

h;Ψnj0 π0ð Þ� �
Jpr

C JhJ1an

MK
p rC JhJ1aT

MK
p

ð31Þ
where C is a constant independent ofM, K, p and n, and the
second inequality holds because we are looking at the case
nrT .
The terms in the summation of (28) can be upper

bounded using Lemma 2 (note that the assumptions of
Lemma 2 are a subset of the assumptions in Theorem 1).
Indeed, combining the inequality (7) and the bound in (31)
into the original inequality (28) yields

J h; πNn
� �

h; πnð ÞJpr
8nanþ1uε ~c JhJ1

M1=2� εK1=2 þC JhJ1aT

MK
p ð32Þ

J h; πNn
� �

h; πnð ÞJpr
8 TaTþ1 ~C JhJ1
M1=2� εK1=2 ; ð33Þ

where ~C ¼max fuε ~c;Cg and we have taken into account
that there are at most T terms in the summation of (28) in
order to obtain the second inequality.
Similar to (28), for n4T we have

Jðh; πNn Þ ðh; πnÞJpr
XT 1

k ¼ 0

J ðh;Ψnjn kðπNn kÞÞ ðh;Ψnjn k 1ðπNn k 1ÞÞJp

þ Jðh;Ψnjn T ðπNn T ÞÞ ðh;Ψ tjn T ðπn T ÞÞJp:
ð34Þ
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The remainder term on the rhs of (34) can be directly
bounded by way of Assumption 2, namely

J ðh;Ψnjn�T ðπNn�T ÞÞ ðh;Ψ tjn�T ðπn�T ÞÞJprEðh; TÞ; ð35Þ
where limT-1Eðh; TÞ ¼ 0 for every hABðX Þ. The summa
tion on the rhs of (34), on the other hand, has exactly the
same structure as the summation in (28), hence the bound
in (33) is still valid here and we can combine it with (35)
and (34) to arrive at2

J h; πNn
� �

h; πnð ÞJpr
8 TaTþ1 ~C JhJ1
M1=2� εK1=2 þE h; Tð Þ ð36Þ

for n4T . Since the bound above is independent of n, and
valid for arbitrary T, taking together (33) and (36) yields

sup
nZ0

J h; πNn
� �

h; πnð ÞJpr
8 TaTþ1 ~C JhJ1
M1=2� εK1=2 þE h; Tð Þ: ð37Þ

Finally, for M sufficiently large, if we choose T ¼ TM and

TM ¼
1
2 ε γ
� �

log Mð Þ log að Þ log 8 ~C JhJ1
� �

1þ loga

6664
7775 ð38Þ

for any γA 0;1=2 ε
� �

, then

8 TaTþ1 ~C JhJ1
M1=2� εK1=2 r 1

MγK1=2: ð39Þ

Since limM-1TM ¼1 it follows that limM-1Eðh; TMÞ ¼ 0
and, therefore, for N¼MK, limM-1supnZ0 J ðh; πNn Þ
ðh; πnÞJp ¼ 0.□

3.3. Convergence rates

Theorem 1 provides a theoretical guarantee for the
convergence of Algorithm 1 when the number of PEs
increases (even for a fixed number, K, of particles per PE).
However, it does not provide a convergence rate and, as a
consequence, it is not possible to compare its performance
with conventional (centralized) PFs, for which con
vergence rates are well known (see, e.g., [13,12,3]). Fol
lowing an approach similar to [13] for the standard PF, we
show in this section that it is possible to obtain an explicit
convergence rate for Algorithm 1 when the optimal filter is
stable with a known rate itself. In particular, we adopt the
following assumption, which entails the exponential sta
bility of the optimal filter.

Assumption 4. For any α; ηAPðX Þ and every hABðXÞ,
there exist constants T0o1 and ν40 such that

sup
nZ0

ðh;ΨnþTjnðαÞÞ ðh;ΨnþTjnðηÞÞ
�� ��o exp νTf g for every T4T0:

See [13,12,35] for a discussion of sufficient conditions
for exponential stability. Using Assumption 4 we can
2 It is, indeed, important to realize at this point that the factor n in
the numerator 8nanþ1uε ~c JhJ1 of the inequality (32) arises exclusively
from the number of terms in the summation of (28), which is at most T,
and not because of an actual dependence on time. Therefore, exactly the
same argument is valid for the summation of (34), even if n4T .
strengthen Theorem 1 in order to obtain the following
result.

