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The expected boost in mobile data traffic and the evolution towards the next generation of networks 

are making cellular operators reconsider whether current approaches for handling mobility could be im­

proved, according to the characteristics of the mobile traffic that actually flows through real networks. In 

this work, we make use of extensive analysis of real network traces to infer the main characteristics of 

mobile data traffic for a particular operator. Our analysis focuses on the features related to mobility, i.e., 

location information, number of handovers, or duration of the data traffic exchange. New techniques to 

gather the mobility characteristics of the user based on data and control packets correlation are designed 

and applied to compare the gains of deploying different mobility management approaches. We show that 

adapting the mobility management mechanism to the degree of mobility and the network characteristics 

brings some benefits to the network operator over the current approach, especially in scenarios of low 

mobility, where a dstributed mobility management solution proves to be more efficient. 
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. Introduction and motivation

Cellular networks have evolved into extremely complex sys­

ems, where performance and behavior depend on the interaction 
f a multitude of logical modules. Coupled with this complexity, 
ny analysis performed over these systems faces scalability chal­

enges due to the size (in number of nodes) and amount of traffic 
erved. The expected evolution of cellular networks forecasts an 

ncrease in both magnitudes, due to the growing traffic demands 
nd the so-called radio access network (RAN) densification. In this 

cenario, operators struggle to monitor and analyze their networks 
hrough an amalgam of vendor specific probes and management 

ystems. providing information which is difficult to aggregate and 
nalyze. The Jack of tools for the design and optimization of next 
eneration networks. carrying several orders of magnitude more 

raffic and serving a wider set of possible clients (including ma­
hine and humans) is a challenge, requiring novel techniques that 

re able to provide trends, relations and design guidelines for the 
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eployment of new systems. A promising trend in this area is the 
se of Big Data techniques to gather information on the behavior 

f the network. analyzing and inferring knowledge out of the myr­
ad of data flows transported by the network [1 ]. It is a common 

ractice to monitor the traffic flowing through the network to eval­

ate network performance or to look for delay or usage patterns 
2]. With the increase of data traffic and the raise of more pow­
rful processing techniques and capabilities, this traffic monitoring 

as turned to Big Data techniques to analyze the traffic [3]. In this 
ork. we built on top of these tools to provide some insights on 

he usage of resources for mobility management with actual data 
rom a real operator's network. 

The work reported in this paper started as a discussion on how 

o analyze the benefits and drawbacks of new techniques for traf­
c offloading in a real operator environment, specifically if the ap­
lication of mobility protocols based on the Distributed Mobility 

anagement (DMM) concept was worth the effort considering the 
tructure of the network. deployment characteristics and the real 

ser traffic. In order to answer this question, we tried to directly 

nalyze the data traffic in one of the operator's core interfaces 
ooking for mobility patterns and traffic characteristics, required to 

nderstand the performance of the mobility protocol. Through this 
irect approach we found two main problems: i) The overwhelm­

ng number of flows going through the interface and their Jack of 
1
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information matching location of the user and ii) the need for a

mechanism to correlate the information carried in the data path

and the control path, to match flows to users and cells. To over-

come these challenges, we resorted to the deployment and analy-

sis of the data using Big Data analytic techniques. Therefore, this

paper focuses i) on the development of a platform to perform Big

Data analysis over packet traces in a real operator environment in

Turkey under privacy and regulation concerns, and ii) to showcase

the utility of this new framework by the analysis of the suitability

of applying a new mobility management concept, DMM, to the cur-

rent network deployment. In order to gain an understanding of the

whole network operation, this work also reports on the challenges

of working with packet captures taken on the data path of the op-

erator’s core, which can carry thousands of flows, and the need of

correlating these flows with the control data obtained from a dif-

ferent interface in the operator’s core. 

Following these ideas, the remaining of the paper is structured

as follows: Section 2 presents recent works in the area of dis-

tributed mobility management and traffic analysis that are rele-

vant for this work. Section 3 describes the method for the col-

lection of the mobile data traffic information, which is analyzed

in Section 3.4 . Based on the results from these experimental mea-

surements, in Section 4 we apply a DMM mechanism and compare

it to the current deployment showcasing that it can be more con-

venient under certain mobility scenarios. Finally, Section 5 presents

the final conclusions. 

2. Related work

Managing the mobile traffic is becoming increasingly complex,

both technically and economically for mobile operators. This is not

only because of increased data usage and emergence of new ser-

vices and models, but also due to the change in user’s behav-

iors towards increased mobility. Mobility management support in

cellular networks has always been a critical capability. Therefore,

there has been numerous works outlining different mobility man-

agement approaches in the literature [4–9] . A recent comprehen-

sive tutorial on mobility management in data networks that espe-

cially focuses on network mobility and session migration is given

in [4] . 

Current architectures for mobile and cellular networks are cen-

tralized [6,7] and hierarchical [8] which drives the user traffic to go

all the way up into the core network. Proxy Mobile IPv6 (PMIPv6)

[7] and GPRS Tunneling Protocol (GTP) [9] protocols have been

adapted for the applicability of the centralized mobility manage-

ment solutions for mobile operators. Even though centralized mo-

bility solutions reduce the signaling between the hosts and are

relatively simple for following user’s movements, there are vari-

ous issues with their adoption in cellular networks as identified in

[10] . Some of these problems are: low scalability due to the need

for new mobility anchors as the number of mobile nodes and data

traffic increase, per node mobility support that increases conges-

tion on mobility anchors due to mobility support for all flows, sin-

gle point of failure due to many mobile nodes connection to single

mobility anchors [11] , and non-optimal routes which may result in

longer delays and excessive load in the core network. 

