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spectroscopy.
1. Introduction

Multi-walled carbon nanotubes (MWCNTs) were first imaged 
and their structure subsequently identified by Endo and Iij-
ima, respectively [1,2]. Soon after, single-walled carbon nano-
tubes (SWCNTs) were synthesized and characterized [3]. Since 
then, carbon nanotubes (CNTs) attracted the attention of 
numerous scientists due to their fascinating electronic, 
mechanical, thermal, and electrochemical properties [4–6]. In 
order to modify the electronic properties of CNTs and induce 
surface reactivity, doping with B, N, BN, Si, P could
be achieved [7]. Basically, doping results in an excess or defi-
ciency of electrons which could be then used to fabricate elec-
tronic devices [7,8].

Defect free and undoped CNTs are chemically inert and 
due to their large size (micrometers in length), CNTs are not 
readily dispersible in solvents. This fact makes difficult some 
applications needing uniform CNT dispersions in aqueous 
media. However, CNTs can be dispersed in water by a single 
step synthesis-functionalization with oxygen-derivatives [9]. 
In that case, oxygen-derivatives concentrate on the CNT sur-
face and create the electrostatic stability required for creating
1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.carbon.2014.06.014&domain=pdf
http://dx.doi.org/10.1016/j.carbon.2014.06.014
mailto:martinc@ing.uc3m.es
http://dx.doi.org/10.1016/j.carbon.2014.06.014
http://dx.doi.org/10.1016/j.carbon.2014.06.014
http://dx.doi.org/10.1016/j.carbon.2014.06.014
www.sciencedirect.com
http://www.elsevier.com/locate/carbon


Fig. 1 – Schematic representation of the experimental

approach used to anchor Cu-NP on the CNTs surface. (A

colour version of this figure can be viewed online.)
a uniform colloidal dispersion [10]. Furthermore, the combi-

nation of two nanomaterials such as CNTs and Cu-NPs could 
result in a novel hybrid material useful in the fabrication of 
sensors or catalysts [11,12]. Examples of catalytic applications 
can be found with Pd- and Pt-NPs anchored to CNTs [13–17], 
and alloys of Pt-Sn [18], Pt-Co [19], and Fe3O4-Pt [20]. More 
recently, using a polymer assisted route, a variety of metal 
NPs (e.g. Au, Ag, Pd and Pt) were attached to the surface of 
CNTs. Interestingly, these materials exhibited a significantly 
enhanced catalytic activity in the reduction of 4-nitrophenol 
to produce 4-aminophenol [21]. In this context, the modifica-

tion of CNTs with Cu-NPs or its oxides [22–24] also becomes an 
attractive possibility to use these hybrid materials as nano-
electronic devices [23] or as novel catalysts when used as 
electrodes for the electrochemical sensing of carbohy-drates 
[22,25–27].

In a variety of methods based on capillary electrophoresis 
(CE), oxidized CNTs were added to the background electrolyte 
(BGE) in order to enhance the resolution of electrophoretic 
separation [28]. However, for the detection of carbohydrates, 
CNTs were preferably used as a matrix so that Cu-NPs could 
be deposited on the outer surface of CNTs [22,27] or graphene 
[25,29]. It is noteworthy that the literature is very scarce on 
topics related to applications of metal NPs-CNTs hybrid mate-

rials in aqueous media. One reason could be due to the fact 
that CNTs tend to aggregate and metals are also insoluble 
(dispersible) in water. Therefore, having uniform dispersions 
of CNTs is a real challenge which must be overcome when 
dealing with analytical applications in aqueous media. Over-

all, the high surface-to-volume ratio of NPs, along with the 
ability to control the particle size, provides a unique opportu-
nity for developing further catalytic applications.

In order to anchor NPs on the surface of CNTs, different 
methods such as the reduction of metal salts [30–33], deposi-
tion of NPs on CNTs by thermal evaporation [23] or using 
hyperbranched polymers [21] can be used. Specifically, for the 
deposition of Cu-NPs on CNTs, numerous authors have 
reported different approaches including calcination treat-
ments [24], chemical reduction [22], and microwave radiation 
[34]. In this paper, we first report on the Cu-NPs encapsulation 
over the CNTs surface using microwave radiation (MW), a 
method which appears to be a very efficient when compared 
to conventional methods [35]. It is known that CNT reach very 
high temperatures and weld or reconstruct under short MW 
pulses [36]. The presence of impurities such as Fe (catalyst 
residues) or even amorphous carbon may also contribute to an 
intense heating (Joule effect).