Theorem 2. Let Ko1 be fixed. If Assumptions 1 4 hold,
then for any hABðXÞ and prq

sup
nZ0

ðh; πMK
n Þ ðh; πnÞ



 


pr

C

MζK1=2 ð40Þ

for some Co1 and ζ40 independent of M and K. In par
ticular,

ζ¼min 1;
ν

1þ logðaÞ

� �
Υ ; ð41Þ

for any ΥA 1þϵ=q;1=2 1þϵ=q
� �

, with ϵAð0;1Þ and qZ4
given by Assumption 3.

Remark 4. If Assumption 3 holds for arbitrarily large q
then the inequality (40) holds for ζ arbitrarily close to
1=2~ν, where the coefficient ~ν ¼min 1; ν=1þ logðaÞ� �
depends on the state space system. In this case, Algorithm
1 matches the convergence rate obtained for the standard
PF with the same kind of analysis [12]. If Assumption 3
holds only for some relatively small qZ4, then there is an
actual loss in the convergence rate of Algorithm 1 com
pared to a centralized PF.

Proof of Theorem 2. Again, let us write πMK
n ¼ πNn for

conciseness. We recall Eq. (37), reproduced below for
convenience,

sup
nZ0

J h; πNn
� �

h; πnð ÞJpr
8 TaTþ1 ~C JhJ1
M1=2� εK1=2 þE h; Tð Þ; ð42Þ

where εA ϵþ1=q;1=2
� �

and ~Co1 is constant w.r.t. M and
K. Since To1 is arbitrary, we can T ¼ TM like in (38)
which allows to upper bound the first term on the right
hand side of (42) using the inequality (39). As for the
second term on the rhs of (42), Assumption 4 yields (for
large M, so that TMZT0),

E h; TMð Þr exp νTMf gr C

Mν=1þ logðaÞð1=2� γ� εÞ; ð43Þ

where C ¼ logðaÞþ logð8 ~C JhJ1Þ=1þ logðaÞ:
Combining the inequalities (39) and (43) into (42) yields

the inequality (40) in Theorem 2, with
Υ ¼ 1=2 ε γA 1þϵ=q;1=2 1þϵ=q

� �
in (41).□

3.4. Discussion

In this section we have proved that Algorithm 1, based
on the DRNA scheme of [5], converges asymptotically with
the number of PEs, M, and uniformly over time. This is, to
our best knowledge, the first rigorous proof of con
vergence for this type of PF, which has been used exten
sively in the literature [32,31,1,23,4,36]. Note that classical
analyses, such as in [9,10,13,12,3], do not hold for this
algorithm because they do not take into account the dis
tinct aggregate weights of the subsets of particles assigned
to the PEs.

Uniform convergence over time is relevant from a
practical point of view. It implies that the DPF can run for
an indefinitely long period of time, since the computa
tional load (i.e., the number of particles) needed to
8



Fig. 1. Sample trajectory of the target during the first 100 time instants.
The crosses mark the positions of the sensors, whereas the diamond
indicates the starting point. Vertical and horizontal axes in meters.
guarantee a certain error bound (namely, the rhs of
inequality (40)) is independent of the time index n. This
should be compared with the classical convergence ana
lyses in [3] or [33], which are based on induction argu
ments and yield error bounds of the form Cn= N

p
, where N

is the number of particles and Cn is a constant independent
of N. It is simple to show [3] that limn-1Cn ¼1 and,
therefore, the error bound diverges with time, i.e.,
limn-1Cn=N¼1 for any fixed N. Based on this type of
analysis, the PF can only be guaranteed to work for a finite
period of time. The advantage of uniform convergence,
where the error bound is independent of time, comes at
the expense of additional assumptions (Assumptions 1 4
in our case) which are not needed for the proofs of [3]
or [33].