As opposed to centralized solutions, distributed mobility man-

agement approach has proposed a flat and flexible architecture

by ensuring per flow mobility support and optimal path rout-

ing in a highly scalable manner [4,10,12,13] . A comprehensive

overview of distributed mobility management techniques that in-

cludes standardization activities of both the 3rd Generation Part-

nership Project (3GPP) and Internet Engineering Task Force (IETF)

has been given in [4] . The standardization activities for distributed

mobility management are primarily driven by IETFs DMM work-
ng group [12] . The requirements for distributed mobility man-

gement have been recently given in RFC 7333 [10] . Some of

hese requirements constitute functionalities such as distributed

rocessing, transparency to upper layers, IPv6 target deployments,

e-usage of existing mobility protocols, co-existence with existing

etwork deployments and hosts, by-passable mobility support for

ach applications and security considerations. From a practical im-

lementation aspect, the authors in [13] have demonstrated the

rst practical evaluation results of distributed mobility manage-

ent approach based on evaluations with real Linux-based proto-

ype implementations. 

Previous work leverage mobile traffic data towards mobility

nalysis based on various categories including analysis based on

ovement of individuals [14–16] , understanding the resource con-

umptions [15,17,18] for designing technological solutions and val-

dation of the results obtained through mobile traffic analysis

19,20] . The studies in [14] and [15] demonstrate that the mobil-

ty of users in terms of the number of cells they visit can be low

nd the distribution turns out to be heavy-tailed, which shows the

xistence of certain users that visit hundreds of cells. The authors

n [16] have investigated ways to identify large-scale social events

y using the large variations in mobile traffic volumes. For validat-

ng purposes, such as population distributions over geographical

reas, approximation of actual subscriber trajectories or real-time

stimation of population levels, the authors in [14,19] have relied

n the usage of mobile traffic data. Characterization of individual

18] as well as aggregate [15] access network traffic in cellular net-

orks have been studied separately. Through traffic analysis, the

uthors in [18] identify flows related to mobile apps automatically

y continually learning the apps distinguishing features. Finally, for

ore details of the recent studies on mobile traffic analysis, we

refer to [21] where the authors have provided a thorough survey

nd categorization of mobile traffic analyses of different operator’s

ata which are mostly collected from various parts of the opera-

or’s network infrastructure. 

Big data and data analytics are recently emerging to facilitate

he development of new analytics applications, and to leverage

he mobile operators understanding and exploitation of data which

s constantly flowing through their network infrastructures. In a

ore general point of view, one can find big data platform uti-

ization (namely Hadoop [22] ) and exploitation of data analytics

y telecom operators in different recent studies [23–27] . For ex-

mple, application areas of big data analysis applied by telecom

perators ranges from anomaly detection for IT infrastructure se-

urity and resiliency [24] , network coverage analysis [23] , proactive

aching for 5G [25,26] to social network analysis for consumer be-

avior modeling [27] . Authors in [28] propose a platform for mo-

ile data network analysis that also monitors the traffic in the Gn

nterface and, in the case of LTE, in S-11 and S-1U interfaces using

oth Hadoop and Spark for storage and post-processing of the data

ollected by the probes. They focus on the information in GTP-C

essages, describe their platform and provide a very light evalua-

ion on the information that can be extracted from their probing,

hich could be further exploited. However they state the possi-

ilities that this kind of approach open for mobility and perfor-

ance assessment in an operators network, which is the key fea-

ure that we aim at evaluating by monitoring GTP control and data

nformation. 

However, none of the studies described above have demon-

trated the deployment and adaptability aspects of DMM-based

olutions inside a real mobile operator by exploiting a compre-

ensive mobile data analysis. Therefore, it is clear that in order

o embrace new technologies for long term alternatives to current

entralized cellular infrastructures, recently proposed DMM solu-

ions need to be further investigated in the context of applicability
2
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sociated GTP tunnels. 

2 Note that routing areas may include one to several groups of cells connected to

the same RNC.
nd adaptability for mobile operators. Based on this observation, in

his article, we focus on the validation of DMM approach’s perfor-

ance results using real operator’s network data by exploiting big

ata techniques for data analysis. The data management (extrac-

ion, analysis and usage) process studied in this paper is specific

o our distributed mobility management scenario and plays an im-

ortant role in supporting the applicability of the proposed solu-

ion. As far as we know, the comparisons of distributed mobility

anagement with current centralized mobility management ap-

roaches with large amount of mobile data usage are not available

n the literature. Using the analysis in this paper, interesting con-

lusions are deduced by bringing real world considerations about

he applicability of the new distributed mobility management so-

ution inside a mobile operator’s network. 

. Description of the system

As explained in Section 1 , this work aims at providing an analy-

is of the suitability of applying a new mobility management con-

ept, DMM, to the current network deployment. In order to do so,

e needed to develop a new system to be able to i) gather user

ata traces, ii) correlate the overwhelming set of user and control

nformation to extract relevant mobility information and iii) use

he mobility information extracted to apply an analytical model for

he packet delivery cost of DMM and compare it with current de-

loyments. In the following sections we explain each of the steps

n this complex process. 

