
UNIVERSIDAD CARLOS III DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

TELECOMMUNICATIONS ENGINEERING

FINAL THESIS

Inter-domain Interoperability
Framework based on WebRTC

AUTHOR: MIGUEL SEIJO SIMÓ

TUTOR: DR. JOSÉ IGNACIO MORENO NOVELLA

April, 2015

T́ıtulo: INTER-DOMAIN INTEROPERABILITY FRAMEWORK

BASED ON WEBRTC.

Autor: MIGUEL SEIJO SIMÓ

Tutor: DR. JOSÉ IGNACIO MORENO NOVELLA

La defensa del presente Proyecto Fin de Carrera se realizó el d́ıa 15 de Abril de 2015; siendo

calificada por el siguiente tribunal:

Presidente:

Secretario

Vocal

Habiendo obtenido la siguiente calificación:

Calificación:

Presidente Secretario Vocal

Abstract

Nowadays, the communications paradigm is changing with the convergence of communication

services to a model based on IP networks. Applications such as messaging or voice over IP are

increasing its popularity and Communication Service Providers are focusing on offering this kind

of services.

Moreover, Web Real Time Communication (WebRTC) has emerged as a technology that

eases the creation of web applications featuring Real-Time Communications over IP networks

without the need to develop and install any plug-in. It lacks of specifications in the control plane,

leaving the possibility to use WebRTC over tailored web signalling solutions or legacy networks

such as IP Multimedia Subsystem (IMS). This technology brings a wide range of possibilities for

web developers, but Communication Service Providers are adviced to develop solutions based

on the WebRTC technology as described in the Eurescom Study P2252 [1].

The lack of WebRTC specifications on the signalling platform together with the threats

and opportunities that this technology represents for Communication Service Providers, makes

evident the need of research on interoperability solutions for the different kind of signalling im-

plementations and experimentation on the best way for Communication Service Providers to

obtain the maximum benefit from WebRTC technology.

The main goal of this thesis is precisely to develop a WebRTC interoperability framework

and perform experiments on whether the Communication Service Providers should use their

existing IMS solutions or develop tailored web signalling platforms for WebRTC deployments.

In particular, the work developed in this thesis was completed under the framework of the

Webrtc interOperability tested in coNtradictive DEployment scenaRios (WONDER) experimen-

tation for the OpenLab project. OpenLab is a Large-scale integrating project (IP) and is part of

the European Union Framework Programme 7 for Research and Development (FP7) addressing

the work programme topic Future Internet Research and Experimentation.

Resumen

Actualmente, el paradigma de comunicaciones está cambiando gracias a la convergencia de los

servicios de comunicaciones hacia un modelo basado en redes IP. Aplicaciones tales como la

mensageŕıa y la voz sobre IP están creciendo en popularidad mientras los proveedores de servi-

cios de comunicaciones se centran en ofrecer este tipo de servicios basados en redes IP.

Por otra parte, la tecnoloǵıa WebRTC ha surgido para facilitar la creación de aplicaciones

web que incluyan comunicaciones en tiempo real sobre redes IP sin la necesidad de desarrollar o

instalar ningún complemento. Esta tecnoloǵıa no especifica los protocolos o sistemas a utilizar

en el plano de control, dejando a los desarrolladores la posibilidad de usar WebRTC sobre solu-

ciones de señalización web espećıficas o utilizar las redes de señalización existentes, tales como

IMS. WebRTC abre un gran abanico de posibilidades a los desarrolladores web, aunque tam-

bién se recomienda a los proveedores de servicios de comunicaciones que desarrollen soluciones

basadas en WebRTC como se describe en el estudio P2252 de Eurescom [1].

La falta de especificaciones en el plano de señalización junto a las oportunidades y amenazas

que WebRTC representa para los proveedores de servicios de comunicaciones, hacen evidente la

necesidad de investigar soluciones de interoperabilidad para las distintas implementaciones de

las plataformas de señalización y de experimentar cómo los proveedores de servicios de comuni-

caciones pueden obtener el máximo provecho de la tecnoloǵıa WebRTC.

El objetivo principal de este Proyecto Fin de Carrera es desarrollar un marco de interoper-

abilidad para WebRTC y realizar experimentos que permitan determinar bajo qué condiciones

los proveedores de servicios de comunicaciones deben utilizar las plataformas de señalización

existentes (en este caso IMS) o desarrollar plataformas de señalización a medida basadas en

tecnoloǵıas web para sus despliegues de WebRTC.

En particular, el trabajo realizado en este Proyecto Fin de Carrera se llevó a cabo bajo

el marco del proyecto WONDER para el programa OpenLab. OpenLab es un proyecto de

integración a gran escala en el cual se desarrollan investigaciones y experimentos en el ámbito

del futuro Internet y que forma parte del programa FP7 de la Unión Europea.

Acknowledgements

I would like to thank my tutor, Dr. José Ignacio Moreno, for his guidance and for giving me

the opportunity of doing this thesis in the framework of an internship that became such a great

experience in my life.

Thanks to all the ”WONDER” team: Steffen, Kay, Paulo, Vasco and Luis. Special mention

to my supervisor Steffen Drüsedow, who I thank for his advice, ideas and for trusting me and

motivating me to give the best out of myself. Another special mention to Vasco who, even though

we worked in different countries, sometimes it felt like we were in the same office. Thanks for

your hard work and our great conversations.

Thanks to my internship mates, specially to Arancha and Fran for the amazing time we

spent together. I will never forget those days of laughs, ”kicker”, coffee and cake.

I would like to show my appreciation to all the people I met during my Erasmus in Göteborg

and my internship in Berlin who became like family to me and I will always remember. I will

always treasure the memories of our moments together.

Thanks to my friends, colleagues, lab partners, everyone that was there and helped me during

all these years. Thanks to David for so many hours together coding in the basement and for

his willingness to work even on Saturday mornings. Thanks also to Grego for his support and

cheering me up to give my best in these last steps.

And last, but not least, I will forever be grateful to my parents, José Manuel and Margarita,

for their support no matter what. None of this would have been possible without your help. I

would like also to mention my brother, Alberto. I hope this will inspire you somehow to follow

your goals in life.

Miguel Seijo Simó, Madrid, April 8, 2015

Contents

Glossary v

1 Introduction 1

1.1 Thesis Motivation . 1

1.2 Thesis Objectives . 2

1.3 Thesis Organization . 3

2 State of the Art 5

2.1 WebRTC . 5

2.1.1 WebRTC Architecture and APIs . 6

2.1.2 Signalling . 7

2.1.3 Network Connectivity . 9

2.2 IP Multimedia Subsystem (IMS) . 10

2.2.1 Architecture . 10

2.2.2 Protocols . 15

2.3 Overview of Related Technologies . 16

2.3.1 JavaScript . 16

2.3.2 JSON . 17

2.3.3 HTML5 . 19

2.3.4 NodeJS . 20

2.3.5 WebSockets . 21

2.4 Overview of Related Initiatives . 22

2.4.1 Telepresence . 22

2.4.2 Kurento . 22

2.4.3 ORCAjs . 23

2.4.4 OpenTok . 24

i

CONTENTS

2.4.5 WebRTC2SIP . 24

2.4.6 WONDER . 26

3 Inter-domain Interoperability Framework based on WebRTC 29

3.1 Scope . 29

3.2 Framework description . 30

3.3 Application domains . 30

3.3.1 Domains description . 30

3.4 Interoperability Mechanisms . 31

3.4.1 Messaging Server (MS) . 32

3.4.2 Client Manager (CM) . 34

3.4.3 Messaging Stub . 34

3.4.4 Identity Provider . 34

3.4.5 Library downloading mechanisms . 34

3.4.6 Messaging format . 35

3.4.7 Media proxies . 35

3.4.8 Trickling support . 36

4 System Architecture and Topologies 37

4.1 Functional Architecture . 37

4.2 Network Topologies . 38

4.2.1 2 party conversations . 39

4.2.2 Multiparty conversations . 41

5 Application API 45

5.1 Entities . 45

5.2 Specification . 47

5.2.1 Core Layer . 48

5.2.2 Conversation Layer . 54

5.3 Development of applications based on the API 63

5.4 Messaging Stub Development . 65

5.4.1 Naming convention for a MessagingStub 66

6 Validation 67

6.1 Test environments . 67

6.1.1 Deutsche Telekom’s Web Centric Test Environment 67

6.1.2 Deutsche Telekom’s IMS Test Environment 68

6.1.3 Portugal Telecom’s Web Centric Test Environment 70

6.1.4 Portugal Telecom’s SIP Centric Test Environment 70

ii

CONTENTS

6.2 Results . 71

6.2.1 Intra-domain Experimentations . 71

6.2.2 Inter-domain Experimentations . 73

6.3 Evaluation . 76

6.3.1 Interoperability . 76

6.3.2 Service delivery (Web centric vs IMS centric) 76

7 Conclusions and further work 79

7.1 Conclusions . 79

7.2 Further work . 80

Bibliography 86

A Budget 87

A.1 Material Resources . 87

A.2 Project Phases . 87

A.2.1 Analysis of the State of the Art . 88

A.2.2 Experimentation Phase 1: Basic Interoperability, Rich Conversations . . . 88

A.2.3 Experimentation Phase 2: Multiparty, Identities, Resources 89

A.2.4 Documentation . 90

A.3 Material Expenses . 90

A.4 Human Resources Expenses . 90

A.5 Total Expenses . 91

B Call Establishment Algorithms 93

B.1 Call Establishment Algorithm for Multiparty . 93

B.2 Alternative Call Establishment Algorithm for Multiparty 98

C Code Examples 103

C.1 Example app using the Conversation Layer . 103

C.1.1 HTML Code . 103

C.1.2 JavaScript Logic . 104

C.2 Example app using the Core Layer . 106

C.3 Messaging Stub Development . 109

C.3.1 Connect() Method . 109

C.3.2 SendMessage() Method . 110

C.3.3 Disconnect() Method . 111

iii

CONTENTS

iv

Glossary

API Application Programming Interface, specifies how some software components should in-

teract with each other.. 3–7, 13, 17, 19, 21–23, 29, 30, 33, 34, 45, 47, 54, 63–65, 68, 69,

76, 79, 88–90, 103

AS Application Server. 13, 33, 35, 43, 69

CM Client Manager. 31, 34, 38–40, 68, 69, 93, 98

DT Deutsche Telekom. 26, 29, 30, 32–34, 43, 67–69, 72, 74

eXtensive Markup Language XML. 17

ICE Internet Connectivity Establishment. 6, 7, 9, 10, 22, 25, 36, 52, 53, 58

IDP Identity Provider. 30, 31, 34, 48, 68, 80, 93, 95, 98–100

IMS IP Multimedia Subsystem. 2, 3, 5, 7, 10–15, 22, 26, 30, 31, 33–36, 38, 43, 67–70, 72–74,

76, 77, 79, 80

IMSCM IMS Client manager. 34

JSEP JavaScript Session Establishment Protocol. 8

M. Stub Messaging Stub. 30, 31, 33–35, 37, 39–41, 48, 49, 55, 56, 65, 66, 69, 80, 93, 95, 99,

100

MCU Multipoint Control Unit. 22, 38

MS Messaging Server. vii, 31–36, 39–41, 45, 46, 48–50, 65, 66, 68, 69, 72, 73, 81, 93–96, 98–101

MTI Mandatory to implement. 35

v

Glossary

NAT Network Address Translation. 7, 9, 13

NNI Network to Network Interface. 79

OTT Over The Top. 5, 80

PT Portugal Telecom. 26, 29, 30, 33, 67, 69, 70, 72, 74

RCS/Joyn Rich Communication Services/Joyn. 80

SDP Session Description Protocol. 8, 9, 14, 53, 93–96, 98–100

STUN Session Traversal Utilities for NAT. 10, 22

TURN Traversal Using Relays around NAT. 10, 22

WebRTC Web Real Time Communication. vii, 2–9, 17, 19, 20, 22–26, 29–31, 33, 35–38, 45,

46, 54, 55, 57, 58, 61, 63, 64, 72, 76, 79, 80, 88, 106

WONDER Webrtc interOperability tested in coNtradictive DEployment scenaRios. 2, 5, 7,

22, 26, 29, 30, 33, 67, 87

vi

List of Figures

2.1 WebRTC Architecture [2] . 6

2.2 WebRTC JSEP Architecture [3] . 8

2.3 IMS 3-layer Architecture . 11

2.4 JSON Array [4] . 18

2.5 JSON Object [4] . 18

2.6 NodeJS vs Apache concurrency benchmark [5] . 21

2.7 Kurento capabilities [6] . 23

2.8 Orca.js Architecture [7] . 24

2.9 WebRTC2SIP SIP Proxy architecture [8] . 25

2.10 WebRTC2SIP RTCWeb Breaker architecture [8] 25

2.11 WebRTC2SIP Media Coder architecture [8] . 26

2.12 WebRTC2SIP Click-to-Call Components [8] . 26

3.1 Interoperability mechanisms . 31

3.2 Message class . 35

4.1 Functional architecture . 38

4.2 Proposed Messaging Server (MS) topologies: Caller connects to callee MS 39

4.3 Proposed MS topologies: MS communication . 40

4.4 Proposed MS topologies: Both peers connect to remote MS 41

4.5 Mesh multiparty with hosting topology . 42

4.6 Multiparty with no hosting topology . 42

4.7 Media Stream Star topology . 43

5.1 Main API Classes . 46

5.2 Main API Classes overview and dependencies . 47

5.3 Different API abstraction layers. 64

vii

LIST OF FIGURES

6.1 DT Web Centric Test Environment . 68

6.2 DT IMS Centric Intradomain Test Environment 69

6.3 DT IMS Centric - PT Web Centric Interdomain Test Environment 69

6.4 OSIMS - Open Source IMS experimentation platform 70

6.5 PT Web Centric Intradomain Test Environment 71

6.6 PT SIP Centric Intradomain Test Environment 71

A.1 Gannt diagram . 92

B.1 Call establishment algorithm, step 1 - Multiparty with hosting 94

B.2 Call establishment algorithm, step 2 - Multiparty with hosting 94

B.3 Call establishment algorithm, step 3 - Multiparty with hosting 95

B.4 Call establishment algorithm, step 4 - Multiparty with hosting 95

B.5 Call establishment algorithm, step 5 - Multiparty with hosting 96

B.6 Call establishment algorithm, step 6 - Multiparty with hosting 97

B.7 Call establishment algorithm, step 7 - Multiparty with hosting 97

B.8 Call establishment algorithm, step 1 - Multiparty with hosting 98

B.9 Call establishment algorithm, step 2 - Multiparty with hosting 99

B.10 Call establishment algorithm, step 3 - Multiparty with hosting 99

B.11 Call establishment algorithm, step 4 - Multiparty with hosting 100

B.12 Call establishment algorithm, step 5 - Multiparty with hosting 101

B.13 Call establishment algorithm, step 6 - Multiparty with hosting 101

B.14 Call establishment algorithm, step 7 - Multiparty with hosting 102

viii

List of Tables

6.1 Summary of Intra-domain experimentations. Legend in Table 6.9 73

6.2 Two party Inter-domain Basic A/V experimentations. Legend in Table 6.9 . . . 74

6.3 Two Party Inter-domain AV plus Chat Conversation experimentations. Legend

in Table 6.9 . 74

6.4 Two Party Inter-domain Rich Conversation experimentations. Legend in Table 6.9 75

6.5 Multi-party Inter-domain Basic AV experimentations in Mesh Topology. Legend

in Table 6.9 . 75

6.6 Multi-party Inter-domain Basic AV experimentations in MCU based Topology.

Legend in Table 6.9 . 75

6.7 Multi-party Inter-domain Rich Conversation experimentations in Mesh Topology.

Legend in Table 6.9 . 75

6.8 Multi-party Inter-domain Rich Conversation experimentations in MCU based

Topology. Legend in Table 6.9 . 76

6.9 Legend for Tables 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8. 76

A.1 Material expenses . 91

A.2 Human Resources expenses . 91

A.3 Total Expenses . 91

ix

LIST OF TABLES

x

Chapter 1

Introduction

This chapter introduces the motivation, objectives and organization of the thesis for a better

understanding of the topic and the document itself.

1.1 Thesis Motivation

During the last decades, the paradigm of communications has been evolving from services with

different infrastructures (fixed telephony, mobile telephony, videoconference, TV & video broad-

casting, data...) to a set of services based on the Internet (Voice over IP, Video on Demand,

videoconference, chat...)[9][10]. Services like Skype or Google Hangouts, that offer chat, voice

and videoconference services over Internet are very popular nowadays, but the need of installing

a client or a plugin to use the service, the lack of flexibility to integrate these services in different

applications and the incompatibility between all these implementations, make a barrier to the

adoption of such technologies as an alternative to traditional communication services.

If we focus on Internet-based services, they also suffered a paradigm shift where applications

and services are not local anymore, but web-based [11]. Most of the commonly used applications

(e.g. text editors, media players, chat applications, etc) can be accessed now online via browser

and the data is stored and accessed from the cloud. This change makes applications easier to

scale and manage by the service providers and developers, and more convenient and easy to use

for the users.

Not only the location, but also the architecture of the Internet-based services changed in

the past years. Previously, the client/server architecture was created for a use case where the

user was mainly consuming information and media from servers; but the impossibility of scaling

servers for the large amount of information that is meant to be shared between users, and the

need of reducing latency between user to user communications introduced a new kind of archi-

1

CHAPTER 1. INTRODUCTION

tecture where peers are connected directly (peer-to-peer) and servers are usually used for the

signalling and control of such communications. This kind of architecture is specially useful for

videoconference, games and file sharing.

Together, all this changes result in the development of WebRTC, a technology that enables

Real-Time Communications to run from the cloud in any web browser without the need to de-

velop and install any plug-in. These Real-Time Communications (e.g. conferencing or gaming)

are established peer-to-peer for fastest, low latency and more secure connections. The experts

conceive WebRTC as a disruptive technology in the telecommunications industry simplifying

the task of creating and providing a rich, real-time communications experience as it is to create

a web page [12] [13]. WebRTC allows developers to achieve this task by bypassing the tradi-

tional network control plane, enabling web technologies to act as a control plane between two

users. However, WebRTC can also connect users in legacy networks, enjoying the advantages of

Telco operated services like secure authentication, identity management and guaranteed Qual-

ity of Service. For IMS legacy networks, 3GPP specification of IMS gives some guidelines and

specifications about the support of WebRTC IMS client access to IMS infrastructure. [14]

Not only application developers, but also Communication Service Providers are advised to

make use of the WebRTC technology as described in the Eurescom Study P2252 [1], which

characterizes WebRTC threats and opportunities for these providers and presents advices on

how they could take advantage of this technology.

The fact that signalling is not specified in the WebRTC standard, together with the threats

and opportunities that WebRTC represents for Communication Service Providers, makes evident

the need of an element filling the gap that this new technology leaves in the control plane, and

experimentations on the best way for these Service Providers to obtain the maximum benefit

from WebRTC technology.

In particular, the work developed in this thesis was completed under the framework of the

WONDER experimentation for the OpenLab project. OpenLab is a Large-scale integrating

project (IP) and is part of the European Union Framework Programme 7 for Research and

Development (FP7) addressing the work programme topic Future Internet Research and Exper-

imentation.

1.2 Thesis Objectives

Taking into account the situation previously described, the main objective of the work developed

in this thesis is to perform practical experiments and evaluate whether Communication Service

Providers should use IMS as the control plane for WebRTC services or to use a pure Web based

control plane to deliver WebRTC services to their users.

2

CHAPTER 1. INTRODUCTION

Going more into detail, the main objectives of this thesis are:

• To analyze the state of the art of WebRTC, its related technologies, different signalling

system alternatives and the interoperability mechanisms between them.

• To achieve signalling interoperability between different WebRTC service domains. Sig-

nalling protocols are not standardized in WebRTC, making this a main challenge for in-

teroperability.

• To create an architecture that makes possible to address peer users that reside in another

WebRTC service domain.

• To develop an API for JavaScript based on WebRTC that allows to create clients for any

of the interoperable domains making it simple and WebRTC agnostic.

• To create a web-based domain and its connectors to make it work in the interoperable

system previously developed.

