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Abstract

Algorithms based on Non-Negative Matrix Factorization (NMF) are commonly used to solve
the Blind Source Separation (BSS) problem. The objective of NMF is to split a spectrogram,
which is a frequency-time representation of a mixture, in two matrices; the basis matrix and
the gain matrix. The most commonly variant used is the iterative NMF algorithm which
requires the number of components as well as the full mixture spectrogram. The number
of components can be approximated to the number of acoustical events presented in the
mixture. Nevertheless, a spectrogram can be quite large, depending on the length of the
mixture. A larger mixture introduces high latency and demands larger memory. The main
problem is the number of components because it is not usually known beforehand.

Therefore, Online NMF algorithms were developed to avoid these problems. The spectro-
gram of a mixture is divided in time segments called frames. Thus, instead of iterate over
the full spectrogram, the basic online algorithm (ONMF) iterates over frames of the spectro-
gram to obtain the basis and the gain vectors. Nevertheless, if the basis vectors are estimated
with just one frame of the spectrogram, some errors can be introduced due to the fact that
a musical note usually requires more than one frame to be developed. In this thesis, the
Look-ahead ONMF (LONMF) algorithm is proposed as an improvement of ONMF in order
to obtain a better estimation of the basis matrix by taking more frames into account.
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Chapter 1

Introduction

1.1 Background

In the world of signal processing, the Blind Source Separation (BSS) [1] problem is a com-
monly encountered problem which tries to estimate sources given a mixture. The BSS
problem is also known as the “cocktail party effect” [2].

The “cocktail party effect” was defined as the phenomenon experienced by a subject when
he is trying to have a conversation with one person while there are others speakers at the
same time around him.

The Blind Source Separation (BSS) problem is presented in many fields, especially in multi-
sensor systems or in systems which can obtain information from more than one source. The
most distinguished fields are: communications with, for example, antenna arrays like Multi-
ple Input Multiple Output (MIMO); audio source separation with music, speech recognition;
biomedical applications like electrocardiography, electroencephalography; image processing;
monitoring of complex systems and many more [3].

Nowadays there are some algorithms proposed to solve this problem, the most used are:
Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Independent
Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). The aim of the
PCA [1] procedure is to minimize the number of components from a mix data set losing
the least amount of information. This procedure is based on finding correlation between
variables presented in the data set using an orthogonal transformation. The goal of the
SVD [1] algorithm is to factorize a matrix using the eigenvalues and eigenvectors of two
matrices: the products from the input matrix to its conjugate transpose and vice versa. The
ICA [1] algorithm is based on two assumptions, the first one is the independence of the source
signals and the second one is the non-gaussianity of the sources. Therefore, the target of this
algorithm is to achieve independent components with the maximization of the independence
of predicted signals. Finally, NMF [1] algorithm was proposed to factorize a non-negative
matrix into two non-negative matrices, basis and gain matrices. This algorithm is explained
in detail in Chapter 2.
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2 Chapter 1 Introduction

1.2 Motivation

The main focus in this thesis is the iterative NMF algorithm proposed by Lee and Seung in
2000 [4] to solve the BSS problem. The iterative NMF algorithm requires as input a time-
frequency representation of the mixture called spectrogram (X) which is the matrix to be
separated into two matrices, the gain matrix and the basis matrix. Nevertheless, a mixture
larger in time produces a larger spectrogram X which can introduce latency and demand
larger memory. This algorithm also requires the number of components of the mixture
as input. The number of components can be approximated as the number of musical notes
present in the mixture. In some cases one note can be composed of more than one component
like harmonic notes, but this number is not usually known beforehand.

In order to avoid these problems, some Online NMF (ONMF) algorithms were proposed in
the master’s thesis by Bilal Shuja [5]. The ONMF algorithms do not require the number of
components giving it a degree of blindness to the solution of the BSS problem. In this type
of algorithms, the spectrogram of a mixture is divided in time segments called frames. On
the other hand, the ONMF algorithms iterate over each frame of the spectrogram instead of
iterate over the full spectrogram. The main problem of ONMF algorithms is the obtained
basis matrix, which requires one or two frames, depending on the algorithm, to learn a new
component while a component can be defined with more than three frames. Two of the six
Online NMF variants proposed by [5] are explained in detail in Section 2.2, the basic and
the best in terms of separation quality.

1.3 Scope

As a summary of Section 1.2, the NMF algorithm requires the complete spectrogram and the
ONMF algorithms require one or two frames in the component learning procedure. Thus,
the scope of this thesis is to provide a new algorithm capable of determinating the number
of components of a given mixture and separating it into its sources. The new algorithm has
a trade off between the number of frames used to obtain each vector of the basis matrix and
the computational effort of the algorithm. This algorithm has a lower latency than NMF and
also higher number of frames in the learning components procedure than ONMF in order to
achieve better results in terms of separation quality.

1.4 Structure of the Thesis

The essence of this thesis is distributed in the following four Chapters and a brief summary
of each one is presented in this Section.

In Chapter 2, the fundamentals of this thesis are presented. First of all, the Section 2.1
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1.4 Structure of the Thesis 3

contains a detailed explanation of the BSS algorithm with the iterative NMF algorithm.
Afterwards, in Section 2.2, two different algorithms are presented: the basic Online NMF in
Section 2.2.1 and a variant of ONMF which estimates basis vectors using current and past
frame in Section 2.2.2. The last two algorithms were proposed by [5].

In Chapter 3, a new NMF based algorithm is proposed which is called Look-ahead Online
NMF. The main differences between LONMF and the rest of the algorithms are exposed in
the last Section (3.2) of this Chapter with a result comparison of the six seconds mixtures
used by [5].

The results obtained by the LONMF algorithm in a larger test set are provided in Chapter 4.
More than 250 mixtures were considered for this thesis and a discussion of those results is
presented in this Chapter. It should be pointed out that the time length of these mixtures
is between 13 and 30 seconds from 10 songs with the purpose to have a stronger test bench
than [5].

Chapter 5 concludes this master’s thesis and gives advantages and disadvantages of the
proposed algorithm compared with NMF and both ONMFs.
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Chapter 2

Fundamentals

2.1 Basic Blind Source Separation Algorithm

The basic BSS procedure for Non-negative Matrix Factorization (NMF) based algorithms
is exposed in this Section. Basically, the BSS procedure is able to separate a set of sources
sm(n) into a set of estimated sources s̃m(n). This procedure is divided in four steps as
described as follows.

The input sources sm(n) are combined as the mixture signal x(n). The mixed signal x(n)
is the input required by the next step, the Short-Time Fourier Transform, which output
is a time-frequency representation of the input signal called spectrogram X(k, t). As was
exposed before, the spectrogram matrix is split in two matrices, the basis B(k, i) and gain
G(i, t) matrices by NMF as third step. As the final step, the basis and gain matrices are
transformed into the estimated signals s̃m(n) by the synthesis and clustering step.

The basic BSS algorithm is summarized in the block diagram shown in Figure 2.1. Each
block of the diagram is explained in detail in Sections 2.1.1-2.1.4, as long as its inputs and
outputs.

Mix
signals

STFT NMF

Synthesis
and

Clustering

sm(n) x(n) X(k, t) B(k, i)

G(i, t)

s̃m(n)

Figure 2.1: Blind Source Separation block diagram.

2.1.1 Mixing Model

In audio source separation, there are different types of sources, like instruments with per-
cussive and harmonic notes; human voice; sounds from the nature like ambient noise, wind,
rain, animals and many more.
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6 Chapter 2 Fundamentals

This thesis is focused on musical sources. The algorithms described in Sections 2.1.3 and
2.2 are proposed to separate mixtures of two instruments or a voice and an instrument.
Mixtures with M = 2 sources are considered.

The mixture signal is assumed to be a linear combination of both sources as is shown in
Equation 2.1 for discrete time,

x(n) =
M
∑

m=1

sm(n) (2.1)

where, sm(n) is the input time signal corresponding to source number m and x(n) is the
mixture signal.

An exemplary mixture signal is shown in Figure 2.2. This toy example is used along this
Section in order to explain in detail the basic BSS algorithm.
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Figure 2.2: Sources and Mixture Signals in time-domain.

