
QReact

A Generic Framework to Create and Use
QR Codes and a Usage Case in the Field

of Access Control under Android

Author: Atanas Plamenov Karaguiozov,

 Tutor: Javier Fernández Muñoz

�Most good programmers do programming not because they expect to get

paid or get adulation by the public, but because it is fun to program�

Linus Torvalds

Special Thanks

�Everyone smiles in the same language�

George Carlin

It is di�cult to list everyone who lent a hand in guiding me to this moment. These

years have been full of adventures, twists, turns, mishaps... a journey of many hours

and even more kilometres. Su�ce it to say that this document has been worked upon

in four di�erent countries. But there were people who were always there to share these

moments, here or a thousand miles away.

I want to give my heartfelt thanks:

� To all my family who were all there in their own ways and never let me go o� the

rails. No one can dream of being kept on their toes from a distance the way I was.

A big dream of theirs is hopefully coming true today.

� To my tutors who were ready with suggestions and very clear ideas and did not let

my imagination run far too wild.

� To Dr. Juan Enrique Muñoz Santiuste, without whom this project would have

probably never come about. ½Gracias!

� They do say that university years count as the best in anyone's life. This second

instalment of these would not have been the same without all the gang from the

university. The time we spent together felt like it was never enough but you are

part of what made everything the way it turned out to be. Thanks!

� Last and de�nitely not least, with all my love, to all my students from all corners of

Spain and Portugal. There are way too many of you to list here and I will probably

never �nd the right words to say how much I learned by teaching you. The beautiful

moments we shared are every bit as appreciated as anything a teacher can receive

without even deserving it. One more time, YOU GUYS ROCK!

Abstract

This project describes the development of a framework for secure exchange of secret infor-

mation based on QR codes. The framework is programmed to be platform-independent.

A possible usage scenario in the �eld of access control is described and a program to

�t said scenario is presented, which runs on Android. Various design considerations are

discussed and a number of possible o�-the-label uses are considered. At the end, a road

map for future improvements is presented.

The present document has been drawn up to show the steps in the development of the

framework in detail.

i

Sumario

El presente proyecto describe el desarrollo de un framework para el intercambio seguro

de información secreta basado en códigos QR. El framework se desarrolla independiente-

mente de la plataforma operativa. Se describe un posible uso en el ámbito del control de

acceso y se presenta un programa ejemplo de su uso bajo Android. Se sustenta el diseño

elegido y se presentan algunos posibles usos en otros ámbitos. Al �nal, se presenta una

posible vía de futura evolución de la plataforma.

El presente documento tiene como �nalidad la presentación detallada de todos los pasos

en el desarrollo del framework.

ii

Contents

1. Introduction and objectives 2

1.1. What is QReact . 2

1.2. Why this framework . 3

1.3. Development process . 4

1.4. Project report: structure . 5

2. The State of the Art: Scannable Codes and Android 6

2.1. Introduction to scannable codes . 6

2.2. QR codes: a primer . 11

2.3. The case at hand: QR codes and Android 22

2.4. Development tools: description . 26

2.5. Other tools used in this project . 28

3. Analysis, design and implementation 32

3.1. Analysis . 32

3.2. Design . 44

3.3. Implementation . 56

3.4. Tests . 66

4. Planning and budget 74

4.1. Planning . 74

4.2. Personnel cost . 77

4.3. Hardware cost . 78

4.4. Software cost . 79

4.5. Total project cost . 80

5. Conclusions and future development 81

5.1. Objective conclusions . 81

5.2. Personal conclusions . 82

5.3. Future lines of development . 83

iv

A. Android Framework 87

A.1. What is Android . 87

A.2. Application fundamentals . 95

B. Development tools for Google Android 105

B.1. Android SDK . 105

B.2. Developing using command-line tools and adb 115

B.3. The tried-and tested way: Eclipse and ADT 117

B.4. The newcomer and Google's recommendation: Android Studio 128

C. ZXing internals 131

C.1. Installing the ZXing library on Android 131

C.2. Obtaining an image or a preview from a camera 132

C.3. Calling ZXing from within a program . 135

C.4. Decoding via Intent . 136

C.5. Decoding codes from a web page . 138

C.6. Using ZXing to create QR codes . 138

Bibliography 139

List of Figures

2.1. Vertical redundancy of bar codes . 7

2.2. Code 39 . 8

2.3. Example of two stacked 2D codes . 9

2.4. Data Matrix code . 10

2.5. ShotCode example . 11

2.6. An example of a QR code . 12

2.7. An example of the Structured Append Feature 14

2.8. An example of a Micro QR code . 16

2.9. Two further uses of QR codes . 19

2.10. QR Scanner Logo . 24

2.11. QuickMark Lite logo . 24

2.12. QR Droid logo . 25

2.13. i-nigma logo . 25

2.14. ZXing logo . 27

2.15. Planner screen shot . 29

2.16. JabRef screen shot . 30

2.17. LYX screen shot . 31

2.18. TaskCoach screen shot . 31

3.1. QReact and its environment . 46

3.2. Component relationship diagram . 47

4.1. Gantt of the project . 76

B.1. Android SDK and AVD Manager run for the �rst time 107

B.2. Platform and add-ons selection dialogue 108

B.3. New AVD options . 111

B.4. Eclipse in action . 118

B.5. Eclipse Debug Perspective . 125

B.6. DDMS perspective . 126

QReact List of Figures

B.7. Android Studio's GUI layout editor . 130

vii

List of Tables

2.1. Maximum capacity of a QR code . 13

2.2. Error correction levels of QR codes . 15

3.1. User requirement URF01 . 33

3.2. User requirement URF02 . 33

3.3. User requirement URF03 . 33

3.4. User requirement URF04 . 34

3.5. User requirement URF05 . 34

3.6. User requirement URF06 . 34

3.7. User requirement URF07 . 34

3.8. User requirement URF08 . 35

3.9. User requirement URF09 . 35

3.10. User requirement URF10 . 35

3.11. User requirement URR01 . 35

3.12. User requirement URR02 . 36

3.13. User requirement URR03 . 36

3.14. User requirement URR04 . 36

3.15. Software requirement SRNF01 . 37

3.16. Software requirement SRNF02 . 37

3.17. Software requirement SRNF03 . 37

3.18. Software requirement SRNF04 . 37

3.19. Software requirement SRNF05 . 38

3.20. Software requirement SRNF06 . 38

3.21. Software requirement SRF07 . 38

3.22. Software requirement SRF08 . 39

3.23. Software requirement SRF09 . 39

3.24. Software requirement SRNF10 . 39

3.25. Software requirement SRF11 . 40

3.26. Software requirement SRF12 . 40

viii

QReact List of Tables

3.27. Software requirement SRF13 . 41

3.28. Software requirement SRF14 . 41

3.29. Software requirement SRNF15 . 42

3.30. Software requirement SRF16 . 42

3.31. Software requirement SRF17 . 43

3.32. Software requirement SRF18 . 43

3.33. Traceability matrix between user and software requirements 45

3.34. QR code information manager component 48

3.35. QR list manager component . 48

3.36. YAML format manager component . 49

3.37. File input/output manager component . 49

3.38. QR format manager component . 49

3.39. QR syntax checker component . 50

3.40. Con�guration manager component . 50

3.41. Exception manager component . 50

3.42. QR parse manager component . 51

3.43. Encryption manager component . 51

3.44. Book-keeping component . 52

3.45. Traceability matrix of components and user requirements 53

3.46. Default QReact control sequences . 54

3.47. Default QReact format . 54

3.48. Default commands and their meanings . 54

3.49. Default options for con�gured QR codes 55

3.50. Used QR codes format . 56

3.51. QRObject attributes . 58

3.52. QRDefs con�guration options . 62

3.53. Suggested ways to adapt QReact . 66

3.54. Functional test 1 . 68

3.55. Functional test 2 . 68

3.56. Functional test 3 . 69

3.57. Functional test 4 . 69

3.58. Functional test 5 . 69

3.59. Functional test 6 . 70

3.60. Functional test 7 . 70

3.61. Functional test 8 . 70

3.62. Functional test 9 . 71

ix

3.63. Functional test 10 . 71

3.64. Functional test 11 . 71

3.65. Functional test 12 . 72

3.66. Functional test 13 . 72

3.67. Functional test 14 . 72

3.68. Traceability matrix of functionality . 73

4.1. Days o� . 75

4.2. Tasks involved in the project . 75

4.3. Personnel and hourly rates . 77

4.4. Detailed personnel costs excluding VAT 77

4.5. Hardware cost excluding VAT . 79

4.6. Software cost . 79

4.7. Total project cost . 80

B.1. Hardware options and their default values 112

1. Introduction and objectives

�All programmers are genius playwrights
and all computers are lousy actors�

Programmers' folklore

This chapter brie�y describes what motivated this project. The necessity for a system

like the one developed is discussed and the various stages in its development are detailed.

The chapter concludes with an explanation of how this document is structured.

1.1. What is QReact

QR codes have become ubiquitous in the recent years. Their ease of use, simplicity of

scanning, speed of processing, robustness and, not least importantly, their information

content are only some of the reasons why they have become a familiar sight for many.

One aspect that makes them ideal for use in systems where certain access control is called

for is the fact that they provide an accessible way of hiding information in plain sight.

With an added layer of security to obfuscate their otherwise plain-text content, QR codes

are an invaluable asset in similar applications.

Grosso modo, the objective of this project is to create a framework for access control

based on QR codes. The framework, called QReact, de�nes multi-layered QR codes

which can be used for soliciting and transferring information. The framework provides

functionality related to the creation, validation, interpretation and possible execution

2

QReact 1.2. WHY THIS FRAMEWORK

of the instructions encoded in them. Complete modularity is a characteristic feature,

allowing QReact to be ported to other systems and its functionality expanded e�ortlessly.

Said design also does not pose a challenge to adding extra functionality when so required.

To branch out, QReact can be used for a variety of other applications with little or no

modi�cation.

In brief, these are the building blocks of this project:

� the framework. Various classes have been programmed which de�ne the syntax

of the instructions and of the con�guration �les. Two classes consisting almost

entirely of static methods are programmed to aid the parsing process: these are

used throughout the framework and allow seamless changes if these are needed.

� a GUI to aid in the creation of QR codes.

� a test application to illustrate the overall functionality in a speci�c usage scenario.

1.2. Why this framework

In the world of security and access control, it is desirable that secret information be

transferred and interpreted securely. The volumes of information in question are not high,

maybe a hash code is required or a password must be entered. The basic requirements

are speed and ease of use and, if necessary, ease in the modi�cation.

As an example, consider an electronic badge system, like the ones typically used in

hospitals. Access is controlled by approximating the badge to the electronic reader.

The badge itself, in many cases, is just a tamper-proof chip in which relatively static

identi�cation information is hard-coded. Said information can in principle be modi�ed,

depending on the technology used, but the process, while not di�cult, is somewhat

lengthy and de�nitely not immediate�special hardware is required for that. The fact

that this example system is based on hardware has the advantage that it is almost

entirely tamper-proof: if unauthorised access were to be gained, an intruder should know

the internal workings of the chip and most probably have the necessary controller to

properly re-program the chip in the badge. �Hacking� into such a system is certainly

not impossible but it is labour intensive. A possible disadvantage is that the process of

changing the identi�cation information is cumbersome, time-consuming and potentially

involves added expense: it consists of re-programming some or all of the chips or acquiring

new ones. So while ease of use and speed are certainly a given with such a system,

modi�cation might not always be easy.

3

QReact 1.3. DEVELOPMENT PROCESS

As another example, there are instances in which certain information is to be shared

with only a certain group of people. For example, in an o�ce there might be two WiFi

networks: one for the general user and one internal, just for the use of the sta�, possibly

giving access to more online resources. As a safety precaution, the ESSID of the internal

network is hidden and its pass code is changed, say, every fortnight. In this scenario,

using hardware-based information exchange similar to the one described previously would

be ine�cient given the frequent changes to the information to be shared and the fact

that every time that happens, the users would have to apply the changes manually.

These examples, and many more, show that addressing �exibility can often be a daunting

task when it comes to sharing secret information. QR codes provide an easy, accessible

way to tackle this problem. They also provide another layer of �exibility: automation.

In the second example above, a little piece of simple software could read the QR code

and automatically update the WiFi pass code as necessary.

Another way to use QReact, without modifying a single line of code in the framework,

is custom-built one-time access systems, similar to the GooglePlay vouchers. This open

truly immense possibilities, such as store coupons, one-time payment codes, electronic

checks and many many more.

It is important, however, to realise that this framework does not accomplish security

on its own. It provides a way to automate and simplify certain processes but still uses

underlying security measures. In brief, QReact's aim is not to replace existing access

control systems but is presented as an alternative to them, providing easily implementable

automation as an additional feature.

1.3. Development process

There are six phases in the development of QReact.

Phase one consists of a study of existing alternatives and uses of QR codes. Attention

is paid to their interpretation and generation. Finally, a brief analysis of platform

requirements is presented and a platform is chosen to run QReact on.

Phase two is the analysis of system requirements. A number of quirks of the target

operating system are considered.

Phase three deals with the detailed design of QReact. It is based on the system require-

ments laid out in phase two. Every part of the system implemented is analysed in

order to make sure that all the requirements are met.

4

QReact 1.4. PROJECT REPORT: STRUCTURE

Phase four is the implementation of the actual system. Modularity is respected by

testing every module individually.

Phase �ve consists of tests performed on the system as a whole.

Phase six is the development of this project report.

1.4. Project report: structure

1.4.1. Chapter one

Chapter one introduces the objectives and the need for this project. It also looks ahead

and gives an overview of the development process and at what is to come in this project

report.

1.4.2. Chapter two

Chapter two begins with an introduction to QR codes and why they have been chosen

as an information vector. Next, a brief overview of the quirks of the operating sys-

tem of choice is presented and how these will impact on the overall development of the

framework.

1.4.3. Chapter three

An overview of the system requirements is presented. The project structure is considered

in detail, explaining how the code design will ful�l the system requirements.

1.4.4. Chapter four

Chapter four deals with budgeting and time planning.

1.4.5. Chapter �ve

Chapter �ve presents an objective view of the possible future improvements to the system

and some of its possible o�-the-label uses. It also presents a subjective account of what

was learned during the phases of analysis and development.

5

2. The State of the Art: Scannable

Codes and Android

�Simplicity is prerequisite for reliability�
Edsger Dijkstra

Scannable or optical codes are all around us. From the simple bar codes we are so

familiar with in supermarkets, bookshops, music shops and the like, to the stack codes

we often �nd printed on our aeroplane tickets to the QR codes that have recently gained

popularity with mobile phones, it is di�cult to imagine an area of high-tech life where

they could not be used.

This chapter describes some of the most widely-used optical codes, with special attention

being paid to QR codes, of which various detailed aspects are considered. The chapter

goes on to discuss why Android was chosen as the development platform and concludes

with a review of some of the apps which use QR codes.

2.1. Introduction to scannable codes

At the most basic level, a scannable code, an optical code or a bar-code1 is an optical

machine-readable representation of data about the object to which it attaches. The

1As used in this context, a bar-code is a misnomer. Strictly speaking, bar-codes are just one of the
many types of optical codes that exist.

6

QReact 2.1. INTRODUCTION TO SCANNABLE CODES

encoding is done by combining patterns of di�erent geometric complexity, the simplest

being dots and parallel lines and growing in complexity up to intricate combination of

these plus rectangles and hexagons. These codes are scanned by optical scanners and

interpreted by special software. Optical codes take various characters as input and

produce a (code) symbol as output.

Linear codes

The optical codes with which we are most familiar are also the oldest in use: the bar-

codes, also called linear or 1D codes. They represent information using parallel lines of

variable width. They were �rst used to label rail-road cars but their commercial success

did not come by until they were used to automate supermarket checkout systems, which

is where they are ubiquitous nowadays. The very �rst scanning of the now standard

Universal Product Code (UPC) bar-code was on a pack of Wrigley Company chewing

gum in June 1974[25]. The simplicity, universality and low cost of the bar codes have all

limited the widespread use of other means of identi�cation systems for di�erent objects

until the �rst decade of the 21st century, when the RFID systems were introduced.

Ordinary linear codes are vertically redundant. This means that the same information

is repeated vertically, allowing for the heights of the bars to be truncated without any

loss of information. This redundancy also allows a symbol with printing defects, such as

spots or blank spaces, to be read and interpreted correctly. This is the protection linear

codes provide against misreads. The higher the bar heights, the higher the probability

that at least one path along the bar code will be readable. Figure 2.1 shows a bar code

and its truncated version.

(a) Original bar-code with numerical values (b) Truncated version of the same bar-code

Figure 2.1.: Illustration of the vertical redundancy of linear bar-codes. Both images have
the same scale. The two bar-codes are completely equivalent

7

QReact 2.1. INTRODUCTION TO SCANNABLE CODES

An ordinary linear code encodes numeric information only. As an example of their

evolution we turn to Code 39. It was the �rst alphanumeric symbology to be developed

and is still in use today, among others by United States Department of Defense, and the

Health Industry Bar Code Council. It was developed at Intermec in 1974. Its original

design included two wide bars and one dark to encode each character, resulting in 40

possible characters (see �gure 2.2). Setting aside one of them, the asterisk, as a start

and stop pattern left users with 39 characters, from where the code got its name.