.1. Dataset and collection of information 

Identifying the structural patterns in the data traffic is of high

mportance for mobile operators in order to apply optimal mobil-

ty management techniques within their network. Mobile network

raffic has a highly complex and massive structure, making it tough

o analyze and reveal structural patterns. It is not unusual that one

r more terabytes of data per second is flowing in a typical mobile

perator consisting of 10 to 20 million subscribers which trans-

ates into roughly exabytes every month. The scale of this problem

ules out direct sniffing approaches [29] , with the additional prob-

em of data packets not carrying information regarding the location

f the user. The analysis of mobility requirements necessitates the

xtraction of handover related information, which can be tracked

oth in radio access and core network nodes. Accessing handover

elated information from the radio access nodes is difficult since

he amount of probes that needs to be placed into the infrastruc-

ure can be large. Moreover, log data from different entities, such

s the radio network controller (RNC), can be too hard to extract

or further mobility analysis due to the unavailability of appropri-

te tools, which are mostly vendor specific. In High Speed Packet

ccess (HSPA), the core network is only notified of Location Area

LA) and Routing Area (RA) updates when the mobile terminal is in

he idle state, since in connected state the access network can still

ocate it and report to the core network when necessary. More-

ver, our approach aims to link user roaming across the network

ith the characteristics of the mobile traffic being exchanged. 

Due to the aforementioned problems, we propose a system

ased on the extraction of handover related information observed

n the core network nodes, where the correlation of the control

essage headers with the information of the flows in the user

ata plane is obtained by capturing the data and control packets

n the Gn interface. One of the constraints imposed in the sys-

em design was the lack of existing measurement tools over the

nterfaces for mapping flow information with the location informa-

ion inside the operator domain. The current infrastructure allows

apturing control packets in the 3GPP Gn interface between the
ateway GPRS Support Node (GGSN) and the Serving GPRS Sup-

ort Node (SGSN) (see Fig. 1 ). Specifically, we track the Create Con-

ext and Update Context messages of the Packet Data Protocol (PDP)

9] . In this way, we can simplify the requirements for monitoring

ser mobility avoiding the need for multiple probes. For our anal-

sis, we do not need to track the exact location of the user at the

recise moment that it happens, but detect the changes in their

oint of attachment and characterize the traffic being exchanged

y roaming users. We focus our analysis on handovers involving

A changes, which is inline with the current DMM architectures

iscussed in the IETF. 2 

The final outcome of this process provides a combined and de-

ailed listing of the control and user plane packets indicating loca-

ion of mobile terminals via the information included in PDP Cre-

te Context and Update Context messages. This trace is further pro-

essed to characterize mobile data traffic (see Section 3.4 ) and to

btain insights on the applicability of the DMM concept in an op-

rator’s network, as explained in Section 4 . 

.2. Architecture of the dataset collection mechanism 

A general view of the architecture for the extraction of flow in-

ormation is provided in Fig. 1 . The system is composed of mainly

wo elements, the Flow Extraction Manager (FEM) and the Process-

ng Cluster that has been implemented using Hadoop [22] . One of

he existing Gn interfaces with high traffic in the core network be-

ween SGSN and GGSN is mirrored and collected in the FEM, which

pplies initial processing and transfers the data to be analyzed and

ltered into the Hadoop Cluster. The extracted flow information

s sent back to FEM from the Hadoop Cluster for collecting anal-

sis results. The analysis results are outputted by FEM for detailed

bservations of the network state. The details of the flow extrac-

ion process as well as the analysis in Hadoop cluster are given in

ection 3.3 . In the following, we detail some of the operations of

he system. 

.2.1. GTP-U and GTP-C correlation on Gn interface 

Network packets sent from a user equipment (UE) to the packet

ata network (PDN), e.g. Internet, pass through the SGSN which

unnels them towards the GGSN. GTP is used for tunneling the

ackets in the Gn interface [9] . 

The operation of GTP protocol differentiates user and control

lanes. The user plane packets on the Gn interface flow on the GTP

ser (GTP-U) [9] , which is in effect a relatively simple IP based

unneling protocol allowing several tunnels between each set of

nd points. When used in an HSPA network, each subscriber will

ave one or more GTP tunnels, corresponding to each active PDP

ontext, as well as possibly having separate tunnels for specific

onnections with different quality-of-service (QoS) requirements.

ach tunnel is identified by a tunnel endpoint identifier (TEID) in

he GTP-U messages, which should be a dynamically allocated ran-

om number. The control plane packets on the Gn interface are

ncapsulated on the control section of the GTP, namely GTP-C [9] .

hen a subscriber requests a PDP context, the SGSN will send a

reate PDP Context Request GTP-C message to the GGSN giving de-

ails of the subscriber’s request. The GGSN will then respond with

 Create PDP Context Response GTP-C message which will either

ive details of the activated PDP context or will indicate a failure

nd give a reason for that failure. We make use of a Hadoop based

latform (explained below) to aggregate packets in flows and cor-

elate GTP-U and GTP-C information (described in Section 3.3 ). In

his way we infer the mobility characteristics of the flows and as-
3



Fig. 1. Flow information extraction architecture.
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3 Note that this location information is not carried in the data plane packets.
3.2.2. Mirroring of Gn interface 

The network of interest in this paper consists of an area cov-

ered by 10 SGSNs. The average total traffic over all regional areas

consists of approximately 15 billion packets in the uplink direc-

tion and 20 billion packets in the downlink direction daily. This

corresponds to approximately 80 TB of data flowing in uplink and

downlink daily in the mobile operator’s core network. The impor-

tance of this work can be seen by the exponential increase in data

traffic that has to be handled by a mobile operator. For example,

in 2012, the approximate total data traffic was over 7TB in both

uplink and downlink daily. The packets are captured by a mirror-

ing device which was already in place on the operator premises

as part of their already deployed measurement system. Hence, this

work takes benefit of already deployed probes without requiring

any additional deployment. We tested our method on real-world

Gn interface Internet traffic data where the flow traces obtained

from the mobile operator are collected by a server on a high speed

link of 200 Mbit/s for any requested time interval. 