In this example, the mixture is composed of a tambourine note and a saxophone note.
Therefore, the sources are percussive and harmonic notes respectively.
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2.1 Basic Blind Source Separation Algorithm 7

2.1.2 Short-Time Fourier Transform

As was explained in Chapter 1, the NMF algorithm requires a time-frequency representation
of the mixture as input which is called spectrogram (X). There is a mathematical operation
that associates the frequency domain representation to a function of time which is called
Fourier Transform. Thus, the Fourier Transform is a tool which obtains the energy distri-
bution through the frequency components presented in a time domain signal. However, it
does not obtain information about time.

The Short-Time Fourier Transform (STFT) provides a mixture spectrogram by analyzing
the frequency behavior of the signal with a finite time window [6]. The STFT procedure
obtains segments from the input signal taken the product between the original signal and
a window which moves with time. Then, it applies the Fourier Transform to each segment.
Therefore, the Fourier Transform and the product describes the behavior of the signal in the
frequency and the time span. This procedure is explained in this Section in detail.

As was exposed before, a finite time window is required. There are many types of windows
that can be used for this purpose, like Rectangular, Triangular, Parzen, Welch, Hamming,
Hanning, Gaussian and many more. The square root of overlapping Hanning windows are
used in this thesis. An example of overlapping Hanning windows over the input mixture
used as toy example is presented in Figure 2.3.
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Windowing
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Input signal
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Figure 2.3: Short Time Fourier Transform Windowing.

Afterwards, the input signal x(n) is divided in windowed segments xt as shown in Equa-
tion 2.2,

xt(n) = w(n)x(n+ tH), for 0 ≤ n ≤ L− 1 (2.2)
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8 Chapter 2 Fundamentals

where t is the frame index. For this thesis the Hanning window length is L = 212 and the
hop size is H = 211. As a second step for STFT, the Discrete Fourier Transform DFT of
each signal segment xt(n) is calculated as

X(k, t) =
L−1
∑

n=0

xt(n)e
−j 2πk

L
n (2.3)

where k denotes the frequency index. X(k, t) denotes a complex matrix due to the DFT,
but the NMF algorithm requires a real non-negative matrix as input. Thus, the input for
the NMF based algorithm is the absolute value of X(k, t). The spectrogram of the input
signal presented in Section 2.1.1 is shown in Figure 2.4.

Mixture Spectrogram
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Figure 2.4: Mixture Spectrogram.

The percussive note and the harmonic note can be distinguished in the mixture spectrogram
shown in Figure 2.4 due to the fact that the vertical structure presented in the spectrogram
belongs to the percussive note and the horizontal structure belongs to the harmonic note.

2.1.3 Non-negative Matrix Factorization

As shown in Figure 2.1, the next block of the BSS procedure is the NMF. Therefore, the
iterative NMF algorithm is explained in detail in this Section and two Online NMF based
algorithm will be explained in Section 2.2 as alternatives. The iterative NMF was proposed
by Lee and Seung [4] in 2000. The goal of the iterative NMF is to factorize an input non-
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2.1 Basic Blind Source Separation Algorithm 9

negative matrix (spectrogram) into two non-negative matrices, basis and gain matrices as is
represented in Equation 2.4,

|XK×T | = XK×T ≈ X̃K×T = BK×IGI×T (2.4)

where, the absolute value of the mixture spectrogram is approached as the product of the
basisB and the gainGmatrices. Therefore, the input spectrogramXK×T and the estimated
spectrogram X̃K×T are non-negative matrices which sub-indexes correspond to frequency
span (K) and time span (T ). The basis matrix BK×I and the gain matrix GI×T are also
non-negative matrices which sub-index (I) corresponds to the number of components of the
audio mixture. I is an user parameter and it must be chosen to be smaller than K and T .

This algorithm requires a cost function in order to measure the quality of approximation
of the basis and the gain matrices product. Lee and Seung [4] proposed two cost functions
in their paper. The first cost function is the square of the Euclidean distance deuc of two
matrices as is shown in Equation 2.5.

deuc[X, X̃] = ||X − X̃||2 (2.5)

The lower bound of deuc is zero and it will be zero only if X = X̃. Another cost function is
the divergence ddiv of matrix X from matrix X̃ as is presented in Equation 2.6,

ddiv[X, X̃] =
∑

k,t

dKL(X(k, t)||X̃(k, t)) (2.6)

where the function dKL, which is the Kullback-Leibler divergence, is defined as 2.7:

dKL[p, q] = p log

(

p

q

)

− p+ q (2.7)

The iterative multiplicative update rules presented in Equations 2.8 were proposed by Lee
and Seung, to minimize the cost function in Equation 2.5. It should be pointed out that
for both cost functions the B and the G matrices are updated depending on each other for
every iteration. All operations are element wise.

G←− G.×
B

T
X

B
T
BG

(2.8a)

B ←− B.×
XG

T

BGG
T

(2.8b)
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10 Chapter 2 Fundamentals

On the other hand, the iterative multiplicative update rules presented in Equations 2.9 were
proposed by Lee and Seung, to minimize the divergence with X̃ = BG.

G←− G.×
B

T X

BG

B
T1

(2.9a)

B ←− B.×
X

BG
G

T

1GT
(2.9b)

In order to obtain the results of the toy example spectrogram shown in Figure 2.4, the
matrices B and G are initialized with random values and both matrices were updated with
the divergence update rules as a cost function. The number of iterations Niter used for
this algorithm is set to 300. The same conditions will be used for the rest of the thesis
for iterative NMF algorithm. The output of the iterative NMF algorithm is shown as an
example in Figure 2.5.

Mixture spectrogram
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Figure 2.5: Iterative NMF output.

In Figure 2.5, it can be seen that the representation of the percussive note, as the component
I = 1, is presented in the basis matrix at medium frequencies and in gain matrix around
0.5 seconds. The component I = 2 is the representation of the on/off sets of the harmonic
note as can be seen at very low frequencies in the basis matrix and in gain matrix in time
domain. The third component is the sustained harmonic note as is shown in the gain matrix
in time slots 0.1-0.4 seconds and 0.6-1 seconds.
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2.1 Basic Blind Source Separation Algorithm 11

The Iterative NMF pseudo code used in this thesis is presented in Algorithm 2.1 as a sum-
mary.

Algorithm 2.1 Iterative Non-negative Matrix Factorization Algorithm.

Require: Number of components: I, Iteration number: Niter, spectrogram: XK×T

1: Initialize BK×I and GI×T with random values.
2: for i = 1 to Niter do
3: Update G matrix using 2.9a
4: Update B matrix using 2.9b
5: end for
6: return G and B

The block diagram of the NMF algorithm is presented in the Appendix Chapter in Figure A.1
in order to complement the explanation.

2.1.4 Synthesis and clustering

The product between each basis vector times each gain vector obtained by the NMF algo-
rithm provides the spectrogram of each component as presented in Equation 2.10.

CK×T |i = BK×1(i)GT×1(i) (2.10)

where, CK×T |i is the spectrogram of the ith component, BK(i) is the basis vector of the ith
component and GT (i) is the gain vector of the ith component.

The Inverse Short-Time Fourier Transform (ISTFT) is used to extract a time domain signal
from a complex spectrogram, exactly the opposite procedure as the STFT. A normalization is
required in order to check that component spectrograms add up to the mixture spectrogram
and in order to obtain the complex spectrogram of each component which is required by the
ISTFT. This normalization can be represented mathematically as shown in Equation 2.11.

C̃K×T |i = XK×T

CK×T |i
∑I

i=1CK×T |i

(2.11)

where C̃K×T |i is the estimated spectrogram of the ith component.

As an example, the spectrogram of each component of the toy example is shown in Figure 2.6.

The next step after the NMF is the synthesis part which transforms the component spectro-
grams into time domain with the ISTFT. For this procedure is used the same parameters
than the used for the STFT.
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12 Chapter 2 Fundamentals
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Figure 2.6: Component spectrograms.

Time domain signals for every component of the toy example are shown in Figure 2.7,
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Figure 2.7: Components in time domain.

where, the estimated tambourine note is presented in the top of the Figure, the transients
or on/off sets of the estimated saxophone note are plotted in the middle and finally, the
sustained part of the estimated saxophone note is shown in the last plot.