(a) Character patterns (partial) (b) Example

Figure 2.2.: Code 39

2D codes

Linear codes store information along the length of the symbol. 2D codes store information

along the height as well as the length of the symbol. Thus both dimensions are used,

which increases the amount of information that can be encoded. Using two dimensions

also implies that the vertical redundancy is reduced. Therefore, to ensure protection

against misreads, most two-dimensional codes use check words to ensure accurate reading.

There are three basic categories of 2D codes. Stacked 2D codes can be thought of as

several linear codes stacked on top of one another. They therefore code the data in a

series of bars and spaces of varying width. Matrix codes, on the other hand, code the data

based on the position of black spots within a matrix. Each black element is the same

dimension and it is the position of the element that codes the data. Polar coordinate

codes use a similar idea, the di�erence being that in them the arrangement of the di�erent

parts of the symbol is circular. They have an additional element, a centre circle, known

as 'the bullseye' which is used for calibration. From it, the di�erent characters can be

decoded by measuring angles from the bullseye.

There are well over 20 di�erent 2D symbologies available today. A brief description of

some of them follows.

8

QReact 2.1. INTRODUCTION TO SCANNABLE CODES

(a) Code 49 (b) PDF 417

Figure 2.3.: Example of two stacked 2D codes

Code 49

The �rst truly two-dimensional code was introduced again by Intermec Corporation in

1988 when they announced Code 49. The idea was to pack a lot of information into a

very small symbol. Each symbol can have between two and eight rows. Each row consists

of a leading quiet zone2; a starting pattern; four data words encoding eight characters,

with the last character a row check character; a stop pattern; and a trailing quiet zone.

Every row encodes the data in exactly 18 bars and 17 spaces, and each row is separated

by a one-module high separator bar (row separator). It had su�cient capacity to encode

the complete ASCII 7-bit table.

PDF 417

This is another very widely used 2D code, developed in 1991 by Ynjiun Wang at Symbol

Technologies, now owned by Motorola. PDF stands for Portable Data File. Its symbol-

ogy consists of 17 modules each containing 4 bars and spaces, hence the number 417.

The structure of the code allows for between 1000 to 2000 characters per symbol with

an information density of between 100 and 340 characters. Each symbol has a start and

stop bar group that extends the height of the symbol. This code is now in the public

domain. Applications include boarding passes for aeroplanes and other means of trans-

port, security ID cards, inventory management. This format (together with Data Matrix

outlined below) is used by United Postage Service (UPS).

2In the optical codes terminology, a quiet zone is a part of the code which is used only to indicate start
or end of a section

9

QReact 2.1. INTRODUCTION TO SCANNABLE CODES

Data Matrix

This 2D matrix code was originally developed by Siemens, is designed to pack a lot of

information in a very small space. A Data Matrix symbol can store between one and

500 characters. The symbol is also scalable between a 1-mil square to a 14-inch square.

That means that a Data Matrix symbol has a maximum theoretical density of 500 million

characters to the inch! The practical density will, of course, be limited by the resolution

of the printing and reading technology used. Typical Data Matrix symbol sizes vary from

8Ö8 to 144Ö144 cells, which can store up to 2,335 alphanumeric characters. Data Matrix

uses di�erent error-correction features, Reed-Solomon or convolutional codes, which help

the message to be decoded even if the symbol is partially damaged.

The most popular application of this code is the marking of small items such as integrated

circuits and printed circuit boards. These applications make use of the code's ability to

encode approximately �fty characters of data in a symbol 2 or 3mm square and the fact

that the code can be read with only a 20 percent contrast ratio. Also, it is becoming

increasingly popular on labels (for example, to encode the serial number of computer

hardware) and in the postal service, most notably DeutschePost, for digital postmark on

letters. Curiously enough, although this code is a free standard, no free documents exist

that explain the encoding process. These can be purchased from the ISO website [33].

Figure 2.4 shows an example of this code and its usage.

(a) Example (b) Usage

Figure 2.4.: Data Matrix code

10

QReact 2.2. QR CODES: A PRIMER

ShotCode

This curious looking circular code was developed by High Energy Magic of Cambridge

University in 1999 when researching a low cost method to track locations. The symbol

is similar to a dartboard with a bullseye in the centre and data circles surrounding it.

The decoding is achieved by measuring the angle and distance from the bullseye for each

symbol. Because of the circular design it is also possible to detect the angle from which

the code was read. An example, taken from ShotCode Wikipedia entry, can be found in

�gure 2.5.

Figure 2.5.: ShotCode example

This code is designed to be readable by cameras found in mobile phones. Unlike other

codes, ShotCode just contains URLs, not actual data. Two important features of this

code are the speed with which the decoding takes place and the very small size of the

program which does the job.

2.2. QR codes: a primer

A QR code (abbreviation for Quick Response code) is a matrix 2D code that consists

of black modules arranged in a square pattern on a white background. It was Created

by Toyota subsidiary Denso-Wave in 1994 and has only recently become one of the most

popular types of optical codes.

11

QReact 2.2. QR CODES: A PRIMER

Figure 2.6.: An example of a QR code

2.2.1. Features and speci�cations

As any 2D code, it stores information in both horizontal and vertical direction which

vastly increases its information storage capacity as compared to the linear bar-codes. It

is suggested [1] that a typical QR code can encode the same amount of data as a bar-code

in one-tenth of the size. For even a smaller printout size, the Micro QR code has been

developed. In addition, reading and interpreting can happen at very high speed.

Figure 2.6 shows an example of a QR code. One can instantly recognize them by the

three black squares placed at the corners of a square arrangement of dots. These are used

for position detection. When a reader program scans the image, it tries to �nd these

three squares plus an additional smaller, less visible square with a dot in the middle used

for alignment (visible towards the bottom right-hand corner in �gure 2.6). Only then

can the contents be interpreted. These squares are always placed in the same positions

within the matrix, which allows QR codes to be scanned at any angle, a similarity they

bear to the polar coordinate codes described in the previous section.

The outer zone of the code is used as a quiet zone (see previous section for a de�nition).

The version information is contained in a rectangular pattern on top of the bottom

right and directly to the left of the top right square. Information about the format is

contained around the top left square, directly to the right of the bottom left square and

directly below the top right square. The line pattern that connects the three squares is

required and can vary depending on the rest of the information. It is used for timing

while scanning. The rest of the symbol contains the actual encoded information.

12

QReact 2.2. QR CODES: A PRIMER

Numeric only 7089 characters
Alphanumeric 4296 characters
8-bit binary 2953 bytes

Kanji, full-width Kana 1817 characters

Table 2.1.: Maximum capacity of a QR code

Capacity

One of the most important features of this code is its capacity to encode various types of

data. QR Code is capable of handling numeric and alphabetic characters, Kanji, Kana

and Hiragana characters (let's not forget it was developed in Japan), symbols, binary,

and control codes. A maximum of 7089 characters can be encoded in one symbol. Table

2.1 shows maximum data capacity for the di�erent formats.

It should be noted, however, that not all scanning applications support the maximum

amount of data.

QR codes have di�erent versions which de�ne the di�erent sizes used. They start with

version 1, which has 21×21 elements and goes on to version 40 sized at 177×177 elements.

Each version adds four more elements to the previous, both horizontally and vertically.

So version 2 would have 25×25 elements, version 3 would have 29×29, etc. Each symbol

contains the full capacity according to the amount of data for the given format. As the

amount of data increases, instead of cramming more dots inside the same symbol, thus

lowering their clarity and potentially risking misreads because of resolution artefacts,

more modules can be added to accommodate the data. These new modules are QR

codes themselves and are a very ordered way to create new and larger symbols. This

curious property is known as the Structured Append Feature of the QR codes and is

illustrated in �gure 2.7.

These modular symbols are created sequentially, i.e. when a new module is required, the

information in the rest of them is repositioned so as to use all the capacity of the new

symbol and positioned in a way that the information encoded in the second mini-symbol

follows the one encoded in the �rst, the third follows the second, etc. Scanning these

modular symbols is done considering the whole symbol as one, just as if it were a normal

code symbol. The presence of the additional square markers in the individual modules

helps the alignment process, as there are more points to scan and the probability of a

misread would increase without bound without them. These additional squares also help

the decoding process: they serve as separators between the di�erent chunks of information

13

QReact 2.2. QR CODES: A PRIMER

Figure 2.7.: An example of the Structured Append Feature

in the original message. Once these chunks have been decoded, the original message is

composed by concatenating them starting from the top left and proceeding horizontally.

This interesting feature means that information stored in multiple QR Code symbols can

be reconstructed as single data symbol. Furthermore, one data symbol can be divided

into up to 16 symbols, allowing printing in a narrow area.

For further detail on the sizes and versions, one should consult [11].

Error correction capabilities

As mentioned in section 2.1, all scannable codes employ some kind of error correction

mechanism. For linear codes, it is the vertical redundancy illustrated in �gure 2.1. For

2D codes, error correction is introduced as controlled redundant data interwoven with the

text itself, suggesting the use of digital techniques to accomplish this important feature.

In the case of QR codes, it is accomplished using Reed-Solomon codes.

Reed�Solomon (R) codes were �rst introduced in 1960 by Irving Reed and Gustav

Solomon, then members of the MIT Lincoln Laboratory. They are a non-binary vari-

ation of the widely used cyclic error-correcting codes. R codes can detect and correct

14

QReact 2.2. QR CODES: A PRIMER

Level L 7%

Level Ms 15%

Level Q 25%

Level H 30%

Table 2.2.: Error correction levels of QR codes (percentages are approximate)

multiple random errors. By adding t check symbols to the data, R codes can detect any

combination of up to t erroneous symbols, and correct up to
⌊
t
2

⌋
of them. R codes add

redundancy of twice the number of codewords that are to be corrected. They are also

suitable for the correction of multiple-burst bit-errors.

Mathematically speaking, in R codes source symbols are viewed as coe�cients of a poly-

nomial p(x) over a �nite �eld. Today, encoding symbols are derived from the coe�cients

of a polynomial constructed by multiplying p(x) with a cyclic generator polynomial3.

This gives the idea of an e�cient decoding algorithm, which was discovered by Selwyn

Sampler and James Massey, and widely used today.

R codes have a great variety of uses in the modern digital world, although slowly being

phased out by the more modern turbo codes and low-density parity-check codes. In data

storage, R codes gained a lot of recognition in 1982 with the mass production of the

compact disk, where two di�erent R codes were interwoven. Similar schemes are used in

the DVD and DAT products. The distributed online �le system Kuala also uses them

when it splits �les into chunks. In data transmission, R codes were used, concatenated

with convolution codes, to encode the digital pictures sent by the Voyager space probe.

Since then, they have been used in a number of space missions, including the Mars

Path�nder, Galileo, Mars Exploration Rover and Cassino's. Another important use is

in slid systems.

The error-correction capability of QR codes makes extensive uses of Reed-Solomon codes.

This allows data to be restored even if the symbol is partially destroyed or dirty. Users can

choose from four available error correction levels depending on the operating environment.

Each level consecutively improves the error correction capability but also increases the

amount of data and consequently the symbol size. Table 2.2shows the four available

levels.

Levels Q or H may be selected, for example, for factory environment where the likelihood

of a code getting dirty increases. For a clean environment, level L may be selected if we are

after a large amount of data. Level Ms is the most frequently selected one as it provides a

3In this sense, they are reminiscent of BKcodes

15

QReact 2.2. QR CODES: A PRIMER

trade-o� between redundant data and protection against errors. As a somewhat simplistic

example of how to determine which level to use, let's consider that we wish to encode

200 text characters and want to be able to correct 100 of them. The R code will add a

redundancy of 200 characters (see above), so the total number of characters to encode

becomes 400. Since we want to correct 100 of them, the fraction becomes 1
4 or 25%. This

suggests we need to use level Q protection to achieve our goal. If we wished to correct

just 50 characters, the size would become 300 in total and the fraction would be 1
6 , which

is close to 15% and so we would choose level Ms.

Micro QR code

For applications that require small amount of data, smaller space and that do not have

the ability to handle larger scans, Micro QR codes were created. Data encoding in them

is more e�cient given that they only have one position detection pattern (see �gure 2.8).

Figure 2.8.: An example of a Micro QR code

A typical symbol is a lot smaller than even the smallest version of a regular QR code.

However, the capacity is also drastically reduced�for a Micro QR code, the maximum

capacity is just 35 alphanumeric symbols. Error correction is limited to L, Ms and Q

levels.

Copyright note

QR codes are property of Denso Wave and even the word �QR Code� is registered

trademark in Japan, USA, Australia and Europe. Despite that, Denso Wave choose

not to exercise their right to receive royalty for their use. The license to the use of

the QR Code stipulated by HIS (Japanese Industrial Standards) and the ISO are not

necessary. The speci�cation for QR Code has been made available for use by any person

or organization. Dens Wave do stipulate, however, that in order to use the word QR

Code in publications, web sites, etc. an indication should be made that QR Code is

registered trademark of DENSO WAVE INCORPORATED. This only applies for the

16

QReact 2.2. QR CODES: A PRIMER

word QR Code, and not for the actual image. This actually means that everyone can

use QR codes freely and is no doubt one of the reasons why their popularity has soared

recently.

Calculating the area of the QR symbol

The area of a printed QR symbol can be crucial to the application. Below is an illustrative

example of how to calculate this important parameter and what to do is it is too large.

Note that these calculations include the margin (the quiet zone, which as we know is a

part of the symbol).

If we wished to encode 100 alphanumeric characters, these are the steps to follow.

1. Specify the error correction level and decide on a version by �nding the intersection

of alphanumeric characters and the chosen error correction level from the table in

[11]. In our case, suppose we wish a standard error correction level Ms. The ap-

propriate version is Version 5, as Version 4 with Level Ms holds only 90 characters.

2. If we use a printer with a 400 dpi resolution (pretty standard) and print with a 4

dot con�guration, we use the equation

25.4mm/inch

400dpi
× 4dots/module = 0.254mm/module

There are 37 modules in Version 5, therefore the (horizontal) size of QR Code will

be

37modules×0.254mm/module = 9.398mm

3. Next, we secure a four-module wide margin on both sides, a requirement of these

codes. For the purpose of these calculations we will use 8 modules, four on the left

and four on the right. Now

9.398mm+ 0.254mm/module× 8modules = 11.43mm

In other words, the required QR Code area is 11.43mm2

If the QR Code area obtained in the process above does not �t the printing space, a

decrease in the symbol version may be considered. Another idea is to make the module

size smaller or to split the symbol.

17

QReact 2.2. QR CODES: A PRIMER

2.2.2. Possible uses and impact

Given that QR codes can encode just about anything, their potential is limitless. In this

section we discuss some of their potential uses and the impact they might have on them.

As QR codes were created in Japan, they quickly became very common there and are

still in wide use. Other places where they have seen frequent use include the Netherlands

and South Korea. Even though the rest of the world has been somewhat slower in their

adoption, nowadays they are becoming more and more common. [2]

Examples of use in management settings

An example application of a Micro QR code could be tagging printed circuit boards or

electronic parts. Micro QR Codes are small enough and can encode enough information

for a serial number, which is typically up to 20 alphanumeric characters. At just 3mm2,

a manufacturer has plenty of room to attach it. The data can be used for process control,

history control and automatic set-up.

Another possible use is in bookkeeping, particularly in larger libraries. Micro QR Codes

can be used to identify ISBN used for books and ISSN used for periodicals, articles, etc.

These entries require 13 and 8 digits, respectively. All that is needed is a little room on

the spine of the book, as opposed to the front page, where to print the Micro Qr code.

Then it would be possible to scan the periodical or book directly from the shelf where it

lives.

For shipping slips and receipts in the automotive industry, a QR Code might contain

customer data, shipper data, product number, quantity, etc. The data is used for ordering

and product scanning. This system o�ers the bene�t of gathering large volumes of

shipping data by one-touch operation. Additionally, the decoded data is already in text

form, which signi�cantly reduces the cost of forms compared with conventional slips �lled

in using OCR software.

For logistics, product code, expiration date, manufacturing history, and other data can

be encoded into QR Code. This enables �rst-in �rst-out execution based on expiration

date control and improved traceability based on manufacturing history control.

Shipping companies can also bene�t from the use of QR codes, in which shipping desti-

nation, product code, colour, size, and other data can be encoded and then printed on

shipping instructions. The data is used for shipping control thus potentially preventing

18

QReact 2.2. QR CODES: A PRIMER

(a) Test specimen management system (b) Access control system

Figure 2.9.: Two further uses of QR codes

shipping mistakes. It also enables instant gathering of shipping instruction data using

handy terminals.

Sales can also bene�t from QR Codes. Lots of additional information can be provided,

such as warranty, care and handling of the product, service points, etc., which might be

used for sales management purposes. This is particularly e�ective if using small-sized

codes on small items given that a printed instruction sheet would be di�cult to �t in the

wrapping. This also enables e�cient analysis of sales situation.