Assumptions 1, 2 and 4 are related to the stability of the
optimal filter for the state space model of interest. They
refer to properties of the model, which may hold or not
independently of the filtering algorithm we use. In prac
tice, it is usually easy to show that they hold for models in
which the state space X is compact. This kind of
assumptions is common in the literature [13,29,34].

Assumption 3 is similar to the regularity conditions
imposed on the weights in [17,8]. We investigate its
validity numerically, by way of computer simulations, in
the example of Section 4. Intuitively, it implies that the
aggregate weights of the PEs remain “balanced”, i.e., no PE
is expected to accumulate all the weight a situation that
would lead to degeneracy of the distributed scheme,
which would be reduced to a centralized PF with only K
particles. Let us also point out that it is possible to monitor
the aggregate weights online and possibly schedule addi
tional exchange steps in order to guarantee, e.g., that
W ðmÞ4

n rcst=M4� ϵ for everym. The latter inequality is much
stronger than Assumption 3, yet has the advantage of
being verifiable in practice.

Theorem 2 provides an explicit rate for the uniform
convergence of Algorithm 1. This is relevant because it can
be argued that Theorem 1 alone does not guarantee a
“practically acceptable” performance. In particular, even if
(27) holds, convergence may still be so slow that the filter
cannot be used for any practical purpose. We foresee that
it may be possible to improve the error rate in Theorem 2
by using techniques borrowed from [41], which relies on
slightly stronger assumptions on the state space model
and the algorithm.
4. Computer simulations

4.1. State space model

We have carried out computer simulations for a pro
blem consisting in the tracking of a target that moves over
a 2 dimensional rectangular region, using a WSN consist
ing of J nodes that produce binary (0 or 1) outputs,
depending on the distance between the target and the
node. In the sequel we describe the state space model for
this problem.

The system state at time n is denoted xn ¼ ½rn; vn	> AR4,
where rnAR2 is the target position and vnAR2 is the
target velocity. The prior distribution has the form
τ0ðdx0Þ ¼ Uðr0;RÞdr0 �N ðv0;0; σ2r;0I2Þdv0, where R¼
½ 20;20	 � ½ 10;10	 is the rectangular region of interest,
Uðr0;RÞ is the uniform pdf over R of the initial position, r0,
and N ðv0;0; σ2v;0I2Þ is the Gaussian pdf of the initial velo
city, v0, which has zero mean and covariance function
σ2v;0I2, with I2 the 2�2 identity matrix. The variance
parameter is σv;0 ¼ 5� 10�2 for all simulations.

In order to apply either Algorithm 1 or a centralized
standard PF we need to describe how to produce random
samples from the transition kernel τnðdxnjxn�1Þ. Given the
state at time n 1, let us introduce the auxiliary r.v.

~xn ¼
~rn
~vn

" #
¼

I2 κI2
0 I2

" #
xn�1þηn;

where κ is the duration of the discrete time steps in the
model (i.e., the continuous time elapsed between two
consecutive realizations of the system state), and ηn is a
sequence of i.i.d. Gaussian r.v.'s with pdf N ðηn;0;CηÞ,
where the covariance matrix has the form

Cη ¼ ðκ2σ2v þ σ2r ÞI2
0

0
σ2v I2

h i
and the parameters σv

2
and σr

2
represent

the variance of any unknown (random) acceleration effects
and other direct random perturbations of the target posi

tion, respectively. We set κ¼ 1 and σ2r ¼ σ2v ¼ 10�2 for the
simulations. We also introduce a sequence of i.i.d. Gaus
sian r.v.'s un, nZ1, with the same distribution as the initial
velocity, i.e., N ðun;0; σv;0I2Þ. Then, the state xn conditional
on xn�1 can be generated as

xn ¼
~xn; if ~rnAR;

rn�1;un½ 	> ; if ~rn =2R;

(
:

A sample realization of a target trajectory, during 100
discrete time steps, according to the described model can
be seen in Fig. 1.