Therefore, the structure of each type of note can be described if the Figures 2.6 and 2.7
are compared. The first spectrogram belongs to the first signal in time domain. This is
the tambourine note which is a percussive audio signal. Thus, a vertical structure of a
spectrogram belongs to a percussive note. The second component belongs to the second
signal in time domain, this component belongs to the saxophone note. Nevertheless, the

Institut für Nachrichtentechnik

RWTH Aachen University

Cristian Felipe Martı́nez Ruiz

Masterarbeit



2.1 Basic Blind Source Separation Algorithm 13

structure of the spectrogram is vertical. The vertical structure of this component is due to
the fact that is the percussive part of the harmonic note. In other words, it is the sound
produced when the musician presses and releases the key of the saxophone which produces
the harmonic note. This parts of the note are called transients or on/off sets. The third
component is described by the third spectrogram which belongs to the last signal in time
domain. Its horizontal structure is the principal feature of a sustained harmonic note. Thus,
this component belongs to the saxophone note.

Usually, there are more components than sources, this is why a clustering part is required.
The clustering is done using a hill climbing method which minimizes least squares between
time domain components and sources.

The result after clustering the detected components is shown in Figure 2.8. As can be seen,
the estimated sources are quite similar to the originals.
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Figure 2.8: Estimated sources.

2.1.5 Separation quality

The Signal to Distortion Ratio (SDR) is used in order to estimate the source separation
quality between the estimated s̃m(n) and the original sources sm(n). The SDR is calculated
for each source m as shown in Formula 2.12.

SDRm = 10 log

∑

n s
2
m(n)

∑

n(sm(n)− s̃m(n))2
(2.12)
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14 Chapter 2 Fundamentals

In order to continue with the toy example, the SDR of the tambourine estimated source is
35.60 dB and the SDR of the saxophone estimated source is 44.76 dB. These values give an
idea of the accuracy of the NMF algorithm.

Finally, the total quality of NMF based algorithm is calculated as the mean SDR value of
each estimated source. Mathematically, the SDR is represented by Equation 2.13.

SDR =
1

M

M
∑

m=1

SDRm (2.13)

Finally, the SDR of the exemplary mixture is 40.18 dB which is the mean of the obtained
values of each estimated source. This value is very high because of this is a simple example.

2.2 Online Non-negative Matrix Factorization based
algorithms

Two algorithms based on NMF are presented in this Section. That is the basic Online NMF
(ONMF) and another Online NMF algorithm (CPONMF) which requires the current and
the past frame to estimate basis vectors. These Online algorithms were presented in [5].

2.2.1 Basic Online Non-negative Matrix Factorization (ONMF)

The Online NMF algorithm was proposed in order to avoid some iterative NMF problems like
high latency and high memory required for long time audio mixtures. The main difference
between this algorithm and the NMF algorithm, described in Section 2.1.3, is that iterative
NMF uses the full spectrogram for the multiplicative update rules (Eq.2.9), while Online
NMF algorithm requires just one frame from the spectrogram. The ONMF algorithm is
explained step by step in this Section.

Initialization

First of all, it is important to define the V matrix which represents the current frame tc
from spectrogram matrix X as

V = X(:, tc). (2.14)

The objective of this algorithm is the estimation of the current frame in each iteration with
the product between the basis matrix and the gain vector at the current time
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2.2 Online Non-negative Matrix Factorization based algorithms 15

V K×1 ≈ Ṽ K×1 = BK×IGI×1(tc) (2.15)

where, subindex 1 refers to time span (in this case just one frame) and GI×1(tc) is the gain
vector at the current time tc.

The first step of ONMF algorithm, after fixing the matrix dimensions, is to define initial
values to B and G matrices as

BK×1 = V K×1 (2.16a)

G1×1 = 1 (2.16b)

The basis matrix is initialized with the first frame of the spectrogram and all entries of the
gain matrix is set to one. It should be pointed out that in the initialization step the number
of components is one, due to the fact that Equation 2.15 must be satisfied.

Temporal gain and cost calculation

The ONMF algorithm increments the current time index tc in the second step and then takes
the next frame from the spectrogram (Eq.2.17a), in order to obtain the temporal gain which
is calculated as

V = X(:, tc) (2.17a)

Gtmp = G(:, tc − 1) (2.17b)

Gtmp ←− Gtmp.×
B

T V

BGtmp

B
T1

(2.17c)

The gain calculation requires the gain from the last processed frame as is shown in Equa-
tion 2.17b, then it iterates 100 times (Niter = 100) over the update rule given by Equa-
tion 2.17c. It should be pointed out that the update rule used in the ONMF algorithm is the
same that the update rule of the gain matrix applied in NMF (Eq. 2.9a) but for one frame
instead of the full spectrogram. Afterwards, the current frame is estimated as:

Ṽ = BGtmp (2.18)

As shown in Equation 2.18, the estimated frame is the product between the basis matrix
and the calculated temporal gain. At this point, the cost function between V and Ṽ is
calculated with the Kullback-Leibler divergence as shown in Equation 2.19.
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16 Chapter 2 Fundamentals

ddiv(V , Ṽ ) =
∑

k

V (k) log
V (k)

Ṽ (k)
− V (k) + Ṽ (k)] (2.19)

Nevertheless, the value obtained in Equation 2.19 is not an absolute term. Thus, a nor-
malization is done in order to be able to compare the divergence with a prefixed threshold
αONMF:

drel(V , Ṽ ) =
ddiv(V , Ṽ )

ddiv(V , 0)
(2.20)

Cost comparison

If the relative cost function drel is below a threshold αONMF, the algorithm stores the tem-
poral gain calculated in the gain matrix G because the estimated current frame is a good
approximation of the original and the B matrix is able to represent it.

If the relative cost function drel is above a threshold αONMF, the B matrix is not able to
represent the current frame anymore. Thus, a new basis vector Bnew is calculated as the
difference between the estimated and the current frame in order to represent the unknown
information of the current frame as described in Equation 2.21. That is, the current frame
and the estimated frame are quite different. Therefore, the algorithm has detected new
component in the audio mixture.

Bnew = (V − Ṽ )p (2.21)

The operation ()p replaces all negative values with zeros in order to keep working with non-
negative matrices. At the same time the G matrix has to be updated with the temporal
gain and the number of components I has to be incremented as shown in Equations 2.22.

G(:, tc) = Gtmp (2.22a)

I = I + 1 (2.22b)

Due to the new detected component, a new gain vector is stored in the G matrix as shown in
Equations 2.23. It should be pointed out that the new basis vector is able to represent just
the current frame but not all previous, this is why the new gain vector has all its previous
values as zero and the final value as one (Gnew = 1).

G(I, 1 : tc − 1) = 0 (2.23a)
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2.2 Online Non-negative Matrix Factorization based algorithms 17

G(I, tc) = Gnew (2.23b)

Once the basis vector Bnew is calculated and the number of components I is incremented,
the B matrix is updated as presented in Equation 2.24 in order to include the new detected
component.

B(:, I) = Bnew (2.24)

After the cost comparison step, the algorithm checks if the current frame is the last frame
from the spectrogram. If not, the algorithm comes back to the temporal gain and cost
calculation step.
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Figure 2.9: Cost function.

As an example, the divergence calculated for each frame of the toy example is shown in
Figure 2.9. Therefore, in the cost function results provided by the ONMF algorithm it can
be seen that the relative divergence drel is above the threshold αONMF two times. Thus two
components were detected, at the third and the eleventh frame respectively. After each
detected component the cost function drops below the threshold again. It should be pointed
out that at the end of the algorithm the number of detected components is three due to the
component learned in the initialization step.

The Block diagram shown in Figure A.2 is a graphical representation of the algorithm de-
scribed in this Section. The ONMF pseudo code is presented in Algorithm 2.2 as a summary.
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18 Chapter 2 Fundamentals

Algorithm 2.2 Online Non-negative Matrix Factorization Algorithm.

Require: Iteration number: Niter, spectrogram: XK×T , Threshold: αONMF

1: Initialize I = 1, t = 1, B and G (Eq. 2.16)
2: for t = 2 to T do
3: Update current frame (Eq. 2.17a)
4: Initialize temporal gain as previously calculated gain (Eq. 2.17b)
5: Update temporal gain Niter times (Eq. 2.17c)
6: Calculate relative cost drel(V , Ṽ ) (Eqs. 2.19- 2.20)
7: if drel < αONMF then
8: Store calculated temporal gain in G

9: else
10: Increment I and update B and G matrices (Eqs. 2.21- 2.24)
11: end if
12: end for
13: return G and B

2.2.2 Current and past ONMF (CPONMF)

A musical note usually requires more than one frame to be developed, for example, transients
and sustained parts in an harmonic note. This is the principle of this algorithm.