Other uses include test specimen management systems (for example in a microbiology

laboratory) and access control systems as in �gure 2.9. QR codes can also be used

for inventory, where the symbol might contain information about property data, model

numbers, user names, and usage locations.

Direct marketing and tracking

An almost immediate application of QR codes, following their release from the con�nes

of Toyota, was in direct marketing. The idea was to collect response or to drive sales

or to perform analysis. QR codes are created and printed or otherwise embedded, onto

anything from direct mail to postcards, catalogues and more. Email campaigns can also

bene�t from the use of QR codes.

Just like with the rest of the applications, the codes are used only as an information

vector, the actual process of tracking being external to them. A possible tracking scheme

might be accomplished using an account with one of the websites dedicated to tra�c

statistics. Google Analytics, Clicky or Piwick, BitLy and many others all provide ways

19

QReact 2.2. QR CODES: A PRIMER

of linking to web pages using special �gateways�. These websites create special links

to the user's content. When someone clicks, they get redirected �rst to the company

host where the request for the target web page is logged. Once this is done, the user is

redirected to the actual page they wanted to visit4. A QR code �ts comfortably into this

scheme as one of the most popular options, as described in [9], is creating URL links.

Object hyper-linking and some of its applications

This neologism describes a process by which the Internet is extended to objects and

locations in the real world. This is done by attaching object tags with URLs as meta-

objects to tangible objects or locations. These object tags can then be read by a wireless

mobile device and information about objects and locations retrieved and displayed. In

this sense, object hyper-linking is a branch of ambient intelligence.

An important part of this tagging system is the tag itself. There are lots of types of tag,

including RFID tags and graphical tags. Their design needs to be able to include lots

of information and must be robust enough for the tag to be readable, even when partly

obscured or damaged. As an example, graphical tags which are outdoors are exposed to

the weather and if they become blurred or partly destroyed, they should still be readable.

Graphical tags have a number of advantages. They are easy to understand and cheap

to produce and they can be printed on virtually anything. QR codes are a particularly

attractive form of tagging because they are already very widely used, and camera phones

can easily read them.

Various examples of the world suggested by object hyper-linking follow.

� Extra information about products in shopping malls. For example, in the meat

section, a QR code might take us to the producer's website and we can �nd out

information about the origin of the animal, its diet and the date it was dispatched.

Providing this information is not additional burden on the producer given that

they already have it and are required to share it with the wholesale retailer. In

the clothes department, a QR code can give us information about the material,

especially useful if someone has an allergy or hyper sensitive skin.

� Business cards. A regular business card is de�nitely not on its way out but a QR

code on it will surely enhance it. It might contain the exact same information the

card contains but in the VCARD format. Importing the resulting .vcard �le into

4A lot of other websites use a similar ideas for their external links, sometimes the lengthy links in the
browser's URL �eld can be clearly seen.

20

QReact 2.2. QR CODES: A PRIMER

the contacts of your mobile phone is therefore as simple as pressing the Scan button

on your QR code scanner.

� Advertising. Here the possibilities are truly endless. Traditional advertising works

on limits. Companies are charged by the airtime, additional advertising space, ad-

ditional newspaper columns. A QR code �xed to an advertisement means there

are literally no limits in the amount of information the ad can include. QR codes

can be �xed on bus stops, magazine advertisements, posters, brochures, lea�ets,

product packaging, labels, bottles... For a company, this is a great way to stay in

touch with the clients. By printing QR Codes on products, marketing collateral,

advertisements, posters and freebies, interactive communication is instantly acti-

vated. News, information, pictures, blogging, marketing, branding can all be aided

by this technology.

� Museum exhibitions and concerts. Additional information about the author, the

period, the artwork and the materials used, among others, can be instantly obtained

using a QR code printed next to the painting or the sculpture when visiting a

museum exhibition, including translations into various languages. A QR code on

your opera brochure can give you access to the libretto, its history and background,

biographies of the singers, etc. The same applies to theatre productions, possibly

adding interviews with the actors.

� Cinema advertising. Similar to the previous points with the addition of a possible

website of the movie or its trailer.

� Schedules. Whether it is the theatre, the cinema, the bus or train stations or the

airport, schedules can be coded into QR codes and imported into your mobile phone

in an instant. For this, the VCAL format might be used, about which the QR code

speci�cations say it is ideal. Moreover, once a train ticket is issued, a QR code

printed on it can contain the information about the schedule ready to be imported

into our calendar.

� Social networking. QR codes can be used to con�rm one's assistance to an event

organized in a social network, or to indicate one's opinion (Like/Unlike) of a certain

topic, website, item of news, etc. It can also be used to con�rm friendship or

membership of groups.

� Tourism. QR codes can be printed on any object of interest, providing the visitor

with relevant information. For example, a guided tour can be organized in this

way, in which the visitor knows where to start and is guided using QR codes to the

21

QReact 2.3. THE CASE AT HAND: QR CODES AND ANDROID

next place, getting all the information required upon request. In mountain hikes,

QR codes can be used to indicate the route to follow, the distance to the next post

or to the nearest hut, etc.

� Scavenger hunts. The above idea is perfectly applicable to scavenger hunts. The

QR codes can contain the riddles that take the players to the next challenge.

� High-tech romance. Since QR codes can be printed on anything, one can print a

QR code on their T-shirt. This code can contain their telephone number, email

address, Facebook page, sexual preference or what kind of relationship they are

after. It may sound amusing but this surely is a potential usage that should not

be ignored light-heartedly.

All these examples are just a fraction of what QR codes can accomplish. Once people

are aware of them, their usage is limited only by our imagination.

2.3. The case at hand: QR codes and Android

2.3.1. Why Android?

An important objective of this project is the ease of portability. As many components

as possible must be made very easy to re-compile for the target platform. Following is a

list of reasons why Android was chosen as the target platform.

A vast number of devices

No other platform o�ers such a plethora of devices on which to run applications. Android

runs on ARMv7 and v8, x86, and MIPS, both 32- and 64-bit editions as of Android 5.0.

According to [26], the number of Android devices around the world in 2014 was over 1

billion, giving Android a market share of over 80%. Its direct competitor, iPhone, had a

market share of 15.4% and Windows Phone a modest 2.8%. Another, no less important

reason for this choice is the Android �ecosystem�, described in A.1.3. This of course gives

a vast choice of devices and a choice in their use to any developer, which in turn means

a variety of deployment options for this project.

A wide variety of applications out of the box

Android itself comes complete with a lot of ready-to-use applications like music player,

camera app, a full-featured address book, email client, etc. In addition to this, every

22

QReact 2.3. THE CASE AT HAND: QR CODES AND ANDROID

manufacturer and, in the case of mobile phones, cell carrier, has their own apps installed

on top of these5. An Android device is, therefore, fully functional mere seconds after it is

activated, which would encourage more people to think about owning one. This in turn

means even more possible deployment devices for this project.

A wide availability of additional apps

Android has its own o�cial digital content distribution system called Google Play. Ac-

cording to [19] and [18], in November 2014 there were 1,400,000 apps available, of which

1,200,000 were free and 200,000 were paid. Another bit of statistic, taken from [28],

shows over 50 billion downloads and 1,430,000 apps as of January 2015.

A framework which encourages code re-use

Probably the most important feature from a programmer's point of view is the fact that

at the level of system organisation, Android has features that allow one application to run

parts of another for various side e�ects. The prerequisite is that the secondary application

should declare that it allows to be run. If certain special circumstances are present,

whole screens (called activities in Android) of one program, either built-in or deliberately

installed, can be used at runtime by another one. This is an important feature of the

Android framework which allows for massive code re-use and creates potentially unique

interactions between programs. It is also at the core of this project.

More about the framework can be found in A.2.

2.3.2. Some QR code-driven applications

A look through Google Play Store reveals a number of apps that use QR codes. It is

important to note that the focus of these is on capturing, interpretation and creation.

This is no surprise as frameworks are usually a behind-the-scenes a�air and rarely appear

except when described explicitly.

Following is a review of some of the most popular applications that deal with QR codes.

QR Scanner: Free Code Reader by Kaspersky Lab

(http://www.kaspersky.com/qr-scanner)

5Lovingly referred to as �bloatware�

23

QReact 2.3. THE CASE AT HAND: QR CODES AND ANDROID

Figure 2.10.: QR Scanner Logo

This free application comes from the man-

ufacturers of anti-virus software Kasper-

sky Labs. It veri�es the QR codes which

are scanned with it before it allows them to

be acted upon. It checks the URLs against

a list of malware or phishing websites and

warns the user before it allows them to open the links. It also works with WiFi creden-

tials and contact information, as well as images and text messages. In other words, it

adds a layer of security to the QR codes by limiting their usage to the ones Kaspersky

deem safe.

QuickMark Lite QR Code Reader by SimpleAct, Inc.

(http://www.quickmark.com.tw)

Figure 2.11.: QuickMark Lite logo

This application comes from a Taiwanese

company. One of its most outstanding fea-

tures is the History tab, where users can

see what they have scanned and saved and

when; said tab also provides statistics as

to the di�erent types of information found

in the scanned QR codes. The application

provides insights into how many times the

code the user is scanning has been scanned

and its rating, provided of course that the codes are con�gured to be traced, as outlined

in section 2.2.2. An additional and very useful feature is that QuickMark Lite allows

batch scanning of QR codes from various sources such as web pages and loose image

�les.

QR Droid Code Scanner by QRDroid (http://www.qrdroid.com)

This application uses the Zapper6 technology, which allows information in QR codes to

be used for registering and logging on to websites, checking out items from shopping

baskets, paying in adhered establishments, �nd prices, reviews and directly shop for an

item, all these through the Zapper infrastructure. Discounts, special rates, additional

publicity are also supported using the same framework. QR Droid also pays speci�c

6More about can be found at http://www.zapper.com

24

QReact 2.3. THE CASE AT HAND: QR CODES AND ANDROID

Figure 2.12.: QR Droid logo

attention to sharing via Twitter, Facebook and other social channels. It features various

options for decoding from images and websites, as well as generating QR codes.

i-nigma QR & Barcode Scanner by 3GVision

(http://www.3gvision.com/i-nigmahp.html)

Figure 2.13.: i-nigma logo

Similarly to other apps, i-nigma scans

other formats in addition to QR codes,

such as DataMatrix, supermarket bar-

codes and many more if the SDK is

present. Its multilingual support is a

unique feature, none of the other apps re-

viewed herein contain this in their descrip-

tions. In addition to the most important

Western European languages, it supports

Russian and Hungarian. Its GooglePlay description boasts that �3GVision's mobile scan-

ning SDK is the de facto standard for Japanese headsets�7. This app also features optical

code scanning from sources other than the camera, and a unique feature is that it can

use the input from an MMS as its source.

Comparison

Without considering the previous four apps an exhaustive sample, it can be inferred that

applications that use QR codes nowadays are mostly user-oriented, the idea being to

focus on functionality and thus to abstract the complexities of the internals of the codes,

7Source: http://www.3gvision.com/QR-Barcode-Reader-SDK.html

25

QReact 2.4. DEVELOPMENT TOOLS: DESCRIPTION

while at the same time adding features such as history, tracking, etc. With the notable

exception of i-nigma, there is hardly a mention of a framework behind these apps. This

should come as no surprise; it can be argued that the proliferation of mobile technology

has had this as one of its objectives.

When it comes to security applications, a more representative sample would probably

show applications similar to QR Scanner by Kaspersky, which combines phishing pro-

tection and white-list-like features when a QR code is detected. It is to be expected for

security application not to disclose their �internals�, possibly as a security precaution. For

this reason, it is exceedingly di�cult to provide an estimate of the security frameworks

based on QR codes on the market nowadays.

2.4. Development tools: description

2.4.1. Android 4.4

Labelled KitKat, Android 4.4 was the current version at the time of the design and

implementation of this framework. No speci�c features to any speci�c version have been

used so it is expected, although not tested, that the GUI part of the framework should

function without a need for changes. The API level corresponding to the various releases

is 19. A further discussion of Android versions and the various API levels can be found

in A.1, more speci�cally in A.1.1.

2.4.2. Java 7

Android and Java are probably the most frequent combination in the mobile world nowa-

days. Java has long been the choice for portable applications due to the fact that it is

both interpreted and compiled, using the Java VM, the bytecode interpreter and JIT

compilation. Its enormous base of built-in functionality makes it one of the catch-all

programming languages. It is an important part of the repertoire of any programmer in

the current times, which would certainly help to expand the framework in the future.

The reason why Java 7 was chosen was that it provides Collections and a number of syntax

di�erences with other versions, like the switch operator functioning on an extended set

of types, proper and compulsory handling of generics and, as a result of more data types

being introduced, more precise typecasting.

26

QReact 2.4. DEVELOPMENT TOOLS: DESCRIPTION

2.4.3. Eclipse 3.8 and ADT

A signi�cant part of this framework was written in pure Java, without any thought of

deployment on any operating system. This is where Eclipse came into play. In later

stages, ADT was used to develop most of the non-GUI Android-speci�c components of

the framework. More on this and other ways of developing applications is given in B,

speci�cally B.3.1.

2.4.4. Android Studio 1.2

For the GUI, and following Google's advice, Android Studio was used. Being speci�c to

Android, it contains everything needed to develop the GUI components and interaction

patterns, program, re-factor, run apps on virtual or physical devices and of course, debug.

More information can be found in B.4.

2.4.5. ZXing

A crucial element in any application that uses QR codes is of course the reader and the QR

code creator. For Android, there are a number of widely used applications for scanning.

Figure 2.14.: ZXing logo

In this section we turn our attention to one of them, Barcode

Scanner, provided by Google and more speci�cally to the li-

brary behind it, ZXing8.

ZXing (pronounced "zebra crossing") is an open-source, multi-

format 1D/2D bar-code image processing library implemented

in Java. The focus of this project is on using the built-in

camera on mobile phones to photograph and decode bar-codes

directly on the device, without communicating with a server.

Alternatively, ZXing can be used to scan QR codes from a web page. One has to supply

the URL for the page and ZXing scans all the codes it can �nd there and returns the

decoded information. ZXing can also be used to generate QR codes. All these uses will

be described in the upcoming pages.

ZXing supports all the formats listed in section 2.1, except for the Shotwell code which

requires it own application. A full list of supported codes follows.

8Please note that this section, particularly C.2, C.3 and C.4, contains references to many built-in Java
classes. Understanding all of them is not required, just when to use them

27

QReact 2.5. OTHER TOOLS USED IN THIS PROJECT

UPC-A & E Code 39 ITF PDF 417

EAN-8 & 13 Code 128 RSS-14 Aztec

Code 39 QR Data Matrix Codabar

ZXing contains various modules which can be freely used and are actively developed.

The following is a list of ready-to-use parts of the library:

core: The core image decoding library, and test code

javase: J2SE-speci�c client code

android: Android client, called Barcode Scanner

androidtest: Android test app

android-integration: Supports integration with Barcode Scanner app via Intent

zxingorg: The source behind http://zxing.org/w

zxing.appspot.com: The source behind the web-based bar-code generator

In addition to these, a number of other modules exist, most of which are contributed

(third-party) and not maintained by the ZXing team. More information on ZXing can

be found in Appendix C.

2.5. Other tools used in this project

2.5.1. Planner (https://wiki.gnome.org/Apps/Planner/)

This tool is used to keep track of the budget, time planning and the Gannt diagram of

the project. As the website states, �[i]ts goal is to be an easy-to-use no-nonsense cross-

platform project management application�. Although quite simple, it contains everything

needed to manage resources, both human and technical, to keep track of the budget and

costs and consequently, calculate overruns if these should occur, and schedule di�erent

tasks in various relationships. Excellent capabilities for keeping track of the percentage

of tasks done and thus keeping the project on schedule are also provided. A screen shot

of its clean and simple interface is shown in �gure 2.15.

This basic application proved more than su�cient for the needs of this project, particu-

larly when tackling the somewhat daunting tasks of costs and budgeting.

28

QReact 2.5. OTHER TOOLS USED IN THIS PROJECT

Figure 2.15.: Planner screen shot

2.5.2. JabRef (http://jabref.sourceforge.net/)

Any project of this size requires quite a bit of reading and consequently, a way to keep

track of the references. JabRef is a bibliography reference manager. Written in Java

and therefore being completely cross-platform, it is compatible with BibTex, the default

LATEX (section 2.5.3) bibliography database-like �le format, and with many others. A

screen shot, taken from the website, is shown in �gure 2.16. The basic version features,

among others, detailed editing of all entries, the possibility of classifying them according

to multiple criteria, support for translations, search functions, both within the database

and on academic websites like Google Scholar, Medline, arXiv, etc. It can be in�nitely

customizable through plug-ins.