3.2.3. Hadoop platform 

Among the available Big Data platforms, Hadoop [22] stands

out as the most notable one as it is an open source solution. It

is made up of a storage module, namely HDFS and a computa-

tion module, namely MapReduce. Whereas HDFS can have central-

ized or distributed implementations, MapReduce inherently has a

distributed structure that enables it to execute jobs in parallel on

multiple nodes. 

The Hadoop cluster in our platform was implemented based on

Cloudera’s Distribution Including Apache Hadoop (CDH4) [30] ver-

sion on four nodes with Intel Xeon E5-2670 CPUs, 32 cores, 20 TB

hard drive and 132 GB RAM. 
.3. Flow information and mobility characteristics extraction 

The process proposed in this work, extracts and matches the

ser data TEID (TEID _ DATA) field in the GTP-C messages (Create

nd Update PDP Context) with the TEID in GTP-U packets, in order

o add the corresponding location information to the traffic in the

ser plane. 3 GTP-C messages include an Information Element con-

aining the location of the mobile terminal, expressed by the Cell

lobal Identication (CGI), which is formed of the Mobile Country

ode (MCC), the Mobile Network Code (MNC), the location area

ode (LAC), (which corresponds to the Routing Area identifier) and

he cell identification ID (CELL-ID) or service area code (SAC) in

niversal Mobile Telecommunications Service (UMTS). The service

rea (SA) identifies an area of one or more cells of the same loca-

ion area and it is identified with a SAC, unique within that loca-

ion area. As the MCC and MNC will remain unchanged for every

acket in our trace, we monitor the LAC and SAC fields. A LA is

 set of cells, which are grouped to decrease signaling overhead.

arger LAs reduce signaling for location updates because users

ardly move out of the LA. However, the overhead introduced by

aging is very high because there are many cells. This may be ac-

eptable for circuit switched services, such as voice calls but it in-

roduces a high delay on packet based communications. Therefore,

 new definition, the Routing Area is introduced in packet switched

ervices. The RA has the same conceptual functionality as the LA

ut its size is usually smaller. The differentiation between the RAs

nd LAs depends on the decision of the network operator. Typi-

ally, tens or even hundreds of base stations are present in a given
4
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Table 1

Summary results from the data traces.

Low hour Peak hour

Total duration of the traffic trace 1 h 1 h

Total number of control packets 2722234 4294077

Total number of data packets 18978264 28582691

Total number of flows 1655550 2982064

Flows analyzed 1054566 1926062

Total number of control TEIDs in C-trace 762102 1259128

Total number of data TEIDs in C-trace 671078 1020178

Total number of TEIDs in U-trace 83510 154650

Total number of data TEIDs analyzed 60932 116529

Number of data TEIDs that experience handover 1464 2413

Total number of flow handovers 7402 18854

Total number of TEID handovers 2624 4750

TEIDs without handover in data trace 59468 114116

(97 .6%) (97 .9%)

Data flows without handover in data trace 1047380 1907759

(99 .3%) (99%)
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4 Note that the “number of flows analyzed” in Table 1 refers to the number of

flows that include useful information for our latter mobility analysis, not the total

of flows in the network.
A. As we work with data transmissions, we will use the term

A from now on to refer to the greater area that groups several

As. 

A TEID uniquely identifies a tunnel endpoint on the receiving

nd of the GTP tunnel [9] . A local TEID value is assigned at the

eceiving end of a GTP tunnel in order to send messages through

he tunnel. The GTP-C packets contain the information that iden-

ifies the location of the user (LAC and SAC fields) as well as a

EID _ DATA field, which points to the identifier of the correspond-

ng tunnel in the data plane. We extract from the GTP-U pack-

ts, which are identified by their TEID, several information regard-

ng the characteristics of the mobile traffic, such as packet size

r duration of the flows. The flow information can be extracted

rom data packets by taking into account simply five tuples namely,

ayer 4 protocol information (e.g. transport control protocol (TCP),

ser Datagram Protocol (UDP), Internet Control Message Protocol

ICMP), etc.), source and destination IP address and source and

estination port numbers. Taking advantage of their uniqueness

nd matching the values of TEID and TEID _ DATA fields on both

ata and control planes respectively, the GTP-C and GTP-U infor-

ation is joined by the Hadoop cluster through successive map

nd reduce operations, to obtain a merged table showing the flow

nd CELL-ID of the user flows. The complexity of the operation

omes from the fact that, in a given PDP session with a specific

EID, there can be multiple flows (although each TEID belongs to

 specific user). This must be taken into account while processing

he data. 

The result of the processing of the data mirrored from the Gn

nterface is a collection of anonymised rows, each representing a

ow, providing information regarding the time it is collected, its

ize, a flow identifier, TEID and unique < SAC-LAC > information.

his last tuple uniquely identifies the location of the user gener-

ting the flow. This information is obtained by filtering packet in-

ormation and aggregating it into flows, later this aggregated in-

ormation is processed through several map reduce operations to

erge the information coming from the control and data plane.

he mechanism is applicable to all mobile operators using the

GPP standard Gn interface and can be put into practice immedi-

tely, since it does not require the change of the monitoring plat-

orm of the operator. 