The ONMF algorithm which takes the current and the past frame to estimate a basis vector,
called CPONMF in this thesis for simplicity, is the second algorithm taken from [5].

The CPONMF algorithm is initialized with the same features than ONMF. Equations 2.16.

Afterwards, the CPONMF algorithm takes a new frame in order to calculate the tempo-
ral gain Gtmp and calculates the relative divergence drel in the same manner as shown in
Section 2.2.1, Equations 2.17 to 2.20.

The main difference between ONMF and CPONMF is the cost comparison. If the relative
cost function drel is below a threshold αCPONMF, the algorithm updates only the G matrix
with the temporal gain because the B matrix is able to represent the current frame.

If the relative cost function drel is above αCPONMF, the B matrix is not able to represent the
current frame anymore. Therefore, the CPONMF algorithm requires the current and the
past frame, instead of just the current one as in ONMF, in order to calculate a new basis
vector. For this variant a new matrix with unknown information about the current and the
past frame is established as UK×2. The U matrix is calculated as:

U(:, 1) = (X(:, tc − 1)−BG(:, tc − 1))p (2.25a)

U(:, 2) = (X(:, tc)−BGtmp)p (2.25b)
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2.2 Online Non-negative Matrix Factorization based algorithms 19

The U matrix describes the differences between the past frame and the estimated past frame
in column one and the differences between the current frame and the estimated current frame
in column two in order to store all the unknown information of these two frames.

After the definition of U , a new problem is presented. The algorithm has to represent U

with one new component. Therefore, two new matrices are defined as Bnew and Gnew, which
dimensions are K×1 and 1×2 respectively. It should be pointed out that both matrices are
initialized with random values. After the Bnew and the Gnew matrices initialization, they
are iteratively updated one hundred times (Niter = 100) with the multiplicative rules.

Gnew ←− Gnew.×
B

T
new

U

BnewGnew

B
T
new1

(2.26a)

Bnew ←− Bnew.×
U

BnewGnew
G

T
new

1GT
new

(2.26b)

Iterative multiplication rules presented in Equations 2.26 are quite similar than proposed in
Equations 2.9. Thus, this sub-step can be reduced to apply the NMF algorithm to U matrix
with one component, that is with I = 1. Once Bnew and Gnew matrices are obtained, B and
G matrices are updated as presented in Equations 2.22 to 2.24.

The block diagram shown in Figure A.3 is a graphical representation of the algorithm de-
scribed in this Section. The CPONMF pseudo code is presented in Algorithm 2.3, this
algorithm is quite similar than Algorithm 2.2 but it changes from line nine.

Algorithm 2.3 ONMF algorithm using the current and the past frame for basis vector
estimation
Require: Iteration number: Niter, spectrogram: XK×T , Threshold: αCPONMF

1: Initialize I = 1, t = 1, B and G (Eq. 2.16)
2: for t = 2 to T do
3: Update current frame (Eq. 2.17a)
4: Initialize temporal gain as previously calculated gain (Eq. 2.17b)
5: Update temporal gain Niter times (Eq. 2.17c)
6: Calculate relative cost drel(V , Ṽ ) (Eqs. 2.19- 2.20)
7: if drel < αCPONMF then
8: Store calculated temporal gain in G

9: else
10: Calculate U matrix (Eqs. 2.25)
11: Initialize Bnew and Gnew with random positive values
12: Update Bnew and Gnew Niter times (Eqs. 2.26)
13: Increment I and update B and G matrices (Eqs. 2.21- 2.24)
14: end if
15: end for
16: return G and B
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Chapter 3

Look-ahead Online Non-negative Matrix
Factorization

The main advantage of the iterative NMF algorithm is the accuracy, supported by the fact
that is the best algorithm in terms of separation quality as can be seen in Chapter 4. Nev-
ertheless, it has some disadvantages on account of its computational requirements and the
fixed number of components. The number of components I is not usually known beforehand,
which is a problem in most scenarios, and the full spectrogram introduces high latency and
demands lager memory for long time mixtures. In order to overcome these disadvantages,
Online NMF algorithms like ONMF and CPONMF were proposed [5], which principal ad-
vantage is the convergence speed and low memory consumption due to the use of only one
or two frames for basis vector estimation. However, the basis vector estimation is not that
accurate as NMF because usually more than two frames are required for a robust estimation.

A new variant of the Online NMF algorithm is presented in this Chapter which is called
Look-ahead ONMF (LONMF). LONMF is focused on finding the required number of frames
in order to estimate a new component. This procedure is explained in Section 3.1. In
Section 3.2, the separation quality of the four mixtures studied by [5] is compared between
NMF and the online algorithms.

3.1 LONMF Procedure

As explained in Section 2.2, ONMF algorithms are focused on studying the behavior of
the divergence of each estimated frame with a threshold αONMF as reference value. If the
divergence drel is above the threshold αONMF, a new basis vector has to be obtained as
the basis matrix B is not able to represent the current frame anymore. Therefore, ONMF
algorithms obtain a basis vector based on the current frame (ONMF) or on the current and
the past frame (CPONMF). αCPONMF is the same to αONMF.

Basically, the LONMF algorithm estimates basis vectors with support of more than two
frames if necessary. The basic procedure of LONMF can be motivated with Figure 3.1: If
the cost function drel is above the threshold αLONMF, which means that the new acoustical
event cannot be represented with current NMF model, the LONMF algorithm appends the

Cristian Felipe Martı́nez Ruiz

Masterarbeit

Institut für Nachrichtentechnik

RWTH Aachen University



22 Chapter 3 Look-ahead Online Non-negative Matrix Factorization

next frame to a buffer V buff. This is done until the cost function drops below αLONMF which
means that the acoustical event is over.

Afterwards, the new component is estimated by the NMF algorithm on V buff with Niter

iterations. Therefore, it obtains the basis vectors which belongs to the buffer. Thus it can
detect more than one component at the same time.

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

Frame: 3
Divergence: 0.03981

Divergence drel

Frames

Frame: 10
Divergence: 0.02282

Frame: 2
Divergence: 0.01556

drel
αONMF

Figure 3.1: Divergence of the first ten frames of the toy example with t0 = 2 and t1 = 10.

The explanation of the algorithm is done in detail in this Section and with the same audio
mixture used in Section 2.1 as example, that is an audio mixture with a percussive note and
an harmonic note. The input spectrogram used in this example is shown in Figure 3.2 which
axis of abscissas is in frames as reference for further Figures presented in this Section.
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Figure 3.2: Toy example mixture spectrogram.

The LONMF algorithm is initialized with the same matrices as ONMF and CPONMF as
shown in Equations 2.16. Afterwards, LONMF takes a new frame in order to calculate the
temporal gain Gtmp and it calculates the relative divergence drel in the same manner as
shown in Equations 2.17 to 2.20 of Section 2.2.1.
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3.1 LONMF Procedure 23

If the relative cost function drel is below αLONMF, G is updated with the temporal gain
calculated with the help of the current frame due to the fact that matrix B is able to
represent the current frame perfectly. Otherwise, if the relative cost function drel is above a
threshold αLONMF, B is not able to represent the current frame anymore. Therefore LONMF
needs to update B. This procedure is explained as follows.

Look-ahead basis matrix update

The aim of this method is to detect the number of frames which belongs to the new com-
ponent and to update B. This is done by storing frames in a buffer V buff. The maximum
buffer length is defined by the user with the parameter Tmax. A new loop is required in order
to examine more than one frame. This is why the current time frame index is saved in a
new variable called τ as shown in Equation 3.1a. The first frame stored in the buffer is the
previous frame to the current time tc, as presented in Equation 3.1b.

τ = tc (3.1a)

t0 = tc − 1 (3.1b)

Subsequently, the time index τ is incremented, a new frame is copied out of the spectro-
gram X (3.2a) and the temporal gain Gτ is updated by iterating Niter times as shown in
Equation 3.2c. Afterwards the frame Ṽ τ is estimated as the product between B and Gτ .
Equations 3.2 summarize this part of the algorithm.