2.5.3. LATEX and LYX (www.ctan.org and www.lyx.org)

As a document-preparation system, LATEX has long been favoured among scientists and

professionals as the typesetting system par excellence. Its modular design together with

the vast amount of additional functionality available completely free of charge, its cross-

platform nature, the vast online knowledge base and of course, the beautifully typeset

documents, unimaginable with anything else, are just some of the reasons for this. LYX

29

QReact 2.5. OTHER TOOLS USED IN THIS PROJECT

Figure 2.16.: JabRef screen shot

(�gure 2.17, taken from its website) was chosen as a powerful and capable front-end

due to its familiar design and ease of use. It is tremendous help in dealing with multiple

documents, document styles, graphics, numbering, exporting into other formats, glossary

and index features and so many more things LATEX users have to face on a daily basis.

A great aid is of course the spell-check and the built-in installer for style �les. Its real

strengths, however, are its mathematics mode, its pipe-like connection with CAS and the

possibility of directly programming in-line graphics.

2.5.4. TaskCoach (http://taskcoach.org)

Last but de�nitely not least, a project simply cannot go without an application to handle

various unsorted to-do lists and items. It is true that Eclipse has support for to-do lists

inside any given project but those cover mostly the programming side of the question.

TaskCoach is much more than a to-do list manager. Written in Python and totally

cross-platform (it even supports iOS, for a small fee), it features support for multiple

projects, scheduling and time tracking options, date-driven tick-o� to do lists including

attachments, and a lot more. Figure 2.18 shows a screen shot, taken from its website.

30

QReact 2.5. OTHER TOOLS USED IN THIS PROJECT

Figure 2.17.: LYX screen shot

Figure 2.18.: TaskCoach screen shot

31

3. Analysis, design and implementation

�It is easier to change the speci�cation
to �t the program than vice versa�

Brian Kerninghan

This chapter deals with the processes of analysis of requirements, design of the framework

and implementation and programming. A specially important feature is the syntax of

the QR codes which needs to be clearly de�ned and strictly controlled. A brief overview

of the tests performed and their results is presented at the end.

3.1. Analysis

3.1.1. User requirements

This section lists the user requirements, both functional and restriction. To facilitate

reading these, tabular format has been chosen, in which the following �elds are present:

name is a descriptive name of the requirement

id is a unique identi�er, which in this section is of the format URYXX. Y is substituted

for F if the requirement is functional and R if it is a restriction requirement. XX

is a two-digit number beginning with 01.

priority de�nes how important satisfying this requirement is to the overall project progress.

It can take the values time-critical, medium or low. This �eld helps schedule the

development process

32

QReact 3.1. ANALYSIS

type de�nes whether the requirement is essential or desirable to the overall functioning

of the project

veri�able states how easy it is to ensure that the requisite is included in the project. It

can have the values of easily, with di�culties or not

stable answers the question of how likely it is that the requirement might change over

the development of the framework. A value of yes indicates the requirement will

likely not change, a value of no means it most probably will

description is a detailed description of the requirement

3.1.1.1. Functional requirements

�Blind� creation of QR codes URF01

priority time-critical type essential

veri�able? easily stable? yes

description
The user must be presented with a way to
create QR codes without being aware of the
current setup of the framework

Table 3.1.: User requirement URF01

Control over QR formats URF02

priority time-critical type essential

veri�able? easily stable? yes

description
The user must have a systematic way to
control every aspect of the QR code format

Table 3.2.: User requirement URF02

Dynamic control over
con�guration

URF03

priority time-critical type essential

veri�able? easily stable? yes

description

The user must have control over how the
framework is con�gured in order to embed it
into a complete system. If any changes should
occur, they must be updated immediately.

Table 3.3.: User requirement URF03

33

QReact 3.1. ANALYSIS

Control over action on QR
codes

URF04

priority time-critical type essential

veri�able? with di�culties stable? yes

description
The user must be able to de�ne their own
ways of interacting with the host system

Table 3.4.: User requirement URF04

Access to usability and usage
statistics

URF05

priority medium type desirable

veri�able? easily stable? yes

description
The user must have easy access to what QR
codes where scanned and when, as well as to
the usable codes, at any moment

Table 3.5.: User requirement URF05

Built-in syntax and semantic
checks without acting on QR

codes
URF06

priority medium type desirable

veri�able? easily stable? yes

description
The user must know whether a QR code can
be acted upon without actually executing it,
at any moment

Table 3.6.: User requirement URF06

Built-in actions on QR codes URF07

priority time-critical type essential

veri�able? easily stable? yes

description
The user must have clearly de�ned actions
when a QR code is presented

Table 3.7.: User requirement URF07

34

QReact 3.1. ANALYSIS

Con�guring the framework
through QR codes

URF08

priority time-critical type essential

veri�able? easily stable? yes

description
The user must be able to con�gure the
framework using special QR codes

Table 3.8.: User requirement URF08

Information about con�gured
QR codes

URF09

priority medium type essential

veri�able? easily stable? yes

description
The user must be able to access all information
regarding a particular con�gured QR code

Table 3.9.: User requirement URF09

Two-way communication with
the host application

URF10

priority medium type essential

veri�able? easily stable? yes

description
The user must be able to access information
exchanged between host app and framework

Table 3.10.: User requirement URF10

3.1.1.2. Restriction requirements

Impossibility to act on
malformed QR codes

URR01

priority time-critical type essential

veri�able? easily stable? yes

description
The user must not be allowed to act on
syntactically incorrect codes

Table 3.11.: User requirement URR01

35

QReact 3.1. ANALYSIS

Impossibility to create
non-standard QReact codes

URR02

priority time-critical type essential

veri�able? easily stable? yes

description
The user must not be allowed to create
syntactically incorrect codes

Table 3.12.: User requirement URR02

Impossibility to create QReact
codes directly

URR03

priority time-critical type essential

veri�able? easily stable? yes

description
The user must not be allowed to create QR
codes directly; this must be done using the
built-in functions

Table 3.13.: User requirement URR03

Impossibility to bypass the
framework logic at run-time

URR04

priority time-critical type essential

veri�able? easily stable? yes

description

The user must not be allowed to interfere with
the framework functions at run-time. These
include awareness of which QR codes can be
acted upon.

Table 3.14.: User requirement URR04

3.1.2. Software requirements

This section lists the software requirements, both functional and non-functional. The

format followed is almost identical to the one used in section 3.1.1, except for an additional

�eld:

dependencies lists the user requirement code(s) associated with the software require-

ment

The identi�ers also follow a di�erent format. In the upcoming tables, it is SRYXX,

where Y is substituted for F in the case of a functional requirement and NF if it is

non-functional. In either case, XX is a number starting from 01.

36

QReact 3.1. ANALYSIS

Interface to create valid QR
codes

SRNF01

priority time-critical type essential

veri�able? easily stable? yes

description
The framework must provide a function to
generate valid QR codes

dependencies URF01, URR03

Table 3.15.: Software requirement SRNF01

Interface to validate QR codes SRNF02

priority time-critical type essential

veri�able? easily stable? yes

description
The framework must provide a set of functions
to validate QR codes at various depths

dependencies URR01

Table 3.16.: Software requirement SRNF02

Usage statistics SRNF03

priority time-critical type essential

veri�able? easily stable? no

description

The framework must keep track of:

� all QR codes that can be acted upon and

� all QR codes that have been scanned,
regardless of whether they have been
handled or not

dependencies URF05, URR04

Table 3.17.: Software requirement SRNF03

Dynamic con�guration SRNF04

priority time-critical type essential

veri�able? easily stable? no

description
The framework must be con�gured
dynamically by the host application

dependencies URF03, URF10, URR04

Table 3.18.: Software requirement SRNF04

37

QReact 3.1. ANALYSIS

Information about con�gured
QR codes

SRNF05

priority time-critical type essential

veri�able? easily stable? no

description
The framework must provide information
about con�gured QR codes

dependencies URF09, URF10

Table 3.19.: Software requirement SRNF05

Access to information about
con�gured QR codes

SRF06

priority time-critical type essential

veri�able? easily stable? no

description

When the host system requires it, a list
containing every aspect of a QR code will be
provided; also, QR code de�nitions will be
converted into into various exchange formats

dependencies URF09, URF10

Table 3.20.: Software requirement SRNF06

Access to dynamic
con�guration

SRF07

priority time-critical type essential

veri�able? easily stable? no

description
When so prompted by the host application,
the relevant parts of the framework will
re-con�gure themselves.

dependencies URF03, URF10, URR04

Table 3.21.: Software requirement SRF07

38

QReact 3.1. ANALYSIS

YAML input/output SRF08

priority time-critical type essential

veri�able? easily stable? no

description

The framework must provide functions which:

� handle �le operations in a YAML-like
format

� handle exceptions that arise during these

� provide conversion functions (list to
YAML and vice versa)

dependencies URF03, URF05, URF10

Table 3.22.: Software requirement SRF08

Change in QR code formats SRF09

priority time-critical type essential

veri�able? easily stable? yes

description

When a change in the QR code formats is
called for, their de�nitions will be altered
accordingly in only one �le. Every aspect of
the codes can be changed

dependencies URF02, URR01, URR02

Table 3.23.: Software requirement SRF09

Semantic validation of QR
codes

SRNF10

priority medium type essential

veri�able? easily stable? yes

description

As a precaution and for validation purposes, a
simulation of handling a ready-to-handle QR
code will be o�ered, with the error messages
produced.

dependencies URF06, URR01, URR04

Table 3.24.: Software requirement SRNF10

39

QReact 3.1. ANALYSIS

Validation procedure for QR
codes

SRF11

priority medium type essential

veri�able? easily stable? yes

description

� Parse the presented QR code, going
through all the necessary steps as if it
was being handled

� if an error is present, the error message is
returned

� in no case is any exception raised

dependencies URF06, URR01, URR04

Table 3.25.: Software requirement SRF11

Built-in actions for QR codes SRNF12

priority medium type essential

veri�able? easily stable? yes

description

Four default actions will be presented for every
QR code; its contents will select one of them
and the optional parameters needed for its
handling. It should be easy to alter these by
adding more de�nitions and behaviour in the
appropriate places in the code.

dependencies URF07, URF04, URR02, URR04

Table 3.26.: Software requirement SRF12

40

QReact 3.1. ANALYSIS

Procedure for executing
built-in actions for QR codes

SRF13

priority medium type essential

veri�able? easily stable? yes

description

For every de�ned command do:

� check syntax. This varies depending on
the command

� check semantics

� if everything is alright, execute command
and return with a non-error status

� otherwise, raise the appropriate
exception

dependencies URF07, URF04, URR02, URR04

Table 3.27.: Software requirement SRF13

Procedure for extending
built-in actions for QR codes

SRF14

priority medium type essential

veri�able? easily stable? yes

description

� de�ne command code in the appropriate
component

� append command semantics to the
appropriate component

� test using the dry-run function

dependencies URF07, URF04, URR02, URR04

Table 3.28.: Software requirement SRF14

41

QReact 3.1. ANALYSIS

Con�guring the framework
using QR codes

SRNF15

priority time-critical type essential

veri�able? easily stable? yes

description

The framework allows basic con�guration
functionality called on by QR codes. These, by
default, are editing, adding and erasing a QR
de�nition.

dependencies URF08, URR04

Table 3.29.: Software requirement SRNF15

Procedure for adding
de�nitions using QR codes

SRF16

priority time-critical type essential

veri�able? easily stable? yes

description

� the default ADD command takes an ID, a
program name and, optionally,
parameters to append to the list of
de�nitions.

� when this command is presented to the
QR parsing module, it is validated and if
the same de�nition does not exist, it is
added to the list of QR de�nitions

dependencies URF08, URR04

Table 3.30.: Software requirement SRF16

42

QReact 3.1. ANALYSIS

Procedure for editing
de�nitions using QR codes

SRF17

priority time-critical type essential

veri�able? easily stable? yes

description

� the default EDIT command takes an ID,
a program name and, optionally,
parameters to append to the list of
de�nitions. Its syntax is essentially the
same as the ADD command

� when this command is presented to the
QR parsing module, it is validated

� if the same de�nition does not exist, an
exception is raised

� if it does, the new program and
parameters overwrite the old de�nition.
The QR ID is kept as is.

dependencies URF08, URR04

Table 3.31.: Software requirement SRF17

Procedure for removing
de�nitions using QR codes

SRF18

priority time-critical type essential

veri�able? easily stable? yes

description

� the default DELETE command takes only
an ID

� when this command is presented to the
QR parsing module, it is validated

� if the de�nition does not exist, an
exception is raised

� if it does, it is removed from the list.
This operation cannot be undone.

dependencies URF08, URR04

Table 3.32.: Software requirement SRF18

43

QReact 3.2. DESIGN

3.1.3. Traceability matrix

Having put together the requirements that must be satis�ed, it is important to make

sure that every user requirement is covered by at least one software requirement. For

this, a traceability matrix is used. Its vertical axis contains the user requirements. The

horizontal axis is left to the software requirements. When these intersect, the symbol

3 is used. Table 3.33 shows the traceability matrix. It is important that every user

requirement is covered by at least one software requirement, otherwise the design will be

incorrect. In the traceability matrix this means that no row should be completely blank.

If this were to happen, the design should be revised.

3.2. Design

This section presents the design phase of the development of the framework. Architec-

tural aspects are considered, as well as code and �le formats.

3.2.1. Architecture: design considerations

The design process followed in QReact is di�erent from the normal process to follow

when designing an application. A framework necessarily must be built into a host, to

which it provides basic functionality. The host, on the other hand, needs to provide some

con�guration information for the framework to work properly. During the design phase,

the focus must be on how to interact with the host system. Failure to do this will make

it look like certain features are left as �unde�ned� or not clearly de�ned, on both sides.

3.2.1.1. QReact and its environment

Figure 3.1 represents the relationship between QReact and its environment, the focus

being on its interaction with the host or driver application. The arrows indicate the

direction in which the data moves.

44

QReact 3.2. DESIGN

SRNF01

SRNF02

SRNF03

SRNF04

SRNF05

SRF06

SRF07

SRF08

SRF09

SRNF10

SRF11

SRNF12

SRF13

SRF14

SRNF15

SRF16

SRN17

SRN18

U
R
F
0
1

3
3

U
R
F
0
2

3

U
R
F
0
3

3
3

U
R
F
0
4

3
3

3
3

U
R
F
0
5

3
3

U
R
F
0
6

3
3

U
R
F
0
7

3
3

3

U
R
F
0
8

3
3

3
3

U
R
F
0
9

3
3

U
R
F
1
0

3
3

3
3

3

U
R
R
0
1

3
3

3
3

U
R
R
0
2

3
3

3
3

U
R
R
0
3

3

U
R
R
0
4

3
3

3
3

3
3

3
3

3
3

3
3

Table 3.33.: Traceability matrix between user and software requirements

45

QReact 3.2. DESIGN

Figure 3.1.: QReact and its environment

con�guration refers to information regarding the con�gured QR codes, con�g �les and

their location, etc.

status info refers to changes in the the con�guration �les, or applications becoming

temporarily unavailable. When QReact sends status info, it usually is about the

con�gured QR codes or the ones which have been scanned

QR input is the input QReact needs to work with

commands is basically �QR code accepted or rejected� or error messages

3.2.1.2. QReact's building blocks

It is important to note that QReact does not distinguish between users and administra-

tors. The framework's design is egalitarian in that it can be used for access control and

also for de�ning the QR codes. There is no GUI as such; an example driver application is

included with the sole purpose of verifying the design and the correctness of the design.

Frequently, communication with an external application involves exception handling. In

addition, almost complete freedom to rede�ne behaviour and QR code formats is called

for. Last but not least, it is desirable to make the framework easy to embed and to port

to other operating systems.

46

QReact 3.2. DESIGN

Figure 3.2.: Component relationship diagram

Taking all the above mentioned features into consideration, a strong modular design was

opted for. Figure 3.2 shows the relationship between the various classes that compose

QReact, using their names from the implementation phase. Once again, the arrows

indicate the direction in which the data moves. The example host or driver application

is included for the sake of completeness.

3.2.1.3. Component speci�cation

This section provides a detailed description of all components which have been considered

in the design phase. In order to facilitate their link to the design requirements, tables

have been used, whose �elds have the following format:

name is a descriptive name of the component

ID is the component's unique identi�er. It has the format COMXX, where XX is the

component number

purpose is a short description of what the component does in the framework

description is a list of the functions the component ful�ls

requirements shows which user requirements the component meets. A correct design

will meet all user requirements.

47

QReact 3.2. DESIGN

It is important to note that the components' names are not the same as the classes

presented in �gure 3.2. This is due to the fact that a given class implements more than

one component and conversely, the functionality of a given component is spread among

various classes.

name QR code information manager ID COM01

purpose
To provide convenient access to all information relevant to a QR
code de�nition

description

� Provides su�cient �elds, both optional and required, to
store information about a QR de�nition from di�erent
sources

� Provides methods to modify, access, copy, and export said
information

requirements URF04, URF09, URF10

Table 3.34.: QR code information manager component

name QR list manager ID COM02

purpose
To provide access to a (in principle unlimited) number of QR
de�nitions (via COM01).

description

� Provides access to a simply linked list of all de�nitions with
methods to add, edit, remove, query and access individual
elements

� Can receive information from di�erent sources, both from
QReact and from the OS, both one at a time and in bulk

requirements URF04, URF09, URF10, URR04

Table 3.35.: QR list manager component

48

QReact 3.2. DESIGN

name YAML format manager ID COM03

purpose
To de�ne a minimalist YAML format used to store and exchange
information consistently

description
De�nes a minimalist subset of YAML to be used throughout
QReact

requirements URF05, URF09,URF10, URR04

Table 3.36.: YAML format manager component

name File input/output manager ID COM04

purpose To provide high-level I/O access to various YAML-formatted �les

description

� Can read and write a variety of YAML �les, formatted per
the rules set by COM03.