• To validate the interoperability framework and test the compatibility and functionality

in several IMS and web-based domains to clarify which approach is most suitable under

which conditions.

• To document the work needed to achieve the previous objectives and the conclusions

extracted from this work.

1.3 Thesis Organization

This document’s content is organized as follows:

• Chapter 2: State of the art

In this chapter the state of the art is analyzed, starting with WebRTC for a better un-

derstanding of the technology used as a base in this work. Later on, the main signalling

platforms, IMS and Web Communication Systems, are introduced to have a clear view of its

features before evaluating the performance of both platforms during the experimentations.

Next section of this chapter gives an overview of related technologies needed to develop

this work, while the last section gives an overview of related initiatives to understand the

related work performed in the field.

• Chapter 3: Inter-domain Interoperability Framework based on WebRTC

The main contribution on this chapter is on describing the signalling interoperability frame-

work and the web domain developed for this thesis. It is introduced with the scope and a

3

CHAPTER 1. INTRODUCTION

brief description of the framework, followed by a description of all the application domains,

including the one developed for this thesis. The last section explains in depth the interop-

erability mechanisms that will allow to overcome the incompatibilities between different

signalling platforms.

• Chapter 4: System Architecture and Topologies

This chapter introduces the elements of the architecture that allow to address peers re-

siding in different domains. It also presents the topologies for the different use cases, to

fully understand the way elements interact with each other in order to establish real-time

communication between peers.

• Chapter 5: Application API

This chapter explains the API developed for JavaScript and based on WebRTC that allows

to create clients for any of the interoperable domains in the most simple and WebRTC

agnostic way. Starting with the entities that form this API, the specification section

introduces the concept of different layers of the API that allow to create simple and generic

or tailored and more complex applications depending on the needs of the developer. Last

sections show how to adapt an existing domain to this platform and how to develop an

application based on the API

• Chapter 6: Validation

This chapter presents the results obtained from the validation of the framework. First

section describes the tests performed and the last sections describe and evaluate the results

obtained from these tests.

• Chapter 7: Conclusions and further work

In this chapter, the conclusions from the work previously presented are discussed, ending

with a set of recommendations for future work.

• Annex A: Budget

This annex describes the material resources and project phases and calculates the budget

needed to develop this work based on the time and resources described.

• Annex B: Call Establishment Algorithms

This annex describes the call establishment algorithms implemented in the solution devel-

oped and the alternative proposed as further work.

• Annex C: Code Examples

In this annex, code examples are shown to give a better view of the complexity of imple-

menting a solution compatible with the framework developed for this thesis.

4

Chapter 2

State of the Art

This chapter aims to review the state of the art of the technologies and initiatives related to

the work developed in this thesis. First, Web Real Time Communication (WebRTC) will be

introduced for a better understanding of how this technology works, why is it a disruptive

technology, its importance, the gaps that this technology leaves and its opportunities, which

will be the field of study and experimentations of this thesis. After that the main signalling

platform, IP Multimedia Subsystem (IMS), is introduced to analyze its features and understand

why this work focuses on this platform to perform the experiments that will lead to a performance

comparison between IMS and tailored web based solutions. Next section of this chapter gives

an overview of related technologies needed to develop this work, to better understand which

technologies are important for the realization of this thesis and why. Finally, the last section

gives an overview of related initiatives to understand the related work performed in the field.

The review of the sections mentioned above reveals the importance of WebRTC and highlights

the large number of initiatives and projects that have emerged around such a novel technology,

predicting a great success for it.

2.1 WebRTC

WebRTC is a technology that brings real time multimedia communications to the web browser

without the need of any plugins. It features a JavaScript framework that, together with HTML5

audio and video elements allows web developers to easily create applications that include Peer-

to-Peer communications without any additional plugin, lowering the entry barrier to provide

Over The Top (OTT) communication services. WebRTC is standardized on a API level at the

W3C and at the protocol level at the IETF. [2] [15] [16]

The WebRTC JavaScript API includes the following features for communications reliability:

• Audio and Video codec negotiation

5

CHAPTER 2. STATE OF THE ART

• NAT traversal using Internet Connectivity Establishment (ICE)

• establishment of audio, video and data streams between browsers

• media stream support including noise reduction, echo cancellation and jitter buffers

• a set of mandatory codecs that all implementations should support for guaranteed inter-

operability

2.1.1 WebRTC Architecture and APIs

To fully understand the role of WebRTC in this work and draw a line around the gaps that this

thesis had to cover, it is necessary to have an overview of the WebRTC architecture and API.

The Figure 2.1 shows WebRTC’s architecture where there are two interaction layers: (1)

WebRTC C++ API and the capture / render hooks, which are interesting for Browser developers;

and (2) Web API for application developers, being the latter the one used in the work developed

in this thesis.

Figure 2.1: WebRTC Architecture [2]

For the Web API interaction in WebRTC, there are 3 APIs implemented:

• MediaStream It represents synchronized streams of media which can contain several Video-

Tracks and AudioTracks with different ”label” values. These streams can be attached to

6

CHAPTER 2. STATE OF THE ART

HTML5 video elements via the createObjectURL() method that returns the BLOB URL

that points to the MediaStream. This API also allows to retrieve a MediaStream from the

user’s webcam and microphone.

• RTCPeerConnection It represents the Peer-to-Peer channel that contains the multimedia

(MediaStreams) and data (RTCDataChannel) channels between two peers.

It manages the invite, accept, reject actions, performs the connection, searches and includes

the ICE candidates in both ends of the communication and makes it Network Address

Translation (NAT) transversal; but it is not in charge of the signalling needed to transfer

this connectivity information to the other end.

The RTCPeerConnection also hides the complexity that real-time communication implies.

The codecs and protocols used by WebRTC deal with the problems that real-time com-

munication over unreliable networks face, such as:

– Echo cancellation

– Packet loss concealment

– Noise reduction and suppression

– Bandwidth adaptativity

– Dynamic jitter buffering

– Image enhancements

– Automatic gain control

• RTCDataChannel

It enables low latency and high throughput data communication between peers.

The RTCDataChannel allows multiple simultaneous channels with prioritization, which

are specially useful in scenarios like real-time chat, file transfer, Peer-to-Peer networks,

remote desktop applications, gaming, etc.

2.1.2 Signalling

WebRTC uses the elements previously described to stream media and data Peer-to-Peer (browser-

to-browser), but signalling is needed to coordinate this communication. Signalling is not specified

in the WebRTC standard, leaving it open to different implementations of the signalling platform.

The main contribution of this thesis is to fill this gap and provide an interoperability mech-

anism among the different signalling alternatives, such as IMS/SIP, XMPP, messaging server

7

CHAPTER 2. STATE OF THE ART

over WebSockets or any appropriate duplex communication channel.

Signalling is used to exchange three types of information:

• Session control messages: Initialize and close the communication.

• Network configuration: How can the peers reach each other?.

• Media capabilities: Which codecs and resolutions are compatible for each peer.

Session Establishment

The session must be successfully established with the exchange of signalling messages before

Peer-to-Peer streaming can begin.

This exchange of information is outlined by JavaScript Session Establishment Protocol

(JSEP)[17]. JSEP’s architecture simplifies the client as it avoids the need of the browser being

stateful, transferring the state management to the server and avoiding problems with signalling

on page reloading. Figure 2.2 shows JSEP’s architecture, where JSEP only contains the session

description for the WebRTC channel, and is the application the one in charge of the aggregation

of this session description to other signalling data to transmit it through the signalling channel.

Figure 2.2: WebRTC JSEP Architecture [3]

JSEP defines offers and answers at WebRTC level containing all the signalling information

needed for WebRTC to establish a connection. Offers and answers are generated in Session

8

CHAPTER 2. STATE OF THE ART

Description Protocol (SDP) format. Additional signalling information to the included in the

SDP could be needed for routing, (e.g. SIP address) or at application level (e.g. the identifiers

needed to manage different channels or conversations between peers).

To establish a connection in WebRTC:

1. Alice creates an RTCPeerConnection object.

2. Alice uses the RTCPeerConnection createOffer() method to create an SDP offer.

3. Alice calls setLocalDescription() with the offer created to set her local description.

4. Alice transforms the SDP to a string and uses the signalling mechanisms to send it to Bob.

5. Bob creates an RTCPeerConnection object.

6. Bob calls setRemoteDescription() with Alice’s offer to establish Alice’s setup in Bob’s

RTCPeerConnection.

7. Bob calls createAnswer(), that returns Bob’s answer with his SDP.

8. Bob calls setLocalDescription() with the answer created to set his local description.

9. Bob transforms the SDP to a string and uses the signalling mechanisms to send it to Alice.

10. Alice sets Bob’s answer as the remote session description using setRemoteDescription().

The exchange of connectivity candidates is done in background via the signalling channel as

follows:

1. Alice creates an RTCPeerConnection object with an onicecandidate handler.

2. The handler is called when network candidates become available.

3. In the handler, Alice sends stringified candidate data to Bob, via their signaling channel.

4. When Bob gets a candidate message from Alice, she calls addIceCandidate(), to add the

candidate to the remote peer description.

2.1.3 Network Connectivity

WebRTC uses Peer-to-Peer connection for real-time communications. This direct connections

can be hampered by NAT layers, proxies or corporate firewalls.

WebRTC apps use ICE framework to overcome network complexities. ICE searches the best

path to connect peers by testing all the possibilities in parallel and choosing the best option. If

9

CHAPTER 2. STATE OF THE ART

the host address is not accessible directly from the other peer, ICE obtains an external address

using a Session Traversal Utilities for NAT (STUN) server and in case the connection is not

successful, traffic is routed through a Traversal Using Relays around NAT (TURN) relay server.

2.2 IP Multimedia Subsystem (IMS)

IMS is an architectural framework for delivering IP multimedia services. Methods of delivering

voice and multimedia services over IP have become popular in the past years (e.g. Skype,

Hangouts, VoIP), but not standardized across the industry. IMS is a framework to standardize

multimedia IP solutions.

IMS was introduced in the 3rd Generation Partnership Project (3GPP) architecture Release

5 as a solution to offer Internet services everywhere and at any time using cellular technologies

[18].

IMS was defined as an architectural framework created for the purpose of delivering IP

multimedia services to end-users. It needed to meet the following requirements [19]:

• Support for establishing Multimedia Sessions over packet-switched networks.

• Support for a mechanism to negotiate QoS.

• Support for security.

• Support for interworking with the Internet and circuit-switched networks.

• Support for roaming.

• Support for charging multimedia sessions appropriately.

• Support for strong control imposed by the operator with respect to the services delivered

to the end user.

• Support for rapid service creation by standardizing service capabilities instead of services.

As a result, the scope of IMS has been spread and broadened and it aims to be in the heart

of convergence between Mobile, Fixed, Broadband and Internet technologies (all-IP networks).

2.2.1 Architecture

First of all, it is important to remark that IMS is responsible for multimedia call control and

signalling only. Data itself may be managed by another system (e.g. GPRS/UMTS), although

it may be also managed by IMS. Hence, signalling and data flows usually follow a completely

different path. Likewise, IMS inherits some concepts from GSM (Global System for Mobile

communications) and GPRS (General Packet Radio Service), such as having a home and visited

10

CHAPTER 2. STATE OF THE ART

network. In the cellular model, the user is located in the so-called home domain when accesses

the network using the infrastructure provided by his own operator. However, if the user roams

outside the area of coverage of his home network, he connects through the infrastructure provided

not by his operator, but by another one. This infrastructure is called the visited network. Finally,

it is also important to keep in mind that 3GPP does not standardize nodes, but functions.

For example, several functionalities may be implemented in the same hardware equipment or

the same functionality may be distributed among several hardware equipments. Furthermore,

these functionalities can be implemented several times along different nodes in a single IMS

infrastructure (e.g. for load balancing or organizational issues).

IMS architecture can be split into IMS Core System and IMS Service Framework. As a

result, a three layer (i.e. Transport, Control and Service/Application) architecture is obtained

(see Figure 2.3).

Figure 2.3: IMS 3-layer Architecture

The Databases: Home Subscriber Server and Subscriber Location Function

The Home Subscriber Server (HSS) is the central repository for user-related information. The

HSS contains all the user-related subscription data required to handle multimedia sessions. E.g.

11

CHAPTER 2. STATE OF THE ART

location information, security information, user-profile and the Serving-Call/Session Control

Function (S-CSCF) allocated to the user. The Subscriber Location Function (SLF) is only

needed if there are more than one HSS in the same domain. Basically, it receives a user’s

address and it returns the HSS where her associated information is stored.

The Call Session Control Function

The Call/Session Control Function (CSCF) is the heart and soul of the IMS. It is a SIP server.

It processes SIP signalling in the IMS.

There are three types of CSCF, depending on the functionality they provide:

• P-CSCF (Proxy-CSCF)

• I-CSCF (Interrogating-CSCF)

• S-CSCF (Serving-CSCF)

The P-CSCF is the first point of contact in the signalling plane between the IMS terminal

and the IMS network. The P-CSCF is allocated to the IMS terminal during IMS registration.

It does not change for the duration of the registration. It can be located either in the home

network or in the visited network, being the latter the ideal solution.

The P-CSCF includes several functions:

• Security, e.g. offer integrity protection using IPSec security associations

• Authentication, e.g. assert the identity of the user to the rest of the nodes in the network

• SIP messages handling, e.g. verify the correctness of SIP requests, compress and decom-

press SIP messages

• Charging

• QoS

Regarding QoS, P-CSCF may include a Policy Decision Function (PDF) or may interface

with it (e.g. if it belongs to RACS in the ETSI TISPAN architecture). The PDF authorizes the

use of media plane resources and manages QoS over the media plane. The I-CSCF is a SIP proxy

located at the edge of an administrative domain. The I-CSCF has an interface, based on the

Diameter protocol, to the SLF and the HSS. It retrieves user location information and routes the

SIP request to the appropriate destination, typically an S-CSCF. The I-CSCF may optionally

encrypt the parts of the SIP messages that contain sensitive information about the domain

(THIG, Topology Hiding Inter-network Gateway). The I-CSCF is usually located in the home

network, although it may be also located in the visited network, if THIG is put into practice.

12

CHAPTER 2. STATE OF THE ART

From Release 7 onwards, this “entry point” function is removed from the I-CSCF and is located

in the Interconnection-Border Control Function (I-BCF) [19]. The I-BCF is used as a gateway to

external networks, and it also provides NAT and Firewall functions. The S-CSCF is the central

node of the signalling plane. The S-CSCF is essentially a SIP server. But it also performs session

control as well as acts as a SIP registrar, i.e. it maintains bindings between the user location and

the Public User Identity. It is always located in the home network. The S-CSCF implements

a Diameter interface to the HSS. Using this interface, it downloads the authentication vectors

of the user who is trying to access the IMS, downloads the user profile, which in turn includes

the service profile, and informs the HSS that this is the S-CSCF allocated to the user for the

duration of the registration. The S-CSCF handles all the IMS signalling messages associated to

a given IMS terminal, decides if one or more application servers are required and finally routes

them to the final destination. It also enforces the policy of the network operator.

The Application Server

The Application Server (AS) is a SIP entity (SIP proxy, SIP User Agent or SIP Back to Back

User Agent) that hosts and executes services. The S-CSCF may interface with them to fulfil the

IMS user’s requirements. Three different types of AS are defined:

SIP AS: this is the native Application Server that hosts and executes IP Multimedia Services

based on SIP. It can be located in the home network or in a third party network.

OSA-SCS (Open Service Access-Service Capability Server): this Application Server pro-

vides an interface to the OSA framework. It inherits all the OSA capabilities, such as the

capability to access the API securely from external networks. This node interfaces, on the

one side, the S-CSCF using SIP and, on the other side, the OSA Application Server using

the OSA API. It is located in the home network; although OSA ASs can be located either

in the home network or in a third party.

IM-SSF (IP Multimedia-Service Switching Function): this Application Server allows IMS

to keep on using CAMEL (Customized Applications for Mobile network Enhanced Logic)

services that were developed for GSM. The IM-SSF allows a gsmSCF (GSM Service Con-

trol Function) to control an IMS session. This node interfaces, on the one side, the S-CSCF

using SIP and, on the other side, the gsmSCF using a protocol based on CAP (CAMEL

Application Part). It is located in the home network.

By keeping services independent of the IMS ‘standardization’, development of new services

is encouraged and the scalability and modularity of the architecture is improved.

13

CHAPTER 2. STATE OF THE ART

The Media Resource Function

The Media Resource Function (MRF) provides a source of media in the home network. The

MRF provides the home network with the ability to play announcements, mix media streams,

transcode between different codecs, obtain statistics, and do any sort of media analysis. The

MRF is further divided into a signalling plane node called the Media Resource Function Con-

troller (MRFC) and a media plane node called the Media Resource Function Processor (MRFP).

The MRFC acts as a SIP User Agent to the S-CSCF and it also controls the resources in the

MRFP via an H.248 interface. The MRFP implements all media-related functions.

IPv4 -IPv6 interworking: IMS-Application Layer Gateway and Transition Gateway

IMS supports two IP versions, namely IPv4 [20] and IPv6 [21]. At some point in an IP multimedia

session, interworking between them may occur. In order to facilitate interworking between IPv4

and IPv6 without requiring terminal support, the IMS adds two new functional entities that

provide translation between both protocols. These new entities are the IMS Application Layer

Gateway (IMS-ALG), that processes control plane signalling (e.g. SIP and SDP messages),

and the Transition Gateway (TrGW), that processes user plane traffic (e.g. RTP, RTCP). The

IMS-ALG acts as a SIP Back to Back User Agent by maintaining two independent signalling

interfaces: one towards the internal IMS network and the other towards the other network. Each

of these interfaces is running over a different IP version. In addition, the IMS-ALG rewrites

the SDP by changing the IP addresses and port numbers created by the terminal with one or

more IP addresses and port numbers allocated to the TrGW. This allows the user plane traffic

to be routed to the TrGW. The IMS-ALG interfaces the I-CSCF for incoming traffic and the

S-CSCF for outgoing traffic. The TrGW is effectively a NAT-PT/NAPT-PT (Network Address

Port Translator–Protocol Translator). The TrGW is configured with a pool of IPv4 addresses

that are dynamically allocated for a given session. The TrGW performs the translation of IPv4

and IPv6 at the media level (e.g. RTP, RTCP).

The interface with the Circuit-Switched Network

In the IMS architecture there are several nodes specially defined to manage the interaction

between the IMS and circuit-switched networks, such as the Public Switched Telephone Networks

(PSTN).

These nodes are:

The BGCF (Breakout Gateway Control Function) is essentially a SIP server that includes

routing functionality based on telephone numbers. Its main task is:

• to select an appropriate network where interworking with the circuit-switched network is

to occur.

14

CHAPTER 2. STATE OF THE ART

• or, to select an appropriate PSTN/CS gateway, if interworking is to occur in the same

network where the BGCF is located.

The PSTN/CS Gateway provides an interface toward a circuit-switched network, allowing

IMS terminal to make and receive calls to and from the PSTN (or any other circuit-switched

network). The PSTN/CS Gateway is in turn decomposed into the following functions:

SGW (Signalling Gateway): the SGW interfaces the signalling plane of the CS network

performing lower layer protocol conversion (e.g. transform ISUP or BICC over MTP into

ISUP or BICC over SCTP/IP1).

MGCF (Media Gateway Control Function): the MGCF is the central node of the PST-

N/CS Gateway. The MGCF maps SIP (the call control protocol on the IMS side) to either

ISUP over IP or BICC over IP, which are handled by SGW. The MGCF also controls the

resources in a MGW using H.248.

MGW (Media Gateway): the MGW interfaces the media plane of the PSTN or CS network.

On one side, it is able to send and receive IMS media over RTP. On the other side, it

uses one or more PCM (Pulse Code Modulation) time slots to connect to the CS network.

Additionally, the MGW performs transcoding when the IMS terminal does not support the

codec used by the CS side, e.g. IMS might use AMR (Adaptive Multi-Rate compression)

and PSTN might use G.711.

2.2.2 Protocols

IMS is entirely built on Internet protocols defined by the Internet Engineering Task Force (IETF).