V τ = X(:, τ) (3.2a)

Gτ = G(:, τ − 1) (3.2b)

Gτ ←− Gτ .×
B

T V τ

BGτ

B
T1

(3.2c)

Ṽ τ = BGτ (3.2d)

Once the current frame is estimated, the cost relative drel(V τ , Ṽ τ ) is calculated as exposed
in Equations 2.19 and 2.20. The relative cost of the current frame drel(V τ , Ṽ τ ) is compared
again against the threshold. If the relative cost is above the threshold αLONMF, the current
frame is appended to the buffer. Subsequently, the current time τ is incremented again and
the procedure described by Equations 3.2 is repeated until the last frame is reached, the
number of frames of the buffer is equal to Tmax or the cost function is below αLONMF. If
one of the last conditions becomes true, the last frame processed is the second index of the
buffer, that is t1. As an example, the relative cost function of the first ten frames of the toy
example is shown in Figure 3.1.
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24 Chapter 3 Look-ahead Online Non-negative Matrix Factorization

The LONMF algorithm is able to learn more than one component at the same time, this is
why a function which discards corrupted basis vectors is required. The basis vectors which
are not able to represent the buffer must be rejected.

V buff = X(:, t0 : t1) (3.3)

The buffer V buff has been defined with the frames between the indexes t0 and t1 from the
spectrogram as shown in Equation 3.3. Nevertheless, there are some scenarios where the
buffer has to be redefined in order to achieve a better basis vector estimation. Usually, the
first index t0 does not change because it belongs to the first frame of the buffer which cannot
be represented by the basis matrix.

There is one scenario where t0 can be updated, that is when the first component defined in
the initialization step is able to represent less than three frames of the spectrogram. This is
due to the fact that, as was exposed before, one note usually requires more than two frames
to be developed. Then the first component is discarded. This scenario is presented in this
example, thus the first index is updated to one and the first component is discarded.

There is one scenario where the second index is updated to obtain a better basis vector
estimation, that is when there are minimums in the cost function above αLONMF. In that
case, the second index is updated to the maximum-minimum of the cost function, otherwise it
does not change. A minimum in the cost function means that the acoustical event presented
in the buffer is over. Nevertheless, it does not finish due to the fact that there is a new event
present in the next frames or there is a past event which is larger in time. The maximum
of all the minimums is taken in order to detect the maximum number of frames with the
same buffer. Only the minimums between αLONMF, as lower limit, and two times αLONMF,
as upper limit, are considered.

In this toy example there is only one minimum at the frame seven (see Figure 3.1). Therefore
the second index is updated to that value and the buffer indexes are now one and seven
respectively.

Once, the buffer is defined with t0 and t1, the number of components is incremented and
a new vector with random values is appended to the basis matrix B. In order to estimate
the detected component, the NMF algorithm is applied to the buffer which estimates the
corresponding B and G in Niter iterations. It should be pointed out that only the last
random vector appended to the B matrix is updated due to the fact that the previous
learned components are good enough to estimate the previous frames.

Afterwards, the algorithm comes back to the main loop and continues the execution until the
last frame of the spectrogram is reached. There are some scenarios where the cost function is
above the threshold again for frames which belong to the last buffer considered. In this case,
the last components learned for this buffer are considered not good enough to represent the
buffer and they are discarded. Therefore, the number of components is incremented again,
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3.1 LONMF Procedure 25

one basis vector with random values is appended to the B matrix and the NMF algorithm
is applied again to the buffer. When this situation occurs, the NMF algorithm only updates
the discarded and the last basis vector keeping the previous basis vectors unalterable as
was exposed before. Figure A.5 shows the block diagram of the “Look-ahead basis matrix
update” procedure as reference.

In Figure 3.3, the divergence and the number of detected components of the toy example is
presented. In the toy example, the first index t0 for the first estimated component is one
and the first basis vector defined in the initialization step is considered corrupted because it
is only able to represent one frame. Thus it is discarded. Therefore, the first time that the
divergence is above the threshold, that is tc = 3, the algorithm estimates two components at
the same time, as can be seen in Figure 3.3. The first two detected components belong to the
saxophone note and the third component belongs to the tambourine note. This can be seen
in the graphic of the cost function in Figure 3.3 and it can be compared with the mixture
signal. The same conclusion can be achieved by looking the spectrogram of Figure 3.2 due
to the structure of the percussive and harmonic notes.
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Figure 3.3: Cost function and detected components for the toy example.

Therefore, when the algorithm concludes its execution, the obtained matrices for the toy
example, basis and gain, are shown in Figure 3.4. The basis and the gain matrices presented
in Figure 3.4 are quite similar to the matrices obtained by the NMF algorithm shown in
Figure 2.5. For the LONMF algorithm, the first component belongs to the on/off sets of the
harmonic note, as can be distinguished in the gain matrix; the second estimated component
belongs to the sustained harmonic note, as can be seen in the gain matrix; and the last
estimated component belongs to the percussive note as can be seen in the basis matrix at
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Figure 3.4: The basis and the gain matrices achieved for the toy example.

medium frequencies and in the gain matrix around the thirteenth frame.

This matches with was explained for Figure 3.3. These matrices are the input of the synthesis
and clustering block and the spectrogram of each component is shown in Figure 3.5. Where
it can be seen that it matches also with the last description due to the horizontal and vertical
structure of each component.
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Figure 3.5: Spectrogram of the estimated components of the LONMF algorithm.

The estimated signals are obtained in the synthesis and clustering block. The ISTFT trans-
forms the spectrogram of the estimated components (Figure 3.5) to the time domain as was
exposed in Section 2.1.4. Then, the estimated components are classified into each source.

The SDR of each estimated source obtained by each algorithm is presented in Table 3.1.
The SDR values are shown in decibels (dBs) and it can be seen that the estimated sources
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3.1 LONMF Procedure 27

Algorithm Tambourine Note Saxophone Note Full Mixture

NMF 35.60 44.76 40.18

ONMF 14.30 23.45 18.87

CPONMF 14.47 23.63 19.05

LONMF 33.25 42.41 37.83

Table 3.1: Toy example SDR comparison

by the LONMF algorithm is quite accurate compared with the NMF algorithm.

Therefore, for this example, LONMF achieves 18.95 dB and 18.78 dB more for each note
than ONMF and CPONMF respectively. Nevertheless, the NMF algorithm achieves 2.35 dB
more for each note than LONMF.

As a summary the pseudo-code of the LONMF algorithm is presented in Algorithm 3.1. The
first six lines are the same than Algorithm 2.2, afterwards the LONMF algorithm includes
the “Look-ahead basis matrix update” procedure.

Algorithm 3.1 Look-ahead Online Non-negative Matrix Factorization Algorithm.

Require: Iteration number: Niter, spectrogram: XK×T , Threshold: αLONMF, Tmax

1: Initialize I = 1, t = 1, B and G (Eq. 2.16)
2: for t = 2 to T do
3: Calculate temporal gain Gtmp and relative cost drel(V , Ṽ ) (Eqs. 2.17a- 2.20)
4: if drel < αLONMF then
5: Store calculated temporal gain in G

6: else
7: Save current time in τ and set t0 (Eqs. 3.1)
8: while B matrix is not updated do
9: increment τ and calculate temporal gain Gτ (Eqs. 3.2)

10: Calculate relative cost drel(V τ , Ṽ τ ) (Eqs. 2.19- 2.20)
11: if drel(V τ , Ṽ τ ) ≥ αLONMF or τ < Tmax or τ < T then
12: Append frame to the buffer
13: else
14: Discard B vectors and set t1
15: Call NMF algorithm with: V buff = X(:, t0 : t1), B, G and Niter

16: Update I and B and G matrices
17: end if
18: end while
19: end if
20: end for
21: return G and B
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28 Chapter 3 Look-ahead Online Non-negative Matrix Factorization

The LONMF algorithm can be divided in blocks as shown in the principal block diagram in
Figure A.4 as reference.

Improvements of Look-ahead basis matrix update

Two improvements of the LONMF algorithm were reached while LONMF was tested with
the four audio mixtures considered by [5].

The first improvement was applied to the procedure which calculates the second index t1
of the buffer V buff. This procedure calculates the maximum of all the minimums presented
in the cost function of V buff. There are some scenarios where the cost function variates as
noise. Therefore, the end of the acoustical event is not reached. This problem can be seen
in Figure 3.6.
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Figure 3.6: Maximum-minimum example.

There are four minimums in the cost function as can be seen in Figure 3.6. The frame which
has the maximum minimum is frame 18. Nevertheless, minimums like that can introduce
some errors in the basis estimation because usually this is not the end of the component.
These minimums are provided by the variance of the divergence. Therefore, in order to
avoid that type of minimums, an upper bound was established as the double of the threshold
αLONMF.