.4. Mobile data traffic analysis 

In this section, we analyse the main characteristics of our

ataset, built from the information captured at the Gn interface,

etween SGSN and GGSN. Network packets sent from a user ter-

inal to the PDN, such as Internet, go through SGSN and GGSN

here GTP constitutes the main protocol in network packets flow-

ng through Gn interface, as described in Section 3.1 . 

We have collected two 1 h traces at times with different traffic

oad in the network. The “peak” and “low” hours are chosen among

he 1 h intervals of a day that yields highest and lowest number

f flows in our data set, respectively. In this study, the “peak” and

low” hours represent the intervals 8-9 pm and 4-5 am in a day,

espectively. The peak and low hours are calculated via an on-line

ow extraction manager tool which counts the number of flows

assing through the Gn interface that is deployed inside the mo-

ile operator’s core network. Note that we have chosen the number

f flows as metric for the peak and low hours since our analysis

s focused on the user mobility and not on the overall amount of

raffic generated in the network. 

We utilized only two 1 h traces of data to analyze the mobile

raffic due to the existence of high time correlation for network

oad. The study in [15] shows that there exists a high degree of

emporal correlation where the high peaks occur at 24 h inter-

als and low peaks occur at 12 h intervals based on the calculated
uto correlation function. This result is consistent with the diur-

al (non-stationary) human activity patterns. Although there exists

 high degree of correlation of network load at the same time of

he day, these good correlation results (neither positive nor nega-

ive) are not reflected on the individual base station loads where

he periodicity is missing. This shows that aggregate network load

nformation, as we use in our study herein, has more predictable

ehaviour than local base station traffic characteristics. The results

resented in [17] also indicate the strong dependence of traffic vol-

me on previous states that lag by multiples of 24 h which is sim-

larly due to the diurnal nature of the cellular operator’s core net-

ork data. Similar results of periodicity have also been identified

n [31] where Internet Protocol (IP) traffic volume in 7-day traces

including weekends) shows stable distributions and high corre-

ation on lags of 24 h hence allowing further analysis on smaller

cale traces. The results in these previous studies clearly show that

ppropriate sampling of the mobile traffic data can approximately

ield sufficient statistics for our analysis. 

Table 1 gathers the main characteristics of our dataset, after

arsing, filtering and properly grouping the information available

n the trace file. First of all, we present the total amount of data

nd control information that we have analyzed, expressing it in

erms of flows and tunnels, which will be the main unit used in

ur mobility analysis. In light of our measurements, with more

han a million flows 4 spread over more than 80 thousand data

unnels, approximately 99% of flows and 98% of tunnels do not ex-

erience a handover. Note that the operator experiences overhead

ue to mobility management for these tunnels (mobility is pro-

ided by default in current operator networks), although no mo-

ility is required by them. It also calls our attention the number of

ontrol messages exchanged linked to data tunnels (identified by

he TEID _ DATA field) that are not exchanging any data packet. That

ranslates into a considerable overhead in the already challenged

perator’s network to maintain context for data tunnels that are

ot being used for any data transmission. Data flows, although

ore numerous than tunnels, have shorter duration, which results

n a lower average number of handovers per flow than per tunnel.

ote that the total number of TEID handovers in Table 1 aggregates

he number of handovers from all the tunnels analyzed. 

Fig. 2 shows the number of handovers per tunnel for the low

our ( Fig. 2 a), and peak hour ( Fig. 2 b) performed in our dataset.

e have included for comparison the number of tunnels and flows
5



Fig. 2. Histogram for the number of handovers performed per tunnel for the low and peak hours.
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not moving in the network (tallest bars in x = 0; note the his-

togram in logarithmic scale). In the peak hour, the number of han-

dovers increases, even though the higher number of RA changes

are not frequent. 

With regard to mobility, we highlight the high percentage of

data traffic in the network that does not experience a handover

(99% of flows and almost 98% of tunnels). Still, this traffic is pro-

vided with mobility support, just as any other in the network,

which leads to an inefficient usage of resources in current net-

work deployments, where mobility is granted to all the traffic be-

ing transmitted. Therefore, future network deployments could take

into account these mobile data characteristics to improve scalabil-

ity and free network resources. 

We do not evaluate the changes of SA, first of all, for similarity

to an initial deployment of DMM, which would be done by replac-

ing packet gateway (P-GW) or serving gateway (S-GW) [32] (terms

for GGSN and SGSN in LTE nomenclature). In addition, SAs are

groups of cells, and they can overlap, which could lead us to mis-

leading conclusions about user mobility. In any case, and just to

confirm that the low mobility between routing areas is not due to

the size of the area considered, we have measured the SA changes

within a given RA. The number of tunnels that changes SA ac-

counts to 5.6% of the tunnels analyzed in our dataset, which con-

firms our previous conclusion and the low mobility in the traffic

analyzed. 

Fig. 3 represents the duration of tunnel identifiers and the me-

dian of the time between routing area handovers for every tun-

nel. As shown in Fig. 3 the points are concentrated in the lower X

and Y range, meaning that from the flows experiencing a handover,

there are a majority which are short lived and highly mobile. It

can also be seen how the points form several lines across the plot

(e.g., X = Y ). These lines correspond to the points which ratio be-

tween the average time between handovers and TEID active time

is constant. In fact these lines show the number of handovers that

are more common among the users. The first of the lines (starting

from the top of the graph) corresponds to tunnels surviving one

handover. It is also worth explaining the reason behind the lack of

data for X < Y . We measure the time between handovers through

the changes in LAC and SAC of the active tunnels, hence for X < Y

the tunnel is already disconnected and data is not available. To fi-

nalize the comparison of the different traffic patterns for the peak

and low area, Fig. 4 shows the CDF of the Residence Time (time

w  
etween RA handovers per TEID) and Prefix Lifetime (the duration

f a given TEID) for both hours. Fig. 4 only includes the data for

ows experiencing a handover, which is a very reduced number of

ows in both traces. As shown in Fig. 4 both traces exhibit very

imilar patterns. The peak hour shows a slightly higher residence

ime while the prefix lifetime is practically the same. 