In this paper, we report the CNT functionalization with 
carboxylic oxygen-derivatives, and the simultaneous anchor-
age with Cu-NPs using H2O2 in conjunction with UV radiation. 
Furthermore, this hybrid material is easily dispersible in 
water. The anchorage of Cu-NPs to the CNT surface was stud-
ied as a function of the exposure time to microwave radiation. 
The produced materials were characterized by a combination 
of different spectroscopic and microscopy techniques. In 
order to assess their analytical and catalytic characteristics, 
the synthesized hybrid material was used for the carbohy-
drates reduction in aqueous media, in order to improve the 
detection of different carbohydrates including glucose, fruc-
tose and sucrose via CE.
2. Experimental

2.1. Chemical methods

Hydrogen peroxide 30% was supplied by Panreac; ethanol, fer-
rocene (FeCp2), toluene and aqueous solutions of 0.01 N 
sodium hydroxide volumetric standards were supplied by 
Sigma Aldrich; sodium hydroxide and Cu standard solutions 
of 1000 mg/L were purchased by Scharlau Chemie. Nitric acid 
(65%) was supplied by Suprapur. Sucrose, D-glucose, and D-
fructose standards, from Supelco Analytical, were prepared 
in aqueous solution at 500 ppm.

CNTs synthesized in the presence of minute amounts of 
oxygen (COx) were synthesized by chemical vapor deposition 
(CVD) as described by Botello-Mé ndez et al. [9]. Concentra-
tions of 1% ethanol, 5% ferrocene and 94% toluene were 
selected because they provided highly crystalline CNT materi-

als. For comparison purposes CNTs were also prepared under 
the same conditions but in the absence of alcohol; they are 
labelled as MWCNT in the text. As produced CNTs (COx) were 
then mixed with ethanol before the microwave treatment 
because it has been observed that the liquid reduces over-
heating (Joule effect). Subsequently, oxidized CNTs (oxdCOx) 
were prepared by a method reported in our previous publica-
tion by Martin et al. [10]. In particular, UV radiation (at 254 nm) 
was applied to CNTs suspensions in water peroxide during 30 
min. The suspensions were then filtered, washed and dried 
several times. This treatment permits the carboxyl-ation of 
CNTs increasing their dispersion ability when com-pared to 
pristine CNTs.

Fig. 1 shows the schematics depicting the experimental 
approach used in this work for anchoring Cu-NPs to CNTs, 
employing Cu(NO3)2 as a precursor and microwave radiation 
as the driver for promoting Cu-NPs encapsulation.

In a typical experiment, 100 mg of oxdCOx were dispersed 
in a 0.1 N ethanol solution of Cu(NO3)2 which was dispersed 
ultrasonically during 5 min. This dispersion was then intro-
duced in a microwave oven for domestic use and then heated 
for different times. This resulted in the encapsulation of Cu-
NPs by graphene-like layers (see below). The dispersions were
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then cleaned and filtered several times. Two treatment times

were used: 1 and 2 min. Sample Cu2min presented the best

dispersibility so this study was concentrated on this sample.

2.2. Instrumentation

X-ray photoelectron spectroscopy (XPS). Two XPS instruments

were used: an Axis-Ultra (Kratos) and an Omicron. Surface

chemical analysis was performed by N2 adsorption measure-

ments at 77 K with a BELSORP-max (Bel Japan Inc). Samples

were pressed into small pellets of 15 mm diameter, mounted

on the sample holder and introduced into the chamber were

they were degassed and vacuumed.

Titration. Carboxylic group concentration present within

the CNT surface was measured using a Methrom 916 Ti-Touch

Potentiometric compact titrator equipped with a Methrom

800 Dosino and a Unitrode pH-meter. In a typical experiment,

10 mg of COx or oxdCOx were added to 40 mL of Milli-Q water

and then ultrasonicated for 1 min (VCX 500–750 of Son-

ics&Materials, 750 W and 20 kHz). Subsequently, a 0.01 N

NaOH solution was added at a rate of 1 mL/min by 0.01 mL

increments during mechanical stirring and the carboxylic

acid concentration was determined from the equivalence

point.

Transmission electron microscopy (TEM) analyses were carried

out using a Zeiss EM-10C with a field emission gun operating

at 60–100 kV. A suspension of CNTs in isopropanol was pre-

pared ultrasonically and a drop was deposited onto lacey car-

bon grids.