The second improvement was introduced while one mixture was being separated. This
mixture has a note with high amplitude and it is played while the other source is silent. In
this type of scenarios, the divergence undergoes a great increase. This considerable change
in the cost function can introduce some errors in the basis estimation. This error is because,
usually, the previous frame belongs to the acoustical event and is not considered.
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3.2 Comparison 29

Therefore, if the change in the cost function between two frames is larger than αLONMF a
big increase is considered. In that case the first index t0 of V buff is decreased if possible. An
example of this special case is shown in Figure 3.7.

In this example t0 is updated from 54 to 53. This is done in order to consider the frame
which is the beginning of the new acoustical event.
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Figure 3.7: High increment of the divergence.

This type of acoustical events are considered as special cases because the difference between
the estimated and the current frame is quite big. In addition, the learned components are
not able to represent this buffer. Therefore, if there is considered one frame more for a new
basis estimation, better separation quality can be achieved.

3.2 Comparison

Once the four NMF based algorithms were explained in detail, the comparison of the four
audio mixtures considered in [5] is presented in this Section. The audio mixtures are com-
binations of two harmonic and two percussive sources of six seconds each. Therefore, the
instruments played for every percussive signal are a tambourine and a drum respectively;
for every harmonic signal are a trumpet and a saxophone respectively as is shown in the
spectrograms of the sources, in Figure 3.8. The harmonic sources can be recognized due to
their horizontal structure and the percussive sources due to their vertical structure.
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Figure 3.8: Spectrograms of source signals.

In order to facilitate the comparison, the axis of abscissas of the spectrograms are presented
in time because of the rest of the Figures of this Section have the same axis.

The four mixtures considered by [5] are composed of one harmonic and one percussive source.
That is a linear combination of every percussive note with each harmonic note. The input
spectrogram of each mixture is shown in Figure 3.9.
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Figure 3.9: Spectrogram of each mixture.
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It can be seen that in mixture one, the energy of the harmonic signal is larger than the
percussive signal due to the fact that the intensity is higher in the horizontal structure of
the spectrogram. The same fact is presented in the spectrogram of the mixture two. It
also can be seen in Figure 3.8 because of the energy is more concentrated on the harmonic
sources compared with the tambourine source. The duration over time of each note in the
harmonic sources is larger, while the tambourine note appears more times in the mixture
but its duration is shorter.

On the other hand, the energy of the percussive signal, the drum source, is larger than the
harmonic signals presented in mixtures three and four. The intensity of the percussive signal
is larger than the intensity of the harmonic sources. Additionally, the drum notes are replied
with more frequency between two and four seconds, as can be seen in Figure 3.8. Therefore,
the energy depends on the amplitude and the duration of each note presented in the signal,
not in the type of source.

The mixtures are separated by all the algorithms explained in this thesis. The best SDR
results are achieved for the mixture one and the worst SDR results are achieved for the
mixture three. These mixtures are studied in detail in Sections 3.2.1 and 3.2.2 respectively.

3.2.1 Mixture with the best SDR values

All the NMF based algorithms achieve the best results for the mixture 1. The spectrogram
of the estimated sources by each algorithm are shown in Figure 3.10 in order to analyze
them.

If this Figure is compared with the spectrogram of the original sources (Figure 3.9), it can be
seen that the estimated spectrograms are good enough. Thus, the source separation achieved
by all the algorithms has high quality.

It also can be seen that the tambourine source estimated by ONMF has very little parts
of the saxophone signal around the frames 10 and 110. This is due to the fact that the
acoustical events presented in the harmonic source have begun at that frames and they are
not fully developed. The estimated basis vectors for both frames did not take in account
any previous or next frame and they cannot represent these frames correctly. This is why
part of the energy of the harmonic source is presented in the percussive source.

NMF ONMF CPONMF LONMF

Tambourine 25.76 20.76 21.94 24.07

Saxophone 30.57 25.57 26.75 28.88

Table 3.2: SDR of each estimated source by the four algorithms. Mixture 1.
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Figure 3.10: Estimated sources of mixture 1.

Nevertheless, as can be checked in Table 3.2, the estimated signals of the saxophone source
have better results than the estimated signals of the tambourine. This is due to the higher
energy level presented in the harmonic signal and the sustained harmonic notes which makes
more easy their estimation. In other words, there are not too many changes in the cost
function and the algorithms can distinguish easily which frame belongs to each component.

Looking at the SDR values of each algorithm, the LONMF algorithm has the best results
for online source separation algorithms while the SDR values of the NMF algorithm cannot
be achieved. However, the SDR values provided by LONMF are close to them. Therefore,
this is a good example of a mixture that can be easily separated.

Looking at the SDR values of online NMF algorithms, LONMF has achieved 2.13 dB more
than CPONMF and 3.31 dB more than ONMF.
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3.2.2 Mixture with the worst SDR values

The spectrogram of each estimated source is shown in Figure 3.11. All of the estimated
sources have parts of each other. Even the trumpet source estimated by NMF have some
little parts of the drum source. Nevertheless, the drum source was really good estimated if
it is compared with Figure 3.8. The ONMF algorithm has obtained the worst estimation of
the sources, due to the fact that it does not consider past or future frames for basis vectors
estimation as was explained in Section 3.2.1. CPONMF has estimated the sources better
than ONMF but parts of the trumpet signal take part in the drum estimated signal. This
is because both sources were presented in the same frame and they were synthesized in the
same component. The LONMF algorithm has done a good estimation of the drum and the
trumpet signal. However, few parts of the percussive signal are presented in the harmonic
signal.
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Figure 3.11: Estimated sources of mixture 3.

Table 3.3 summarizes the SDR values obtained by each algorithm for this mixture. The
SDR values of the estimated harmonic signal are worse than the SDR values of the drum
signal due to the higher energy of the percussive source. Nevertheless, in this mixture, the
best SDR values are achieved by NMF and again the closest SDR values are achieved by the
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LONMF algorithm, with almost 4.5 dB less for each signal. On the other hand, LONMF
has achieved 1.29 dB more than CPONMF and 6.18 dB more than ONMF.

NMF ONMF CPONMF LONMF

Drum 28.45 18.12 23.01 24.30

Trumpet 12.86 2.53 7.42 8.71

Table 3.3: SDR of each estimated source by the four algorithms. Mixture 3.

3.2.3 Separation quality of each mixture

The total SDR values obtained by all the algorithms are shown in Table 3.4 for each mixture.
As was discussed in previous Sections (3.2.1 - 3.2.2), the best algorithm in terms of separation
quality is the NMF algorithm. Focused on the online algorithms, the algorithm which
provides the best SDR values for all the mixtures is the LONMF algorithm with the exception
of the SDR value of the fourth mixture which is 0.09 dB lower than the ONMF algorithm.

Mixture
NMF ONMF CPONMF LONMF

SDR I SDR I SDR I SDR I

1 28.16 7 23.16 7 24.34 6 26.48 4

2 19.18 5 10.67 5 15.26 5 18.72 5

3 20.65 8 10.32 8 15.21 9 16.50 6

4 19.01 7 18.10 7 17.87 7 18.01 5

Table 3.4: Total SDR obtained by the four algorithms.

In this case, the LONMF algorithm has detected less components than the other online
algorithms and better SDR values are achieved. The NMF algorithm was applied with the
same number of detected components by the ONMF algorithm. If the NMF algorithm is
applied to the same mixtures with the same number of detected components by the LONMF
algorithm, the obtained SDR values are still better than LONMF but worse than the values
shown in Table 3.4.

Therefore, it can be concluded that for these four mixtures the LONMF algorithm provides
the best results in terms of separation quality for the online source separation algorithms
presented in this thesis.

In terms of simulation time, the NMF algorithm takes around 9.6 seconds to separate each
mixture, due to the number of iterations Niter which was set to 300. The online algorithms
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take around 3.2 second to separate the same mixtures due to the fact that Niter was set
to 100 for ONMF and CPONMF and it was set to 20 for LONMF. If Niter on the NMF
algorithm is reduced to 20 as the LONMF algorithm, the SDR values obtained are worse
than the obtained by LONMF for three of the four mixtures. The SDR value is just 0.4 dB
better for the other mixture. Therefore, the online algorithms converge more quickly than
the NMF algorithm. The computer used for this time measurement is a laptop equipped with
a 2.5GHz quad-core IntelR© Core

TM

i5-2450M processor, with 4GB of RAM and the OS is
WindowsR© 7 premium. The simulation was done in MATLABR© version 8.2.0.701(R2013b).
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Chapter 4

Results

A test set composed of 257 mixtures is considered in this Chapter in order to evaluate
the LONMF algorithm. The mixtures under test were taken from the Signal Separation
Evaluation Campaign website [7]. The test set is composed of audio mixtures from ten
songs. The sources are recordings from guitars, drums, basses, saxophones, harps, pianos,
voices and more.