.5. Discussion on usage of LTE networks 

Note that a similar analysis can be performed with Long Term

volution (LTE) as well. In LTE, an EPS Bearer context in the S5/S8

nterface (S-GW - P-GW) includes control and user plane TEIDs (for

TP-based S5/S8) or GRE keys (for PMIP-based S5/S8) [33] . In both

rchitectures, traffic is routed through a centralized network ele-

ent that acts as the mobility anchor. However, GTP seems to be

he dominant solution of the S5/S8 for mobile operators due to fol-

owing reasons [34] : 

• GTP based mobility solution is the most cost-effective and the

least complex to integrate legacy and existing 3GPP networks

which occupy about 90% of mobile subscriptions market share

worldwide.
• GTP is a natural extension of the existing infrastructure (re-

quired on the S1 interface as well) and gives less work to stick

with for mobile operators.

Moreover, as stated in [35] , many operators have co-located

GSN and P-GW, which allows information gathering on 3G and

TE at the same time making it easy for extension of the paper’s

esults into LTE domain. Hence, the studies performed in this pa-

er can be directly applied by mobile operators that deploy GTP

ased S5/S8 interface. 

. Understanding DMM deployment on current networks

In this section, we briefly explain how PMIPv6 and network-

ased DMM work and evaluate the usage of DMM as an alternative

o current deployments and we use the mobile data traffic charac-

eristics already presented to back the reasons behind our com-

arison with an example from actual data. As we have explained

n Section 3.1 , the tunneling protocol chosen to handle mobility

n the UMTS network is GTP. However, given the increasing band-

idth demand, the characteristics of the mobile data traffic and
6



Fig. 3. Duration of tunnel identifiers vs. average of the time between handovers for the low and peak hours.

Fig. 4. Comparison of the residence time and prefix lifetime for the peak and low

hours (CDF).
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5 http://datatracker.ietf.org/wg/dmm/documents/
he mobility requirements, we claim that mobility can be managed

ore efficiently. 

.1. PMIPv6 

PMIPv6 is a network-based protocol that provides localized mo-

ility management [36] . Its operation is conceptually identical to

he one currently used in cellular networks, GTP. PMIPv6 releases

he mobile terminal from its involvement in the mobility manage-

ent of traditional IP mobility protocols, to place it at the network

ntities: the Local Mobility Anchor (LMA) and the Mobile Access

ateway (MAG), as illustrated in Fig. 5 a. The LMA is placed at the

perator’s core network and manages the routing for all the mobile

odes within the mobility domain. Traffic for each mobile node is

unneled between the LMA and the corresponding MAG, through

n IP in IP tunnel. The MAG performs all the mobility manage-

ent signaling with the LMA on behalf of the mobile node by the

xchange of Proxy Binding Update (PBU) and Proxy Binding Ac-

nowledgment (PBA) messages. The MAG is the access router of
he mobile node, that is, it acts as the first IP hop in the mobility

omain. In case of handover, the target MAG signals the LMA upon

he attachment of the mobile node, establishing a new tunnel and

liminating the tunnel to the former MAG. The main problem of

uch a hierarchical architecture is the scalability, since all traffic

ust traverse the GGSN (LMA) which constitutes a bottleneck and

ingle point of failure. In addition all traffic is treated the same

nd is provided with mobility management (is tunneled from LMA

o MAG). 

.2. Network-based DMM 

DMM proposes a flatter architecture, placing the mobility man-

gement entities closer to the mobile node. DMM solutions are still

eing discussed at the IETF. 5 For this work we consider our pro-

osal in [37] as the basis for DMM operation, which is illustrated

n Fig. 5 b. The roles of LMA and MAG are absorbed by a new en-

ity, the Mobility Anchor and Access Router (MAAR). The MAAR

cts as the Access Router for the mobile node, handles its mobility

nd the routing. Although there are different approaches, part of

he functionality of the LMA is covered by a node that stores the

refixes assigned to every mobile node, mainly as a Central Mo-

ility Database (CMD in Fig. 5 b). In the case of handover, the tar-

et MAAR establishes a tunnel to the former MAAR to forward the

raffic for the mobile node’s previous prefix, while traffic not re-

uiring mobility is forwarded directly to the Internet. Complexity

ncreases as the mobile node performs more handovers, but in the

eneral case DMM results in a more efficient and scalable approach

or mobility management. One of the key aspects of DMM is that

he flows originated by the mobile terminal are not tunneled, but

nly the flows performing handovers require the overhead of tun-

eling through the network. For networks with low mobility char-

cteristics, this is a key difference, since most of flows will not

equire differentiated handling from standard IP routing, reducing

he overhead in the network. 
7



Fig. 5. Operation of PMIPv6 and network-based DMM protocols.
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Table 2

Value of the parameters in Eq. (2).

Low hour Peak hour

λmov 41467 49927

λtot 18978264 28582691

N mov 1464 2413

N tot 60932 116529
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4.3. DMM deployment analysis 

Based on our previous analysis published in [38] , we compare

the packet delivery gains attained by the use of DMM principles.