The most important ones are:

SIP (Session Initiation Protocol) / SDP (Session Description Protocol): used to es-

tablish and manage multimedia sessions. SIP works end to end since it does not differ-

entiate the User-to-Network Interface (UNI) from a Network-to-Network Interface (NNI)

[22], [23].

Diameter: it is an AAA (Authentication, Authorization and Accounting) protocol. It consists

of a base protocol [24] that is complemented with so-called Diameter Applications. E.g.

IMS defines a Diameter application to interact with SIP during session setup and another

one to perform credit control accounting.

COPS (Common Open Policy Service): it supports policy control over QoS signalling pro-

tocol (e.g. Resource ReSerVation Protocol, RSVP). It is used to convey policy requests and

decisions between Policy Decision Points (PDPs) and Policy Enforcement Points (PEPs)

15

CHAPTER 2. STATE OF THE ART

[25]. H.248, also known as MEGACO (MEdia GAteway COntrol): H.248 is used to control

nodes in the media plane (e.g. a media gateway controller controlling a media gateway)

[26].

RTP (Real-Time Transport Protocol) / RTCP (RT Control Protocol): RTP is used

to transport real time media, such as audio and video. RTCP does not transport any data

itself, but provides feedback on the QoS being provided by RTP [27].

2.3 Overview of Related Technologies

This section will describe other technologies used to develop the work needed for this thesis.

2.3.1 JavaScript

JavaScript is an object-oriented, prototype-based dynamic scripting programming language com-

monly used to execute programs in web browsers. It has been standardized in the ECMAScript

language specification. In the client-side it is used for user interaction, asynchronous commu-

nications, and to dynamically modify the website that is displayed. The speed increase on

the newer JavaScript virtual machines (VMs) and platforms built upon them, such as Node.js,

have increased the popularity of JavaScript for server-side web applications. This language is

also used for other than web-based applications, such as PDF documents, desktop widgets, etc.

JavaScript is increasingly being used as a compile target for source-to-source compilers, includ-

ing compilers that allow C and C++ programs to be compiled into JavaScript and execute at

near-native speeds, making JavaScript to be considered the ”assembly language of the web” [28]

Use cases

JavaScript’s most common use is to add client-side behavior to HTML pages. Scripts are in-

cluded in the code or imported from HTML pages and interact with their content using the

Document Object Model (DOM) of the HTML page. Because JavaScript code can run locally

in the browser rather than in the remote server, it makes the applications more responsive and

less dependant on the connection. Furthermore, JavaScript can detect user actions and extends

the capacities of HTML, such as individual keystrokes.

Most usual client-side use cases for JavaScript are:

• Validate and process data introduced by the user.

• Update the page content and submit data to the server via AJAX without reloading the

page.

16

CHAPTER 2. STATE OF THE ART

• Animation and visual processing.

• Games and interactive content.

A JavaScript engine is an interpreter of the JavaScript source code that executes the script

accordingly. The first JavaScript engine, called Spider-Monkey, was created for the browser

Netscape Navigator and implemented in C.

The work done in this thesis is based on WebRTC to support multimedia services on the

browser, whose main APIs are for JavaScript. This makes JavaScript the most convenient choice

as the programming language for the client for its WebRTC compatibility and because it is the

reference language for client side in the web applications.

2.3.2 JSON

JSON is an open standard data format that transmits objects consisting of attribute-value pairs

using human-readable text. It is the main alternative to XML (eXtensive Markup Language) to

transmit data between server and web applications. The JSON format was originally specified

by Douglas Crockford, and described in RFC 4627 [29] and ECMA-404. Even if JSON is derived

from JavaScript, it is a language-independent data format. Libraries for parsing and generating

JSON data are available for a large number of programming languages. JSON’s design goals

were to make it minimal, portable, textual, and a subset of JavaScript.

In general, the main advantages of JSON are:

• Language independent.

• Easy to read and write for humans and to parse and generate for the machines.

• Uses conventions that are familiar to programmers.

• Data-oriented and can be mapped easily to object-oriented systems.

JSON is built on two universal data structures which all modern programming languages

can support somehow.

JSON’s data structures can be:

• A collection of name/value pairs. This can be realized as an object, record, struct, dictio-

nary, hash table, keyed list, or associative array in the different programming languages.

• An ordered list of values. Which is equivalent to an array, vector, list, or sequence in the

different programming languages.

17

CHAPTER 2. STATE OF THE ART

Figure 2.4: JSON Array [4]

Figure 2.5: JSON Object [4]

The values inside an object or array can be a string, an object, an array, a boolean (true or

false) or a null.

The following example shows a possible JSON representation describing an entry in a phone

agenda.

{
”Name ”: ”A l i c e Balmer ” ,

”address ”: {
”s t r e e tAddre s s ”: ”Puerta de l Sol , 1” ,

” c i t y ”: ”Madrid ” ,

”postalCode ”: ”28001”

} ,

”phoneNumbers ”: [

{
”type ”: ”home ” ,

”number ”: ”647382910”

} ,

{
”type ”: ” o f f i c e ” ,

”number ”: ”646555898”

}
] ,

”emai lAddresses ”: [

{

18

CHAPTER 2. STATE OF THE ART

”type ”: ”home ” ,

”emai lAddress ”: ”a l i ce ba lmer 80@gmai l . com”

} ,

{
”type ”: ” o f f i c e ” ,

”number ”: ”a . balmer@pixmar . com”

}
]

}

The simplicity of JSON and the availability of native JSON parser made it the obvious choice

as the message exchange format for the proof-of-concept web domain developed for this thesis.

2.3.3 HTML5

HTML5 is the main markup language of the Internet used to present content for the World

Wide Web. Finished in 2014, it is the fifth revision of the HTML standard of the World Wide

Web Consortium (W3C) [30].

Its main goal is to improve the HTML language supporting new multimedia contents while

keeping the readability and ease to parse featured in the previous versions of HTML. HTML5

is also focused on interoperability, including detailed processing models so the implementations

are more compatible, featuring APIs for complex web applications [31] and being able to run on

low-powered devices such as smartphones.

HTML5 includes the new <video>, <audio> and <canvas> elements, Scalable Vector

Graphics (SVG) content, and MathML for mathematical formulas in order to make easier to

include and handle multimedia and graphical content. Other elements enhance the semantic

content of the HTML5 documents (e.g. <section>, <article>, <header>, <nav>, etc.). The

APIs and Document Object Model (DOM) have become fundamental parts of the HTML5

specification.[31]

APIs

For HTML5, the W3C proposed to increase modularity as a key part of the plan to make faster

progress, making some technologies originally defined in HTML5 itself now defined in separate

APIs, such as:

• WebRTC WG – WebRTC

• Web Apps WG – Web Messaging, Web Workers, Web Storage, WebSocket API, Server-

Sent Events

19

CHAPTER 2. STATE OF THE ART

• HTML Working Group – HTML Canvas 2D Context

• IETF HyBi WG – WebSocket Protocol

• W3C Web Media Text Tracks CG – WebVTT

On the contrary, also some initially standalone specifications have been adapted as HTML5

extensions or features, like: SVG, MathML, WAI-ARIA.

In this project, HTML5 is the base of the client frontend, being of special importance its

WebRTC and WebSockets capabilities.

2.3.4 NodeJS

Node.js is a software platform designed to build scalable applications (especially server-side)

using JavaScript. It achieves high throughput by using non-blocking I/O and a single-threaded

event loop.

Node.js features a built-in HTTP server library to make applications able to easily run a web

server and create web applications. Node.js scales better than a typical Linux-Apache-MySQL-

PHP (LAMP) server stack, as in a LAMP server stack each new connection to the server spawns

a new thread. This works well with few connections, but as the number of users increases it

loses performance, being adding more servers the only way to support a large number of users.

The 2.6 shows how the performance is reduced for a large number of concurrent connections.

In Node.js each new connection triggers an event, which means that Node.js will never

lock up, supporting a large number of concurrent users. In theory, Node.js can handle as

many connections as the maximum number of sockets supported by the system (e.g. 65.000

connections for an UNIX system), but in practice the number of connections depends on the

amount of information exchanged between server and client among others, handling around

25.000 clients without reducing the performance.

The main disadvantage of Node.js against other server application platforms is that using a

single thread only allows it to use one CPU. This limitation can be overcome by starting several

instances controlled by a load balancer.

NodeJS was used for the server side part in the proof-of-concept domain developed for this

thesis, which will be thoroughly explained in the following chapters of this document.

20

CHAPTER 2. STATE OF THE ART

Figure 2.6: NodeJS vs Apache concurrency benchmark [5]

2.3.5 WebSockets

WebSockets technology has been defined in the World Wide Web Consortium (W3C)’s Web-

Socket API specification. It consists on a JavaScript API and protocol for bidirectional com-

munications over the Internet that simplifies working with fixed data formats and bypasses the

slower HTTP protocol.

The current HTTP standard protocol needs to request documents from a server and wait for

the document to be sent before it can display a web-page, which makes it slower than WebSock-

ets, where you can send and receive your data immediately using text, binary arrays, or blobs.

The main advantages of WebSockets are the support of duplex communications, its increased

client-server communication efficiency, the use of TCP for reliable communications and its speed,

being faster than HTTP.

Its main disadvantages are the browser compatibility (it must be fully HTML5 compliant)

and the fact that it takes over the communications protocol between the client and the server

for a particular connection.

WebSockets are specially useful in cases that need duplex and long-term communication

without the need of supporting the request-response process. This is specially useful for loading

pages dynamically or any kind of client-server communication.

21

CHAPTER 2. STATE OF THE ART

For the development made for the proof-of-concept web based domain, WebSockets were

used mainly for simplicity and convenience as it’s the easiest way to develop client-server com-

munication in JavaScript.

2.4 Overview of Related Initiatives

This section will give an overview of other initiatives related to WebRTC technology, such as

Multipoint Control Unit (MCU) systems which are compatible with WebRTC like Telepresence

and Kurento (that will be needed for the Star Topology described in Section 4.2.2), APIs that

help and add value for WebRTC developers like ORCAjs and OpenTOK, SIP compatibility

layers like WebRTC2SIP or related projects like Webrtc interOperability tested in coNtradictive

DEployment scenaRios (WONDER).

2.4.1 Telepresence

Telepresence [32] is an open source Multipoint Control Unit (MCU) for audio and video mixing

that allows SIP clients to create an unlimited number of bridges to establish multimedia confer-

ences between a virtually unlimited number of participants. It offers support for SIP registrar, 4

different protocols to deliver the SIP messages (WebSocket, TCP, TLS and UDP) as well as for

WebRTC clients. NAT traversal technologies (i.e. symmetric RTP, RTCP-MUX, ICE, STUN

and TURN) allow connectivity even with clients behind firewalls and different networks while

PSTN interconnection support allows its compatibility with legacy phone switched networks.

Telepresence can mix different audio and video codecs on a single bridge and can be configured

as stand alone server or AS (Application Server) to use it behind a server such as Asterisk or

an IMS server.

This MCU system was the one used in this project to make experimentations with MCU

based topologies, as will be explained in the Tests section.

2.4.2 Kurento

Kurento is an open source WebRTC media server and a set of client APIs to simplify the devel-

opment of advanced video applications for online and mobile plaftorms. It features transcoding,

mixing, recording, group communications, broadcasting and advanced media processing capa-

bilities like computer vision, augmented reality or video indexing, as shown in Figure 2.7.

Its modular architecture allows the integration of third party media processing algorithms

with developers’ applications.

22

CHAPTER 2. STATE OF THE ART

Figure 2.7: Kurento capabilities [6]

2.4.3 ORCAjs

Orca.js software aims to standardize and simplify signalling for WebRTC providing the tools

and JavaScript libraries to fill the gap left by WebRTC.

Orca.js is divided in two parts:

Orca.js API Specification Code The Open Source orca.js API only contains the specifica-

tion and does not implement an operational service. It is intended for application developers

that want to inspect the API or developers of transport libraries.

Orca.js Reflector SDK The Open Source orca.js Reflector SDK consists on a simple ORCA

service built on node.js for developing and testing applications. It includes an operational trans-

port library and a simple application to test and illustrate how to use the API.

OrcaJS was considered as a base for the API developed for this work, but it was finally

discarded because OrcaJS isn’t designed for interoperability, doesn’t support multiparty conver-

sations nor rich features (e.g. chat, file sharing,...), doesn’t support identity management and it

is call oriented instead of conversation oriented, being a much more convenient option to create

the API from scratch.

23

CHAPTER 2. STATE OF THE ART

Figure 2.8: Orca.js Architecture [7]

2.4.4 OpenTok

The OpenTok is a WebRTC platform that deals with the hassle of developing, maintaining,

and monitoring the infrastructure that is usually associated with the development of a real-time

multimedia application.

The OpenTok platform is composed of two parts:

• OpenTok client-side libraries (for JavaScript, iOS, and Android).

• OpenTok server SDKs, (in Java, PHP, Python, Ruby, .NET, Node.js). It provides a simple

interface to create video chat sessions and to authenticate users.

OpenTok is a full featured WebRTC platform but it couldn’t be used for this project because

of the lack of interoperability with other platforms/domains and because its license is not open

source so it was not possible to use it as a base for the experimentation.

2.4.5 WebRTC2SIP

WebRTC2SIP is a gateway developed by Doubango Telecom that uses WebRTC and SIP to

enable making and receiving calls from/to any SIP-legacy network or PSTN in the browser.

24

CHAPTER 2. STATE OF THE ART

The gateway contains four modules: A SIP Proxy, RTCWeb Breaker, Media Coder and

Click-to-Call feature.

SIP Proxy

The SIP Proxy module converts the WebSocket protocol used in the browser to UDP, TCP or

TLS which are the protocols supported by legacy SIP servers. It acts as a transparent proxy so

there are no special requirements for compatibility in the end server.

Figure 2.9: WebRTC2SIP SIP Proxy architecture [8]

RTCWeb Breaker

WebRTC specifications include mandatory support for ICE and DTLS/SRTP while many SIP-

legacy endpoints (e.g. PSTN network) do not support them. The RTCWeb Breaker negotiates

and converts the media stream to allow interoperability.

Figure 2.10: WebRTC2SIP RTCWeb Breaker architecture [8]

Media Coder

The WebRTC standard defined two audio codecs which are mandatory to implement: opus and

g.711. The video codecs which are mandatory to implement are not chosen yet. The choice

is between VP8 and H.264 where VP8 is royalty-free but not widely deployed and H.264 AVC

is not free but widely deployed. Each implementation of WebRTC uses one of these codecs,

making the need of a media coder to transcode the video streams.

Click-to-Call

More a service than a module, it acts as a SIP click-to-call solution. It allows to send a link via

email or post it on a website and allow other people to call you with a single click.

25

CHAPTER 2. STATE OF THE ART

Figure 2.11: WebRTC2SIP Media Coder architecture [8]

Figure 2.12: WebRTC2SIP Click-to-Call Components [8]

WebRTC2SIP gateway was the base for the compatibility modules for IMS/SIP domains

that were developed in the framework of the WONDER project and used for testing and results

in this thesis.

2.4.6 WONDER

The Webrtc interOperability tested in coNtradictive DEployment scenaRios (WONDER) project

its the result of a partnership between Deutsche Telekom (DT) and Portugal Telecom (PT) that

was partially funded by the European Commission as a part of the OpenLab project. OpenLab is

a Large-scale integrating project (IP) and is part of the European Union Framework Programme

7 for Research and Development (FP7) addressing the work programme topic Future Internet

Research and Experimentation. The reports and deliverables from the WONDER project are

public and published on the openlab website [33]

In this project, the main task is to perform experiments with WebRTC services on IMS

infrastructures and WebRTC services on domains implemented with pure web technologies.

The experiments aim to clarify which approach is most suitable and in which conditions. It

also tries to cover how to manage different models of user identities and how to address users

that reside in another domain and how to notify users when they receive a call but they are not

logged in or have no browser opened.

The work developed in this thesis was part of the WONDER project, where the contribution

26

CHAPTER 2. STATE OF THE ART

of this work was mainly focused on the development of the interoperability framework and a

simple web domain used for testing.

27

CHAPTER 2. STATE OF THE ART

28

Chapter 3

Inter-domain Interoperability

Framework based on WebRTC

This chapter introduces the contribution made in this thesis to develop an inter-domain inter-

operability framework based on Web Real Time Communication (WebRTC). The first section

summarizes the parts of such an interoperability framework that are covered by this thesis. Next

sections describe the framework and introduce the domains that will be tested for a better under-

standing of the framework and tests. Last section explains the interoperability mechanisms used

to achieve compatibility between the different domains, as it is important to fully understand

how the framework works.

This first approach to the interoperability framework shows how the use of libraries down-

loaded on the fly and messaging servers for each specific domain are the key elements for interop-

erable domains. Next chapters will focus on the architecture and topologies for call establishment

and the API which includes the interoperability mechanisms previously mentioned.

3.1 Scope

The work developed in this thesis aims to achieve signalling interoperability between different

WebRTC domains. In order to do this, the architecture, the API and the interoperability

mechanisms used to achieve compatibility among the different domains were defined in the

scope of the Webrtc interOperability tested in coNtradictive DEployment scenaRios (WONDER)

project by all the parties involved (i.e. the author of this thesis as part of the Deutsche Telekom

(DT) team, and the Portugal Telecom (PT) team). Common parts were implemented along with

the API as part of the work developed for this thesis. All the domain specific parts were created

and deployed by the partner responsible of each particular domain, where the proof-of-concept

Deutsche Telekom (DT) web domain was developed and deployed as part of the work for this

thesis.

29

CHAPTER 3. INTER-DOMAIN INTEROPERABILITY FRAMEWORK BASED ON
WEBRTC

The tests performed to check the interoperability among the different domains intend to

evaluate in which cases is recommended to use IP Multimedia Subsystem (IMS) as the signalling

platform for WebRTC services or a pure Web based platform to deliver these services. The tests

were performed by the responsible of the domains involved and analyzed in the scope of this

thesis.

Note that the evaluation of the WebRTC technology per-se is out of the scope of this work,

which focus on the signalling and service delivery for different domains.

3.2 Framework description

The inter-domain interoperability framework uses WebRTC as core for the multimedia commu-

nication, where the framework is in charge of the logic of the interoperability mechanisms, the

topology used in the communication and the signalling.

The framework includes an API that manages all the logic on the client side for this kind of

application, the different servers used for signalling, an Identity Provider (IDP) to resolve and

know how to reach users from foreign domains, media proxies in case some media conversion

has to be made and a Messaging Stub (M. Stub) for each domain that works as an adapter to

the different implementations of the signalling servers.

These elements ensure compatibility among different domains where the different servers use

diverse technologies and implementations.

The next sections will introduce the domains where the framework was deployed and tested

and the interoperability mechanisms behind all the elements presented above.

3.3 Application domains

The features of the system developed for this thesis were deployed and tested in four different

domains, focusing on the interoperability among clients in all of them.

Two of the domains are based on IMS and the other two on pure Web services (where one

was developed by the Deutsche Telekom (DT) team and one by the Portugal Telecom (PT)

team) The DT web centric domain was developed by the author as part of the DT team in the

scope of this thesis while the other domains were developed by DT and Portugal Telecom (PT)

under the WONDER project.

3.3.1 Domains description

IMS based service delivery

IMS based Service delivery uses the existing IMS infrastructures to support WebRTC services.

This approach is specially useful for communication service providers that already have de-

30

CHAPTER 3. INTER-DOMAIN INTEROPERABILITY FRAMEWORK BASED ON
WEBRTC

ployed a full IMS network infrastructure that want to provide WebRTC services using their

current infrastructure. Nevertheless, this may incur in additional costs from upgrades in the

IMS infrastructure that should be justified with other commercially strong use cases.

Web-based service delivery

Web based Service delivery is mainly a ”tailored” WebRTC service delivery where the implemen-

tation of the signalling/service delivery platforms are completely based on Web Technologies.

This approach has the web application server as the core network element to provide basic

session control and also advanced communication features. The lack of standardization and

available support of this platform compared to IMS service delivery, together with the fact that

all services should be designed and developed from scratch makes it an attractive option for

systems where the operation cost per WebRTC endpoint must remain as low as possible.