In this thesis, each audio mixture is composed of two sources from the same song. The time
duration depends on the source. Thus two sources from different songs are not mixed. In
the end, 257 mixtures from 70 different sources are studied. The number of sources and
mixtures of each song is shown in Table 4.1.

Author - Song Sources Mixtures Time [s]

Bearlin - Roads 10 45 14

Tamy - Que Pena Tanto Faz 2 1 13

Another Dreamer - The Ones We Love 3 3 25

Fort Minor - Remember the Name 6 15 24

Ultimate NZ Tour 5 10 18

Glen Philips - The Spirit of Shackleton 8 28 22

Nine Inch Nails - The Good Soldier 7 21 21

Shannon Hurley - Sunrise 8 28 23

Jims Big Ego - Mix tape 8 28 20

Vieux Farka Touré - Ana 13 78 30

Total 70 257 -

Table 4.1: Sources considered in the test set.

The separation quality obtained by the LONMF algorithm is compared with NMF, ONMF
and CPONMF in this Chapter. Two quality measurements are used to compare the algo-
rithms. The first one is the Signal-to-Distortion Ratio (SDR) described in Section 2.1.5. The
second one is the segmental SDR which is the same that the segmental SNR used by [8].
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38 Chapter 4 Results

There are some input parameters required for each algorithm. The number of components
used for the NMF algorithm is a fixed number, I = 20, for each mixture due to the fact
that they are not known beforehand. The number of iterations Niter is set to 300. The
online algorithms proposed by [5] require more parameters like the number of iterations, the
threshold and the seed which generates random numbers. For both algorithms, ONMF and
CPONMF, Niter is set to 100, α is set to 0.02 and the seed is set to one as was presented
in [5] as default parameters for all online NMF based algorithms. The parameters used by
NMF, ONMF, CPONMF and LONMF for the STFT procedure are the same as described
in Section 2.1.

The evaluation of the LONMF algorithm was done for different threshold values αLONMF ∈
[0.00, 0.05] with a step of 0.001 in order to find the best range of threshold values. The
threshold αLONMF is the main parameter of LONMF because of it influences the separation
quality and also the execution time. This evaluation was done for each mixture with ten
different seeds to generate random values to initialize basis vectors as exposed in Chapter 3.
The number of iterations Niter was set to 25 and the maximum number of frames in the
buffer Tmax was set to three seconds which is 65 frames.
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Figure 4.1: Mean Values obtained by LONMF. Niter = 25, Tmax = 3 s.
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The first simulation produced the main values of SDR, segmental SDR and detected com-
ponents shown in Figure 4.1. The standard deviation of each mean value is also shown.

Therefore, the maximum SDR value achieved by LONMF is 9.889 dB. Nevertheless, this SDR
value is obtained for αLONMF set to 0.005. This low threshold value produce a high memory
consumption due to the fact that LONMF has to obtain more components to represent each
buffer (138.3 in mean). It should be pointed out that if αLONMF is extremely low, LONMF has
to use more basis vectors to represent the buffer. Then, LONMF requires more components
to overcome αLONMF. The maximum segmental SDR value is 11.99 dB and is achieved for
αLONMF set to 0.012. With this threshold, LONMF achieves 37.5 components in mean which
is almost one hundred components less than the number of components achieved for αLONMF

set to 0.05.

Note that for αLONMF set to zero, LONMF has to estimate perfectly each buffer with the
maximum number of frames allowed, that is the third part of the length V buff. For αLONMF

set to infinity, each component achieved is good enough to represent V buff. Therefore the
separation quality is extremely low.

Therefore, the optimum threshold αLONMF range for LONMF is from 0.015 to 0.020. If
the threshold decreases, better separation quality is achieved. Nevertheless, the number
of detected components is higher and the latency, the memory and the execution time are
increased. Thus, there is a trade off in the choice of αLONMF between the convergence speed
and the separation quality. On the other hand, the number of detected components is not
that significant for this threshold range compared with lower αLONMF values.
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Figure 4.2: Mean SDR and I values vs. Number of Iterations. αLONMF = 0.02, Tmax = 3 s.

In another simulation, the influence of the number of iterations on the separation quality is

Cristian Felipe Martı́nez Ruiz

Masterarbeit

Institut für Nachrichtentechnik

RWTH Aachen University



40 Chapter 4 Results

evaluated. Niter was evaluated for the range [10, 40].

In Figure 4.2, the mean SDR and I values are presented. The best separation quality is
achieved for Niter set to 11. Nevertheless, the number of detected components and the
memory consumption are increased. Therefore, it can be seen that the optimum number
of iterations is between 22 and 26 in order to obtain a better separation quality. The best
separation quality is done for Niter equals to 25. It should be pointed out that this simulation
was done with αLONMF set to 0.02, the same threshold as ONMF and CPONMF, and ten
seeds for all the mixtures.

Note that for Niter set to zero, LONMF has to estimate the buffer V buff without iterations.
Thus, V buff is estimated with basis vectors initialized with random values. Therefore, the
number of detected components is increased and also the memory consumption. For Niter

set to infinity, the estimation of V buff is better and the number of detected components will
be lower. Nevertheless, the execution time is increased as well.

The last evaluation was done in order to find the maximum number of frames in the buffer
Tmax which provides better separation quality. In Figure 4.3, the mean values of SDR and
detected components are shown.
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Figure 4.3: Mean SDR and I values vs. Maximum number of frames. αLONMF = 0.02,
Niter = 25.

If Tmax is increased to 3.5 seconds (77 frames), the SDR mean value is increased also and the
mean I value remains constant. Therefore, in order to increase the SDR values a bit, Tmax

can be increased. It should be pointed out that the execution time is increased a few.
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The number of frames which belongs to Tmax is defined by Equation 4.1.

Fmax =

⌊

TmaxFs + 1 + hs

hs

⌋

+ 1 (4.1)

Note that for Tmax set to zero seconds, the maximum number of frames for V buff is two.
Therefore, the behavior of LONMF is close to CPONMF with one the difference, the ini-
tialization of the basis and gain vectors is with random values for LONMF and with the
unknown information for CPONMF as explained in Section 2.2.2. If Tmax is set towards in-
finity, LONMF fills the buffer with the rest of frames of the mixture until the end. Therefore
the execution time, the memory consumption and the latency are increased.

In order to compare the results of each algorithm, the mean SDR, segmental SDR and the
number of components obtained for all the mixtures is shown in Table 4.2. It should be
pointed out that the threshold is set to 0.02 for all the online algorithms.

NMF ONMF CPONMF LONMF

SDR 11.89 8.11 8.19 8.18

Segmental SDR 12.61 11.93 12.01 11.89

I 20 19.86 19.81 16.36

Table 4.2: Mean Values obtained by NMF, ONMF and CPONMF in test set.

The SDR values obtained by the online NMF algorithms are almost the same. Nevertheless
looking at the number of detected components, the LONMF achieves less components in
mean with the same threshold than ONMF and CPONMF. Which means that the LONMF
algorithm is able to obtain almost the same separation quality with less memory consumption
and latency.

In order to compare the execution time of all the algorithms, a simulation was done in the
same computer. It was done with the optimum parameters obtained for LONMF. That
is: the threshold αLONMF was set to 0.02 ,to make the results comparable; the number of
iterations Niter was set to 25 and the maximum number of frames Tmax was set to 77 (3.5
seconds). It should be pointed out that this simulation was done for ten mixtures selected
randomly between the 257 mixtures and a hundred of times. The used computer is a laptop
equipped with a 2.5GHz quad-core IntelR© Core

TM

i5-2450M processor, with 4GB of RAM
and the OS is WindowsR© 7 premium. The simulation was done in MATLABR© version
8.2.0.701(R2013b).