High resolution transmission electron microscopy (HRTEM) and

energy-dispersive (EDX) analyses were performed in a JEOL-

200 FX II microscope operated at 200 keV. TEM grids were pre-

pared as described above taking the precaution of using Ni

grids instead of Cu grids and identify the presence of Cu-NPs.

Thermogravimetric analysis (TGA) was performed in a Perkin

Elmer 6000STA system heating from 50 �C to 900 �C. Approxi-
mately 5 mg of sample were heated in an open Pt crucible at a

rate of 10 �C/min under an air flow (20 mL/min).

Elemental analysis (EA)were carried out with a Perkin Elmer

1100B atomic absorption spectrophotometer, and by disper-

sive energy fluorescence X-ray (ED-XRF) in a SPECTRO XEPOS

spectrometer in a He atmosphere with a Pd window, 50 W X-

ray excitation source and SDD detector. Determination of Cu

was done digesting 4 mg of samples in HNO3 during 15 min

in a 600W microwave chamber (Milestone Ethos D), and dis-

solved in 50 mL of Milli-Q water prior to measurements. Anal-

ysis of the as-synthesized CNTs had 3.3 wt% Fe; once

oxidized, iron content was reduced to 1.8 wt%. Cu-NPs con-

centration in the hybrid CNTs materials yielded

0.27 ± 0.01 mg Cu/g and 0.41 ± 0.03 mg Cu/g for Cu1min and

Cu2min, respectively.

Raman spectroscopy measurements were carried out in via

Renishaw confocal microscope based Raman spectrometer

using the 514.5 nm laser excitation. For each sample, various

spectra were recorded in different places in order to verify the

homogeneity of the sample.

Capillary electrophoresis (CE) experiments were carried out

using a PA-800plus system from Beckman Coulter equipped

with a DAD detector, set at 265 nm. Silica capillaries of

75 lm (inner diameter) were purchased from Polymicro Tech-
nologies. They were cut in pieces with a total length of 58 cm

(48 cm effective length). New capillaries were conditioned

with 1 M sodium hydroxide (10 min, 20 psi) and Milli-Q water

(5 min, 20 psi). Fused silica capillaries were flushed with 0.1 M

NaOH during 10 min, then, Milli-Q water was flowing during

3 min, and finally 75 mM NaOH BGE during 7 min, at 20 psi.

Carbohydrate samples consisting of fructose, glucose and

sucrose were diluted in Milli-Q water at 500 ppm, and they

were then injected at 0.5 psi within 10 s period. Separations

were performed at a constant voltage of 12 kV and cassette

temperature of 20 �C. COx, oxdCOx and Cu2min (from 0.003

to 0.008 mg/mL concentrations) were dispersed in 75 mM

NaOH using a 6 mm probe sonicator (model VCX-130-130W

from Biotech) during 10 min at 60 Hz.
3. Results and discussion

3.1. As produced and oxidized CNTs

The functionalized surface of CNTs is crucial for achieving 
uniform dispersions in aqueous media. In this context, XPS 
analyses were used to characterize as produced and oxidized 
COx CNTs. XPS provides insightful information regarding the 
binding energies of carbon compounds. Fig. 2 plots deconvo-
luted XPS C1s and O1s spectra indicating the percentages of 
carboxylic (by OAC@O peak), alcoholic (by CAO peak) and lac-
tones (by C@O peak) groups identified on the CNTs surface.

Deconvolution of the C1s peak for COx CNTs(left) shows a 
main peak centered at 284.5 eV, which is attributed to the gra-
phitic structure (sp2 hybridized carbon bonding) [24]. Peaks 
centered at 285.9, 287.3.0 and 289 eV correspond to functional 
groups consisting of carbon atoms attached to different oxy-
gen-containing moieties such as alcohol, lactones and car-
boxylic groups, respectively [37]. XPS analysis of the O1s peak 
(Fig. 2, COx) also confirms the presence of carboxylic groups 
on the CNTs surface (binding energy of 534.0 eV). Another 
peak was also identified at 530.7 eV, which corre-sponds to 
COx CNTs containing a large number of alcoholic groups 
(36.7%), probably due to the presence of ethanol dur-ing 
synthesis. It is noteworthy that after the oxidation treat-ment 
there is a significant increase in the number of defects within 
the CNTs samples such as the increase of aliphatic groups, 
from 15.87% (COx) to 23.90% (oxdCOx). In addition, the 
concentration of carboxylic groups (see C1s plots) increased 
from 6.49% (COx) to 8.54% (oxdCOx) after oxidation; the 
nanotube dispersibility in aqueous media enhances sig-

nificantly after oxidation (see below).