3.4 Interoperability Mechanisms

The main challenges for the design of the framework were to make an universal and scalable

solution, not only valid for IMS and web, but also to a virtually unlimited number of domains

that may use completely different technologies than the ones tested.

Universal interoperability is accomplished with the inclusion of Messaging Server (MS),

Client Manager (CM), Messaging Stub (M. Stub), media proxies, unified messaging format

and trickling support.

Scalable interoperability is implemented in the creation of an unified Identity Provider (IDP)

and dynamic download of the domain specific libraries.

The Figure 3.1 shows how these mechanisms are used.

Figure 3.1: Interoperability mechanisms

31

CHAPTER 3. INTER-DOMAIN INTEROPERABILITY FRAMEWORK BASED ON
WEBRTC

3.4.1 Messaging Server (MS)

The Messaging Server (MS) is one of the most important parts used to achieve interoperability

between the different domains. It works as a common signalling gateway for clients to deliver

the signalling messages to other clients inside a domain. Every domain will have its own MS.

In the next subsections, the different MSs will be explained, focusing on the Web-based DT

domain which was developed in the scope of this thesis by its author.

Web-based DT Messaging Server

The Web-based DT MS is a basic Nodejs (see Section 2.3.4) script that uses WebSocket (see

Section 2.3.5) technology. The clients can connect and do a basic login, so then they can send

messages to other connected clients.

All messages sent/received by this MS follow JSON format (see Section 2.3.2) with the

following structure:

Login message:

message = {

type: ”login” The type field of the message will be the reserved word ”login”

from: ”username@dt-web.de” The from field of the message will be the username chosen

}

Message sending:

message = {

type: ”message” The type field of the message will be the reserved word ”message”

from: ”” The from field of the message will be automatically filled

to: ”recipient@dt-web.de” The to field of the message will be the recipient of the message

body: signalling message The body of the message will contain the signalling message

}

From the point of view of implementation, the server will be listening for incoming connec-

tions and every time a login message is received, it will map the username with the connection.

From that moment on, the rest of the messages received from any connection that have this

username as recipient will be redirected to this connection. The message could have followed

the messaging format used by the interoperability framework designed for this thesis, but this

32

CHAPTER 3. INTER-DOMAIN INTEROPERABILITY FRAMEWORK BASED ON
WEBRTC

additional header was implemented to make the basic functionality agnostic to signalling im-

plementations and support changes in the interoperability framework message format without

changing the MS.

This basic MS has the minimum features required, allowing to test the feasibility of imple-

menting the extra features in the M. Stub, the API or the need to implement the functionality

in the MS itself. For example, the Multicast feature (needed for multiparty conversations) its

be supported by the M. Stub.

IMS-based DT Messaging Server

The IMS-based DT MS was developed by DT in the scope of the WONDER project. This server

was programmed in Java using a library to support SIP and is registered as an Application

Server (AS) in the IMS system. To communicate with the clients, it uses WebSocket technology

and JSON notation. It translates between messages formatted with the format designed for

interoperability and SIP compliant messages, avoiding the need of a SIP library in the browser,

and its designed to allow clients from other domains to send signalling messages to the IMS core,

which will redirect the messages to any client in the domain.

Web-based PT Messaging Server

The Web-based PT MS was developed by PT for experimentation in the WONDER project.

It also offers a WebSocket-based JSON interface, but unlike the web-based DT MS, this one is

based in a more complex Vert.x application platform and programmed in Java. It integrates

different modules that communicate each other through an event bus and includes advanced

features such as multicast.

SIP-based PT Messaging Server

The SIP-based PT MS was also developed by PT during the WONDER project. In this do-

main, the switching capabilities are provided by Asterisk with WebRTC2SIP (described in Sec-

tion 2.4.5) as an interface to compatibly it with WebRTC. The WebRTC specifications include

mandatory support for ICE and DTLS/SRTP. The problem is that many SIP-legacy endpoints

(i.e. Asterisk) do not support these features. WebRTC2SIP’s RTCWeb Breaker module negoti-

ates and converts the media stream to make these two worlds compatible.

Unlike the IMS-based DT MS, in this domain the MS receives SIP messages, leaving the

translation from the messaging format used by the interoperability framework to the M. Stub.

33

CHAPTER 3. INTER-DOMAIN INTEROPERABILITY FRAMEWORK BASED ON
WEBRTC

3.4.2 Client Manager (CM)

The Client Manager (CM) is the signalling gateway that clients use to connect to their own

domain. It adapts the connections, protocols and message format from the framework standards

to the ones used by the underlying technology used for signalling in the domain.

In our tests, the DT-IMS domain was the only one that needed to develop a CM, as the

other domains were integrating it in the MS. The IMS Client manager (IMSCM) integrates all

the functionality of a generic CM, but also controls the life-cycle (instantiation, destruction) of

the IMS clients.

This IMSCM was contributed to the project as initial asset of DT and adapted to work in

the framework developed.

The communication is established via WebSocket with JSON notation to allow web applica-

tions to get an own instance of an IMS user agent that runs in the cloud. The JSON protocol

between the frontend application (M. Stub) and the IMSCM is simple and was easily extended

to fit the needs of the project and its designed to avoid the need for any SIP Library in the

browser.

3.4.3 Messaging Stub

The Messaging Stub (M. Stub) connects the client and the MS or CM via websockets technology

and JSON notation. There is a different M. Stub for each one of the different servers. In some

cases it can perform advanced features that are not supported by the MS/CM itself, as in the

case of the Web-based DT MS, where the M. Stub is in charge of supporting multicast.

3.4.4 Identity Provider

The Identity Provider (IDP) is a mechanism used to retrieve the data from the users of a certain

domain. Every domain will have their own IDP so they can easily maintain and update the data

from their users. The IDP uses a REST API and the data is passed in JSON notation.

3.4.5 Library downloading mechanisms

In order to provide scalability and support for a large number of domains, the M. Stub will be

downloaded during the execution of the application when it is needed. In order to do so, the

identities provided by the IDP will have a field with the URL of the library to download, and

once the library is downloaded, it will be shared for all the users of the domain related to the

M. Stub to avoid unnecessary downloads.

34

CHAPTER 3. INTER-DOMAIN INTEROPERABILITY FRAMEWORK BASED ON
WEBRTC

3.4.6 Messaging format

One of the main interoperability problems is the different format of the messages and message

flows adopted by the different domains, as WebRTC doesn’t require an specific signalling protocol

such as SIP. In order to address this problem, a new messaging format and flow was designed

to fulfill the needs of the clients.

The flow and format of the messages will be translated by the M. Stub or MS into the

interoperability framework compliant format.

The messages will follow JSON notation and the format shown in the figure 3.2.

Figure 3.2: Message class

3.4.7 Media proxies

The RTCWeb standard has defined two Mandatory to implement (MTI) audio codecs: opus and

g.711. About the MTI video codecs, they are still not standardized. Google, Mozilla and Opera

Software have positioned on the side of VP8 while Ericsson and Microsoft opt for H.264.

For this experimentation, only Google Chrome (so VP8 codec) was used, but in order to

provide media compatibility with non-WebRTC SIP applications, a media proxy is needed. The

Doubango Telepresence system is a conference system that was integrated on the IMS domain

as an Application Server (AS) and integrates a media encoder that made possible to have a con-

ference bridge with legacy SIP clients together with WebRTC clients using the interoperability

35

CHAPTER 3. INTER-DOMAIN INTEROPERABILITY FRAMEWORK BASED ON
WEBRTC

framework developed.

3.4.8 Trickling support

What is trickling?

Internet Connectivity Establishment (ICE) Trickling is a protocol extension that allows ICE

agents to send and receive candidates incrementally rather than exchanging complete lists. With

such incremental provisioning, ICE agents can begin connectivity checks while they are still

gathering candidates and considerably shorten the time necessary for ICE processing to complete.

These connectivity candidates are descriptors of each connectivity option that can be potentially

used by the other peer to connect.

Trickling support implementation

WebRTC uses the ICE Trickling mechanism by default, but some domains may not support it

(e.g. IMS) To ensure the compatibility with clients that don’t support trickling, the full SDP

with all the candidates included is included in the last ICE candidate message that is otherwise

empty. This way, the MS can obtain the full SDP and use it in SIP to ensure compatibility.

36

Chapter 4

System Architecture and Topologies

This chapter describes the interconnection between the different elements of the framework. The

first section introduces the functional architecture for a generic case, to clarify the role of each

server and its interconnections. The last section describes the different network topologies for

each one of the use cases, which differ on the way the peers are connected to each other and to

the servers.

The topologies explained in this chapter will be of special importance to understand the

results of the tests performed, as the different topologies will have diverse results on interoper-

ability and performance.

4.1 Functional Architecture

The functional architecture of the Web Real Time Communication (WebRTC) interoperability

framework developed in this thesis is pictured in the Figure 4.1.

The main elements in the framework are the following:

Web App Server.

This web server stores and serves the frontend website to the peers, which will be executed

locally in the peers’ browser.

Identity Provider (IdP) Server.

This server contains and retrieves information about the Identities of the peers such as

the name, the download address for the Messaging Stub (M. Stub) needed to connect with

the peer, etc. All the queries to this server are made by the different frontend applications

that are executed in the browser of the different peers.

Messaging Server (MS) / Client Manager (CM)

These servers route the signalling and can also make some additional tasks as call blocking,

37

CHAPTER 4. SYSTEM ARCHITECTURE AND TOPOLOGIES

accounting, etc. The main difference between a Messaging Server (MS) and a Client

Manager (CM) is that the first receives connections from peers from other domains to

contact peers of its domain and the latter receives connections from peers of the same

domain to receive calls from any domain or to make calls to other peers in the same

domain. In most domains, Client Manager’s function is integrated into the Messaging

Server.

Media GW

Also known as Multipoint Control Unit (MCU), this server mixes and transcodes the

video/audio streams. It is only used in the Media Stream Star Topology (see 4.2.2) or to

achieve media format compatibility between WebRTC clients and legacy IP Multimedia

Subsystem (IMS) clients.

As shown in the Figure 4.1, all the multimedia communication is transmitted directly between

peers (except for the case of the Media GW). The traffic with the rest of the servers is only

signalling or small data, so they can support a large amount of clients. Its advised to avoid, as

far as possible, the use of Media GW as they need large amounts of bandwidth and computational

power to serve even a small/medium number of clients.

Figure 4.1: Functional architecture

4.2 Network Topologies

To fully understand the concepts described in this section, we have to keep in mind that during

the initialization of the client it will connect to the Client Manager (CM) (integrated in the

38

CHAPTER 4. SYSTEM ARCHITECTURE AND TOPOLOGIES

Messaging Server (MS) in most of the cases) of its domain. This will connect the client with its

domain enabling it to receive (or send) signalling messages.

4.2.1 2 party conversations

For 2 party conversations, the following 3 models were analyzed:

1. Caller connects to callee MS (Figure 4.2).

This model is the one adopted in the project. The caller will always connect to the callee’s

MS (or CM for intra-domain calls). In order to do so, the application will download the

library for its M. Stub.

The main advantage of this system is that for each peer you only use one M. Stub/MS,

which is the same for caller and callee, which minimizes complexity and traffic. This also

minimizes the consequences in case of a server failure or overload, having impact on calls to

that domain but no effect on the calls clients make to other domains. Another advantage

is that all the logic belongs to the client part not overloading the MS, if the MS is updated

only the library of the M. Stub has to be updated, minimizing maintenance costs.

The disadvantages of this model are loss of control by the local domain to charge, account

or restrict the calls made to other domains and the fact that the resources are spent in

the domain of the callee and not on the caller side. Another important disadvantage is the

impossibility of a legacy client from a domain to call to another domain, as legacy clients

don’t implement the M. Stub mechanism to connect to the foreign MS.

This solution was chosen because the main requirements are to minimize network resources

spent and simplicity to reduce implementation and maintenance costs.

Figure 4.2: Proposed MS topologies: Caller connects to callee MS

2. Both peers connect to local CM. MS communication (Figure 4.3).

The caller will always connect to the local domain and the local CM will forward the

messages to the callee domain via remote MS. This implies the domains have to be able

to interact with each other.

39

CHAPTER 4. SYSTEM ARCHITECTURE AND TOPOLOGIES

The advantages of this system are that the local domain still keeps track and control calls

even if they are addressed to another domain; it also allows legacy clients to connect to

foreign domain clients and removes the need of downloading any library for the M. Stub,

as the client will only connect to the local domain CM.

The disadvantages of this model are that all the load falls on the servers that have to

route and process the signaling, using resources from both caller and callee domains and

increasing the number of failure points. It also difficult the maintenance and scalability,

as a communication system between servers should be designed and changes in one of the

domains can imply changes which have to be tested and approved by every domain.

This architecture was discarded because of the high load and network resources spent in

the link between domains and also because its complexity and limited scalability increases

maintenance costs.

Figure 4.3: Proposed MS topologies: MS communication

3. Both peers connect to remote MS (Figure 4.4).

Both caller and callee will always connect to the remote MS to send signalling messages

which will be received via the local domain CM.

This solution is identical to the one described on ”Caller connects to callee MS (Figure 4.2)”

but using a symmetrical topology. This makes the logic easier as it doesn’t matter whether

the peer is the caller or the callee, it will always send signaling messages to the remote MS

and receive via the local CM. This is specially useful in multiparty conversations where

the message flow gets more complicated.

On the other hand, this topology uses both MS, increasing the failure points and generates

traffic on N2 links while the first one uses only N2−N−(1+2+3+...+(N−2)) = N2

2 +N
2 −1

links, as in the second case the link from CM to the peer is shared for all the connections

established to the MS with that user as callee.

For this reason this architecture was also discarded.

40

CHAPTER 4. SYSTEM ARCHITECTURE AND TOPOLOGIES

Figure 4.4: Proposed MS topologies: Both peers connect to remote MS

4.2.2 Multiparty conversations

When a conversation has more than 2 peers, the challenge is not only how to connect caller and

callee’s (as it was explained in the previous section), but also how all the callees will communicate

to each other.

In this section 3 different mechanisms will be analyzed, the 2 first focusing on the approach

for signaling (centralized or peer to peer) and the last one on centralized media/data connections.

Mesh multiparty conversation with hosting

In this configuration, the participant that starts the conversation will offer his MS for all the

other peers to connect to it and be the hosting for all the signaling messages.

It was successfully implemented for intradomain, but not working for those cases where the

host doesn’t support the publish mechanism.

A simplification of this algorithm that avoided the need of using a publish mechanism (see

Appendix B.2) was taken into consideration, but it was decided to implement this one in order

to analyze the implementation of this mechanism either in the MS or in the M. Stub.

The description of the algorithm for multiparty conversations that was implemented in this

thesis is explained in Appendix B.1.

No Hosting

The Figure 4.6 shows the multiparty topology with no hosting. In this topology there is no

Hosting peer, all the peers connect to every other peer via their remote MS.

Even though the message format and API design support no hosting architecture, the de-

velopment for multiparty conversations with hosting was prioritized, as it uses less network

connections and it is generally more efficient. For this reason, all the Mesh multiparty tests

explained in the next chapters, refer to the case where a participant hosts the conversation.

41

CHAPTER 4. SYSTEM ARCHITECTURE AND TOPOLOGIES

Figure 4.5: Mesh multiparty with hosting topology

Figure 4.6: Multiparty with no hosting topology

Media Stream Star Topology

Media Stream Star is a topology where all the participants use servers from the same domain

to communicate and a central media server for the media and data streams. This central media

server receives the media and data streams from the peers and mixes and distributes the resulting

stream among the peers, as pictured in Figure 4.7.

42

CHAPTER 4. SYSTEM ARCHITECTURE AND TOPOLOGIES

In order to implement this topology, the open source Doubango Telepresence [32] project was

used. It was deployed as an Application Server (AS) in Deutsche Telekom (DT)-IMS domain,

acting as a bridge for calls. All clients from the different domains should call this bridge, so

DT-IMS servers will be used for signalling and the Telepresence AS will act as a central media

server, mixing the media streams.

Figure 4.7: Media Stream Star topology

43

CHAPTER 4. SYSTEM ARCHITECTURE AND TOPOLOGIES

44

Chapter 5

Application API

In order to build interoperable Web Real Time Communication (WebRTC) applications, it

became necessary to develop an API that held all the interoperability mechanisms together.

This chapter explains the API developed for the interoperability framework where the two

first sections emphasize on the entities that form it and its specification. This is important to

understand how the API is divided in two different layers depending on the need of implementing

low level WebRTC applications or introducing an abstraction layer to remove the complexity of

WebRTC. Last two sections explain the development of WebRTC applications based on the API

previously described to show its capacity to create interoperable applications from the point of

view of the developers.

The analysis and description made in this chapter show the potential of this framework not

only for large commercial products but also for small developments, adding value to its use and

expanding the interoperable ecosystem for WebRTC.

5.1 Entities

The main entities in the interoperability framework API in the client are (Figure 5.1):

Identity. It represents an user and contains all information needed to support Conversation

services including the service endpoint to retrieve the protocol stack (Messaging Stub) that will

be used to establish a signalling channel with the Identity domain Messaging Server (MS). The

Identity entity extends the current Identity concept defined in WebRTC specification [15] to

support seamless interoperability by using the Signalling on-the-fly mechanism.

MessagingStub. It implements the protocol Stack used to communicate with a certain Mes-

saging Server (MS).

45

CHAPTER 5. APPLICATION API

Message. It is used to exchange all data needed to setup, update and close media and data

connection between peers via the Messaging Server (MS). It may also be used for other purposes

e.g. presence information management.

Conversation. Class that manages all participants including the setup, update or close of

media and data connections.

Participant. Class that handles all operations needed to manage the participation of an Iden-

tity (User) in a conversation including the WebRTC PeerConnection functionalities. The Local

Participant is associated with the Identity that is using the Browser while the Remote Partici-

pant is associated to remote Identities (users) involved in the conversation.

Resource. Class that represents the digital assets that are shared among participants in the

conversation including participants’ voice, video, screens, photos, video Clips, music clips, doc-

uments, etc. These assets are usually managed by the Participant that owns it. For local

participants assets are sent (e.g. WebRTC outgoing stream tracks) while for remote partici-

pants assets are received (e.g. WebRTC incoming stream tracks). Some Resource types like

Chat are not managed by a Participant but by the Conversation.

Data Codec. It is used by Resources that are shared on top of the Data Channel, like file

sharing and Textual Chat, to decode and encode the data in a consistent way by all the peers.

The Data Codec may also be downloaded on-the-fly by the peers.

Figure 5.1: Main API Classes

46

CHAPTER 5. APPLICATION API

5.2 Specification

Figure 5.2: Main API Classes overview and dependencies

The Figure 5.2 shows a general overview of the main API classes and their dependencies.

Logically, the API can be separated into two main layers – the basic Core layer on the bottom

and an Conversation layer on top of it. These layers and the API classes belonging to them are

highlighted in the figure.

47

CHAPTER 5. APPLICATION API

5.2.1 Core Layer

This layer includes all classes implementing the basic interoperability concepts as described

in the Section 5.1 Entities. This includes especially the mechanisms for on-the-fly loading of

signalling libraries to exchange messages between different domains.

Identity class

The Identity represents a user and contains all information needed to support Conversation

services including the service endpoint to retrieve the protocol stack (Messaging Stub (M. Stub))

that will be used to establish a signalling channel with the Identity domain MS.

Note that Identities are only created by using the corresponding create-methods of the Iden-

tity Provider (IDP).

Methods

resolve(callback)

This method downloads a M. Stub and keeps a reference to it in a local attribute, if not

already done before. That means the download will only be performed once. After download it

invokes the given callback with a reference to the downloaded M. Stub.

Parameters:

Name Type Description

callback callback(MessagingStub)
callback that is invoked with M. Stub as param; if down-

load failed then the M. Stub param is empty

IdP class

The IDP is a basic implementation of an identity provider. Its main purpose is to create and

maintain Identities and their relation to the corresponding M. Stub. The IDP is a singleton

object, i.e. there is always just one instance of it.

Methods

<static> getInstance(rtcIdentity, options)

This is a getter for an already created instance of the IdP. The params are optional. In case

there was no instance already created before, the params can also be given here and will then

be used for initial creation of the object.