The WSN consists of J¼18 binary sensors. The j th
sensor position is denoted sjAR and its output is
ynðjÞAf0;1g, hence the complete observation vector at
time n is yn ¼ ½ynð1Þ;…; ynðJÞ	> . The sensors measure
whether the target appears to lie within a threshold dis
tance μ¼ 7 m of the sensor position, but the output is
random. To be specific, the output yn(j) conditional on
Jrn sj Jrμ is a Bernoulli r.v. with parameter p1, whereas
yn(j) conditional on Jrn sj J4μ is Bernoulli with para
meter p1. We refer to p1 as the detection probability, and
9



set p1¼0.9 for the simulations, while we set p1 ¼ 10�2 and
we refer to it as the false alarm probability.

The probability mass of the observations can be written
using the general notation in Section 2.1 as
gnðynjxnÞ ¼∏J

j 1gnðynðjÞjxnÞ, where

gnðynðjÞjxnÞ ¼
p1ynðjÞþð1 p1Þð1 ynðjÞÞ; if Jrn sj Jrμ

p1ynðjÞþð1 p1Þð1 ynðjÞÞ; if Jrn sj J4μ

(
;

which allows to compute any necessary importance
weights.

4.2. Numerical results

We first assess the validity of Assumption 3, which is
key in the analysis of Section 3, and then compare the
performance of the DPF described by Algorithm 1 with a
standard (centralized) PF in terms of the absolute error of
the position estimates. Note that Algorithm 1 actually
reduces to a standard (or bootstrap) PF if we simply set
M¼ 1 and, therefore, discard the particle exchange step.

In order to carry out a fair comparison of the DPF and the
centralized PF, the total number of particles must coincide. In
the sequel, we present simulation results with several values
of M, namely MA 8;16;32;64;128f g, while the number of
particles per PE is kept fixed, K¼256. For the centralized PF,
the number of particles is set as N¼MK, hence
NAf8� K;16� K;32� K ;64� K ;128� Kg. Note that the
number of sensors collecting data, J ¼ 18, is kept fixed for all
simulations, despite the variations in the number M of PEs.

For each value ofM it is necessary to describe how the PEs
are interconnected in order to carry out the particle
exchanges specified by Algorithm 1. These interconnections
can be fully described by a simple graph, and hence we use
the Havel Hakimi algorithm [20] in order to generate them
automatically for each M. The resulting graphs are such that
every PE has exactly M=4 neighbors. The period of the
exchange step is set to n0 ¼ 10, and at every exchange step
each PE interchanges ⌊3:6 K=Mc particles with every neigh
bor. Since each PE has M=4 neighbors, this amounts to
approximately 90% of the particles in each PE being swapped
with particles belonging to its neighbors3. The mapping β that
determines the particles to be exchanged is kept determi
nistic, but depends (in an obvious way) on the graph gener
ated for each value of M.

We numerically assess whether Assumption 3 holds.
The parameters involved are tentatively set to c¼ 4, q¼ 4
and ϵ¼ 0:5. According to Assumption 3, for an arbitrary
number of PEs, M, these values should yield an upper
bound on the expectation of the supremum of the aggre
gated weights of the form

E sup
1rmrM

W ðmÞ
rn0

	 
q� �
r cq

Mq� ϵ ð44Þ
3 A value of 90% was chosen here to ensure that the aggregated
weights of the PEs can be properly balanced even when one of them is
much higher than the rest, i.e., when the particles of a single PE capture
most of the importance weight. This proportion can be decreased, e.g., by
reducing the period n0 between exchange steps.
after every exchange step (i.e., when n¼ rn0, for rAN).
In Fig. 2, an estimate of the expectation on the left had

side (lhs) of (44), computed by averaging 150 independent
simulations, is plotted for every time instant,
n¼ rn0r10;000, along with the upper bound on the rhs
of (44) when M¼ 32. It is clear from the figure that the
estimate of the expectation in (44) is well below the upper
bound after every exchange step (but this is not necessa
rily the case at times steps narn0, when exchange steps
are not taken)