In order to confirm the presence of functional groups, acid–
base titration experiments were also carried out to determine 
the concentrations of carboxylic groups on the CNTs surface 
(see Table S1 in Supplementary data). For exam-ple, the 
carboxylic acid deposited on the CNT surface increased up to 
21% after the H2O2/UV oxidation treatment. The dispersion 
stability also significantly increased in time as illustrated in 
Fig. 3. Clearly, oxdCOx possess a better liquid stability and the 
suspension remained homogeneously dis-persed after 10 
days. COx CNTs are only stable for few days after the 
dispersion preparation, whereas the pristine CNTs (pure 
carbon) settle down immediately after sonication.
3
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Fig. 2 – XPS spectra corresponding to the carbon (C1s) and oxygen (O1s) binding energy of COx (left) and oxdCOx (right). The

spectra were deconvoluted and the percentage (m/m) of the differential functional groups of alcohols (CAO), lactones (C@O) or

carboxylic (COOH) are indicated.

Fig. 3 – Photographs of aqueous CNT suspensions showing MWCNT, COx, and oxdCOx immediately after sonication and

15 days after sonication.
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3.2. Encapsulation of Cu-NPs on carbon nanotubes

Since oxdCOx displays a more stable dispersion when com-

pared to COx CNTs, this sample was selected as support for 
depositing Cu-NP following the procedure described in the 
Section 2. TEM studies were used to confirm the anchorage of 
Cu-NP on the surface of oxdCOx.

Fig. 4 shows TEM images of as synthesized CNT samples 
(COx), oxidized (oxdCOx) and the hybrid material after a 
2 min microwave treatment. These images reveal a high 
amount of Fe-containing particles inside CNTs and also 
points that Cu-NPs were deposited in a very low proportion 
on the surface of CNTs. No visible changes in the morphology 
of CNTs were observed after the Cu-NPs were anchored. This 
result is noteworthy since strong chemical oxidation of multi-

walled CNTs usually damages the tubes surface [37]. Accord-
ing to our measurements, the Cu-NPs size distribution is cen-
tered at 10 ± 2 nm.

In order to confirm that the anchored particles on the sur-
face of the tubes consisted of Cu, EDX analyses were carried 
out using nickel TEM grids. In Fig. 5 the EDX spectrum of a 
spot (upper) is presented. The presence of Cu was clearly 
observed by observing the Cu-K (8.6 keV) and Cu-L (1.0 keV) 
transitions. In addition, Fe and Ni signals can be observed 
also; the signal from Fe could arise from the catalyst residues 
observed within the nanotubes (see Fig. 4) and the Ni signal 
must come from the grid background. Elemental analyses 
show that the Fe:Cu atom ratio is 50:1, a very high ratio that 
makes difficult the determination of Cu by dispersive tech-
niques. To prove that Fe particles are not at the surface of the 
CNTs a surface technique must be used.

The morphology of hybrid Cu2min and the way Cu-NPs 
anchored on CNTs were also studied by HRTEM. Fig. 6 shows
Fig. 4 – TEM images corresponding to COx and oxdCOx (upper) a

Cu2min some particles can be identified at the surface of a CNT;

CNT and at the left, Cu particles in the surface of CNT.
an image of the Cu2min sample showing a Cu-NP with lattice 
fringes of ca. 0.208 nm. This interlayer spacing is consistent 
with the (1 1 1) planes of Cu [29]. The (1 1 1) Fe plane also has 
a similar spacing but the fact that the examined particle is 
at the surface of a tube makes us to attribute this particle to 
Cu.

To ascertain if Fe particles could be located not only within 
the tubes but also at their surface, XPS analysis was per-
formed. Fig. 7 shows the results for the energy region corre-
sponding to Cu for two samples, the oxidized COx and 
Cu2min. It can be clearly observed the signal from Cu 
(933 keV) although its intensity is very low. No signal could 
be detected for Fe (see complete XPS spectrum in Supplemen-

tary data Fig. S3). Since XPS signals can only come from a very 
few atom layers from the surface, the absence of Fe signal is a 
clear indication that Fe particles are located within the tubes 
and that Cu particles are at the surface.