In a DMM architecture, the number of active prefixes (for relating

to our scenario, active tunnels) is directly related to the number

of handovers performed by the mobile node. In [38] , it is proven

that the gains of DMM over PMIPv6 are given by Eq. (1) , where

N PR is the average number of active prefixes at a handover and

 M AAR −M AAR and C LM A −M AG are expressed in terms of delay between

MAARs and between LMA-MAG respectively 

C DMM 

C PMIP 

= ( N PR − 1) 
C M AAR −M AAR 

C LM A −M AG 

(1)

The data on which we base our analysis comes from a Gn in-

terface and corresponds to traffic between a GGSN and a single

SGSN that handles several routing areas. We propose the scenario

in Fig. 6 to compare with PMIPv6 and DMM approaches. We can

see that PMIPv6 is conceptually similar to GTP, and the packet de-

livery cost comparison between DMM and PMIPv6 can be similarly

extended to GTP. We propose as a reasonable scenario to have the

LMA co-located with the GGSN and the MAG with the SGSN. For

the DMM architecture, we propose to place a MAAR in every RA

(i.e. RNC). Therefore, to follow the analysis given by Eq. (1) the

number of active prefixes applying DMM to our scenario is given

by the number of tunnels performing a RA change. As the analysis

in [38] involves the average number of prefixes active per user and

we have the aggregated information of active tunnels in the net-

work, for comparison with PMIPv6, we need to take into account

all the active tunnels in the network (which is equal to 1 active

prefix per user in the analysis provided in [38] ). We have tracked

the RA changes per tunnel, as reported in Section 3.4 , to find out

that the average number of handovers per TEID in the network is

1.8 and the total number of tunnels performing at least one han-

dover is 1464 for the low hour and 2413 for the peak hour (roughly

2% of the tunnels in the network for both cases). With this infor-

mation and the number of packets delivered per tunnel, we can

say that the packet delivery cost ratio is given by Eq. (2) , where

λmov is the number of data packets sent in the tunnels that expe-

rienced handover, λtot is the total number of data packets, N mov is

the number of tunnels that experience handover and N tot is the to-

tal number of tunnels. This is equivalent to the ratio between the

traffic that experiences a handover (and should be provided mo-
ility) and the total amount of traffic being served in the network.

ote that, for λmov we are considering a worst case scenario, as the

mount of data packets that would be tunneled by DMM would be

he packets that are sent after the handover, but not in the routing

rea in which the flow is originated 

C DMM 

C PMIP 

= 

λmov /N mov 

λtot /N tot 

D M AAR −M AAR 

D LM A −M AG 

(2)

The values for the two datasets analyzed to be substituted in

q. (2) are shown in Table 2 . Applying these results to Eq. (2) for

he peak hour trace we obtain 

C DMM 

C PMIP 

= 0 . 08 
D M AAR −M AAR 

D LM A −M AG 

(3)

omputing the delay between MAARs that makes equal the packet

elivery cost of applying PMIPv6 and DMM, we have for the low

nd peak hours respectively 

 

peak _ hour 
MAAR −MAAR 

= 11 . 85 D LMA −MAG (4)

 

low _ hour 
MAAR −MAAR = 10 . 99 D LMA −MAG (5)

his result can be explained given the low mobility in the network.

or instance, in the peak hour case, the number of tunnels that are

rovided mobility is so low compared to the total amount of traffic

n the network that the distance between MAARs (in terms of de-

ay) can be up to 11.85 times the distance between LMA and MAG

or the packet delivery cost of DMM and PMIPv6 to be equal. These

esults show this network exhibits the perfect traffic patterns for

he deployment of DMM mobility, i.e., low mobility of users with

hort life sessions. 

It is important to analyze the meaning of these results at the

ight of the different kind of users present in the network. The

bove results are obtained for the overall traffic, which is char-

cterized by a low amount of flows actually moving. The results
8



Fig. 6. Cellular network architecture with PMIPv6 and DMM mobility entities co-located.
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Table 3

Probability density function parameters.

PDF

Gamma
γμγ

SN 

�(γ ) 
t γ −1 e −γμSN t 

Exponential λPR e 
−xλPR

Parameters

Low hour Peak hour

Gamma γ = 0.8033 γ = 0.7483 

1/ μSN = 522.1 1/ μSN = 464.72 

Exponential λPR = 884.3 λPR = 838.058 

s

N

 

v

N  
uggest that the operator can deploy a DMM solution by replac-

ng its LMA by a network of DMM MAARs separated by e.g., 11

imes the current latency between the LMA and MAG, while keep-

ng the packet delivery cost equal to the current one. This is mainly

ue to a reduced cost for the transport of traffic generated by

on-mobile users. The savings come from the fastest off-loading

f traffic to the Internet without crossing the operator core and

 reduced overhead. 6 The downside of this approach is that mo-

ile packets will incur in a higher cost, which is compensated by

he optimization of the non-mobile users. In order to quantify this

ide effect, we have extended the above analysis considering only

he mobile users data. 

Previous work in [38] models the residence time and the prefix

ifetime as Gamma and Exponential functions respectively. Based

n the approximate probability functions of these metrics we are

ble to compute the average number of prefixes surviving han-

overs for the traffic of users actually moving. 

Figs. 7 a and 7b show the fitting of the measured data and the

robability distribution functions, while Table 3 presents the pa-

ameters resulting from the function fitting process. 