Using the same set of 150 independent simulation runs,
we have estimated the L2 errors of the posterior mean of
the state computed via the DPF algorithm (i.e.,
x̂MK
n ¼ PM

m 1 W
ðmÞ
n
PK

k 1 w
ðm;kÞ
n xðm;kÞ

n ) w.r.t. to the true
value of the state signal xn, for 1rnr10;000. Fig. 3 shows
the results. It is apparent that the error remains stable (it
does not drift up) for the complete period of 10,000 time
steps. Moreover, the performance is very close to the
centralized PF with the same total number of particles,
N¼MK ¼ 32� 256, for which the approximation errors
are also show in Fig. 3 (note that the difference between
the errors for the DPF and the errors for the centralized PF
is also plotted).

We have carried out additional computer simulation
trials with M¼ 8;16;32;64 and 128 in order to verify
whether the parameter set fc¼ 4; q¼ 4; ϵ¼ 0:5g appears to
be independent of M, as demanded by Assumption 3. For
each value of M, we have run 230 independent computer
simulations with n¼ 1;…;3;000 time steps. Fig. 4 depicts,
for fixed n¼ 100n0 ¼ 1000 and M¼ 8;16;32;64;128 the
(estimated) expectation and upper bound that correspond,
respectively, to the lhs and the rhs of (44). It can be
observed that the expectation decreases, along with the
upper bound, as M increases. However, the ratio between
the bound on the rhs of (44) and the expectation on the lhs
of (44) becomes larger as M is increased: for this set of
simulations, it ranges from � 22 when M¼ 8 to � 1:25�
103 for M¼ 128. These numerical results strongly suggest
that Assumption 3 holds true for this particular example.

Finally, we aim at evaluating the rate at which the L2
errors in the approximation of the posterior mean of the
state converge with increasing M. To compute these errors,
since the true posterior mean of the state, namely the
integral x̂n ¼

R
xnπnðdxnÞ, cannot be computed exactly, we

have used the estimates provided by a centralized PF with
N¼MK ¼ 128� 256¼ 215 particles as a proxy for the
actual x̂n. Then, using the same set of 230 independent
simulations as in Fig. 4, we have empirically estimated the
L2 errors for M¼ 8;16;32;64;128 and n¼ 2000, and plot
ted them in Fig. 5. To obtain an empirical convergence rate,
we have used the obtained L2 errors to fit an exponentially
decreasing function of the form C=MζN1=2, where C and ζ
are constants. The result, using a least squares fit, is
C � 11:8 and ζ� 0:44, which is close to the optimal Monte
Carlo rate of M�1=2.
5. Conclusions

We have introduced the first rigorous proof of con
vergence for a particle filter (PF) based on the popular
10
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Fig. 2. Evolution over time of the supremum of the aggregate weights (to 
the fourth power) for M 32, averaged over 150 independent simulation 
runs, with constants c 4. q 4 and c 0.5. For clarity of visualization, 
only the time steps for which an exchange of particles is performed (i.e� 
n mo) are shown. 

2.5 

Ql 2.0 

1- Cen-PF 

..... Ola"trlblltad PF 

--

1.5 ,_, I.. ·� .. � . ..
'5 
C: 

Ql 

0 

1.0 

0.5 

0.0 

-0.5
0 

•.... .,. - ••. , 11 

2000 4000 6000 8000 10000 

time 

Fig. 3. Evolution over time of the L2 errors (w.tt the true states) for the 
DPF with M 32, averaged over 150 independent simulation runs. The 
same errors for the centralized PF are also plotted. It is seen how the 
approximation error stays stable for up to 10,000 times steps, as pre­
dicted by the uniform convergence result of Theorem 1. 

10° 

� 
10-1

,,.--.. 10-2

¥ 10-3

········+ 

� 
10-4VI 

VI 

10-&

10-6 � 

"·+ .. 

•r.::i 10-7 

10-s
8 16 32 64 128 

number of PEs (M) 

Fig. 4. Evolution of the expected supremum of the aggregate weights (to 
the fourth powet with constants c 4, q 4 and c 0.5) as a function of 
the number of PEs, M, for a fixed time instant n rno 1 OOO. The 
expectation is estimated from a set of 230 independent simulation runs 
for each value of M. The upper bound prescribed by Assumption 3 is 
plotted as a dashed line. 