� Has access to OS lower-level �le-handling functions

� Handles I/O exceptions appropriately

requirements URF05, URF09,URF10, URR04

Table 3.37.: File input/output manager component

name QR format manager ID COM05

purpose
To provide modi�able syntactic rules for the format of the QR
codes in use by QReact

description

� Provides clearly de�ned syntactic rules to be followed when
building the QR codes

� Provides facilities for these rules to be modi�ed

requirements URF04, URF07, URF08, URR04

Table 3.38.: QR format manager component

49

QReact 3.2. DESIGN

name QR syntax checker ID COM06

purpose To ensure that the QR codes in use are syntactically correct

description

� Checks that every QR code which passes through the
system conforms to the speci�cations set forth by COM05

� Provides methods to check the formats in varying level of
complexity

� Provides speci�c string-handling capabilities

requirements URF06, URR01, URR02, URR03

Table 3.39.: QR syntax checker component

name Con�guration manager ID COM07

purpose
To provide the location of all con�guration and interaction �les
systematically and adapting to changes

description

� Keeps track of where the con�guration and interaction �les
are stored

� Can interact with the host application if these need
changing

requirements URF03, URF04, URF10, URR04

Table 3.40.: Con�guration manager component

name Exception manager ID COM08

purpose
To provide ways to handle informative exceptions in case any
irreparable errors occur

description

� De�nes exceptions with speci�c and informative contents

� Can interact with the host application as well as the rest of
the framework's components

requirements URF10, URR01, URR02, URR03, URR04

Table 3.41.: Exception manager component

50

QReact 3.2. DESIGN

name QR parse manager ID COM09

purpose To parse QR codes and act accordingly

description

� Uses established QR syntax

� Can inform of errors without interrupting the �ow of
program logic

� Can decide what to do with each QR code it receives as a
parameter

� Can be upgraded to include more commands

requirements URF06, URF07, URF10, URR04

Table 3.42.: QR parse manager component

name Encryption manager ID COM10

purpose To provide an encryption layer to the QR de�nitions

description

� To obfuscate the contents of the codes in use

� To decipher the contents of the codes in use

� Can be changed for a stronger algorithm or a dynamic
choice of algorithms

requirements URF07, URF10, URR02, URR04

Table 3.43.: Encryption manager component

51

QReact 3.2. DESIGN

name Book-keeping module ID COM11

purpose
To keep track of unique identi�ers, commands, available,
executable, and attempted QR codes

description

� Uses established QR syntax

� Links with all of QReact and the host application

� Responsible for the de�nition and proper handling of
commands, as well as for every change in these

� Responsible for providing usage statistics; for this it
communicates with system functions to get timestamps

� Responsible for dynamically keeping track of which
programs are available, thereby determining which QR
codes can be executed

� Can be changed to include di�erent usage statistics

requirements
URF01, URF02, URF03, URF04, URF05, URF07,
URF10, URR01, URR02, URR03, URR04

Table 3.44.: Book-keeping component

3.2.1.4. Traceability matrix between user requirements and components

Just as with the software requirements, a traceability matrix is presented which explains

the relationship between the components and the user requirements. It is important to

ensure that every requirement is covered by at least one software component. If not, the

design is incomplete and must be re-done. Table 3.45 contains the relevant data.

52

QReact 3.2. DESIGN

C
O
M
0
1

C
O
M
0
2

C
O
M
0
3

C
O
M
0
4

C
O
M
0
5

C
O
M
0
6

C
O
M
0
7

C
O
M
0
8

C
O
M
0
9

C
O
M
1
0

C
O
M
1
1

URF01 3

URF02 3

URF03 3 3

URF04 3 3 3 3 3

URF05 3 3 3

URF06 3 3

URF07 3 3 3 3

URF08 3

URF09 3 3 3 3

URF10 3 3 3 3 3 3 3 3 3

URR01 3 3 3

URR02 3 3 3 3

URR03 3 3 3

URR04 3 3 3 3 3 3 3 3 3

Table 3.45.: Traceability matrix of components and user requirements

3.2.2. Design of the QR format

The driving force behind this framework is the QR codes. It is imperative, therefore,

that their format be clearly de�ned. In addition to his, it is equally important that a

high level of customizability be permitted.

As with many other formats, QReact uses a structure that consists of headers and a

payload. Separators as necessary and in addition to this, any QR code can in principle

involve a number of di�erent actions and parameters. Table 3.46 contains the control

sequences used in the default QR code formats, whereas table 3.47 contains their exact

order. Finally, table 3.48 de�nes the built-in commands.

Additionally, a layer of encryption is included. In its default version, it is a very simple

ROT 25 substitution cipher.

53

QReact 3.2. DESIGN

parameter length value remarks

start_sq 5 !#RCT used to indicate the start of the QR code

cmd_delim 2 #!
separates the various parts of the command.
Must be used also after the last parameter

cmd_id 4 N/A
indicates what the QR code is to do. By
default, there are four commands

payload N/A N/A
the actual content of the QR code, i.e. the
parameters of the command.

payload_delim 1 ,
optional. If parts of the payload need to be
separated, this is the symbol to use

end_sq 1 !
every valid QR code must end with this
symbol

Table 3.46.: Default QReact control sequences

start_sq cmd_delim cmd_id cmd_delim code_id payload cmd_delim end_sq

Table 3.47.: Default QReact format

command code remarks

ADD 0981 adds a de�nition of a QR code to the system
EDIT 0341 overwrites an already added de�nition
REMOVE 7647 erases a de�nition

PASS 7614
passes its parameters to an application or
activity to be further processed

Table 3.48.: Default commands and their meanings

There is no need to use this format directly, the QRDefs component contains a method

which forms syntactically valid QR codes.

3.2.3. Design of the �le exchange formats1

QR code de�nitions need to be stored in order for the framework to know what codes are

de�ned. Even though QReact does not deal with this directly, it uses a simple �le format

to store the QR de�nitions and to provide the host system with a list of QR codes which

1Note: while syntactically valid, the examples listed in this section are not compatible with each
other and have never been used in actual tests.

54

QReact 3.2. DESIGN

have been and can be used. Said format is a minimal subset of YAML, de�ned by the

following rules:

1. the storage is of simple option:value pairs, each one on its own new line.

2. only one : symbol is permitted per line.

3. the individual items will be separated by the --- sequence on a new line on its own.

4. no separator will be placed after the last line

Below are the options that have been considered basic and indispensable as far as the

formats are concerned.

Table 3.49 contains the de�nitions used to store the con�gured QR codes. It is very

close in content to table 3.51 in section 3.3.1 and to gain a better understanding of these

formats, both must be considered in conjunction. To clarify things, listing 3.1 shows a

sample con�guration �le containing three QR codes.

Table 3.50 shows a typical �le containing the QR codes that were used, together with a

time-stamp (identical to the one produced by the Linux date built-in function) recording

the moment of usage.

Finally, listing 3.2 shows the IDs of the usable QR codes. A code is deemed usable when

1. it has been properly con�gured and

2. the program to be called when said code is scanned is present in the host system

Whether a code is usable or not is a situation that can vary with time.

name usage

id unique identi�er of the QR code
name descriptive name given by the user

prog
activity or program associated with
the QR code

tag
further information associated with
the code, if desired

params
number of parameters the QR code
contains

Table 3.49.: Default options for con�gured QR codes

id: 0x9322

prog: com.google.android.webview.VIEW

55

QReact 3.3. IMPLEMENTATION

tag: 5

name: Webview

params: 1

id: 0x9974

prog: com.myproject.SEND

tag: timestamp and code length

name: Transfer

params: 2

id: 0x4718

prog: com.atanas.QReact

tag: password and my secret code

name: Password to open the door

params: 2

Listing 3.1: An example of a QReact con�guration �le

id: OxOfee30234

timestamp: Wed May 13 18:45:03 CEST 2015

id: OxOfee94134

timestamp: Fri May 22 14:32:25 CEST 2015

Table 3.50.: Used QR codes format

usable: 0x74899

usable: 0x14667

usable: 0xe8yt4

usable: 0xuni34

Listing 3.2: An example of a QReact �le listing usable codes

3.3. Implementation

This section describes the components which were programmed as a part of QReact. For

each component, a brief description and the most relevant usability notes are presented.

56

QReact 3.3. IMPLEMENTATION

Section 3.3.8 provides clues as to which modules will need to be adapted if the framework

needs to be embedded or the formats changed. At the end, a class diagram which

illustrates graphically the relationship between the various components is presented.

3.3.1. QRObject

In many ways, QRObject is at the core of QReact. This class de�nes the most basic

attributes of a QReact code in a convenient object form and is used internally to store

and process information about the QR codes de�ned and used by the system. Certain

attributes are obligatory whereas others are optional. Table 3.51 presents a list of said

attributes.

In addition to these, certain methods are implemented which copy, check and return

information about the QRObject in question. Most of them are the expected get/set

pair of methods to act upon the parameters just described.

Most methods are implemented using Strings. Additionally, however, support for seri-

alization had to be built into these objects. This was accomplished by using HashMaps

from the standard java.util package where appropriate. To illustrate this point, two

speci�c methods from QRObject are shown: asHash() and one of the class's constructors.

There is another relevant point to these examples: as can be seen in listings 3.3 and 3.4,

Java generics are heavily used to ensure type safety at compile time, thereby facilitating

the overall debugging process.

57

QReact 3.3. IMPLEMENTATION

name type obligatory? usage

idTag string yes
unique identi�er of the QR
code, following the format
de�ned in QRDefs

displayName string yes

descriptive name given to
the code. Relevant to the
user, not used by the
system

programName string yes
activity associated with
the QR code

helpTag string no
further information
associated with the code,
if desired

numParams string yes
number of parameters the
QR code contains

complex boolean n/a

an internal parameter,
states whether more than
one parameter is de�ned
in the QR code

Table 3.51.: QRObject attributes

public QRObject (HashMap <String , String > cnt) {

idTag = cnt.get("id");

displayName = cnt.get("name");

programName = cnt.get("prog");

helpTag = ((cnt.get("tag") == null) ? "" : cnt.get("tag"));

numParams = cnt.get("params");

complex = numParams.contains(",");

}

Listing 3.3: QRObject constructor using HashMap

public HashMap <String ,String > asHash () {

HashMap <String ,String > res = new HashMap <String ,String >();

res.put("id", idTag); res.put("name", displayName);

res.put("prog", programName); res.put("tag",helpTag);

res.put("params", numParams);

58

QReact 3.3. IMPLEMENTATION

return res;

}

Listing 3.4: QRObject method asHash()

Needless to say, every one of the possible uses of QReact necessarily has to go through

the QRObject class.

3.3.2. QRList

In addition to building upon the functionality o�ered by QRObject, QRList has the

following objectives:

1. to coordinate the input/output aspects of all code de�nitions used in QReact. The

actual I/O operations are performed by methods from other classes but QRList

de�nes when these are to be executed. QRCon�g, described in 3.3.4, is used for

this purpose

2. to handle list-like operations such as addition, editing, removal and counting of QR

de�nitions

3. to provide information relevant to the elements stored, such as what activities are

required in the codes and how many of these can be executed

4. to provide format checks to ensure that only valid QR de�nitions are operated on,

thereby preventing possible run-time format-related mistakes

5. to store the IDs of all usable codes

6. to store the IDs of all codes whose use has been attempted, regardless of whether

they were passed on to the security system or ignored due to errors of any kind

It is important to note that while it is in principle possible to use this component on its

own, it is intended to be used as a part of QReact and it might not be immediately clear

what its purpose might be outside of the framework.

3.3.3. QRDefs and con�guring the QR code formats

The main purpose of this class is to provide format de�nitions. They are the core of

QReact and must therefore be tested thoroughly to ensure they function properly. This

class also provides the following sets of methods:

59

QReact 3.3. IMPLEMENTATION

� to validate the QR codes produced, in varying levels of depth

� decapsulation method, which strips the QR code into its payload components for

posterior parsing

� a basic method (QRDefs.getUniqueID())to provide the all-important unique iden-

ti�ers of the QR codes

� a very basic method (QRDefs.encrypt(String content)) to provide an encryp-

tion layer

� to create correctly formatted QR codes, by default encrypted and with a unique

identi�er

Programatically, this class consists of static methods and constant de�nitions. Mak-

ing the de�nitions constant was achieved by modifying the String literals with public

static final identi�ers, thereby ensuring they can only be modi�ed in this particular

�le. The class itself was programmed to be public (but not static) to facilitate the

testing process later on.

As detailed in section 3.1, one of the core requirements of QReact is complete freedom to

de�ne the syntax of the QR codes in use. This is accomplished precisely in this software

component. Every aspect of the formats can be changed by adapting the de�nitions in

this �le to the scenario in question. Table 3.52 shows what can be con�gured in the

QRDefs module, whereas listing 3.5 shows a possible con�guration, one of the default

ones used in the testing process.

(Re-)con�guration issues pertaining to the formats

1. Special care should be taken to ensure that the changes make sense programati-

cally. For instance, if an additional command is called for, it must not only be

de�ned in its String form but also included in the COMMANDS array. Similarly, if a

command's name is to be changed, the change needs to be re�ected not only in the

description but in the String array as well. In either case, these changes must be

also programatically re�ected in the QReact module, described in section 3.3.7, to

make the commands usable.

2. QReact has very strict checks regarding the format of the QR codes (user side of

the equation) but no �sanity checks�, meaning that there is no (o�ered) way to

check if the programmer is using valid commands.

60

QReact 3.3. IMPLEMENTATION

3. Programmers are strongly advised to change the contents of the QRDefs.encrypt()

method. The one provided by default is a simple variation of a letter-substitution

cipher (ROT 25) that does enough to obfuscate the contents of the code but by no

means provides true security.

4. To change the format of the identi�ers, both their new format and the contents

of the QRDefs.getUniqueID() method need to be updated coherently with each

other, for the changes to take e�ect.

public static final String QRCODE_START_SQ = "!#RCT";

public static final String QRCODE_END_SQ = "!";

public static final String QRCODE_DELIM = "#!";

public static final String QRCODE_FMT =

"^(" + QRCODE_START_SQ + ")([\\d]{4})([a-zA-Z0 -9#, !?])*"

+ QRCODE_END_SQ+"$";

public static final int LEN_CMD = 4;

public static final String PARAM_FMT = "[A-Za-z0 -9 .]+";

public static final String PARAM_DELIM = ",";

public static final String ID_FMT_1 = "[a-z0 -9]{6}";

public static final String EDIT_CMD = "0341";

public static final String ADD_CMD = "0981";

public static final String PASS_CMD = "7614";

public static final String REMOVE_CMD = "7647";

public static final String [] COMMANDS = { EDIT_CMD , ADD_CMD ,

PASS_CMD , REMOVE_CMD };

public static final String NO_ERROR = "0000";

public static final String ERROR_FOUND = "1000";

Listing 3.5: A possible con�guration built into QRDefs

61

QReact 3.3. IMPLEMENTATION

parameter usage

QRCODE_START_SQ Starting symbol or sequence of QR code
QRCODE_END_SQ Ending symbol or sequence of QR code

QRCODE_DELIM
Sequence or symbol to delimit the di�erent
parameters

QRCODE_FMT

A regular expression, formatted according to
the rest of the parameters parameters. Every
QR code will be tested against this string

LEN_CMD
An int showing the number of commands
allowed

PARAM_FMT
A regular expression that shows the
parameter format

PARAM_DELIM
If there is more than one parameter, this is
the delimiting string between them

ID_FMT_1
A regular expression which speci�es the
identi�er format

EDIT_CMD The edit command string
ADD_CMD The add command string
PASS_CMD The pass command string
REMOVE_CMD The remove command string

COMMANDS
An array of strings containing the previous
four parameters

NO_ERROR

A string specifying no error was found
during the parsing and/or interpretation of
the code

ERROR

A string specifying at least one error was
found during the parsing and/or
interpretation of the code

Table 3.52.: QRDefs con�guration options

3.3.4. QRCon�g

This component was left in the �nal version of the code for compatibility reasons and also

to contribute to a more ordered component structure. Its function is to provide system-

wide settings and to keep them separate from the QR code settings. More speci�cally,

its features are as follows:

� con�gurable location of any con�guration �les deemed necessary. This includes tar-

get sensing which permits di�erent locations depending on the target architecture

and can be changed as needed.

62

QReact 3.3. IMPLEMENTATION

� abstracted read and write operations. Although these are a di�erent component's

responsibility, QRCon�g controls when they are to be executed.