Parameters:

48

CHAPTER 5. APPLICATION API

Name Type Description

rtcIdentity URI
callback that is invoked with M. Stub as param; if down-

load failed then the M. Stub param is empty

options Object options that influence the behavior of the Idp

createIdentities(rtcIdentities, onSuccessCallback)

This method takes either a single rtcIdentity or an array of rtcIdentities and creates Identity

objects from them. The successfully created Identities are then returned in an Array in the

success callback. Note that if one or more rtcIdentities can’t be created then the returned array

is shorter than the given array.

Parameters:

Name Type Description

rtcIdentities Array list of rtcIdentities for which Identities shall be created

onSuccessCallback callback(Array)
the callback that is invoked with the resulting array of

Identities (can be shorter than the input list)

createIdentity(rtcIdentity, onSuccessCallback, onErrorCallback)

This method takes a single rtcIdentity and creates an Identity from it. The successfully

created Identity is then returned as parameter of the success callback.

Parameters:

Name Type Description

rtcIdentity URI the rtcIdentity for which an Identity shall be created

onSuccessCallback callback(Identity) the callback that is invoked with the resulting Identity

onErrorCallback callback()
a callback that is invoked in case of any errors during this

process

MessagingStub

The M. Stub implements the protocol Stack used to communicate with a certain MS. It defines

a set of methods that must be implemented in order to support a new domain.

49

CHAPTER 5. APPLICATION API

Methods

connect(ownRtcIdentity, credentials, callbackFunction)

Creates the connection, connects to the server and establish the callback to the listeners on

new message.

Parameters:

Name Type Description

ownRtcIdentity URI
URI with the own RTCIdentity used to connect to the

MS.

credentials Object Credentials to connect to the server.

callbackFunction callback() Callback to execute when the connection is done.

disconnect()

Disconnects from the server.

Parameters:

Name Type Description

rtcIdentities Array list of rtcIdentities for which Identities shall be created

onSuccessCallback callback(Array)
the callback that is invoked with the resulting array of

Identities (can be shorter than the input list)

sendMessage(message)

Sends the specified message.

Parameters:

Name Type Description

message Message Message to send.

Message

This class is a data-holder for all messages that are sent between the domains.

Constructor

new Message(from, to, body, type, context)

50

CHAPTER 5. APPLICATION API

Parameters:

Name Type Description

from Identity Sender of the message

to Identity[] Recipients of the message

body MessageBody Message body (a json struct)

type MessageType Type of the Message (@see MessageType)

context string
ID of the conversation. (Optional. For conversation re-

lated messages it is mandatory.)

Message Type

Enumeration for the Message Types

Name Type Default Description

INVITATION string invitation
Message to invite a peer to a conver-

sation.

ACCEPTED string accepted Answer for conversation accepted.

CONNECTIVITY CANDIDATE string connectivityCandidate
Message contains connectivity candi-

date.

NOT ACCEPTED string notAccepted Answer for conversation not accepted.

CANCEL string cancel Message to cancel an invitation.

ADD RESOURCE string addResource
Message to add a Resource to the con-

versation.

REMOVE PARTICIPANT string removeParticipant
Message to remove a Participant from

the conversation.

BYE string bye
Message to finish the communication

with a peer.

UPDATE string update Message to add a new Resource.

UPDATED string updated Answer to add a new Resource.

51

CHAPTER 5. APPLICATION API

MessageFactory

This class creates messages which are compliant with the interoperability protocol. Please note

that all functions in this class are static, so there is no need to create MessageFactory objects.

Methods

<static> Message createAnswerMessage(from, to, contextId, constraints, host-

ing, connected)

Creates an Answer message, the connectionDescription field will be empty and has to be

filled before sending.

Parameters:

Name Type Description

from Identity The Identity that figures as sender of the message.

to Identity[]
The Array of Identity that figures as receiver of the mes-

sage.

contextId string
The contextId of the conversation related to the invita-

tion.

constraints ResourceConstraints
The resource constraints for the resources initialized on

conversation start.

hosting Identity

The host of the conversation (optional). [NOT IMPLE-

MENTED, by default the host will be the one starting the

conversation

connected Identity[]

Array of Identity that are already connected to the con-

versation. Used to establish the order in the connection

flow for multiparty.

Returns: The created Message

<static> Message createCandidateMessage(from, to, contextId, label, id, can-

didate, lastCandidate)

Creates a Message containing an Internet Connectivity Establishment (ICE) candidate

Parameters:

52

CHAPTER 5. APPLICATION API

Name Type Description

from Identity The Identity that figures as sender of the message.

to Identity[]
The Array of Identity that figures as receiver of the mes-

sage.

contextId string
The contextId of the conversation related to the invita-

tion.

label string The label of the candidate.

id string The id of the candidate.

candidate string The ICE candidate string.

lastCandidate boolean

Boolean indicating if the candidate is the last one. If

true, include the full SDP in the candidate parameter for

compatibility with domains that don’t support trickling.

Returns: The created Message

<static> createInvitationMessage(from, to, contextId, constraints, conversa-

tionURL, subject, hosting)

Creates an Invitation message, the connectionDescription field will be empty and has to be

filled before sending.

Parameters:

Name Type Description

from Identity The Identity that figures as sender of the message.

to Identity[]
The Array of Identity that figures as receiver of the mes-

sage.

contextId string
The contextId of the conversation related to the invita-

tion.

constraints ResourceConstraints
The resource constraints for the resources initialized on

conversation start.

conversationURL string The URL of the conversation (optional).

subject string The subject of the conversation. (optional).

hosting Identity The host of the conversation (optional).

53

CHAPTER 5. APPLICATION API

Returns: The created Message

<static> createUpdateMessage(from, to, contextId, newConstraints)

Creates an Update message, the newConnectionDescription field will be empty and has to

be filled before sending.

Parameters:

Name Type Description

from Identity The Identity that figures as sender of the message.

to Identity[]
The Array of Identity that figures as receiver of the mes-

sage.

contextId string
The contextId of the conversation related to the invita-

tion.

newConstraints ResourceConstraints The resource constraints for the resources to update.

Returns: The created Message

<static> createUpdatedMessage(from, to, contextId, newConstraints)

Creates an Updated message, the newConnectionDescription field will be empty and has to

be filled before sending.

Parameters:

Name Type Description

from Identity The Identity that figures as sender of the message.

to Identity[]
The Array of Identity that figures as receiver of the mes-

sage.

contextId string
The contextId of the conversation related to the invita-

tion.

newConstraints ResourceConstraints The resource constraints for the resources to update.

Returns: The created Message

5.2.2 Conversation Layer

The application support layer provides developers with a high-level API that encapsulates a lot

of the complex functionalities required for WebRTC communication apps. This includes a full

54

CHAPTER 5. APPLICATION API

encapsulation of the complex WebRTC and RTCPeerConnection specific coding as well as for

the establishment of multi-party communication sessions.

The goal of this support layer is to allow very fast implementation of communication apps

without deeper knowledge of the complex underlying technology.

Conversation

Class that represents a conversation between 2 or more peers.

Constructor

new Conversation(participants, id, owner, hosting, rtcEvtHandler, msgHandler)

Parameters:

Name Type Description

participants Participant[] list of Participant involved in the conversation.

id string Unique Conversation identification.

owner Participant the Participant organizing the conversation.

hosting Identity
the Identity that is providing the signalling message

server.

rtcEvtHandler callback(rtcEvent)

Event handler implemented by the Application to receive

and process RTC events triggered by WebRTC Media En-

gine

msgHandler callback(Message)
Message handler implemented by the Application to re-

ceive and process Messages from the M. Stub

Methods

addParticipant(participant, invitation)

Adds a participant to the conversation.

Parameters:

Name Type Description

participant Participant the Participant to add to the conversation.

invitation string the invitation to be attached to the Message body.

55

CHAPTER 5. APPLICATION API

addResource()

Add a Resource to this Conversation including all the signaling and logical actions required.

bye()

The current user invokes bye, if he wants to leave an ongoing conversation. Other participants

might stay in this conversation, in case that it was a multi-party call with more participants.

Sends a REMOVE PARTICIPANT message to ALL participants and sets the conversation sta-

tus to CLOSED.

boolean close(message)

Close the conversation with the given message. Sends this message to ALL participants and

sets the conversation status to CLOSED.

Parameters:

Name Type Description

message Message
the final message to be sent to ALL participants of this

conversation.

Returns: True if successful, false if the participant is not the owner. Type boolean

getStatus() Returns the status of this conversation.

open(rtcIdentity, invitation) A Conversation is opened for invited participants. Creates

the remote participant, resolves and gets the stub, creates the peer connection, connects to the

M. Stub and sends invitation.

Parameters:

Name Type Description

rtcIdentity string[] list of users to be invited

invitation string body to be attached to INVITATION MESSAGE

sendMessage(message) If to-field of the message is empty, then send message to all par-

ticipants, send only to specified participants if to-field is filled. (Message.to-field is a list of

identities.)

Parameters:

Name Type Description

message Message
the Message to be sent to the specified Identities or or

ALL participants.

56

CHAPTER 5. APPLICATION API

Participant

The Participant class handles all operations needed to manage the participation of an Identity

(User) in a conversation including the WebRTC PeerConnection functionalities. The Local

Participant is associated with the Identity that is using the Browser while the Remote Participant

is associated to remote Identities (users) involved in the conversation.

Methods

addResource(resourceConstraints, message, callback, errorCallback)

Adds a Resource to this participant including all the signaling and logical actions required.

Parameters:

Name Type Description

resourceConstraints resourceConstraints[]

Array of constraints for the initial resources of the

remote participant (CURRENT IMPLEMENTATION

WILL TAKE THE FIRST ONE).

message Message

In case an UPDATE message is received, it should be

passed to this function as a parameter to process it and

send the UPDATED.

callback callback
Callback function fired when the resource was added suc-

cesfully.

errorCallback errorCallback Callback function fired when an error happens.

createRemotePeer(identity, myParticipant, contextId, resourceConstraints, rtcEvtHandler,

msgHandler, iceServers)

Creates a remote participant.

Parameters:

57

CHAPTER 5. APPLICATION API

Name Type Description

identity Identity Identity of the participant

myParticipant Participant Participant representing the local user of the application.

contextId string Identifier of the conversation this participant belongs to.

resourceConstraints resourceConstraints[]

Array of constraints for the initial resources of the remote

participant. (CURRENT IMPLEMENTATION WILL

TAKE THE FIRST ONE)

rtcEvtHandler onRTCEvt Callback function that handles WebRTC Events.

msgHandler onMessage Callback function that handles signaling Events.

iceServers RTCIceServer

Configuration parameters for ICE servers

http://www.w3.org/TR/webrtc/#widl-

RTCConfiguration-iceServers

getResources(resourceConstraints, resourceType, id)

Searches and retrieves Resources.

Parameters:

Name Type Description

resourceConstraints resourceConstraints Searches the resources by constraints (OPTIONAL)

resourceType resourceType Searches the Resources by type. (OPTIONAL)

id string Searches the Resources by ID.

RTCPeerConnection getRTCPeerConnection()

Returns a reference to the RTCPeerConnection that is established with this participant.

Returns: PeerConnection, the connection attribute for a participant

ParticipantStatus getStatus() Returns the current status of this Participant

Returns: ParticipantStatus ... gets the status attribute for a participant

leave(sendMessage)

The Participant leaves the Conversation removing all resources shared in the conversation.

Participant status is changed accordingly.

Parameters:

58

CHAPTER 5. APPLICATION API

Name Type Description

sendMessage boolean

If true a BYE message will be sent to the participant be-

fore removing it. If false the participant will be removed

locally from the conversation without sending any mes-

sage

leave(messageBody, messageType, constraints, callback, errorCallback)

The method will create the message and send it to the participant.

Parameters:

Name Type Description

messageBody MessageBody The body of the message (depends on the MessageType)

messageType MessageType The type of the message.

constraints ResourceConstraints
For the messages that imply information about the Re-

sources, constraints about them (OPTIONAL)

callback callback Callback for successful sending.

errorCallback errorCallback Error Callback.

setDataBroker(databroker)

SetDataBroker - Sets the @DataBroker to a Participant

Parameters:

Name Type Description

databroker DataBroker DataBroker to set.

Resource

The Resource class represents the digital assets that are shared among participants in the con-

versation.

Constructor

new Resource(resourceConstraint, codec)

Parameters:

59

CHAPTER 5. APPLICATION API

Name Type Description

resourceConstraint ResourceConstraint

Constraints of the Resource. Object with the following

syntax {type: ResourceType, constraints: codec or Medi-

aStreamConstraints}.

codec Codec For data types only, Codec used.

DataBroker

The DataBroker Class handles all the operations to choose the right codecs and the channels to

send, receive and handle messages related to the Data Channel.

Constructor

new DataBroker()

Methods:

addCodec(codec) Adds a Codec to the DataBroker.

Parameters:

Name Type Description

codec Codec Codec used.

addDataChannel(dataChannel, identity) Adds a DataChannel to the DataBroker with

the respective identity

Parameters:

Name Type Description

codec DataChannel A DataChannel object.

identity Identity An Identity object.

onDataChannelEvt(dataMessage) Receives a Message from a Data Channel and It will

forward received data to the appropriate Codec based on codecId set in the DataMessage.

Parameters:

60

CHAPTER 5. APPLICATION API

Name Type Description

dataMessage DataMessage
JsonObject with the content of a message, is a DataMes-

sage Type.

removeCodec(codec) Removes a Codec from the DataBroker.

Parameters:

Name Type Description

codec Codec Codec to remove.

removeDataChannel(identity) Removes a DataChannel from the DataBroker

Parameters:

Name Type Description

identity Identity An Identity object.

removeDataChannel(identity) Removes a DataChannel from the DataBroker

Parameters:

Name Type Description

identity Identity An Identity object.

send() Sends a Message from channel in the DataBroker.

Parameters:

Name Type Description

string string String with the content of a message

Codec

The Codec Class handles all the operations needed to manage a codec used in a conversation.

This codec is used for Data connections with WebRTC Datachannels, used for chat, filesharing,

etc.

61

CHAPTER 5. APPLICATION API

Constructor

new Codec()

Methods:

addListener(listener) Adds a Listener to the codec that will handle all the messages to the

application.

Parameters:

Name Type Description

listener Listener
A Listener function that should be implemented in the

application.

getReport() getReport function.

onData(dataMessage) Listener to receive DataMessages from data broker.

Parameters:

Name Type Description

dataMessage DataMessage
JsonObject with the content of a message, is a DataMes-

sage Type.

addDataChannel(dataChannel, identity) Adds a DataChannel to the DataBroker with

the respective identity

Parameters:

Name Type Description

codec DataChannel A DataChannel object.

identity Identity An Identity object.

removeListener(listener) Removes a Listener to the codec that will handle all the mes-

sages to the application.

Parameters:

Name Type Description

listener Listener The listener that should be removed.

62

CHAPTER 5. APPLICATION API

saveToDisk(fileUrl, fileName) Store the received files in the harddisk.

Parameters:

Name Type Description

fileUrl FileUrl
File URL where the applicationr receives the information

about the file.

fileName string
String which should contain the name to the file to store

in the disk.

send(data) Operation to send data e.g. a Chat message, File.

Parameters:

Name Type Description

data string
String with the content of a message, is a simple string

even for chat and file.

setDataBroker(dataBroker) Adds a DataBroker to the codec.

Parameters:

Name Type Description

dataBroker DataBroker A DataBroker object.

5.3 Development of applications based on the API

This section illustrates the main characteristics of the API from the point of view of the developer

and shows how to create WebRTC applications which are compatible with the interoperability

framework. The API introduced in this chapter provides different entry points which differ in

the level of abstraction and complexity. These levels are illustrated in Figure 5.3.

The Conversation layer provides the highest level of abstraction and hides all the complex-

ity of programming a WebRTC application. This includes methods for accessing media sources,

establishment and management of RTCPeerConnections, abstraction of the call-participants and

the whole signalling between them. Therefore this option is most suitable for developers who

want to start an application from scratch and in the most simple and straight-forward way.

Nevertheless this option provides full control of all parameters and flexible ways for modification

63

CHAPTER 5. APPLICATION API

Figure 5.3: Different API abstraction layers.

of running conversations. A code example of a simple application using this layer of the API

can be found on the Appendix C.1.

The other extreme of programming is to use the Core layer directly. This method pro-

vides mechanisms for handling identities and for the exchange of standardized messages for the

establishment of WebRTC communications. This also includes the described on-the-fly meth-

ods for downloading of Messaging Stubs and therefore provides the advantage of cross-domain

interoperability. However all WebRTC related coding and the management of calls and their

participants are left to the programmer. This option is intended for developers who already have

a WebRTC application and want to make use of the interoperability features. An example of a

simple application coded using the Core layer is shown on the Appendix C.2

There is also a third option – the Participant layer – which is a compromise between

both options described above. It provides an abstraction of the participants of a conversation

and handles all WebRTC related stuff for them, but it does not provide an abstraction of a

conversation itself. So it might be of interest for developers who don’t want to struggle with the

complex WebRTC coding, but want to keep their own concept of what a Conversation is.

64

CHAPTER 5. APPLICATION API

5.4 Messaging Stub Development

A Messaging Stub (M. Stub) for a certain domain acts as the “glue” between the API messages

and the message-format and signalling protocol of a certain domain. It implements the domain

specific part of the signalling. The overall concept is that applications just deal with the messages

specified by the framework and don’t need to care about the details of signalling. The main

translation job shall be done by the implementation of the M. Stub. There are 3 methods that

a developer has to implement.

Connect function

With the connect method, the M. Stub implements the special means to connect to the

MS of the corresponding application domain. This depends on the signalling protocol for the

domain, which is a domain internal agreement between the MS and M. Stub. The first parameter

is an rtcIdentity, which is a URI indicating the identity of the User that is currently running

the application in the browser. The code attached in the appendix C.3.1 shows an example

of a connect() method for a simple WebSocket based domain. This example does not perform

any special authentication/authorization mechanism. In case that more security is required,

the credentials can be passed from the application as second parameter. Furthermore also the

“translation” of the messages coming from the API into the domain specific messages and back

is very simple in this example. The API-message is just wrapped into the “body” field of the

surrounding JSON. In case of more complex domain protocols, this needs more special and

complex coding. Because network actions take a certain amount of time and are performed

asynchronously, the connect method is callback-based. The 3rd parameter is the callback that

will be invoked, if the connect method finished. The developer MUST ensure, that a second

invocation of connect() on an already connected M. Stub returns immediately and does not

cause a second connection to be established.

MessagingStub Domain . prototype . connect =

func t i on (ownRtcIdentity , c r e d e n t i a l s , ca l lbackFunct ion) {
// . . .

} ;

Send message function

The sendMessage() method plays a central role. All outgoing messages must be translated

to the domain specific protocol and then be send via the connectivity that was established in

the connect() method before. The code attached in the appendix C.3.2 shows an example of a

65

CHAPTER 5. APPLICATION API

sendMessage() method for a simple WebSocket based domain.

MessagingStub . prototype . sendMessage = func t i on (message) {
// . . .

} ;

Disconnect function

The disconnect() method is for closing and cleaning up the communication channel that was

established in the connect() method before. Any signalling that is potentially required by the

MS of the certain domain to cleanly shutdown the communication should be done here. The

code attached in the appendix C.3.3 shows an example of a disconnect() method for a simple

WebSocket based domain.

MessagingStub . prototype . d i s connec t = func t i on () {
// . . .

} ;

5.4.1 Naming convention for a MessagingStub

The M. Stub is the subject for on-the-fly download and dynamic instantiation during run-

time of the communication application. In order to allow the identification of the Javascript

object that implements the M. Stub for a certain domain after the corresponding piece of

code has been downloaded, the M. Stub implementation MUST adhere to the following nam-

ing convention. Each MessagingStub is identified by an unique download URL, for instance

https://domain host:port/stubs/MessagingStub SimpleWebSocket.js. The Convention is that

the Javascript object that implements the M. Stub MUST be named according to the file-name

part of the download url without the trailing “.js”. That means, the name of the M. Stub for

the download URL above must be “MessagingStub SimpleWebSocket”.