0.30 
...... t (I(• . .:) -(•. •.)I�) 

0.25 
... .&,,-� 

Q) 

C: 

IJl 0.20 
i5 
C: 

0.15 

0.10 w 

0.05'----'--�- -�- - - - ---'
8 16 32 64 128 

number of PEs (M) 

Fig. 5. Approximate L2 errors of the position estimates for the DPF for 
different values of M. An exponentially decreasing function whose 
parameters are fitted by least squares using the empirical L2 errors is also 
distributed resampling with non proportional allocation 
(DRNA) scheme of [5). We have provided sufficient con 
ditions for the uniform convergence of the resulting dis 
tributed PF over time. Explicit error rates in terms of the 
number of processing elements (PEs) and the number of 
displayed. 

particles per PE have been obtained. Uniform convergence 
guarantees that the distributed PF can be run for an arbi 
trarily long sequence of observations without requiring to 
increase the computational load over time. This kind of 
convergence is inherently stronger than the consistency 
proofs in dassical papers such as [10) as well as in more 
recent contributions like [28,33,11 ). As for future work, we 
believe that some recently developed theoretical techni 
ques [41 J could be applied in order to relax some of the 
assumptions made for the analysis and/or to improve on 
the error rates found in this paper. 

In order to corroborate the validity of the analysis and to 
assess the practical performance of the distnbuted algorithm, 
we have carried out computer simulations for an indoor 
target tracking problem The assumptions on which our 
analysis relies are standard in the literature for centralized 
PFs [ 13 ). except for Assumption 3 that is needed to handle the 
particle exchange scheme and is key to prove convergence, 
therefore \/1/e. have devoted most of the computer simulation 
study to show that it holds numerically. We have also corn 
pared the position estimation error attained by distributed PF 
of interest and a standard ( centraliz.ed) PF, and found that the 
two algorithms display a very similar performance. 
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Appendix A. Proof of Lemma 1 

Let us denote W� = sup1 ,;; 
m 

,;; M w,,m> for conciseness. 
We follow the same type of argument as in the proof of 
11



[11, Lemma 41]. Choose a constant γ such that ϵoγoq 1
and define

Uγ;q
n ¼

X1
M 1

Mq�1� γðWM
n Þq: ðA:1Þ

The random variable Uγ;q
n is obviously non negative and,

additionally, it can be shown that it has a finite mean,
E½Uγ;q

n 	o1. Indeed, from Fatou's lemma

E Uγ;q
n

� �
r
X1
M 1

Mq�1� γE½ðWM
n Þq	rcq

X1
M 1

M�1� γþ ϵ; ðA:2Þ

where the second inequality follows from Eq. (4) in the
statement of Lemma 1. Since γ ϵ40, it follows thatP1

M 1 M
�1�ðγ� ϵÞo1, hence E½Uγ;q

n 	o1.
We use the so defined r.v. Uγ;q

n in order to determine

the convergence rate of Wn
M
. Obviously, Mq�1� γ WM

n

� �q
r

Uγ;q
n and solving for Wn

M
yields WM

n r Uγ;q
nð Þ1=q

M1 ð1þ γ=qÞ: If we define

ε¼ 1þγ=q and Uε
n ¼ Uγ;q

n

� �1=q, then we obtain the inequal

ity WM
n r Uε

n

M1 ε: Since E½Uγ;q
n 	o1, it follows that

E½ðUε
nÞqÞ	o1, hence Un

ε
is a.s. finite. Also, we recall that

0rϵo1 and ϵoγoq 1, therefore ð1þεÞ=qoεo1.
Finally, note that

E½ðUε
nÞqÞ	 ¼ E½Uγ;q

n 	ocq
X1
M 1

M�1� γþ ϵ;

independently of n, as shown by (A.2), hence it is enough
to choose uε;q ¼ cq

P1
M 1 M

�1� γþ ϵo1 in order to com
plete the proof.□
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