We also noted that Cu-NPs deposited on CNTs appear 
encapsulated by a few graphitic layers. This observation is 
noteworthy since it is not common to find Cu-NPs surrounded 
by graphitic layers after carrying out a chemical NP anchorage 
[24]. Similar results have been reported when depositing NPs 
under abrupt conditions [38]. Therefore, Cu-NPs appear to be 
firmly anchored to the surface of CNTs, thus making Cu-NPs 
highly stable in alkaline aqueous solutions used for the ana-
lytical studies described below (see Section 3.3).

The Raman spectra (see Fig. S1 in Supplementary data) 
were recorded for pristine COx, the oxidized CNTs (oxdCOx) 
and Cu2min samples. Each spectrum consists of three char-
acteristic bands, namely the D-band located at ca. 1360 cm�1 

(induced by the presence of amorphous carbon and defective 
sites embedded in sp2 hybridized lattices), the G-band located 
at ca. 1588 cm�1 (related to the in-plane tangential stretching
nd Cu2min sample and oxdCOx magnification (bottom). For

at the upper right, dotted line shows an iron particle inside a
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Fig. 5 – Spot beam EDX spectra (Ni grid) of Cu2min hybrid sample. Arrow shows the spot location. (A colour version of this

figure can be viewed online.)

Fig. 6 – HRTEM images of a 10 nm Cu-NP showing an

interlayer distance of ca. 2.08 Å that belong to the (111)

plane of Cu.
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Fig. 7 – XPS spectra corresponding to the copper (Cu2p3/2)

binding energy of oxdCOx (left) and oxdCOx-CuNP (right). (A

colour version of this figure can be viewed online.)

Table 1 – Raman shifts for the D- (xD) and G- (xG) bands and 
the intensity ratio of the D- and G-bands (ID/IG). HT refers to 
heat treatment (see text for details).

Sample xD xG ID/IG

COx 1360.6 1588.2 0.51
oxdCOx 1358.9 1588.2 0.47
Cu2min 1360.8 1589.4 0.48
oxdCOx HT 1358.9 1589.5 0.53
carbon–carbon bonds in graphene sheets), and the 2D band 
centered at ca. 2707 cm�1. Raman shifts of the D- and G-bands 
and the intensity ratio of both bands (ID/IG) are shown in 
Table 1.

The intensity ratio ID/IG could be used to indicate the 
degree of crystallinity within sp2-hybridized carbon samples, 
that is, the smaller the number the more crystalline with 
fewer defects the sample becomes [39]. No significant varia-
tions in the spectral shape or Raman shifts were detected, in 
accordance with previous results [10], although a slight 
decrease in the ID/IG ratio was observed as CNTs get oxidized 
and Cu-NPs get anchored on the tube surfaces. These differ-
ences are within variations between different batches pro-
duced identically. Sample oxdCOx was treated at 500 �C for 1 h 
under N2 to create a slightly more defective surface, as the 
slight increase in ID/IG ratio reflects. This sample was used to 
confirm that catalytic activity was due to Cu–NPs and not to 
surface interactions with the tubes (see Section 3.3).

Different structural forms of carbon can exhibit different 
oxidation behavior depending of the functionalities anchored 
to their surface [37]. For example, defects embedded in sp2

hybridized carbons tend to oxidize at around 500 �C [40] due 
to their low activation energies, whereas nanocarbons exhib-
iting a high degree of crystallinity start to oxidize at a higher 
temperature, between 600 and 700 �C [41].

In our studies, TGA analysis (Fig. 8) revealed a decrease of 
the thermal stability of the oxidized sample (oxdCOx) when 
compared to the pristine nanotube sample [10]. In particular,
6
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0.008 mg/mL of oxdCOx or Cu2min as indicated in the axis.
the maximum oxidation rate for the COx sample appeared at

578 �C whereas for the oxdCOx appeared at 550 �C. However,

the Cu2min sample presented the best thermal stability since

a maximum weight loss rate appeared at 587 �C. This stabil-

ization effect created by Cu-NPs could be due to the fact that

Cu-NPs are first deposited on defective sites, thus inhibiting

oxidation sites within tubes. In addition, the microwave treat-

ment which induced graphitization of carbon layers around

the Cu-NPs, was also responsible for creating more crystalline

graphitic surfaces; in agreement with the Raman observa-

tions described above.