66

Chapter 6

Validation

This chapter presents the results obtained during the validation of the interoperability platform

developed.

In order to do so, the first section describes the test environments to have a deep under-

standing of the setup. In the last sections the results are presented and evaluated.

The evaluation of the results gives information on interoperability and service delivery for

the two signalling platforms analyzed (Web Centric and IP Multimedia Subsystem (IMS)) which

will be used in the next chapter to extract conclusions and recommendations.

6.1 Test environments

In order to deploy and test the systems, the infrastructure and services provided by the Uni-

versity of Patras were used. These services were provided as part of the assets for the Webrtc

interOperability tested in coNtradictive DEployment scenaRios (WONDER) project in which

the work for this thesis was developed.

As mentioned in the previous chapters, the framework developed for this thesis was tested

against four domains implemented and deployed in the scope of the WONDER project by its

partners, Deutsche Telekom (DT) and Portugal Telecom (PT). The Deutsche Telekom (DT)

Web domain was entirely implemented and deployed by the author of this thesis as part of the

DT team in the WONDER project.

The test environments for each one of the four domains tested in the experiment were setup

as shown in the following subsections.

6.1.1 Deutsche Telekom’s Web Centric Test Environment

The DT Web Centric environment is based on a simple Messaging Server, implemented in

Node.JS. The client nodes have to connect via an open WebSocket to the Messaging Server. All

67

CHAPTER 6. VALIDATION

session exchange is performed inside the JSON syntax. The Idp Server allows identity resolving,

including the resource where the Messaging Server is provided. The session establishment and

routing is processed by the Messaging Server.

Figure 6.1: DT Web Centric Test Environment

6.1.2 Deutsche Telekom’s IMS Test Environment

For this domain, we have to distinguish between intradomain and interdomain calls setup, as in

this case Messaging Server (MS) and Client Manager (CM) are not the same entity as in the

other domains.

Intradomain calls

The IMS intra-domain environment does not require the provided MessagingServer since the

interchanging peers are inside the same domain. For the communication between browser and

the DT-IMS CM gateway, a local messaging stub is used which translates the messages produced

by the API into the JSON notation of the IMS CM. Resolving of the identities is performed by

the Identity Provider (IDP).

Interdomain calls

In this case, the communication with the IMS core will be via the DT-IMS CM gateway for the

messages from/to the DT-IMS domain clients and via the DT-IMS MS for the clients from other

domains.

68

CHAPTER 6. VALIDATION

Figure 6.2: DT IMS Centric Intradomain Test Environment

Note that while CM is only a gateway that extends the functionality of the Messaging Stub

(M. Stub) translating the API messages to SIP compliant messages, the MS works as a Applica-

tion Server (AS) inside the IMS core, giving extended functionality needed for interoperability

with other domain’s clients.

The Figure 6.3 shows an example of an interdomain call between DT-IMS and Portugal

Telecom (PT)-web domains.

Figure 6.3: DT IMS Centric - PT Web Centric Interdomain Test Environment

69

CHAPTER 6. VALIDATION

OSIMS - Open Source IMS experimentation platform

For this domain, the IMS core platform available on this testbed was the Open Source IMS core.

The OSIMS testbed is depicted in the figure 6.4. The core of the testbed is based on the

Open Source IMS core of OpenIMS found at http://www.openimscore.org/. It also provides

support for installation of own extensions.

Figure 6.4: OSIMS - Open Source IMS experimentation platform

6.1.3 Portugal Telecom’s Web Centric Test Environment

The PT Web Centric environment is based on a simple Messaging Server, implemented in Vert.x

and deployed as shown in the Figure 6.5.

6.1.4 Portugal Telecom’s SIP Centric Test Environment

The PT Web Centric environment is based on a simple Messaging Server, implemented with

WebRTC2SIP against an Asterisk SIP Server and deployed as shown in the Figure 6.6.

70

CHAPTER 6. VALIDATION

Figure 6.5: PT Web Centric Intradomain Test Environment

Figure 6.6: PT SIP Centric Intradomain Test Environment

6.2 Results

6.2.1 Intra-domain Experimentations

The intra-domain experimentations results are summarised in the Table 6.1 where the rows

represent each one of the tests performed and the columns the domain in which the features

were tested. The legend for the colors used in Table 6.1 can be checked in Table 6.9

User Registration

The User Registration use case was successfully experimented in all domains. For simplification

purposes a similar RTC Identity syntax was used based on Web URI: username@domain.

71

CHAPTER 6. VALIDATION

Basic Intra-domain A/V Conversation

Audio and Video conversation were successfully established in all domains and in different net-

work conditions e.g. Web Real Time Communication (WebRTC) clients behind firewalls were

able to establish WebRTC peer connections by using STUN and TURN servers deployed in the

University of Patras Testbed.

Chat-only Conversation

Chat conversations carried on top of Web RTC data channel were successfully established in all

domains and also in different network conditions.

A/V Conversations enriched with Chat, File Transfesrs and Screen Share

Enriched Conversations featuring Audio, Video and Chat functionalities were successfully ex-

perimented in all domains. Richer conversations with File Transfer and Screen Sharing were

experimented in Web centric domains but not in IMS and SIP domains due to lack of avail-

able resources. However it is estimated that the effort needed to have File Transfer and Screen

Sharing successfully experimented in IMS and SIP domains would be minimum.

Multiparty fully meshed with Hosting

In this experimentation all peers have direct media and data streams established with all re-

maining peers and a single Hosting MS is used i.e. all peers have a signaling channel established

with the same MS. A more detailed explanation of this topology can be found in the Section

4.2.2 and pictured in Figure 4.5.

The tests were successful performed in PT Web centric domain and DT Web centric domain

for Enriched Conversations featuring Audio, Video, Chat, File Sharing and Screen Sharing. For

IMS and SIP based domains the tests were not performed since the algorithm used would imply

very high effort and probably it would not work with standard IMS endpoints. An alternative

to this algorithm that may work with IMS and SIP domains is described as Further Work in

Section B.2.

MCU based Topology with Hosting

In this experimentation all peers have media and data streams established with a central media

server that mixes and distributes streams among the peers, and a single Hosting MS is used i.e.

all peers have a signaling channel established with the same MS. Doubango Telepresence [32]

system was the MCU chosen for the experiments. A more detailed explanation of this topology

can be found in Section 4.2.2 and pictured in Figure 4.7.

72

CHAPTER 6. VALIDATION

The tests were successfully performed in all domains. Since this experimentation was sup-

ported on a SIP based Media Server it also implies the usage of the SIP MS for the other

domains. It should also be noted that only stream based features like audio, video and screen

sharing were tested since data channel based features (Chat and File Sharing) are not supported

in the Media Gateway nor in the Media Server.

DT Web PT Web DT IMS PT SIP

User Registration

Basic A/V Conversation

Chat

A/V and Chat

Rich Conversations

Fully Meshed A/V +

Chat Conversation

Fully Meshed

Rich Conversation

MCU based Multiparty

A/V Conversation

Table 6.1: Summary of Intra-domain experimentations. Legend in Table 6.9

6.2.2 Inter-domain Experimentations

Inter-domain experimentations were conducted in pairs of different domains among the four that

were previously introduced.

In general, basic two party Audio and Video conversations were experimented between any

combination of pairs among the four domains with no major issue (Table 6.2), therefore suc-

cessfully demonstrating the signalling on-the-fly concept. Enriched two party conversations with

Chat, File Sharing and Screen Sharing (Table 6.4) were successfully tested in Web centric do-

mains including the Conversation updates feature where for example the conversation is open

with only chat and then it can be updated to also support Audio and Video. For IMS and SIP

based domains only audio, video and chat (Table 6.3) were experimented including the Conver-

sation updates feature where the conversation is open with only chat and then it is updated to

also support Audio and Video.

Inter-domain Multiparty enriched Conversations were experimented in two network topolo-

73

CHAPTER 6. VALIDATION

gies:

Fully Meshed topology with Hosting

The tests were successful performed in PT Web centric domain and DT Web centric domain for

Enriched Conversations featuring Audio, Video, Chat, File Sharing and Screen Sharing (Table

6.5, Table 6.7). For IMS and SIP based domains the tests were not performed since the algorithm

used would imply very high effort and probably it would not work with standard IMS endpoints.

An alternative algorithm that may work with IMS and SIP domains is described as Further Work

in Section B.2.

MCU based Topology with Hosting

The tests were successfully performed in all domains (Table 6.6). Similar to intra-domain tests

only stream based features like audio, video and screen sharing were tested since data channel

based features (Chat and File Sharing) are not supported in the Media Gateway nor in the

Media Server (Table 6.8).

DT Web Centric PT Web Centric DT IMS Centric PT SIP Centric

DT Web Centric —

PT Web Centric —

DT IMS Centric —

PT SIP Centric —

Table 6.2: Two party Inter-domain Basic A/V experimentations. Legend in Table 6.9

DT Web Centric PT Web Centric DT IMS Centric PT SIP Centric

DT Web Centric —

PT Web Centric —

DT IMS Centric —

PT SIP Centric —

Table 6.3: Two Party Inter-domain AV plus Chat Conversation experimentations. Legend in Table

6.9

74

CHAPTER 6. VALIDATION

DT Web Centric PT Web Centric DT IMS Centric PT SIP Centric

DT Web Centric —

PT Web Centric —

DT IMS Centric —

PT SIP Centric —

Table 6.4: Two Party Inter-domain Rich Conversation experimentations. Legend in Table 6.9

DT Web Centric PT Web Centric DT IMS Centric PT SIP Centric

DT Web Centric —

PT Web Centric —

DT IMS Centric —

PT SIP Centric —

Table 6.5: Multi-party Inter-domain Basic AV experimentations in Mesh Topology. Legend in

Table 6.9

DT Web Centric PT Web Centric DT IMS Centric PT SIP Centric

DT Web Centric —

PT Web Centric —

DT IMS Centric —

PT SIP Centric —

Table 6.6: Multi-party Inter-domain Basic AV experimentations in MCU based Topology. Legend

in Table 6.9

DT Web Centric PT Web Centric DT IMS Centric PT SIP Centric

DT Web Centric —

PT Web Centric —

DT IMS Centric —

PT SIP Centric —

Table 6.7: Multi-party Inter-domain Rich Conversation experimentations in Mesh Topology. Leg-

end in Table 6.9

75

CHAPTER 6. VALIDATION

DT Web Centric PT Web Centric DT IMS Centric PT SIP Centric

DT Web Centric —

PT Web Centric —

DT IMS Centric —

PT SIP Centric —

Table 6.8: Multi-party Inter-domain Rich Conversation experimentations in MCU based Topology.

Legend in Table 6.9

—

Not applicable
Fully compatible

Minimum effort

needed (days)

High effort

needed(months)

Table 6.9: Legend for Tables 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8.

6.3 Evaluation

6.3.1 Interoperability

In general inter-domain experimentations were very successful, demonstrating that the signalling

on-the-fly concept can be used to enable seamless interoperability between any WebRTC domains

with no use of Network to Network Interface (NNI) standard protocols. A standard and protocol-

agnostic Javascript API, like the API described in this thesis should be used instead, promoting

portability of Applications among different back-end solutions. Such approach, also benefits

service providers by minimising dependencies between Applications and back-end vendors. Until

now, one of the rationales to use IMS based back-end solutions was the need to have NNI standard

interfaces based on SIP to ensure full interoperability between different Service Provider domains.

The successful demonstration of the signalling on-the-fly concept also means this rational is not

valid anymore. At the end this means a web centric delivery approach using more agile and

simpler architectures is feasible and paves the way for a future Web centric standard Service

Architecture as an alternative to IMS.

6.3.2 Service delivery (Web centric vs IMS centric)

Looking into the summary experimentation results tables from Section 6.2.1 and Section 6.2.2

we may conclude Web centric delivery approach had more successful results than the IMS cen-

tric. This result can be seen as a surprise since IMS is a mature architecture with a large set of

services available, while WebRTC is still in very early stages (not a standard yet). In reality, the

experimentation developed in this thesis didn’t take much advantage of existing services namely

76

CHAPTER 6. VALIDATION

Presence and XDMS services due to the amount of integration effort it would demand. Nev-

ertheless, this also indicates how IMS option implies further integration efforts when compared

with the Web centric option.

77

CHAPTER 6. VALIDATION

78

Chapter 7

Conclusions and further work

This chapter concludes the thesis with a summary of the project, reviewing the final status of the

objectives presented in the introduction, some recommendations for the adopters of Web Real

Time Communication (WebRTC) technology, either application developers, content providers

or service providers. In the Further Work section, some proposals for future implementations

and projects are discussed.

7.1 Conclusions

The development and experimentations carried out in this thesis covered the goals outlined for

the project in designing, developing and testing a framework for WebRTC applications that

allows interoperability between domains with different implementations. The work performed

for this thesis included: (1) analysis of the state of the art, (2) the design of the interoperability

mechanisms and architecture which constitute the framework, (3) the implementation of an API

that integrated the client-side elements of the framework, (4) the implementation of a proof-of-

concept domain that integrated the interoperability mechanisms on the server-side, (5) validation

of the platform among different domains (including the proof-of-concept domain developed for

this thesis), (6) documentation of the work performed.

The results extracted from this work are also intended to answer the main questions about

whether to use Web centric or IP Multimedia Subsystem (IMS) solutions from the validation

performed among two different web centric domains and two IMS and SIP based domains.

The results of this work show how the signalling gap that WebRTC leaves can be filled with

a solution featuring signalling on-the-fly that can be adapted to the existing signalling infras-

tructures, such as IMS, to enable seamless interoperability between different WebRTC Service

Provider domains to avoid the usage of standard Network to Network Interface (NNI) protocols.

The problem on how to address peer users that reside in another WebRTC service domain was

79

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

solved by extending the current Identity WebRTC specification and introducing the Identity

Provider (IDP) entity.

WebRTC is clearly designed thinking on application development and Over The Top (OTT)

services and not as a core element for Communication Service Providers. This idea is confirmed

by the tests performed, which compare Web Centric solutions with former IMS/SIP solutions

showing that, in general, web centric service delivery option promise to bring more advantages

to Service Providers and Developers than IMS/SIP Service Delivery option. For this reason,

if Communication Service Providers want to take advantage of the benefits of WebRTC tech-

nology, they must evaluate whether to use a Web Centric approach or use their current IMS

infrastructure.

• Application developers, OTT providers such as video-on-demand or multimedia confer-

ence services, and vertical applications e.g. Education or Healtcare, are advised to use a

Web Centric signalling solution which can be easily made interoperable with services from

different domains, as proved in this work.

• Communication Service Providers that have already deployed a IMS network infrastructure

featuring a rich set of communication services like MMTEL, VoLTE, or Rich Communica-

tion Services/Joyn (RCS/Joyn) are recommended in the short term to implement WebRTC

services over this infrastructure, even if the convergence with the existing technologies such

as SIP or PSTN is not mature enough yet.

• Communication Service Providers without a IMS network infrastructure are advised to

go for a Web Centric approach in spite of deploy an IMS infrastructure to offer WebRTC

services.

7.2 Further work

This work covered a proof-of-concept solution for interoperability in WebRTC. However, it leaves

some challenging topics which are open for further research and implementation.

Firstly, it is important to highlight the fact that this thesis is the product of a research

work, whose main goal wasn’t to be put into production. For this reason some important

functionalities, such as call blocking, charging policies, etc. are left as future work.

From the current implementation, points that need further work are the implementation of

the topology without hosting; the addressing of the IDP for each domain, which is now hardcoded

into the application and should be resolved somehow; a better standardization of the Messaging

Stub (M. Stub) implementation, including one M. Stub per technology and customizing it with

80

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

the variables needed to make it work for a specific domain, making a better use of the namespaces

and avoiding the override of functions, increasing security.

In view of the results obtained in the tests, where the domains that didn’t support PUBLISH

(multicast of messages to all peers in a conversation) and message buffering in the Messaging

Server (MS) couldn’t make multiparty meshed calls, is evident the need of a multiparty algorithm

for this kind of calls that avoids the need of such mechanisms. An alternative algorithm is

presented in the Appendix B.2 proposed as further implementation work.

81

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

82

Bibliography

[1] EURESCOM, P2252 - Telco strategic positioning options regarding WebRTC.

URL http://www.eurescom.eu/services/eurescom-study-programme/list-of-

eurescom-studies/studies-launched-in-2012/p2252.html

[2] Google Inc., WebRTC.

URL http://www.webrtc.org/

[3] Sam Dutton, WebRTC in the real world: STUN, TURN and signaling.

URL http://www.html5rocks.com/en/tutorials/webrtc/infrastructure

[4] Introducing JSON.

URL http://json.org

[5] Node JS vs Apache PHP benchmark.

URL https://code.google.com/p/node-js-vs-apache-php-benchmark/wiki/Tests

[6] Kurento Website.

URL http://www.kurento.org/

[7] Orca.js Website.

URL http://www.orcajs.org/

[8] Doubango Telecom R©, WebRTC2SIP - Smart SIP and Media Gateway to connect WebRTC

endpoints.

URL http://webrtc2sip.org/

[9] Reuters, U.S. seeks trials to test transition to digital phone networks, 2014.

URL http://www.reuters.com/article/2014/01/30/usa-fcc-iptransition-

idUSL2N0L414G20140130

83

http://www.eurescom.eu/services/eurescom-study-programme/list-of-eurescom-studies/studies-launched-in-2012/p2252.html
http://www.eurescom.eu/services/eurescom-study-programme/list-of-eurescom-studies/studies-launched-in-2012/p2252.html
http://www.webrtc.org/
http://www.html5rocks.com/en/tutorials/webrtc/infrastructure
http://json.org
https://code.google.com/p/node-js-vs-apache-php-benchmark/wiki/Tests
http://www.kurento.org/
http://www.orcajs.org/
http://webrtc2sip.org/
http://www.reuters.com/article/2014/01/30/usa-fcc-iptransition-idUSL2N0L414G20140130
http://www.reuters.com/article/2014/01/30/usa-fcc-iptransition-idUSL2N0L414G20140130

BIBLIOGRAPHY

[10] Brian Stelter, Amy Chozick, Viewers Start to Embrace Television on Demand, May 2013.

URL http://www.nytimes.com/2013/05/21/business/media/video-on-demand-

viewing-is-gaining-popularity.html?_r=0

[11] Steven Pemberton, The Future of Web Applications, 2005.

URL http://www.w3.org/2005/Talks/09-steven-interact/

[12] Dan York, How WebRTC Will Fundamentally Disrupt Telecom (And Change The Inter-

net).

URL http://www.disruptivetelephony.com/2012/09/how-webrtc-will-

fundamentally-disrupt-telecom-and-change-the-internet.html

[13] Brent Kelly, Preparing for Disruption with WebRTC.

URL http://www.nojitter.com/post/240155570/preparing-for-disruption-with-

webrtc

[14] 3GPP, Service requirements for the Internet Protocol (IP) multimedia core network sub-

system (IMS), TS 22.228 , release 13, December 2014.

URL http://www.3gpp.org/ftp/specs/archive/22_series/22.228/22228-d20.zip

[15] W3C, WebRTC API.

URL http://w3c.github.io/webrtc-pc/

[16] W3C, WebRTC Media Capture and Streams API.

URL http://w3c.github.io/mediacapture-main/

[17] J. Uberti, C. Jennings, Javascript Session Establishment Protocol.

URL http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-03#section-3.3

[18] 3GPP, Overview of 3GPP Release 5 – Summary of all Release 5 Features, 3GPP-ETSI

Mobile Competence Centre, 2003.

URL ftp://www.3gpp.org/tsg_ran/TSG_RAN/TSGR_20/Docs/PDF/RP-030375.pdf

[19] [3GPP, Service requirements for the Internet Protocol (IP) multimedia core network sub-

system (IMS), TS 22.228.

URL http://www.3gpp.org/DynaReport/22228.htm

[20] J. Postel, Internet Protocol, Internet RFC 0791, 1981.

URL https://tools.ietf.org/html/rfc0791

[21] S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, Internet RFC

2460, 1998.