The presence of QRCon�g, although it might seems super�uous at �rst sight, facilitates

QReact 's portability by having all OS-related settings in the same �le, similarly to what

QRDefs does with the formats. Therefore, if QReact is to be ported to another system

or embedded into a di�erent system, this is the �le which holds the setting which will

need to be changed accordingly.

3.3.5. YAML I/O modules

YAML (Yet Another Markup Language, http://www.yaml.org) is a very powerful alter-

native to XML frequently used for object serialization, con�guration �les and system-wide

settings. In its original form, it supports associative arrays, nesting and multi-level lists.

A very reduced subset of YAML is used in QReact to store information about the avail-

able and used QR codes. The two modules in question, YAMLReader and YAMLWriter,

were written from scratch speci�cally for this project and provide a minimalist, although

completely functional, ad-hoc implementation of the YAML format.

This module would probably need to be (partially) modi�ed if QReact were to be ported

to a di�erent architecture. Embedding it into a di�erent system would not call for any

modi�cation.

3.3.6. QRException

The shortest module in this framework, QRException provides a standard way to com-

municate with the QReact module and/or with all other modules that use it. It allows

the calling module to receive informative messages as to any exceptions that occur during

the parsing and execution process of a given QR code.

Listing 3.6 shows the contents of QRException.

public class QRException extends Exception {

private static final long serialVersionUID = 1L;

private String text;

public QRException () {

super ();

}

public QRException(String message) {

63

QReact 3.3. IMPLEMENTATION

super(message);

text = message;

}

public String getExceptionInfo () {

return text;

}

}

Listing 3.6: QRException source code

3.3.7. QReact

Finally, the framework provides a component, aptly named QReact, which encapsulates

all functionality o�ered by the previous modules into an object that can be instantiated

and used to parse and act upon any QR code presented to it. QReact is responsible for

the following:

1. rigorous syntax checks, for which it uses QRDefs.

2. parsing of the various commands, backed up by rigorous semantic checks. These

are performed individually depending on the command which needs to be dealt

with and are hard-coded into this component.

3. if needed, to update the list of codes (using QRList) and the pertinent �les (using

QRCon�g)

4. to provide a pre-parse semantic and syntax checks on demand (method isQROk()

shown in listing 3.7). This method shows possible mistakes to the user without

raising any exceptions.

5. to handle the pertinent exceptions as the arise.

6. in general, to act upon the code's contents.

As an example of how some of this functionality is implemented, listing 3.7 shows how

QReact interacts with the rest of the framework's components. This function returns a

HashMap object which contains information about the correctness of the given QR code.

If there are any errors, it sends informative messages to the caller.

It is worth mentioning that this function detects these errors before the code is acted

upon. The rest of the methods return speci�c information in the form of a QRException,

64

QReact 3.3. IMPLEMENTATION

both before the code is acted upon and during �execution�. This would roughly be the

equivalent of a compile-time and run-time errors.

public HashMap <String ,String > isQROk(String s) {

HashMap <String ,String > res = new HashMap <String , String >();

res.put("result",QRDefs.NO_ERROR); // no errors by default

tokens = s.split(QRDefs.QRCODE_DELIM);

if (tokens.length < 4) {

res.put("result",QRDefs.ERROR_FOUND);

res.put("message", "Not enough parameters\n");

}

if(QRDefs.isValidQRString(tokens) &&

QRDefs.isValidCommand(tokens)) {

switch (tokens [1]) {

case QRDefs.EDIT_CMD :

res.put("code", QRDefs.EDIT_CMD);

res.put("oper", "edit");

break;

case QRDefs.ADD_CMD :

res.put("code", QRDefs.ADD_CMD);

res.put("oper", "add");

break;

case QRDefs.EXEC_CMD :

res.put("code", QRDefs.EXEC_CMD);

res.put("oper", "exec");

break;

case QRDefs.REMOVE_CMD :

res.put("code", QRDefs.REMOVE_CMD);

res.put("oper", "remove");

break;

}

res.put("ID",tokens [2]);

}

else {

res.put("result",QRDefs.ERROR_FOUND);

res.put("message", "Invalid syntax or command !!\n");

}

65

QReact 3.4. TESTS

return res;

}

Listing 3.7: Method isQROk() from QReact

3.3.8. Adapting the formats and embedding QReact

As a summary of this section, table 3.53 shows whether a part of the individual modules

will need to be adapted, signi�cantly or otherwise, if a change in formats or embedding

is necessary.

component format change embedding porting

QRObject probably no no
QRList no no no
QRDefs yes no no
QRCon�g no yes yes
YAML I/O
modules

no no probably

QRException no no no
QReact probably no no
GUI probably probably yes

Table 3.53.: Suggested ways to adapt QReact

In the light of this information, it can be concluded that this framework can be adapted

to new uses and scenarios fairly easily. No signi�cant changes need to be made outside

of certain modules, except the possible GUI2, which by its very nature is platform and

scenario-dependent in every case.

3.4. Tests

Once the system has been implemented, it is important to verify that it functions prop-

erly. Given the strong modular design of QReact, every one of the modules was tested

individually as it was developed. Next, a batch of tests was executed to verify the cor-

rectness of the overall system, utilizing QReact 's built-in safety checks, as well as online

format-checking services. Stress tests were also executed, whose number was limited due

2Strictly speaking, the GUI is not a part of the framework, it is just included here for completeness

66

QReact 3.4. TESTS

to the nature of the project. In order for those to be more meaningful, they should be

executed on the complete system, once QReact is embedded into it.

3.4.1. Functional tests

Functional tests are executed in order to verify that the implementation complies with

the design characteristics. In this project, special attention was paid to the formats and

the built-in safety features of the framework in terms of exception handling and improper

formation of the QR codes since it was deemed that these are the crucial aspects of an

access control system.

In order to facilitate the reading of the results and their link to the design requirements,

the tests are presented in tables which all have �elds with the following format:

Name is a descriptive name of the test

ID is the unique identi�er of the test. For these tests, its format is FTXX, where XX

is the number of the test

System identi�es the module which was tested. At times, there was more than one

module being tested

Result can be either pass, satisfactory or fail

Description provides a brief description of the test

Steps provides a detailed description of all steps taken in this test

For the sake of brevity, only the most relevant tests and their results are described in the

upcoming pages.

67

QReact 3.4. TESTS

name Functional test 1 ID FT01

system QReact result pass

description

1. Overall test with 180 QR codes, 60% of which correctly
formed

2. Additionally, test with 50 QR codes which were not used
before

steps

1. Formulate random contents for 180 codes

2. Run QRDefs.makeCode() to produce 108 correct codes

3. Randomly produce 72 additional QR codes

4. Get a random number from 1 to 50 and decide if it will
signify the correct or incorrect items, then produce the
appropriate number of items

5. Present QR codes to scanner, one at a time, and record
results

Table 3.54.: Functional test 1

name Functional test 2 ID FT02

system QRObject result pass

description Complete core test of the QRObject module and its functionality

steps

1. Formulate random contents for 100 codes

2. Create 100 di�erent QRObjects

3. Test every one of the methods, content-managing and
information, of this module and record results

Table 3.55.: Functional test 2

68

QReact 3.4. TESTS

name Functional test 3 ID FT03

system QRList result pass

description
Complete core test of the functionality of QRList using the
QRCode objects from FT02

steps

1. Create a QRList object, populate with the 100 QRObject

objects produced in FT02

2. Test all functions of the QRList module and record results

Table 3.56.: Functional test 3

name Functional test 4 ID FT04

system QRDefs result pass

description
Internal test to verify QRDefs code de�nitions against format
changes

steps

1. Change the regular expressions containing the format of the
QR codes, including identi�er length

2. Validate the new format using QRDefs.validate()

3. Repeat steps 1-3 �ve times, each time with a new format

Table 3.57.: Functional test 4

name Functional test 5 ID FT05

system QRDefs result pass

description
Internal test for equivalence of de�nitions when validated using
regular expressions (default) and regular string manipulation
functions

steps

Two versions of the validation functions were produced: one
using regular expressions and another using string manipulation
functions. Test for equivalence using the de�nitions in FT04.
The default chosen was regular expressions

Table 3.58.: Functional test 5

69

QReact 3.4. TESTS

name Functional test 6 ID FT06

system YAMLReader result pass

description
Internal test for proper reading of the reduced YAML format
used to exchange and export QRObjects

steps

1. Create 80 random QRObjects, 60% of which correct, and
save them in a YAML �le

2. Read all de�nitions in said �le and record exceptions as
results

Table 3.59.: Functional test 6

name Functional test 7 ID FT07

system YAMLWriter result pass

description
Externally validated internal test of proper formatting of the
reduced YAML format used to exchange and export QRObjects

steps

1. Recover �le produced in FT06

2. Run every one of the de�nitions and the whole �le through
the YAML validator at www.yamllint.com and record
exceptions as results

Table 3.60.: Functional test 7

name Functional test 8 ID FT08

system QRCon�g, QReact, QRList result pass

description Overall test of reading and writing �les in di�erent scenarios

steps

1. Recover �le produced in FT03, place it in a network
storage, SD card, standard location and online

2. Test for proper function in every one of the above
mentioned scenarios

Table 3.61.: Functional test 8

70

QReact 3.4. TESTS

name Functional test 9 ID FT09

system QRDefs result pass

description
Internal test of the creation feature of QRDefs, which impacts
the system's overall performance

steps

1. Create 60 QR codes using QRDefs.makeCode()

2. Validate said codes using QRDefs' functions and record
results

Table 3.62.: Functional test 9

name Functional test 10 ID FT10

system
QReact, QRList,
YAMLWriter, YAMLReader

result pass

description
Verify that the export feature of QReact produces valid YAML
�les

steps

1. Using the codes produced in FT09, call QRList's
getUsableCodes()

2. Validate said results using the online validator at
www.yamllint.com and record results

Table 3.63.: Functional test 10

name Functional test 11 ID FT11

system
QReact, QRList,
YAMLWriter, YAMLReader

result pass

description
Verify that the used codes feature of QReact produces valid
YAML �les

steps

1. Using the codes produced in FT09, call QRLists's
getUsedCodes()

2. Validate said results using the online validator at
www.yamllint.com and record results

Table 3.64.: Functional test 11

71

QReact 3.4. TESTS

name Functional test 12 ID FT12

system QReact, Android, ZXing result pass

description
Verify that QR codes can be read from low-resolution sources and
in poor ambient conditions

steps
Show the codes produced in FT01 on a screen with low
resolution and in low light to test the camera's ability to focus
and ZXing's ability to interpret the codes properly

Table 3.65.: Functional test 12

name Functional test 13 ID FT13

system QReact, QRException result pass

description Verify that malformed QR codes are properly identi�ed

steps
Show the malformed codes produced in FT01 to make sure the
right QRException is thrown every time and record results

Table 3.66.: Functional test 13

name Functional test 14 ID FT14

system QReact, AdminConsole result pass

description Overall test of AdminConsole to verify correct function

steps
Test overall usability and GUI responsiveness by using
AdminConsole in a simulated environment

Table 3.67.: Functional test 14

3.4.2. Traceability matrix of functionality

Table 3.68 shows the correspondence between the software components and tests per-

formed. Provided that there is at least one tick per component, its functionality is cor-

rect per the tests performed. A few tests of overall functionality were performed which

guarantees that all components have been tested and were found to function properly.

72

QReact 3.4. TESTS

F
T
0
1

F
T
0
2

F
T
0
3

F
T
0
4

F
T
0
5

F
T
0
6

F
T
0
7

F
T
0
8

F
T
0
9

F
T
1
0

F
T
1
1

F
T
1
2

F
T
1
3

F
T
1
4

SRNF01 3 3 3 3 3 3 3 3 3 3

SRNF02 3 3 3 3 3 3 3 3 3 3

SRNF03 3 3 3 3 3 3 3 3 3

SRNF04 3 3 3 3 3 3 3 3 3 3

SRNF05 3 3 3 3 3 3 3 3 3

SRF06 3 3 3 3 3 3 3 3 3 3 3

SRF07 3 3 3 3 3 3 3 3 3 3 3

SRF08 3 3 3 3 3 3 3 3 3

SRF09 3 3 3 3 3 3 3 3 3 3

SRNF10 3 3 3 3 3 3 3

SRF11 3 3 3 3 3 3 3

SRNF12 3 3 3 3 3 3 3 3 3 3

SRF13 3 3 3 3 3 3 3 3 3 3

SRF14 3 3 3 3 3 3 3 3 3 3

SRNF15 3 3 3 3 3 3 3 3 3 3

SRF16 3 3 3 3 3 3 3 3 3 3

SRF17 3 3 3 3 3 3 3 3 3 3

SRF18 3 3 3 3 3 3 3 3 3 3

Table 3.68.: Traceability matrix of functionality

73

4. Planning and budget

�Never confuse the size of your paycheck
with the size of your talent�

Marlon Brando

This chapter describes in detail the planning followed when developing this project. A

Gantt diagram is presented to give a better vision of the time employed in the planning,

development and debugging phases. Special attention is paid to the software used, most

of which is free and open source. A detailed account of the expense, both hardware and

human, is presented and the overall cost of the project is thereby calculated.

4.1. Planning

The starting date for this project was August 18th 2014. Table 4.1 lists the days, in

addition to the weekends, that have been considered non-working. A detailed report of

the time employed in the development of QReact is given in table 4.2. Based on this

data, �gure 4.1 represents the Gantt diagram associated with QReact. Notice that owing

to the speci�city of the software used for the project management, the diagram also

represents whom every task was assigned to.

74

QReact 4.1. PLANNING

period days explanation

8/9/14 1 local festivity
8/12/14 1 local festivity
24/12/14 - 6/1/15 10 Christmas break
30/3/15 - 3/4/15 6 Easter break
6/4/14 1 local festivity

Table 4.1.: Non-working days during the project development

task started �nished days

Feasibility study 18/8/14 29/8/14 10
Analysis of requirements 1/9/14 5/9/14 5
Speci�cations (preliminary documentation) 9/9/14 10/9/14 2
Architectural design 11/9/14 16/9/14 4
Interface design 17/9/14 22/9/14 4
Component design 23/9/14 9/10/14 13
File formats 10/10/14 13/10/14 2
QR code formats 14/10/14 15/10/14 2
Implementation and testing 16/10/14 23/3/15 102
Implementation of example program 24/3/15 14/5/15 10
Entire system testing 15/4/15 18/5/15 24
Documentation 19/5/14 13/7/15 40

Table 4.2.: Tasks involved in the project

75

QReact 4.1. PLANNING

F
ig
u
re

4.
1.
:
G
an
tt

of
th
e
p
ro
je
ct

76

QReact 4.2. PERSONNEL COST

4.2. Personnel cost

The personnel cost involved in developing this project comes from careful consideration

of the number of hours and the type of position involved.

The �rst step is to determine the personnel involved in the development of this project

and their hourly salary. Using the information found in [12], table 4.3 can be compiled.

It is important to note the dedication: full time implies 8 hours a day whereas part time

means 4 hours a day.

name position rate dedication

Atanas Plamenov Karaguiozov system analyst 15.50BC/h full time
Atanas Plamenov Karaguiozov software designer 13.26BC/h full time
Atanas Plamenov Karaguiozov programmer 12.63BC/h part time

Table 4.3.: Personnel and hourly rates

Next, the total number of hours dedicated to the project is computed, as well as their

cost. Table 4.4 contains the relevant calculations. Note that it is essentially an augmented

version of table 4.2. To convert from working days to working hours, the dedication

parameter from table 4.3 has been used.

task days hours rate (BC/h) cost (BC)

Feasibility study 10 80 15.50 1240
Analysis of requirements 5 40 15.50 620
Speci�cations (preliminary documentation) 2 16 15.50 202.08
Architectural design 4 32 13.26 424.32
Interface design 4 32 13.26 424.32
Component design 13 104 13.26 1379.04
File formats 2 16 13.26 212.16
QR code formats 2 16 13.26 212.16
Implementation and testing 102 408 12.63 5153.04
Implementation of example program 10 40 12.63 505.20
Entire system testing 24 96 12.63 1212.48
Documentation 40 160 12.63 2020.80

Total 13605.60

Table 4.4.: Detailed personnel costs excluding VAT

The personnel cost, therefore, comes up to 13605, 60BC.

77

QReact 4.3. HARDWARE COST

4.3. Hardware cost

In order to develop this project, a certain amount if hardware had to be purchased. To

test the system, both new and existing hardware was used.

An important parameter to take into account with regards to hardware costs is depreci-

ation. One way to view depreciation is as the amount of time an organisation expects to

run a piece of equipment until it is considered obsolete. For the following calculations,

we de�ne the depreciation period to be 60 months, or �ve years. Given today's rhythm

of innovations and the constantly lower prices of electronic equipment, �ve years is def-

initely a conservative estimate for depreciation. It was chosen, however, to re�ect the

fact that for all phases of this project, computational power is not of utmost importance.

The hardware was also chosen to be modern enough so it is expected to be run for longer

before it becomes obsolete.