3.3. Analytical application: electrophoretic separation of
carbohydrates

Three carbohydrates (sucrose, glucose and fructose) were 
selected as analytes of interest for this work. However, their 
analysis in aqueous media by CE with UV-detection has been 
a challenge due to the lack of sensitive detection methods, 
because of the absence of charge at neutral pH and the 
absence of chromophore groups when they are underivatized 
[42]. In this context, some strategies have been proposed in 
order to overcome these problems [43]. Among those methods 
reported in the literature to separate and detect those unde-
rivatized carbohydrates, an aqueous BGE based on NaOH 
has been selected as a reference. This BGE favors the ioniza-
tion of sugars due to their catalyzed hydrolysis under alkaline 
conditions [44,45]. Hydroxide ions initiate proton removal 
from the anomeric hydroxyl, followed by ring opening that 
produces their enolization, thus gaining enediolate anions 
with negative charge. The absorbance of the conjugated car-
bonyl groups will be higher than the original sugar, allowing 
its detection by UV–VIS at 265–270 nm [46,47], and being eas-
ily separated by CE as shown in Fig. 9. Moreover, from enols 
it is also possible to produce a large variety of oxidized 
products in an alkaline medium [45].

In this work, the separation of the carbohydrates using the 
conventional NaOH BGE has been compared to that produced 
by dispersions of oxdCOx (without Cu-NPs) and of the synthe-
sized hybrid material Cu2min in NaOH as BGEs. oxdCOx and 
Cu2min samples were dispersed in 75 mM NaOH BGE in a
concentration range 0.003–0.008 mg/mL. This concentration 
range was selected according to previously published ranges 
[28,48,49], and Cu2min was chosen because it forms homoge-

neous dispersions, and because of the high amount of Cu effi-
ciently anchored on the CNTs surface. The most relevant data, 
corresponding to the 0.008 mg/mL CNTs concentration are 
shown in Fig. 8.

The use of oxdCOx in the BGE leads to an improved sensi-
tivity of glucose and fructose when compared to the BGE 
medium without CNTs. However, as observed in Fig. 8, the 
most impressive result appears with the Cu2min sample, 
which increases the sensitivity in the detection of these 
reducing carbohydrates by a factor of ca 5. The sensitivity 
enhancement can be attributed to a heterogeneous catalysis 
effect of Cu-NP on the glucose hydrolysis producing enolate 
anions in alkaline medium as fragmentation products [44]. 
Other synergistic effects on the oxidation of glucose in alka-
line solution have been described in other combination of car-
bon nanostructures and CuNPs, including Cu-graphene 
[26,50,29]. The mechanism is not well understood although it 
has been proposed that the Cu(III)/Cu(II) pair may take part as 
an electron transfer mediator [50]. However, the presence of 
Cu ions is hard to accept in our system due to the encapsu-
lation of Cu-NPs with graphitic layers. In order to verify that 
the sensitivity enhancement is only attributed to the pres-
ence of Cu-NPs and not to the surface defects created during 
the oxidation process, we induced more defects on oxdCOx by 
heating the sample to 500 �C for 1 h in a N2 atmosphere. The 
high value of ID/IG for this sample (see Table 1) confirms a 
higher defective surface but no significant changes were 
detected in the electropherogram (see fig. s2 in Supplemen-

tary data).

4. Conclusions

An easy approach has been successfully developed for the

preparation of a hybrid system consisting of Cu-NPs encapsu-

lated on the surface of CNTs. The results indicate that, under

our experimental conditions, the amount of Cu is relatively

low (0.2–0.4 mg Cu/g, the size of Cu-NPs is about 10 nm and

are strongly anchored to the surface of oxidized CNTs. The
7



dispersibility of the Cu-NPs hybrid material in aqueous solu-

tions is high due to the presence of carboxylic groups formed

on the surface of CNTs. We have used alkaline dispersions of

these hybrid nanotubes as BGE for electrophoresis of a mix-

ture of carbohydrates: sucrose, glucose and fructose. We have

demonstrated that 0.008 mg/mL of Cu2min (0.41 mg Cu/g

sample) is enough to achieve a sensitivity enhancement of 5

times (S/N) in glucose when compared to media containing

any nanostructure. The observed signal enhancement has

been attributed to a heterogeneous catalysis of the carbohy-

drates fragmentation process due to the presence of Cu-NPs.
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