URL https://tools.ietf.org/html/rfc2460

84

http://www.nytimes.com/2013/05/21/business/media/video-on-demand-viewing-is-gaining-popularity.html?_r=0
http://www.nytimes.com/2013/05/21/business/media/video-on-demand-viewing-is-gaining-popularity.html?_r=0
http://www.w3.org/2005/Talks/09-steven-interact/
http://www.disruptivetelephony.com/2012/09/how-webrtc-will-fundamentally-disrupt-telecom-and-change-the-internet.html
http://www.disruptivetelephony.com/2012/09/how-webrtc-will-fundamentally-disrupt-telecom-and-change-the-internet.html
http://www.nojitter.com/post/240155570/preparing-for-disruption-with-webrtc
http://www.nojitter.com/post/240155570/preparing-for-disruption-with-webrtc
http://www.3gpp.org/ftp/specs/archive/22_series/22.228/22228-d20.zip
http://w3c.github.io/webrtc-pc/
http://w3c.github.io/mediacapture-main/
http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-03#section-3.3
ftp://www.3gpp.org/tsg_ran/TSG_RAN/TSGR_20/Docs/PDF/RP-030375.pdf
http://www.3gpp.org/DynaReport/22228.htm
https://tools.ietf.org/html/rfc0791
https://tools.ietf.org/html/rfc2460

BIBLIOGRAPHY

[22] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-

dley, and E. Schooler, SIP: Session Initiation Protocol, Internet RFC 3261, 2002.

URL https://tools.ietf.org/html/rfc3261

[23] M. Handley and V. Jacobson, SDP: Session Description Protocol, Internet RFC 2327, 1998.

URL https://tools.ietf.org/html/rfc2327

[24] [14] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, Diameter Base

Protocol, Internet RFC 3588, 2003.

URL https://tools.ietf.org/html/rfc3588

[25] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko, Ericsson, The COPS (Common

Open Policy Service) Protocol, Internet RFC 2748, 2000.

URL https://tools.ietf.org/html/rfc2748

[26] ITU-T, Gateway control protocol: Version 3, Recommendation H.248, 2013.

URL http://www.itu.int/rec/T-REC-H.248.1-201303-I/en

[27] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Transport Protocol for

Real-Time Applications, Internet RFC 3550, July 2003.

URL https://tools.ietf.org/html/rfc3550

[28] Scott Hanselman, JavaScript is Assembly Language for the Web: Part 2 - Madness or just

Insanity?, July 2011.

URL http://www.hanselman.com/blog/JavaScriptisAssemblyLanguagefortheWebPart2MadnessorjustInsanity.

aspx

[29] D. Crockford, The application/json Media Type for JavaScript Object Notation (JSON),

Internet RFC 4627, July 2006.

URL https://tools.ietf.org/html/rfc4627

[30] Ian Hickson, Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Ed-

ward O’Connor, Silvia Pfeiffer, HTML5. A vocabulary and associated APIs for HTML and

XHTML, October 2014.

URL http://www.w3.org/TR/html5/

[31] Simon Pieters, HTML5 Differences from HTML4, December 2014.

URL http://www.w3.org/TR/html5-diff/

[32] Doubango Telecom R©, Telepresence - the open source SIP TelePresence system.

URL https://code.google.com/p/telepresence/

85

https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc2327
https://tools.ietf.org/html/rfc3588
https://tools.ietf.org/html/rfc2748
http://www.itu.int/rec/T-REC-H.248.1-201303-I/en
https://tools.ietf.org/html/rfc3550
http://www.hanselman.com/blog/JavaScriptisAssemblyLanguagefortheWebPart2MadnessorjustInsanity.aspx
http://www.hanselman.com/blog/JavaScriptisAssemblyLanguagefortheWebPart2MadnessorjustInsanity.aspx
https://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5-diff/
https://code.google.com/p/telepresence/

BIBLIOGRAPHY

[33] Steffen Drüsedow, Kay Hänsge, Miguel Seijo, Paulo Chainho, Vasco Amaral, Luis Oliveira,

WONDER – Assessment Report, April 2014.

URL http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/

OpenLab_Deliverable_D4_15.pdf

[34] AppRTC example.

URL https://apprtc.appspot.com/

86

http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D4_15.pdf
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D4_15.pdf
https://apprtc.appspot.com/

Appendix A

Budget

This appendix calculates the budget of the work developed in this thesis. The first two sections

describe the material resources and project phases. Last two sections calculate the total budget

from the costs estimated on materials and human resources described in the previous sections.

A.1 Material Resources

The material resources needed to carry out this thesis are explained below.

All the materials plus the infrastructure and Internet access were provided by Deutsche

Telekom Innovation Laboratories (T-Labs) for the Webrtc interOperability tested in coNtradic-

tive DEployment scenaRios (WONDER) project during an Erasmus Placement internship in

Berlin.

• Laptop Lenovo G580 for development, testing and documentation writing.

• Display Fujitsu-Siemens B24W as primary display.

• Laptop Fujitsu-Siemens T-series for testing.

• HP 5-port switch for network access.

Additionally, some virtual machines and testbeds were provided by University of Patras

(UoP) and Waterford Institute of Technology (WIT) for the WONDER project.

A.2 Project Phases

The work developed for this thesis was divided in one phase where the main task was to analyze

the state of the art, two phases where the actual development took place and a final phase where

the main task consisted on the documentation of the whole work.

87

APPENDIX A. BUDGET

A.2.1 Analysis of the State of the Art

During this phase, the main task was to make a detailed study on the state of the art related to

Web Real Time Communication (WebRTC) and different domains for interoperability.

To carry out this phase, it was needed the effort of one person for a duration of 7 days.

A.2.2 Experimentation Phase 1: Basic Interoperability, Rich Conversations

During this phase the main objectives of this thesis were accomplished for the most basic sce-

narios, such as:

• User registration

• Basic intra-domain A/V Call

• Basic inter-domain A/V Call

• Rich communications (chat)

To carry out this phase, it was needed the effort of one person for total duration of 95 days,

as dependencies in the tasks forced concurrency between them.

Specification 1

This task included the discussion and design, for the basic scenarios described above, of the

architecture and interoperability mechanisms, the API to create interoperable WebRTC appli-

cations, and a web-based signalling domain for testing.

This task needed the effort of one person for a total duration of 3 weeks, which is the

equivalent to 15 working days.

Implementation 1

This task consisted on the installation and configuration of the workspace and the implementa-

tion of the features that were discussed previously.

This task needed the effort of one person for a total duration of 80 days.

Testbeds update and configuration 1

During this task, the integration, update and configuration of the workspace into the testbeds

were performed.

This task needed the effort of one person for a total duration of 5 days.

88

APPENDIX A. BUDGET

Tests performance 1

This task consisted on executing the test cases addressed in the specifications for the framework

and API created in the previous tasks using the test signalling domain developed and other

signalling domains provided.

This task needed the effort of one person for a total duration of 5 days.

A.2.3 Experimentation Phase 2: Multiparty, Identities, Resources

During this phase new functionalities were designed, tested and implemented for the more ad-

vanced scenarios, such as:

• Multiparty meshed Call

• Multiparty MCU Call

• Identity resolving

• Resource (e.g. Audio, Video, A/V, Chat) updates during a conversation.

To carry out this phase, it was needed the effort of one person for total duration of 45 days,

as dependencies in the tasks forced concurrency between them.

Specification 2

In this task, the main goal was to discuss and design the changes needed to implement the new

functionalities in the framework that were already implemented and tested.

This task needed the effort of one person for a total duration of 2 weeks, which is the

equivalent to 10 working days.

Implementation 2

This task consisted on the implementation of the features that were discussed in the previous

stage.

This task needed the effort of one person for a total duration of 40 days.

Testbeds update and configuration 2

During this task, the integration, update and configuration of the workspace into the testbeds

were performed.

89

APPENDIX A. BUDGET

This task needed the effort of one person for a total duration of 1 week, which is the equivalent

to 5 working days.

Tests performance 2

This task consisted on executing the test cases addressed in the specifications for the framework

and API created in the previous tasks using the test signalling domain developed and other

signalling domains provided.

This task needed the effort of one person for a total duration of 1 weeks, which is the

equivalent to 5 working days.

A.2.4 Documentation

During the last phase, the main task was to write the thesis documenting all the work and the

conclusions drawn during its development.

To carry out this phase, it was needed the effort of one person for total duration of 41 days,

as dependencies in the tasks forced concurrency between them.

A.3 Material Expenses

Material expenses account for the material needed for the implementation, i.e. two laptop PCs, a

desktop monitor and a 5 port switch. All this material belong to T-Labs and its life span is longer

that the project duration, so amortization has to be calculated. Laptop PCs are considered to

have a life span of 36 months and a life span of 48 months for the rest of the materials. The

project was developed and tested using software that doesn’t need to be licensed, so no license

costs are taken into account.

The amortization calculations take into account a project duration of 7 months.

The results of the material expenses calculations are presented in Table A.1

A.4 Human Resources Expenses

The calculation of the human resources expenses consider the sum of the work hours, which are

calculated considering the effort of one engineer for all the tasks and taking into account for the

duration the effect of the overlapping tasks. The total number of days needed to complete this

thesis is 151 working days, equivalent to 1208h assuming 8 working hours per working day.

The results of the calculation for this expenses are shown in Table A.2

90

APPENDIX A. BUDGET

Concept Units Cost/Unit Amortized (%) Total

Lenovo G580 1 500e 19.4 97e

Fujitsu-Siemens T-series 1 1000e 19.4 194e

Fujitsu-Siemens Display B24W 1 200e 14.6 29e

HP 5-port switch 1 20e 14.6 3e

Total 323e

Table A.1: Material expenses

Category Working hours Cost/Hour Total

Engineer 1208 30e/hour

Total 36240e

Table A.2: Human Resources expenses

A.5 Total Expenses

The Table A.3 shows the final budget of the project from the expenses calculated before.

Concept Total

Material Expenses 323e

Human Resources Expenses 36240e

Total 36563e

Table A.3: Total Expenses

The total budget of this project amounts to thirty-six thousand five hundred sixty-three

Euros.

91

APPENDIX A. BUDGET

Figure A.1: Gannt diagram

92

Appendix B

Call Establishment Algorithms

B.1 Call Establishment Algorithm for Multiparty

In order to establish a call in a multiparty conversation with hosting where Alice is the host

and invites Bob and Carol, the following signalling messages will be exchanged: Note: This

explanation supposes that the Client Manager (CM) is integrated with the Messaging Server

(MS) (as it happens in most domains). Otherwise, Alice will connect to her CM instead of MS.

Invitation notification (Figures B.1 and B.2)

1. Alice invites Bob and Carol that are subscribed to different domains. The invitations

should have different Session Description Protocol (SDP).

2. Alice’s MS resolves Bob and Carol’s restful notification service server from their Identity

Provider (IDP).

3. Alice’s MS sends a notification associated to an invitation (which contains the SDP) to

Bob and another to Carol.

4. Bob and Carol receive the notification and resolve Alice’s Invitation, obtaining Alice’s

SDP.

Bob accepts invitation (Figure B.3)

5. Bob queries Alice’s IDP to resolve the address for Alice’s domain Messaging Stub (M.

Stub) and downloads it.

6. Bob connects to Alice’s MS and sends an ACCEPTED message to Alice containing his

SDP answer.

7. Alice receives the ACCEPTED message from Bob.

93

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

Figure B.1: Call establishment algorithm, step 1 - Multiparty with hosting

Figure B.2: Call establishment algorithm, step 2 - Multiparty with hosting

Alice publishes that Bob has Accepted (Figure B.4)

8. The organizer (Alice) publishes on her own MS Bob’s ACCEPTED without SDP and a

list of connected participants to all the other participants of the conversation. For the

participants that are not connected yet to Alice’s MS, this message will be cached there.

9. The message will be received by all the clients connected to Alice’s MS (in this case, Bob).

They will check the list of connected peers and if they are not in the list, they will connect

to the peer that sent the original accepted.

94

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

Figure B.3: Call establishment algorithm, step 3 - Multiparty with hosting

Figure B.4: Call establishment algorithm, step 4 - Multiparty with hosting

Carol Accepts Invitation (Figures B.5 and B.6)

10. Carol queries Alice’s IDP to resolve the address for Alice’s domain M. Stub and downloads

it.

11. Carol connects to Alice’s domain MS and sends the ACCEPTED message with the SDP.

12. Carol receives Bob’s ACCEPTED message without SDP previously published by Alice that

was in the MS cache. As Carol is not in the connected list, it will trigger the connection

95

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

from Carol to all the participants in the list that she is not connected to already (in this

case Bob).

13. The organizer (Alice) publish Carol’s ACCEPTED without SDP and a list of connected

participants to all the other participants of the conversation. For the participants that are

not connected yet, this message will be cached.

When Bob receives Carol’s ACCEPTED without SDP, he will find himself on the connected

list so he will ignore the message.

Figure B.5: Call establishment algorithm, step 5 - Multiparty with hosting

Interconnection between peers - Carol invites Bob (Figure B.7)

14. Triggered when Carol receives Bob’s ACCEPTED and after checking she is not on the

connected list (step 12), Carol invites Bob through Alice’s MS.

15. Bob receives Carol’s invitation and automatically accepts it.

16. Carol receives Bob’s accepted and the connection between them gets established.

96

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

Figure B.6: Call establishment algorithm, step 6 - Multiparty with hosting

Figure B.7: Call establishment algorithm, step 7 - Multiparty with hosting

97

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

B.2 Alternative Call Establishment Algorithm for Multiparty

This new algorithm, which is proposed as further work, avoids the need of a PUBLISH feature

in the Messaging Server (MS), increasing the compatibility with domains that don’t support this

feature. In order to establish a call in a multiparty conversation with hosting where Alice is the

host and invites Bob and Carol, the following signaling messages will be exchanged: Note: This

explanation supposes that the Client Manager (CM) is integrated with the MS (as it happens

in most domains). Otherwise, Alice will connect to her CM instead of MS.

Invitation notification (Figures B.8 and B.9)

1. Alice invites Bob and Carol that are subscribed to different domains. The invitations

should have different Session Description Protocol (SDP).

2. Alice’s MS resolves Bob and Carol’s restful notification service server from their Identity

Provider (IDP).

3. Alice’s MS sends a notification associated to an invitation (which contains the SDP) to

Bob and another to Carol.

4. Bob and Carol receive the notification and resolve Alice’s Invitation, obtaining Alice’s

SDP.

Figure B.8: Call establishment algorithm, step 1 - Multiparty with hosting

Bob accepts invitation (Figure B.10)

98

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

Figure B.9: Call establishment algorithm, step 2 - Multiparty with hosting

5. Bob queries Alice’s IDP to resolve the address for Alice’s domain Messaging Stub (M.

Stub) and downloads it.

6. Bob connects to Alice’s MS and sends an ACCEPTED message to Alice containing his

SDP answer.

7. Alice receives the ACCEPTED message from Bob.

Figure B.10: Call establishment algorithm, step 3 - Multiparty with hosting

99

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

Alice answers Bob with the list of connected participants (Figure B.11)

8. The organizer (Alice) sends through her own MS Bob’s ACCEPTED without SDP and

a list of currently connected participants to Bob (empty in this case as Bob is the first

participant to connect).

9. Bob will check the list of connected peers and connect to every one of them. (In this case

Bob will do nothing as the list is empty)

Figure B.11: Call establishment algorithm, step 4 - Multiparty with hosting

Carol Accepts Invitation (Figure B.12)

10. Carol queries Alice’s IDP to resolve the address for Alice’s domain M. Stub and downloads

it.

11. Carol connects to Alice’s domain MS and sends the ACCEPTED message with the SDP.

12. Alice receives the ACCEPTED message from Carol.

Alice answers Carol with the list of connected participants (Figure B.13)

13. The organizer (Alice) sends through her own MS Carol’s ACCEPTED without SDP and

a list of currently connected participants to Carol (containing Bob in this case as he is the

only one connected).

14. Carol will check the list of connected peers and connect to every one of them. (In this case

to Bob).

Interconnection between peers - Carol invites Bob (Figure B.14)

100

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

Figure B.12: Call establishment algorithm, step 5 - Multiparty with hosting

Figure B.13: Call establishment algorithm, step 6 - Multiparty with hosting

15. To make this connection to Bob, Carol will send an INVITE to Bob through Alice’s MS.

16. Bob receives Carol’s invitation and automatically accepts it.

17. Carol receives Bob’s accepted and the connection between them gets established.

Note that in this algorithm it is important to maintain the processing of the incoming

ACCEPTED message in the organizer (steps 7 and 12) and the update of the list of connected

peers as an atomic operation, to ensure the interconnection between all peers.

101

APPENDIX B. CALL ESTABLISHMENT ALGORITHMS

Figure B.14: Call establishment algorithm, step 7 - Multiparty with hosting

102

Appendix C

Code Examples

C.1 Example app using the Conversation Layer

The following code example show how to create a simple bidirectionall audio/video communi-

cation app built on top of the highest abstraction layer of the interoperability

C.1.1 HTML Code

1 <html>

2 <head>

3 <t i t l e>Minimal Test App l i ca t ion</ t i t l e>

4

5 < !−− p o l y f i l l to switch−h i t between Chrome and Fire fox −−>
6 <script src=” . . / . . / api / adapter . j s ”></ script>

7 < !−− I n t e r o p e r a b i l i t y l i b r a r y c l a s s e s −−>
8 <script src=” . . / . . / api /Wonder . j s ”></ script>

9

10

11 < !−− app l i c a t i on l o g i c −−>
12 <script src=”mini . j s ”></ script>

13 </head>

14 <body>

15 <h1>Minimal Test App l i ca t ion</h1>

16 <div id=” l o g i n ”>

17 <input type=”text ” id=”log inText ” value=””>

18 <button id=”log inButton ” onclick=” l o g i n () ”>Login</button>

19 </div>

20 <div>

21 <div id=” c a l l ”>

22 <input type=”text ” id=”ca l lTo ” value=””>

23 <button id=”ca l lButton ” onclick=”doCal l () ”>Cal l</button>

24 <button id=”hangup ” onclick=”hangup () ”>Hangup</button>

25 </div>

26 </div>

27 <div id=”videoConta iner ”>

28 <video id=”loca lV ideo ” width=”320 ” height=”240 ”

103

APPENDIX C. CODE EXAMPLES

29 autoplay=”autoplay ” muted></ video>

30 <video id=”remoteVideo ” width=”320 ” height=”240 ”

31 autoplay=”autoplay ” muted></ video>

32 </div>

33 </body>

34 </html>

C.1.2 JavaScript Logic

1 var l o ca lV ideo ;

2 var remoteVideo ;

3 var myIdentity ;

4 var conve r sa t i on ;

5

6 /∗ De f i n i t i o n o f the STUN and TURN s e r v e r s that are used f o r the setup o f the

RTCPeerConnection ∗/
7 var STUN = { u r l : ”stun : stun . s e r v e r . ip : port ”} ;
8 var TURN = {
9 u r l : ”turn : turn . s e r v e r . ip ” ,

10 username : ”username ” ,

11 c r e d e n t i a l : ”password ”

12 } ;
13 var i c e S e r v e r s = {” i c e S e r v e r s ”: [STUN, TURN] } ;
14

15

16 /∗ De f i n i t i o n o f the c on s t r a i n t s f o r the i n i t i a l c r e a t i on o f the RTCPeerConnection , in

t h i s example the conve r sa t i on i s r eques ted with audio / video in both d i r e c t i o n s ∗/
17 var c on s t r a i n t s = [{
18 c on s t r a i n t s : ”” ,

19 type : ResourceType .AUDIO VIDEO,

20 d i r e c t i o n : ” in out ”

21 }] ;
22

23

24 // in f o rmat i ona l c a l l b a c k s from WebRTC engine

25 onCreateSe s s i onDesc r ip t i onErro r = func t i on () { conso l e . l og (”Error on Se s s i on d e s c r i p t i o n

c r e a t i on ”) } ;
26 onSe tSe s s i onDesc r ip t i onEr ro r = func t i on () { conso l e . l og (”Error on Se s s i on d e s c r i p t i o n

assignment ”) } ;
27 onSe tSe s s i onDesc r ip t i onSucce s s = func t i on () { conso l e . l og (” Se s s i on d e s c r i p t i o n suc c e s s ”) } ;
28

29

30 /∗ This method performs the main i n i t i a l i z a t i o n l o g i c .