The following formula is used to calculate the hardware cost per item:

πi =
α

δ
ερ (4.1)

where

α is the number of months since the item was purchased that it was in use,

δ is the depreciation period, 60 months in this case,

ε is the item's initial cost in Euros, and

ρ is the item's usage in the project, expressed as a percentage.

To calculate the total hardware cost, one just sums the individual contributions:

π =
∑
i

πi (4.2)

Table 4.5 contains a list of all hardware involved and the associated per-item amortization

costs, calculated using formulas 4.1 and 4.2.

78

QReact 4.4. SOFTWARE COST

item price use (%) months used per-item cost

Laptop Acer E15 378 100 11 69.30
Monitor Samsung T24B300 181.48 100 11 33.27
Tablet Samsung Galaxy S 298.62 100 5 24.89
Mobile phone Samsung Galaxy S4 260.70 100 5 21.73

Total 149.18

Table 4.5.: Hardware cost excluding VAT

It is important to note that the tablet and the mobile phone were used to program and

test the project under two di�erent versions of Android only after the framework was

developed. Therefore, they were used for the second phase of the project compared to

the other two items, which were used throughout the project development.

The total hardware cost is therefore 149.18BC.

4.4. Software cost

One of the peculiarities of this project is that it uses exclusively open source software.

The development platform, the document preparation system, the debugging platform

and the target devices all use software whose economical impact on this project is non-

existent. No purchases were necessary as everything was readily available online or from

the operating system's repositories.

Table 4.6 lists the software used in the various stages of the project. One can easily

conclude that the software cost is 0BC.

item licence cost

Operating system LinuxMint 17 open source 0
Eclipse IDE 3.8 open source 0
Android Studio 1.2.2 open source 0
Planner 0.4.16 open source 0
Task Coach 1.3.36 open source 0
LYX2.0.6 open source 0

Table 4.6.: Software cost

79

QReact 4.5. TOTAL PROJECT COST

4.5. Total project cost

To obtain the total cost of this project, the personnel, hardware and software costs must

be added. A 20% in indirect costs to cover unexpected expenses, as well as those not

considered in the budgeting process, is next added. Finally, VAT is applied.

The result is presented in table 4.7.

description of cost value

Personnel 13605.60
Hardware 149.18
Software 0
Indirect cost (20%) 2750.96
VAT (21%) 3466.20

Total 19971.94

Table 4.7.: Total project cost

The total cost of this project is therefore 19971.94BC.

80

5. Conclusions and future development

�Just because you got the monkey o� your
back doesn't mean the circus has left town�

George Carlin

This chapter present the conclusions reached after the development phase was completed.

The degree to which the objectives have been completed is examined. A speci�c mention

is given to the personal conclusions. The chapter concludes with a number of possible

suggestions for future development of QReact.

5.1. Objective conclusions

As already mentioned, setting objectives for a framework is di�erent from setting ob-

jectives for other types of software. Therefore, the analysis and design stages had to

establish the objectives even more clearly and unequivocally. This was a di�cult task

given that the focus had to be on functionality but it also involved thinking about what

functionality had to be included, which in turn involves thinking about possible uses,

then functionality again... Despite this seemingly in�nite loop which might trap one

during the core stages of the project however, the resulting framework has all the bits

and pieces that are necessary for a more than satisfactory function.

� The core part of this project was modularity. QReact was designed as a modular

structure in which all elements interface tightly. Moreover, if any one of the modules

81

QReact 5.2. PERSONAL CONCLUSIONS

is taken away from the structure, it is not immediately usable, which proves the

tight interface between them.

� Another key point was the ease of con�guration. To accomplish this, a class

consisting of static methods was created, which is used by every one of the other

classes. This means that if any changes need to be made, only one �le needs to be

altered accordingly and the changes will �propagate� across the framework.

� The previous two objectives facilitate the high level of customizability. Any-

thing can be changed, from the location of the con�guration �les to even a complete

rede�nition of the formats for the QR codes.

� The modular design helped to accomplish another objective: the ease of porta-

bility. Only those parts of the framework which are platform-speci�c need to be

re-written, the rest can be ported as it is.

� As another consequence of its modular design, QReact o�ers di�erent layers of

functionality; in this case, a number of layers of encryption are possible.

� As detailed in section 4.4, only open-source software was used. This was an

important objective as it is in line with the developer's philosophy and with the

platform used to deploy this framework on.

These were the objectives set at the beginning of the project but they are by far not the

ones to be completed. Due to the abstract nature of QReact, as the various parts were

developed, more and more ideas came to light which facilitated and improved on the

initial design in terms of structure, robustness and possible uses. The project planning

was followed as strictly as possible and the framework was �nished in the time allotted.

It is also important to point out that the budget was more than enough and there were

no overruns.

As a result, it can be clearly and unequivocally stated that all objectives were more than

satisfactorily achieved.

5.2. Personal conclusions

My idea about this project was to take it up as a personal challenge and an opportunity

to learn as much as possible. I must convincingly say that this happened beyond my

most ambitious plans. Any software project is more than programming and now I know

it from personal experience.

82

QReact 5.3. FUTURE LINES OF DEVELOPMENT

As regards the programming part, Android has always been a fascinating world for me.

No previous knowledge about mobile operating systems was an advantage to a certain

extent, as everything I was reading seemed to unveil a di�erent organisation. My initial

interest was more into the GUI aspect but this quickly changed. The complexities of

Android quickly became a fascinating insight into component interoperability. I discov-

ered that my own way of thinking, both personal and professional, was ideally suited to

using such a well organized system from within. As a Linux and open-source enthusiast,

Android for me was the clear choice from the very beginning. The �scratch-your-personal-

itch� philosophy of open source software and the availability of so much code to look at

and learn from de�nitely helped but it was the unique combination of curiosity, discov-

ery and novelty that propelled these early days of the project. As things started taking

shape and unexpected problems had to be tackled, it seemed like the old saying of �Ev-

ery program tends to grow in complexity until it exceeds its author's capabilities� was

getting dangerously close to turning out to be true. But then, it is the idea that you have

created something and that you need to give it a well-de�ned shape, and your best shot

that keeps you going and learning more and more. Overall, the experience was great.

In addition to programming, I got the opportunity to use some programs for a lengthy

and extensive purpose. LYX and LATEX were de�nitely not new to me but I had never

used them to write such a long document as this report. Using Planner was a unique

experience: I learned it in one afternoon and I still can't believe that a program so

simple has such great functionality and can save me the trouble of cost calculation and

the Gantt chart. Finally, the transition from Eclipse to Android Studio, necessitated by

the project and recommended by Google, was full of headaches and frustration at �rst

but I can now safely add it to the list of programs I am comfortable using. It added to

the complexity of this project and the very positive outlook on trying new things.

To conclude this section, it is undoubtedly fascinating that a project can help you ac-

complish so many things at once.

5.3. Future lines of development

The author hopes that this is not the end for QReact. A framework should de�nitely

continue to evolve and be updated with the requirements of today's world. Many facilities

to port and con�gure this framework have been included in the design and in principle,

it would be only a matter of changing a few de�nitions in the QRDefs �le to customise

the system to the applications it is needed for.

83

QReact 5.3. FUTURE LINES OF DEVELOPMENT

Following is a list of possible lines of development.

� To fully illustrate QReact 's potential for portability and interoperability, it can

be ported under various operating systems and hardware platforms di�erent from

Android:

� implementing under Android for Raspberry Pi would be readily accomplished.

It can be used in conjunction with the camera module sold separately for rapid

prototyping of any kind of security system based on QReact

� mentioning Raspberry Pi, one can't help but think about the plethora of

embedded systems that can be readily found on the market today. There are

di�erent Java compilers, even a number of �Java processors� that can run on

embedded systems[30]1. The requirement is for the QReact to be re-compiled

and the relevant input/output functionality adapted to suit the platform in

question.

� of course, one shouldn't forget the iOS ecosystem. Even though this platform

was not chosen at the beginning of the process, it is an important player on the

market and possible applications can surely be built on top of it. Following

is a list of products which have2 a free-to-use option for open-source projects

and can be used to accomplish the task:

Codename One (http://www.codenameone.com) is a well established com-

piler that can target various mobile platforms including iOS.

RoboVm (http://robovm.com/) is another compiler and IDE which supports

full hardware access and ample pre-de�ned �ne-tuning capabilities.

Avian (http://oss.readytalk.com/avian/) goes even further: it is a whole

lightweight virtual machine and class library which can be easily ported

for various platforms.

XMLVM (http://www.xmlvm.org/overview/) is an extensible cross-compiler

tool-chain, where all bytecode is stored as an XML �le. It can cross-

compile Android applications for iOS.

� Windows Mobile is another possible target that should be mentioned, even

though it doesn't fully conform to the Linux/open source idea of the project.

Porting QReact on it, however, should prove quite easy once the GUI and

input/output components are handled properly.

1Even though this reference is somewhat outdated, it provides a useful starting point on the subject
2As of June 2015

84

QReact 5.3. FUTURE LINES OF DEVELOPMENT

� In terms of expandability, a lot can be achieved by changing the de�nitions of the

QR codes in use. Some examples follow:

� in the �eld of access control, given that there are a number of set-top boxes

and TV sets running Android �rmware, those of them which have a camera

can use it to control access to the TV or the contents depending on the time

of the day, the QR code presented, etc.

� various systems for voucher-like transactions or money transfers can be devel-

oped. The codes can be created at one end of the system and redeemed or

otherwise used at the other.

� systems relying on scanning a unique code with a time-stamp can be easily im-

plemented. For example, tourist organisations tend to have programs3 which

need evidence that certain places of interest have been visited. QReact can

be readily used to facilitate said proof.

� To further enhance features, one possible and relatively easy enhancement to QRe-

act is the possibility of incorporating di�erent encryption algorithms, possibly even

more than one, to be used for di�erent purposes. This is relatively easy as the �en-

cryption layer� is embedded into the QRDefs �le and the change will be just a

function call away. In addition, and to make things a bit easier, Java and Android

both provide a native way to execute C code so if necessary for this purpose, JNI

can be used as described in [8].

� As another feature enhancement, ZXIng's built-in capabilities for �scanning� the

QR codes from an HTML source can be taken advantage of. Functionality could

be added so that the source of the symbols is not just the camera but emails, XML

�les or maybe even Base64-encoded QR codes.

Integration into a system for access control implies designing the system accordingly.

A number of possible components will have to be added, which would have to do with

where the credentials are stored, the way the resulting QR codes are shared and the

access control proper. A distributed solution will certainly be called for.

QReact is o�ered with a certain amount of functionality. Adding to it is perhaps the

most cumbersome part of extending the framework. Naturally, the complexity of such an

endeavour will depend upon what needs adding but modi�cations to at least the QReact

class will most probably have to be involved.

3For one such program, see [20]

85

QReact 5.3. FUTURE LINES OF DEVELOPMENT

Last but de�nitely not least, it is hoped that QReact will be expanded upon and embed-

ded into many projects over its lifetime.

86

A. Android Framework

This appendix brie�y describes what Android is. A historical account is given, followed

by a brief description of some of the internal components.

A.1. What is Android

A.1.1. Brief history

Android OS dates back to October 2003, when Android, Inc. was founded in Palo Alto,

California by Andy Rubin, Rich Miner, Nick Sears and Chris White. The idea, in Rubin's

words, was for them to develop �. . . smarter mobile devices that are more aware of its

owner's location and preferences.� All founders had previous experience and important

accomplishments behind their backs but the new company remained secretive when it

came to what they were doing, revealing only that it was working on software for mobile

phones.

In August 2005, Android Inc. was acquired by Google, making it a wholly owned sub-

sidiary of Google Inc. This move was interpreted to mean that Google was planning to

enter the mobile phone market. As a part of Google Inc., the team led by Rubin decided

to develop a mobile device platform powered by the Linux kernel. The new platform

was marketed and advertised to handset makers and carriers as one that would provide

a �exible, upgradable system. At the same time, a number of hardware component and

87

QReact A.1. WHAT IS ANDROID

software partners were recruited to work with the project. Up until then, Google's in-

tention to enter the mobile communications market was no more than speculation. It

continued to build through December 2006.Various reports noted that Google wanted

its search and applications on mobile phones and it was working hard to deliver that.

Rumours soon followed that Google was developing a Google-branded handset.

On November 5, 2007, the Open Handset Alliance, a consortium of several compa-

nies among which Broadcom Corporation, Google, HTC, Intel, LG, Marvell Technology

Group, Motorola, Nvidia, Qualcomm, Samsung Electronics, Sprint Nextel, T-Mobile and

Texas Instruments was unveiled, listing as its goal the development of open standards

for mobile devices. On the same day, their �rst product, Android, was unveiled.

On December 9, 2008, 14 new members joined, including ARM Holdings, Atheros Com-

munications, Asustek Computer Inc, Garmin Ltd, Huawei Technologies, PacketVideo,

Softbank, Sony Ericsson, Toshiba Corp, and Vodafone Group Plc.

A.1.2. Android versions features

Version 1.0

Android 1.0 was released with the �rst Android device, HTC Dream on G1, on 23 Septem-

ber 2008. It had the following features:

� Android Market application used to download and updates through the Market

app

� Web browser with show, zoom and pan support for full HTML and XHTML. Mul-

tiple pages were shown as windows

� Camera support. Sadly, there was no way to change resolution, white balance,

quality, etc.

� Folders, allowing the grouping of a number of app icons into a single folder icon on

the Home screen

� Email with access to email servers commonly found on the Internet with support

for POP3, IMAP4, and SMTP

� Synchronization with Gmail through the Gmail app

� Synchronization with Google Contacts through the People app

� Synchronization with Google Calendar through the Calendar app

88

QReact A.1. WHAT IS ANDROID

� Google Maps with Latitude and Street View to access maps and satellite imagery

and local business and driving directions through GPS

� Google Sync to manage over-the-air synchronization of Gmail, People, and Calen-

dar

� Google Search of the internet and phone apps, contacts, calendar, etc.

� Google Talk instant messenger

� Instant messaging, text messaging, and MMS

� Media Player, which supported managing, importing, and playing back but had no

video and stereo Bluetooth support

� Noti�cations appeared in the Status bar. It had to be drag down to see details,

ringtone, LEDs and vibration options

� Voice Dialer allowed dialling and placing of phone calls without typing a name or

number

� Wallpaper, allowing the user to set the background image or photo behind the

Home screen icons and widgets.

� YouTube video player

� Plus other apps like Alarm Clock, Calculator, Dialer (Phone), Home screen (launcher),

Pictures (Gallery), and Settings. This device supported WiFi, and Bluetooth.

Version 1.1

Android 1.1 was released on 9 February 2009 as an update on T-Mobile only. Aside from

API changes and solved bugs, it included the following changes:

� Maps added details and reviews when a user does a search and clicks on a business

� Dialer: In-call screen time out default was longer when using the speaker-phone,

incorporated was a Show/Hide Dialpad function

� Messaging supported saving attachments

� System supported for marquee in layouts.

89

QReact A.1. WHAT IS ANDROID

Version 1.5 Cupcake

This version was based on Linux kernel 2.6.27 and was released as an update on 30 April

2009. Several new features and UI updates were included, such as the virtual keyboard,

which now supported 3rd party keyboards with text prediction and user dictionary for

custom words; video recording with the camera, video (MPEG-4 and 3GP) playback;

stereo support on bluetooth and auto-pairing; copy and paste features in the browsers.

Contacts also showed user picture for Favourites, events in the call-log were date and

time stamped and a one-touch access to a contact card from call log event was intro-

duced. Users could also have animated screen transitions and upload videos to YouTube

and photos on Picasa. Another important innovation included in this version were the

Widgets, miniature application views that can be embedded in other applications and

receive periodic updates. Since then, the widgets have become an integral part of the

Android user experience.

Version 1.6 Donut

On 15 September 2009, the 1.6 (Donut) SDK was released. It was based on Linux kernel

2.6.29. The most important updates were in the search capabilities, where text entry was

complemented by the voice search and extended to cover bookmarks, history, contacts,

the web, and more. Also, developers were allowed to include their content in search

results. Conversely, advances were also made in the text to speech engine, allowing

multi-lingual speech synthesis using di�erent engines. This e�ectively allowed Android

to �speak� a string of text. Search capabilities were also improved in the Android Market

by allowing for easier searching, app screen shots, etc.

Version 2.x Eclair

The new family of versions was based on Linux kernel 2.6.29. The �rst of them, 2.0, was

released on 26 October 2009. Major changes included the addition of multiple accounts

for contact and email synchronization, Exchange support, �ash support, digital zoom,

colour e�ect and macro focus for the camera and HTML5 support for the browser. Im-

provements were made to the keyboard, a smarter dictionary was added which learns

from word usage and includes contact names as suggestions. Hardware speed was opti-

mized and support for more screen sizes and resolutions was added. This version features

the inclusion of Live Wallpapers, which are animated home screen background images.

90

QReact A.1. WHAT IS ANDROID

Two other minor versions exist, 2.0.1, released on 3 December 2009 and 2.1, released on

12 January 2010. They mostly featured minor bug �xes and were o�ered deployable to

Android-powered handsets.