Based on these parameters, we can apply the model developed

n [38] to compute the average number of prefixes that a mo-

ile user must maintain alive while performing handover (for non
6 It is worth noting that with PMIP or GTP solutions, all traffic is encapsulated

n a tunnel and traverses the network between the LMA and MN. On the contrary,

or the DMM solution, traffic of users not moving does not suffer any encapsulation

nd is directly forwarded to the Internet without traversing the operator core.

N  

 

e  

p

D  
tatic users), as shown in Eq. (6) . 

 PR = 

(λPR + γμSN ) 
γ

(λPR + γμSN ) γ − (γμSN ) γ
(6) 

Using the parameters shown in Table 3 we obtain the following

alues of N PR for the peak and low hours: 

 

lowhour 
PR = 2 . 79 , (7)

 

peakhour 
PR 

= 2 . 9 . (8)

Following the same procedure as with Eqs. (4) and (5) , we can

stimate the distance between MAARs in order to obtain the same

acket delivery cost as with current deployment : 

 

low _ hour 
M AAR −M AAR 

= 0 . 55 D LM A −M AG (9)
9
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Clearly, the level of flattening that can be applied to the net­
ork considering only the mobile traffic is much lower than the
ne achievable considering the complete set of traffic sources. In 
rder to assess the impact on the packet delivery cost of flattening 
he network at the levels shown in Eqs. (4) and (5), we can sim­
ly Substitute the ratio DrR-MMR by the Value computed for the

LMA-MAG 

omplete data set, obtaining the following value (only computed 
or the peak hour): 

CoMM = 235_
CPMtP 

(11) 

This result shows that the high flattening ratio computed in
qs. (4) and (5) produces an increased cost on the delivery of pack­

ets generated by mobile users. If we consider the reverse situation,
we could dimension the network in order to optimize the mobile 
raffic delivery cost In this case, we need to consider the value of
he ratio 0

A::-MMR that makes the ratio of costs equal to one and
-MAG 

substitute this value in Eq. (3), yielding the following result:

CoMM = 0.0416. (12) 
CPMtP 

This result is quite interesting and shows how a MMR de­
loyment based on the traffic pattern of only the mobile users 

 0
f1

AAR-MMR = 0.5) will result on a global significant reduction of
IMA-MAG 

he packet delivery cost for the complete network. 
To conclude this section we analyze the signaling load required 

o support DMM compared with PMIP. As explained before, DMM
pproaches typically require a higher signaling load compared with
raditional approaches such as PMIP or GTP, but this overhead is
nly required for the traffic experimenting a handover. For traffic 
ot moving, it is not required any kind of signaling since flows an­
hored in the MMRs never leave it. Following the analysis in (38), 
he signaling cost ratio between PMIP and DMM can be computed 
s follows: 

(DMM 
l N ....:!L._ = 1 + + PR (13) c:r:1P 2 + ll/J.LsNTeaJ 

where Tea corresponds to the Binding Cache Entry lifetime and is 
sually configured to 300 s. 
Fig. 8 shows the ratio between the signaling costs for DMM and 
MIP for different values of the residence time (1/µ,SN) and prefix
ifetime (>..pR). Note that this figure does not include the signaling 
oad for the static users in case of PMIP, i.e., the analysis is per­
ormed with the derived distributions presented in Table 3. Results 
ndicate the current traffic profile will yield a similar signaling cost 
or PMIP and DMM. As mobility increases (reduction of 1/µ,SN) the 
ost of the DMM solution skyrockets, since for each movement sev­
ral prefixes/previous DMM MMRs must be updated with the new 
ocation of the user. This effect is exacerbated when the average 
ession lifetime increases. The longer a session is kept open in a 
ser terminal, the worst for the DMM signaling, since the number 
f handover the application flow will survive will increase. For­
unately, mobile applications are not following this trend, using 
10
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everal parallel short-lived flows to download the content into the

erminal. 7 

The analysis presented on this section, based on real traces

rom operator’s network, indicates how the anchor points (MAARs)

f a distributed mobility management solution should be deployed

onsidering its users’ traffic characteristics and how the foreseen

ncrement of the prefix lifetime and reduction of the residence

ime affect the cost of signaling of DMM compared with PMIP.

e claim the use of this technology is key for the development

f 5G network architectures, characterized by extreme consump-

ion of resources in the network. The mobility in the network for

he two loads studied is around 2%, despite the amount of traffic

erved in the system. This favors the deployment of a flatter ar-

hitecture like DMM as the traffic that requires mobility is a small

ortion of the total. In addition, TEIDs, in average do not experi-

nce a high number of RA changes, so the number of tunnels that

hould be maintained active in a DMM solution would be much

ower. 

. Conclusion

In this work, we collect the information observed in the Gn

nterface between the core network nodes and extract handover-

elated information for further analysis from a real operator’s net-

ork. The extraction steps, which can be applied to all mobile net-

orks using 3GPP standard, are provided in detail. We match the

ocation information present in the control plane, which is miss-

ng in the user plane packets to evaluate mobility in the network

hanks to big data platform and analyze the mobility requirements.

ur mobility analysis reveals that a DMM-based mobility solution,

attening the current deployment by a factor of almost 11, can be

pplied. The new mobility management solution will provide in-

reased scalability to the operator network, without any additional

verhead. The limits on the profitability of this solution will de-

end on the specific characteristics of the operator’s network and

he mobile data traffic mobility. As future work we plan to extend

he period of time anal y sed, searching for time patterns and pro-

iding guidelines for deployment of mobility solutions. 
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