31 − I t uses the IdP to c r e a t e an Id en t i t y ob j e c t from the entered URI

32 − I t r e s o l v e s the Ident i ty , i . e . downloads the cor respond ing messagingStub f o r the u s e r s

domain .

33 − I t e s t a b l i s h e s the connect ion between the stub and the domains Messaging Server .

34 ∗/
35 func t i on l o g i n () {
36 var myRtcIdentity = document . getElementById (’ loginText ’) . va lue ;

37 l o ca lV ideo = document . getElementById (’ loca lVideo ’) ;

38 remoteVideo = document . getElementById (’ remoteVideo ’) ;

39 // bind main event l i s t e n e r l i s t e n e r

104

APPENDIX C. CODE EXAMPLES

40 var l i s t e n e r = th i s . onMessage . bind (t h i s) ;

41 // c r ea t e own Id en t i t y

42 Idp . g e t In s tance () . c r e a t e I d e n t i t y (myRtcIdentity , f unc t i on (i d e n t i t y) {
43 // keep r e f e r e n c e f o r l a t e r use

44 myIdentity = i d en t i t y ;

45 // download and i n s t a n t i a t e (own) MessagingStub

46 myIdentity . r e s o l v e (func t i on (stub) {
47 stub . addLis tener (l i s t e n e r) ;

48 // connect own Stub to own domain

49 stub . connect (myRtcIdentity , ”” , f unc t i on () {
50 conso l e . l og (”own stub connected ”) ;

51 }) ;
52 }) ;
53 }) ;
54 }
55

56

57

58 /∗ This method performs a l l r equ i r ed a c t i on s to e s t a b l i s h the communication with

59 the user (s) , r ep r e s en ted by the entered URI(s) . This i n c l ud e s :

60 − Request ing ac c e s s to l o c a l media sour c e s (camera , microphone)

61 − Reso lv ing o f the t a r g e t URI(s) and downloading o f the corre spond ing

62 messagingStub (s)

63 − Connection o f the stub (s) with the t a r g e t domains

64 − Sending o f the i n v i t a t i o n message to the t a r g e t u s e r s

65 − Handling o f re sponse and es tab l i shment o f the RTCPeerConnection

66 ∗/
67 func t i on doCal l () {
68 var pee r s = document . getElementById (’ cal lTo ’) . va lue . s p l i t (”; ”) ;

69 conve r sa t i on = new Conversat ion (myIdentity , t h i s . onRTCEvt . bind (t h i s) ,

70 t h i s . onMessage . bind (t h i s) , i c e S e r v e r s) ;

71 var i n v i t a t i o n = new Object () ;

72 i n v i t a t i o n . pee r s = peer s ;

73 conve r sa t i on . open (peers , c on s t r a i n t s , i n v i t a t i o n) ;

74 }
75

76

77 /∗ This method i s the ca l l ba ck f o r incoming s i g n a l l i n g messages . In t h i s minimal

78 example , i t j u s t handles incoming I n v i t a t i o n s and Bye messages .

79 On incoming i nv i t a t i o n s , a con f i rmat ion d i a l o g i s d i sp layed with the opt ions to

80 accept or r e j e c t the c a l l . The Bye handl ing j u s t per forms some cleanup ac t i on s . ∗/
81 func t i on onMessage (message) {
82 switch (message . type) {
83 case MessageType .BYE:

84 l o ca lV ideo . s r c = ’ ’ ;

85 remoteVideo . s r c = ’ ’ ;

86 conve r sa t i on = nu l l ;

87 break ;

88 case MessageType . INVITATION:

89 var accept = conf i rm (”Incoming c a l l from : ” +

90 message . from . r t c I d e n t i t y + ” Accept ?”) ;

91 i f (accept == true) {
92 // Create new conve r sa t i on ob j e c t

105

APPENDIX C. CODE EXAMPLES

93 conve r sa t i on = new Conversat ion (myIdentity ,

94 t h i s . onRTCEvt . bind (t h i s) ,

95 t h i s . onMessage . bind (t h i s) , i c eS e rv e r s ,

96 c on s t r a i n t s) ;

97 conve r sa t i on . a c c ep t I nv i t a t i on (message) ;

98 }
99 e l s e

100 conve r sa t i on . r e j e c t (message) ;

101 break ;

102 d e f au l t :

103 break ;

104 }
105 } ;
106

107

108 /∗ This method i s the ca l l ba ck f o r RTC Events . These events are t r i g g e r e d by the

109 WebRTC engine in the browser as r e s u l t o f the ICE nego t i a t i o n s between the pee r s .

110 The main events to handle are the ”onaddstream ” , which i n d i c a t e s that a remote

111 stream was added to the RTCPeerConnection and the ”onaddloca l s t ream ” which i s the

112 counterpart f o r l o c a l l y added streams .

113 The implemented a c t i on s j u s t a s s i gn the streams to the cor re spond ing video−tags o f

114 the html page .∗/
115 func t i on onRTCEvt(event , evt) {
116 switch (event) {
117 case ’ onaddstream ’ :

118 attachMediaStream (remoteVideo , evt . stream) ;

119 break ;

120 case ’ onaddlocalstream ’ :

121 attachMediaStream (loca lVideo , evt . stream) ;

122 break ;

123 d e f au l t :

124 break ;

125 }
126 } ;
127

128

129 /∗ This method ends the e s t ab l i s h ed communication and performs some cleanup . Main

130 i n s t r u c t i o n i s ”conve r sa t i on . bye () ” which sends a BYE message to the peer and takes

131 care o f the RTCPeerConnection and l o c a l media cleanup . ∗/
132 func t i on hangup () {
133 l o ca lV ideo . s r c = ’ ’ ;

134 remoteVideo . s r c = ’ ’ ;

135 conve r sa t i on . bye () ;

136 conve r sa t i on = nu l l ;

137 }

C.2 Example app using the Core Layer

In order to illustrate the main coding concepts when using the Core layer, the following example

code shows how the well-known Web Real Time Communication (WebRTC) reference application

on [34] could be adapted to use the messaging layer developed in this thesis. For the sake of

106

APPENDIX C. CODE EXAMPLES

readability not the full sources are shown but instead some code snippets are provided with a

short explanation and their proposed allocation in the original ”apprtc” code. To get the full

original sources of the apprtc reference app, visit [34] and view the page sources.

1 /∗ Some va r i a b l e s in the g l oba l scope to keep some s t a t e s .

2 ∗/
3 var myIdentity ;

4 var p e e r I d en t i t y ;

5 var i n i t i a t o r ;

6 var context Id ;

7 var inv i ta t i onMessage ;

8

9

10 /∗ The Resource c on s t r a i n s to be used f o r the i n i t i a l c a l l e s tab l i shment . ∗/
11 var c on s t r a i n t s = [{
12 c on s t r a i n t s : ”” ,

13 type : ResourceType .AUDIO VIDEO,

14 d i r e c t i o n : ” in out ”

15 }] ;
16

17

18 /∗ The i n i t i a l i z a t i o n o f the i n t e r o p e r a b i l i t y s tack . This i n c l ud e s the c r e a t i on o f the

own

19 Id en t i t y as we l l as the download and connect ion o f the MessagingStub .

20 This sn ippet mainly r e p l a c e s the openChannel () method in the o r i g i n a l code . ∗/
21 func t i on initFramework () {
22 var myRtcIdentity = ”user@domain . com ”;

23 // bind main event l i s t e n e r l i s t e n e r

24 var l i s t e n e r = th i s . onS igna l l ingMessage . bind (t h i s) ;

25 // c r ea t e own Id en t i t y

26 Idp . g e t In s tance () . c r e a t e I d e n t i t y (myRtcIdentity , f unc t i on (i d e n t i t y) {
27 // keep r e f e r e n c e f o r l a t e r use

28 myIdentity = i d en t i t y ;

29 // download and i n s t a n t i a t e (own) MessagingStub

30 myIdentity . r e s o l v e (func t i on (stub) {
31 stub . addLis tener (l i s t e n e r) ;

32 // connect own Stub to own domain

33 stub . connect (myRtcIdentity , ”” , f unc t i on () {
34 conso l e . l og (”own stub connected ”) ;

35 }) ;
36 }) ;
37 }) ;
38 }
39

40

41 /∗ When an outgoing c a l l i s be ing i n i t i a t e d , the s i g n a l l i n g Message o f type INVITATION

42 must be sent .

43 This must happen in the succes s−ca l l b a ck o f the pc . c r e a t eO f f e r () method o f the

44 o r i g i n a l code . ∗/
45 func t i on doCal l () {
46 // PSEUDO−CODE!

47 peerConnect ion . c r e a t eO f f e r (func t i on (l o c a lD e s c r i p t i o n) {
48 peerConnect ion . s e tLoca lDe s c r i p t i on (l o c a lD e s c r i p t i o n) ;

107

APPENDIX C. CODE EXAMPLES

49 s end Inv i t a t i on (c a l l e e , l o c a lD e s c r i p t i o n) ;

50 }) ;
51 }
52

53

54 /∗ When an incoming c a l l i s be ing answered , the Message o f type ACCEPTED

55 must be sent .

56 This must happen in the succes s−ca l l b a ck o f the pc . c r e a t eO f f e r () method o f the

57 o r i g i n a l code . ∗/
58 func t i on doAnswer () {
59 // PSEUDO−CODE!

60 peerConnect ion . createAnswer (func t i on (l o c a lD e s c r i p t i o n) {
61 peerConnect ion . s e tLoca lDe s c r i p t i on (l o c a lD e s c r i p t i o n) ;

62 sendInv i tat ionAccepted (inv i tat ionMessage , l o c a lD e s c r i p t i o n) ;

63 }) ;
64 }
65

66

67 /∗ This method c r e a t e s and sends an INVITATION message .

68 See doCal l () f o r d e s c r i p t i o n o f c o r r e c t p lace in the o r i g i n a l code . ∗/
69 func t i on s end Inv i t a t i on (toUri , l o c a lD e s c r i p t i o n) {
70 t h i s . i n i t i a t o r = true ;

71 var that = th i s ;

72 Idp . g e t In s tance () . c r e a t e I d e n t i t y (toUri , f unc t i on (t o I d en t i t y) {
73 that . p e e r I d en t i t y = to Id en t i t y ;

74 t o I d en t i t y . r e s o l v e (func t i on (peerStub) {
75 that . context Id = Math . f l o o r ((Math . random () ∗ 100000) + 1) ;

76 var inv i ta t i onMessage =

77 MessageFactory . c r ea t e Inv i t a t i onMes sage (that . myIdentity ,

78 to Ident i ty , that . contextId , that . c on s t r a i n t s) ;

79 inv i ta t i onMessage . body . connec t i onDesc r ip t i on= l o c a lD e s c r i p t i o n ;

80 peerStub . sendMessage (message) ;

81 }) ;
82 }) ;
83 }
84

85

86 /∗ This method c r e a t e s and sends an ACCEPTED message .

87 See doAnswer () f o r d e s c r i p t i o n o f c o r r e c t p lace in the o r i g i n a l code . ∗/
88 func t i on sendInv i ta t ionAccepted (inv i tat ionMessage , l o c a lD e s c r i p t i o n) {
89 t h i s . i n i t i a t o r = f a l s e ;

90 t h i s . context Id = inv i ta t i onMessage . context Id ;

91 t h i s . p e e r I d en t i t y = inv i ta t i onMessage . from ;

92 var acceptedMessage = MessageFactory . createAnswerMessage (pee r Ident i ty , ”” ,

93 inv i ta t i onMessage . contextId , c on s t r a i n t s) ;

94 acceptedMessage . body . connec t i onDesc r ip t i on = l o c a lD e s c r i p t i o n ;

95 myIdentity . messagingStub . sendMessage (acceptedMessage) ;

96 }
97

98

99 /∗ This method c r e a t e s and sends a CONNECTIVITY CANDIDATE message .

100 This w i l l happen in the ”onIceCandidate ” message o f in the o r i g i n a l code and would

101 r ep l a c e the invoca t i on o f sendMessage () . ∗/

108

APPENDIX C. CODE EXAMPLES

102 func t i on sendConnect iv i tyCandidate (candidate) {
103 var candidateMessage = MessageFactory . createCandidateMessage (myIdentity ,

104 pee r Ident i ty , contextId , ” l a b e l ” , ” id ” , candidate) ;

105 i f (i n i t i a t o r)

106 pe e r I d en t i t y . messagingStub . sendMessage (candidateMessage) ;

107 e l s e

108 myIdentity . messagingStub . sendMessage (candidateMessage) ;

109 }
110

111

112 /∗ The BYE method must be invoked i n s i d e the hangup () method o f the o r i g i n a l code .

113 ∗/
114 func t i on sendBye () {
115 var byeMessage = new Message (myIdentity , pee r Ident i ty , ”” , MessageType .BYE,

116 context Id) ;

117 i f (i n i t i a t o r)

118 pe e r I d en t i t y . messagingStub . sendMessage (byeMessage) ;

119 e l s e

120 myIdentity . messagingStub . sendMessage (byeMessage) ;

121 }
122

123

124 /∗ This i s the ca l l ba ck f o r the main incoming messages . This code mainly

125 r ep l a c e s the one in the p roce s sS i gna l l i ngMes sage o f the o r i g i n a l example . The

126 message in the parameter i s a message then .∗/
127 func t i on onS igna l l ingMessage (message) {
128 switch (message . type) {
129 case MessageType . INVITATION:

130 doAnswer () ;

131 break ;

132 case MessageType .ACCEPTED:

133 // setRemoteDescr ipt ion ()

134 // perform GUI ac t i on s e t c

135 break ;

136 case MessageType .BYE:

137 // cleanup WebRTC and GUI s t u f f

138 break ;

139 case MessageType .CONNECTIVITY CANDIDATE:

140 // ex t r a c t and c r ea t e RTCIceCandidate from message

141 peerConnect ion . addIceCandidate (candidate ,

142 onAddIceCandidateSuccess , onAddIceCandidateError) ;

143 break ;

144 d e f au l t :

145 break ;

146 }
147 } ;

C.3 Messaging Stub Development

C.3.1 Connect() Method

109

APPENDIX C. CODE EXAMPLES

1 MessagingStub SimpleWebSocket . prototype . connect = func t i on (ownRtcIdentity ,

2 c r e d en t i a l s , ca l lbackFunct ion) {
3 i f (t h i s . websocket) {
4 conso l e . l og (”Websocket connect ion a l r eady opened ”) ;

5 ca l lbackFunct ion () ;

6 re turn ;

7 }
8 t h i s . websocket = new WebSocket (”ws :// host : port ”) ;

9 t h i s . websocket . onopen = func t i on () {
10 var message = new Object () ;

11 message . type = ” l o g i n ”;

12 message . from = ownRtcIdentity ;

13 socket . send (JSON. s t r i n g i f y (message)) ;

14 ca l lbackFunct ion () ;

15 } ;
16 t h i s . websocket . one r ro r = func t i on () {
17 conso l e . l og (”Websocket connect ion e r r o r ”) ;

18 } ;
19 t h i s . websocket . onc l o s e = func t i on () {
20 conso l e . l og (”Websocket connect ion c l o s ed ”) ;

21 } ;
22 var that = th i s ;

23 t h i s . websocket . onmessage = func t i on (f u l l me s s a g e) {
24 /∗ Extract the s i g n a l l i n g message from the domain s p e c i f i c p ro to co l . Just

25 takes the ”body ” part o f the r e c e i v ed message as content .∗/
26 var message = JSON. parse (f u l l me s s a g e . data) . body ;

27 /∗ Use the Idp to c r e a t e I d en t i t y ob j e c t s from the s t r i n g

28 r ep r e s en t a t i o n s in the from and to f i e l d s o f the message . ∗/
29 Idp . g e t In s tance () . c r e a t e I d e n t i t y (message . from , func t i on (i d e n t i t y) {
30 message . from = id en t i t y ;

31 Idp . g e t In s tance () . c r e a t e I d e n t i t i e s (message . to ,

32 func t i on (i d en t i t yAr r) {
33 message . to = iden t i t yAr r ;

34 // forward the message to main API message chain

35 that . baseStub . de l ive rMessage (message) ;

36 }) ;
37 }) ;
38 } ;

C.3.2 SendMessage() Method

1 MessagingStub SimpleWebSocket . prototype . sendMessage = func t i on (message) {
2 /∗ Here , the very s imple ” t r a n s l a t i o n ”/ wrapping in to the domain s p e c i f i c

3 message format happens . The message i s j u s t put to the body− f i e l d o f

4 the surrounding f u l l me s s a g e .∗/
5 var f u l l me s s a g e = new Object () ;

6 f u l l me s s a g e . type = ”message ”;

7 f u l l me s s a g e . body = message ;

8

9 /∗ From and To I d e n t i t i e s are changed in to s t r i n g s conta in ing r t c I d e n t i t i e s ∗/
10 message . from = message . from . r t c I d e n t i t y ;

11 i f (message . to i n s t an c e o f Array) {
12 message . to . every (func t i on (element , index , array) {

110

APPENDIX C. CODE EXAMPLES

13 array [index] = element . r t c I d e n t i t y ;

14 }) ;
15 f u l l me s s a g e . to = message . to [0] ;

16 } e l s e {
17 message . to = new Array (message . to . r t c I d e n t i t y) ;

18 f u l l me s s a g e . to = message . to [0] ;

19 }
20 // send v ia the websocket that was e s t ab l i s h ed in connect ()

21 t h i s . websocket . send (JSON. s t r i n g i f y (f u l l me s s a g e)) ;

22 } ;

C.3.3 Disconnect() Method

1 MessagingStub SimpleWebSocket . prototype . d i s connec t = func t i on () {
2 t h i s . websocket . c l o s e () ;

3 t h i s . websocket = nu l l ;

4 } ;

111

	Glossary
	Introduction
	Thesis Motivation
	Thesis Objectives
	Thesis Organization

	State of the Art
	WebRTC
	WebRTC Architecture and APIs
	Signalling
	Network Connectivity

	IP Multimedia Subsystem (IMS)
	Architecture
	Protocols

	Overview of Related Technologies
	JavaScript
	JSON
	HTML5
	NodeJS
	WebSockets

	Overview of Related Initiatives
	Telepresence
	Kurento
	ORCAjs
	OpenTok
	WebRTC2SIP
	WONDER

	Inter-domain Interoperability Framework based on WebRTC
	Scope
	Framework description
	Application domains
	Domains description

	Interoperability Mechanisms
	Messaging Server (MS)
	Client Manager (CM)
	Messaging Stub
	Identity Provider
	Library downloading mechanisms
	Messaging format
	Media proxies
	Trickling support

	System Architecture and Topologies
	Functional Architecture
	Network Topologies
	2 party conversations
	Multiparty conversations

	Application API
	Entities
	Specification
	Core Layer
	Conversation Layer

	Development of applications based on the API
	Messaging Stub Development
	Naming convention for a MessagingStub

	Validation
	Test environments
	Deutsche Telekom's Web Centric Test Environment
	Deutsche Telekom's IMS Test Environment
	Portugal Telecom's Web Centric Test Environment
	Portugal Telecom's SIP Centric Test Environment

	Results
	Intra-domain Experimentations
	Inter-domain Experimentations

	Evaluation
	Interoperability
	Service delivery (Web centric vs IMS centric)

	Conclusions and further work
	Conclusions
	Further work

	 Bibliography
	Budget
	Material Resources
	Project Phases
	Analysis of the State of the Art
	Experimentation Phase 1: Basic Interoperability, Rich Conversations
	Experimentation Phase 2: Multiparty, Identities, Resources
	Documentation

	Material Expenses
	Human Resources Expenses
	Total Expenses

	Call Establishment Algorithms
	Call Establishment Algorithm for Multiparty
	Alternative Call Establishment Algorithm for Multiparty

	Code Examples
	Example app using the Conversation Layer
	HTML Code
	JavaScript Logic

	Example app using the Core Layer
	Messaging Stub Development
	Connect() Method
	SendMessage() Method
	Disconnect() Method