Therefore, the LONMF algorithm can obtain almost the same SDR values in mean than
CPONMF for less time. This is due to the fact that the number of iterations is lower and
it can detect more than one component with the same buffer. On the other hand, if the
threshold is decreased between 0.015 and 0.018, a better estimation is achieved. Between
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NMF CPONMF LONMF

Time [s] 47.08 18.41 14.58

SDR 8.38 4.03 4.32

Segmental SDR 10.89 4.74 5.06

α - 0.02 0.02

Niter - 100 25

Tmax - - 3.5

Table 4.3: Mean time obtained by NMF, ONMF and CPONMF in test set.

0.6 dB and 0.14 dB compared with CPONMF as can be seen in Figure 4.1. Nevertheless,
the mean time is increased between 8.7 and 3.42 seconds for mixture.

It should be pointed out that, it has been demonstrated that the best algorithm in separation
quality is the NMF algorithm and the online algorithms are faster than NMF.

Institut für Nachrichtentechnik

RWTH Aachen University

Cristian Felipe Martı́nez Ruiz

Masterarbeit



43

Chapter 5

Conclusion

The Blind Source Separation (BSS) problem is presented in many systems which obtain
information from more than one source. Therefore, an algorithm able to solve this problem
is required in the signal processing world. This thesis is focused on unsupervised audio source
separation.

The algorithms based on Non-negative Matrix Factorization (NMF) are the most extended in
order to solve the BSS problem. The basic NMF algorithm was proposed by Lee and Seung [4]
as the iterative NMF. The iterative NMF algorithm is able to solve the unsupervised source
separation problem in most scenarios with great separation quality. Basically, the goal of
NMF is to factorize an input non-negative matrix into the product of two non-negative
matrices called basis and gain matrices. The basis matrix contains the components which
are presented in the mixture. The gain matrix contains the projection of each component in
the time of the mixture. In audio source separation, the non-negative matrix used as input
is a frequency-time representation of the mixture called spectrogram. Therefore, a mixture
larger in time produces a larger spectrogram.

Nevertheless, NMF has some disadvantages on account of its computational requirements,
the fixed number of components I which is a parameter defined by the user. The number
of components is the number of acoustical events presented in the mixture which can be
approximated to the number of notes. However, some notes are composed of more than one
component and this number is not usually known beforehand. Additionally, NMF requires
the complete spectrogram of the mixture which demands larger memory and introduces high
latency for larger mixtures. Thus, this algorithm is not able for real time scenarios.

In order to overcome the disadvantages of NMF, Online algorithms based on NMF were
proposed [5]. The basic online NMF (ONMF) algorithm does not require a fixed number
of components giving it a degree of blindness to the solution of the BSS problem. ONMF
divides the input spectrogram in time slots called frames. Therefore, the aim of the basic
ONMF algorithm is to estimate each frame with the product of a basis and a gain vectors.
In order to evaluate the accuracy of the estimated frame against the current frame, both are
compared using the Kullback-Leibler divergence as a cost function. Then, the divergence is
compared against a prefixed threshold.

This comparison is the fundamental point of this algorithm because the estimation of the
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new basis vector is decided in this step of the ONMF procedure. If a new acoustical event is
presented, the basis matrix is not able to represent it. Therefore, the divergence will be above
the threshold and a new component is detected as the difference of both frames. It should
be pointed out that the difference has to maintain positive values, the algorithm is based
on non-negative matrices, then the negative values are set to zero and some information is
missing with this procedure. This is why some variants of ONMF were presented in [5].

The best algorithm in terms of separation quality presented in [5] is a variant of ONMF.
This algorithm requires the current and the past frame for a basis vector estimation, in this
thesis is called Current and Past ONMF (CPONMF). When an acoustical event cannot be
represented by the basis matrix, CPONMF calculates the difference between two real and
two estimated frames, that is the current and the past frame. This difference is defined as the
unknown information matrix. As ONMF, the unknown information must be a non-negative
matrix. Afterwards, CPONMF applies NMF with the unknown information matrix in order
to obtain the basis matrix. There are some missed information with this procedure but the
basis estimation is better than ONMF.

Thus, the online algorithms decrease the execution time, the memory consumption and the
latency compared with NMF due to the fact that both algorithms use one or two frames
instead of the full spectrogram. Nevertheless, some acoustical events require more than two
frames to be fully developed. Therefore, the use of just one or two frames can produce some
errors in the basis vector estimation. This principle has motivated the algorithm presented
in this thesis, the Look-ahead Online NMF (LONMF) algorithm.

The goal of the LONMF algorithm is to provide a better basis vector estimation with the
help of more than two frames if necessary. Basically, LONMF estimates the number of
frames which belongs to an acoustical event and then estimates its components. If the basis
matrix is not able to represent an acoustical event, LONMF appends the frames of the event
in a buffer. Then LONMF applies NMF over the buffer in order to estimate its components.
Therefore, this algorithm estimates more than one component with the same buffer. This
happens when the buffer has more than one note or the note in the buffer is composed of
more than one component as the harmonic notes.

LONMF was evaluated with a test set composed of 257 mixtures of different time length.
As presented in Chapter 4, the SDR values obtained by NMF are unreachable in most cases
because of is the best algorithm in terms of separation quality. LONMF provides almost
the same separation quality than the other online NMF algorithms for the same threshold.
Nevertheless, the execution time is lower for LONMF. This means that for a lower threshold,
the estimation is better due to the fact that the number of detected components are closer
to the real. However, as exposed before the execution time and the memory consumption
increases.

The main disadvantage of LONMF is that in some cases, a considered buffer cannot be
separated properly even with the maximum number of components allowed. The maximum
number of components permitted was set to the third part of the size of the buffer. This
definition was done due to a trade off between quality estimation and time. When that
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maximum number is reached, LONMF continues the execution with the next frame after
the buffer and store the last basis vectors detected to the basis matrix. Therefore, the last
basis vectors detected are not a good estimation of the buffer. Then, here is a point of future
research. It is important to estimate better the size of the buffer or use another type of cost
functions in order to obtain better separation quality.

This disadvantage can be resolved if the number of iterations is increased. Nevertheless, the
execution time and the memory consumption are increased.
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Appendix A

Non-negative Matrix Factorization Algorithms

The block diagram of the NMF algorithm is presented in Figure A.1.

Define Number of
Components (I)

Initialize BK×I and GI×T

with random values

Update G Matrix

Update B Matrix

Iterations
number
reached?

Exit

yes

no

Figure A.1: NMF Block diagram.
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The Block diagram shown in Figure A.2 is a graphical representation of the basic ONMF
algorithm described in Section 2.2.1.

G = 1, I = 1, t = 1
B = V = X(:, t)

(First Frame)

t = t + 1
V = X(:, t)
(Next Frame)

Gtmp Calculation
Calculate Cost

Cost(t) <
αONMF?

Update G Matrix

Last Frame?

Exit

Detected component
I = I + 1
Calculate new
Basis vector

Update B Matrix

yes

yes

no

no

Figure A.2: ONMF Block diagram.
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The Block diagram shown in Figure A.3 is a graphical representation of the CPONMF
algorithm described in Section 2.2.2.

G = 1, I = 1, t = 1
B = V = X(:, t)

(First Frame)

t = t + 1
V = X(:, t)
(Next Frame)

Gtmp Calculation
Calculate Cost

Cost(t) <
αCPONMF?

Update G Matrix

Last Frame?

Exit

Detected component
I = I + 1

Initialize Bnew and Gnew

Iterate over Bnew

and Gnew matrices
Update B Matrix

yes

yes

no

no

Figure A.3: CPONMF Block diagram.
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The LONMF algorithm explained in Section 3.1 is sumarized in the Block diagram shown
in Figure A.4.

G = 1, I = 1, t = 1
B = V = X(:, t)

(First Frame)

t = t + 1
V = X(:, t)
(Next Frame)

Gtmp Calculation
Calculate Cost

Cost(t) <
αLONMF?

Update G Matrix

Last Frame?

Exit

Look-ahead basis
matrix update

yes

yes

no

no

Figure A.4: LONMF Principal Block diagram.
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The block diagram of the ”Look-ahead basis matrix update” procedure is shown in Figure A.5

τ = t

Save t0

τ = τ + 1
Calculate cost

cost(τ) <
αLONMF or
τ = Tmax?

Append frame
to the buffer

Obtain t1

Discard B Vectors

Update G and
B matrices

with NMF on Buffer

yes

no

Figure A.5: LONMF Update B Matrix Block diagram.
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