Version 2.2 Froyo

Froyo's latest release is 2.2.2, based on Linux kernel 2.6.32 and released on 20 May 2010.

It featured various memory, performance and application speed improvements using JIT

compilation. Chrome's JavaScript engine was integrated into the Browser application,

as well as Adobe Flash support. Curious additional functionality introduced was USB

tethering and Wi-Fi hotspot functionality and the option to disable data access over

mobile network.

Version 2.3.x Gingerbread

Version 2.3 was introduced with the Google Nexus S terminal. It was based on Linux

kernel 2.6.35 and released on 6 December 2010. It featured a UI speed-up, support for

extra-large screen sizes and resolutions (WXGA and above), native support for VoIP

telephony, new audio e�ects for the media player and further developments for audio,

graphical, and input enhancements for game developers.

2.3.3 added several improvements and APIs to the Android 2.3 platform. 2.3.4 added

support for voice and video chat using Google Talk. 2.3.5 brought improved network

performance for the Nexus S 4G, among other �xes and improvements.

Version 3.x Honeycomb

Android 3.0 was based on Linux kernel 2.6.36 and was released on 22 February 2011. It

is di�erent from the rest in that it is a tablet-only release of Android. The �rst device

working under Honeycomb, was the Motorola Xoom tablet, released on February 24,

2011. Its new features had to deal with the tablets and included optimized tablet support

with a new virtual and �holographic� user interface, a new system bar at the bottom of

the screen, improved multitasking, redesigned keyboard, tabbed browser windows, form

auto-�ll, and a new �incognito� mode. Other important features are the support for video

chat using Google Talk hardware acceleration and support for multi-core processors

91

QReact A.1. WHAT IS ANDROID

The next Honeycomb version, 3.1, was released on 10 May 2011. Aside from the UI

re�nements, it also featured resizeable home screen widgets and support for external

keyboards and pointing devices, joysticks and game pads.

Version 3.2 was released on 15 July 2011 and featured improved hardware support, opti-

misation for a wider range of tablets, easier access for apps to �les on the SD card and a

compatibility display mode for apps that have not yet been optimized for tablet screen

resolutions. It was also the version used by most �rst- and second-generation Google

TV-enabled devices.4.x

Version 4.x Ice Cream Sandwich & Jelly Bean

The Linux kernel used for this version was 3.0.1 and it was released on October 19, 2011.

Aside from re�nements to the UI, it added WiFi Direct functionality, ubiquitous VPN,

NFC features via AndroidBeam, improvements in the real-time dictation software and

many more.

Versions 4.0.3 and 4.0.4, released on December 16, 2011 and Mar29 29th, 2012, respec-

tively, contained mostly bug �xes, improvements and optimizations. Important �xes to

the camera were also o�ered.

Ice Cream Sandwich was superseded by an incremental update called Jelly Bean, on July

9, 2012. Based on Linux 3.0.31, it mostly features improvements in the functionality and

performance of the UI, in addition to support for USB audio, gapless playback and

multichannel audio streams.

Jelly Bean 4.2, based on Linux 3.4.0, was announced via a press release, as a �new

�avour of Jelly Bean� and released on November 13 2012. Aside from the compulsory UI

improvements, bug �xes and tweaks, it added a complete re-write of the Bluetooth and

NFC stacks and the possibility, in tablets only, of multiple users. USB debug white list

and support for new Bluetooth devices was also added in the subsequent releases 4.2.1

(November 27, 2012) and 4.2.2 (February 11, 2013).

An �even sweeter Jelly Bean� 4.3 and its bug-�x version 4.3.1, were released on July

24, 2013 and October 3, 2013. They added Bluetooth low energy support, audio/video

remote control pro�le and OpenGL E 3.0, which improved game graphics. Native support

for the 4k resolution (up to 4096 Ö 2160 pixels) was supported for the �rst time. Various

security improvements were also introduced.

92

QReact A.1. WHAT IS ANDROID

Version 4.x KitKat

First released on October 31st, 2013, the next tasty treat of Android, 4.4, had a total

of 8 di�erent �avours (4.4.1, 4.4.2, 4.4.3, 4.4.4, 4.4W, 4.4W.1 and 4.4W.2), the last of

which was introduced on October 21, 2014. It was an important milestone for a number

of reasons. For one, it removed the minimum RAM requirement of 512 MB, allowing

devices with less RAM to report themselves as �low-memory�. Android Runtime, a

new experimental application runtime environment was introduced as a possible (later

implemented) replacement for Davlik VM. Improvements to the NFC stack and audio, as

well as a new API called the Storage Access Framework, were introduced. Another very

important feature was the introduction of the Android Wear platform for smart watches

(the versions listed above which contain W).

Version 5.x Lollipop

Unveiled under the codename "Android L" on June 25, 2014, Android 5.0 "Lollipop" be-

came available as o�cial over-the-air (OTA) updates on November 12, 2014. Lollipop's

most immediately evident feature is its redesigned user interface, which is built around

what became known as "material design". Other important changes include improve-

ments to the noti�cations, which now can be both visible and interacted with from the

lock-screen and also displayed within applications as top-of-the-screen banners. Internal

changes include the use of Android Runtime (ART) instead of Dalvik VM. Also, a frame-

work, internally known as Project Volta, which features improvement and optimization

of battery usage, is implemented.

The latest major o�cial version, as of June 2015, is Android 5.1, released on March

9, 2015. It features o�cial support for multiple SIM cards, high-de�nition voice calls

between Android 5.1 devices and a di�erent take on device protection: even if reset, a

device will remain blocked until its owner signs into their Google account.

A.1.3. Android �ecosystem�

This section brie�y describes some further uses for Android, aside from tablets and mobile

phones. Many of these �incarnations� include extra features, interface changes and even

their own apps in GooglePlay.

93

QReact A.1. WHAT IS ANDROID

Android Wear (http://www.android.com/wear)

Android Wear is a trimmed-down version of Android which is used on smart watches and

other wearable devices. All of them must pair up with compatible mobile phones, which

must use Android 4.3 or later. Google Now technology is integrated and noti�cations

are displayed on the wearable device's screen. Built-in support if o�ered for searching,

messaging, notes, calendar, reminders, alarms, etc.

Since its o�cial release on June 25 2014, hardware manufacturers have responded quite

enthusiastically to Android Wear. Big companies which produce devices include Asus,

HTC, Intel, LG, Motorola, Qualcomm and Samsung. According to [7], as of February

11 2015, 720000 smart watches were sold. GooglePlay statistics ([3]) show between one

million and �ve million installations, as of June 2015.

The standard features include support for Google Now and the following other apps:

� Maps: users can use voice interaction with their phone to �nd directions and start

the journey. As it progresses, the watch will show the directions. In addition, it

uses haptic feedback to indicate turns by feel, thereby making looking at the watch

face optional.

� Media and music: music can be requested using voice input and the volume can

also be controlled, both via the touch screen and using voice commands.

� Fitness: this feature uses GoogleFit for run and ride tracking, calorie expendi-

ture, steps taken, etc. For compatible devices, heart rate can be shown on the

wearable's screen. Cards showing goals reached and other relevant summaries are

also displayed.

Android TV (http://www.android.com/tv)

Announced on June 25, 2014, Android TV is a smart-TV platform, heralded as the

successor to GoogleTV. It o�ers interactive television experience based on 10-foot user

interface. It can be controlled using a mobile phone app, voice commands or with any

Android-compatible remote control. Integration is supported as �rmware for TVs and

stand-alone digital media players alike. The interface is divided into three sections: smart

recommendations based on viewing habits, media apps and games at the bottom1.

Various manufacturers are listed as collaborators, including Razer and Asus, both focus-

ing mostly on games, Sharp, Sony, Philips and TP Vision. The �rst device to feature

1These can be clearly seen on http://www.android.com/tv

94

QReact A.2. APPLICATION FUNDAMENTALS

Android TV was the Nexus Player, co-developed by Google and Asus, and released in

November 2014.

Android Auto (http://www.android.com/auto)

Announced at the same time as Android TV, on June 25 2014, Android Auto allows

mobile devices running Android 5.0 or later to be operated in commercial automobiles

using the dashboard's head unit. The standard package o�ers drivers control over GPS

navigation, music playback, SMS, telephony, and web search. The interface can be

handled via a touch-screen, even though, for obvious safety reasons, voice communication

is highly recommended.

Android Auto is part of the Open Automotive Alliance, a joint e�ort including around 30

companies, including automobile manufacturers and mobile technology suppliers. Cur-

rently, brands such as Alfa Romeo, Audi, Bentley, Chevrolet, Fiat, Ford, Honda, Mit-

subishi and Volvo, among others, o�er support for Android Auto.

As this section shows, Android is an OS in continuous development and has been deployed

on a large number of platforms and devices. It is to be expected that in future it will

continue to grow and expand, providing an even more comprehensive list of possible uses.

A.2. Application fundamentals

Android is a complete operating system targeted at mobile devices. This completeness

results in a complicated yet well laid out design of applications. This section describes

(in varying level of detail) the fundamentals of how an application is built and what it

looks like from the inside.

95

QReact A.2. APPLICATION FUNDAMENTALS

A.2.1. OS considerations

The language Android applications are written in is Java. Other programming languages

are possible in principle, but in typical Google style2, using any of them to program under

Android entails complex installation and con�guration procedures and is usually prone to

errors. Once the code is written, the SDK tools compile the code plus data and resource

�les into an Android package. This package �le bears the su�x .apk and all code in it

is considered to be one application. Android devices (or the emulator) use this �le to

install the application.

The Android operating system implements the principle of least privilege3. This principle

states that for a particular abstraction layer, every module (process or application in our

case) must be allowed to access only such information and resources that are necessary

for its legitimate purpose. For the case of a multitasking OS, it implies an organiza-

tion whereby all applications run in independent environments, called sandboxes, which

include application data, compiled code resources and �les which are not available to

any other running application (unless explicitly speci�ed otherwise). It is important to

note that in practice, true least privilege is neither de�nable nor possible to enforce. No

methods exist today that allow the least amount of privilege for a process to perform its

function correctly to be evaluated. It is not possible to know all the values of variables

it may process, addresses it will need, or the precise time during which these will be

required. The closest practical approach nowadays is to eliminate privileges that can be

manually evaluated as unnecessary. Even so, the resulting set of privileges still exceeds

the true minimum required privileges.

In the particular case of Android, each application is a di�erent user. By default, the

system assigns each application a unique Linux user ID, only known to the system.

Permissions are set for all the �les in an application so that only the user ID assigned

to that application can access them. The sandboxing is carried out by making each

process run in its own virtual machine, so an application's code runs in isolation from

other applications. By default, every application runs in its own Linux process. When

any of the application's components need to be executed, Android starts the process.

Conversely, processes are shut down when no longer needed or when the system must

recover memory for other applications.

2Google AppEngine comes to mind, in which, according to Google, any programming language is
possible, but in reality the language of choice was Python. Using AppEngine with other languages
was so unstable that a frustrated developer once remarked: �Yeah, AppEngine can be used with any
language, as long as this language is Python!�

3Also known as principle of minimal privilege or just least privilege.

96

QReact A.2. APPLICATION FUNDAMENTALS

The result of all this complexity is a very secure environment in which an application

cannot access parts of the system for which it is not given permission4. Furthermore,

applications by default are not permitted to access any data that does not belong to

them.

What we just described is the default behaviour. It is possible for an application to

share data with other applications and for an application to access system services. For

example it is possible to arrange for two applications to share the same Linux user ID.

This means they will be able to access each other's �les. Also, it can be arranged for

applications with the same user ID to run in the same Linux process and share the

same VM5, for example when we want to conserve system resources. An application can

request permission to access device data such as the user's contacts, SMS messages, the

mountable storage (SD card), camera, Bluetooth, and more. All application permissions

must be granted by the user at install time.

A.2.2. Application components

Application components are the essential building blocks of any Android application.

Each of them exists in its own right and helps de�ne an application's overall behaviour.

Component can be thought of as di�erent points through which the system can enter the

application. Not all of them are actual entry points for the user.

There are four di�erent types of application components. Each type serves a distinct

purpose and has a distinct life cycle that de�nes how it is created and destroyed.

Activities

An activity represents a single screen with its corresponding user interface. For example,

a media player can have one activity that shows a list of available �les to play, another

activity to reorganize a play list and another activity which contains controls that actually

play the chosen �les. Activities work together to form a cohesive user experience but each

one is independent of the rest. This opens the doors to one of the most interesting, elegant

and useful features of Android: if the application allows it, a di�erent application can

start any one of these activities for its own bene�t. For example, a camera application can

4As a design feature of operating systems, this idea is not new. For example, BeOS implemented a
similar sandbox structure system-wide.

5For this to happen, the applications must also be signed with the same certi�cate

97

QReact A.2. APPLICATION FUNDAMENTALS

start the activity in the email application that composes new mail, to allow the user to

share a picture. Programatically, an activity is implemented as a subclass of Activity.

Services

A service is a component that runs in the background. Services perform longer opera-

tions or work for remote processes. Unlike activities, services provide no user interface. A

service might play music in the background while the user is in a di�erent application, or

fetch data over the network without blocking user interaction with an activity. Services

can be started by other components and be allowed to run. Alternatively, a compo-

nent might bind to a service in order to interact with it. Programatically, a service is

implemented as a subclass of Service.

Content providers

A content provider manages a shared set of application data. Data can be stored in

the �le system, an SQLite database, on the web, or any other persistent storage. Other

applications can query or even modify the data using the content provider (if allowed,

naturally). As a real example, Android provides a content provider that manages the

user's contact information. Any application with the proper permissions can query part

of the content provider to read and write information about a particular person. Content

providers are also useful for reading and writing private data which is not to be shared.

For example, a content provider could be used to store calendars not to be shared with

the default Android Calendar, which is in turn shared with Google. Programatically, a

content provider is implemented as a subclass of ContentProvider and must implement

a standard set of APIs that enable other applications to perform transactions.

Broadcast receivers

A broadcast receiver is a component that responds to system-wide broadcast announce-

ments. Many broadcasts announce system events such as that the screen has turned

o�, the battery is low, or a picture was captured. Broadcasts can also be initiated by

applications, for example, to let other applications know that some data has been down-

loaded to the device and is available for them to use. Broadcast receivers have no user

interface but they may nonetheless create a status bar noti�cation to alert the user when

an event occurs. But more commonly a broadcast receiver is just a "gateway" to other

98

QReact A.2. APPLICATION FUNDAMENTALS

components and is intended to do a very minimal amount of work. Broadcast receivers

are implemented as a subclass of BroadcastReceiver and each broadcast is delivered as

an Intent object.

A unique aspect of the Android system design which deserves special attention is that

any application can start another application's component, as mentioned above. The

typical example is when we want the user to capture a photo with the device camera.

Since this is a very usual action, chances are there is an application on our device which

does precisely that. Our application can use this other application, instead of developing

an activity to capture a photo. Code does not need to be linked or even incorporated6.

Instead, we would simply start the activity in the camera application that captures a

photo. When complete, the photo is even returned to our application so we can use it.

To the user, however, it seems as if the camera is actually a part of the application7.

When the system starts a component, the process for that application is started, if

not already running, and the classes needed for the component are instantiated. In

the above example, if we starts the activity in the camera application that captures

a photo, it will run in the process that belongs to the camera application, not in our

application's process. This represents an important di�erence between Android and most

other systems: applications don't have a single entry point.

Given that each application is run in a separate process with �le permissions that restrict

access to other applications, we cannot directly activate a component from another ap-

plication. The Android system, however, can. So, if we want to activate a component in

another application, a message must be delivered to the system that speci�es our intent

to start a particular component. The system then activates said component and allows

us to use it.

A.2.3. Activating Components

Activities, services, and broadcast receivers are all activated at run time by an asyn-

chronous message called an intent . Intents are the messages that request an action from

other components, whether those belong to the application which originates them or to

another. Intents are created with an Intent object. They can be explicit or implicit,

allowing us to activate a speci�c component or a speci�c type of component, respectively.

6As a side note, incorporated sounds a lot better than copied and pasted, doesn't it?
7As an example of the di�erence between using a component versus using a library can be found in
section C.2 in which the same action is performed using these two di�erent ways

99

QReact A.2. APPLICATION FUNDAMENTALS

For activities and services, an intent de�nes the action to perform and may also specify

the URI of the data to act on. Other data depending on what the component might need

to know can also be provided. An intent might, for example, pass on a request for an

activity to show an image or to take a photo. Activities can be invoked for a result, in

which case, the result is returned in an Intent. An application might, for example, issue

an intent to let the user pick a personal contact and have it returned to the program,

in which case return intent includes a URI pointing to the chosen contact. An activity

can be started or given something new to do by passing an Intent to startActivity()

or startActivityForResult(), depending on whether we want the activity to return a

result or not. Services, on the other hand, can be started or new instructions can be

given to an ongoing service by passing an Intent to startService(). If we wish to bind

to a service, we would pass an Intent to bindService().

For broadcast receivers, the intent simply de�nes the announcement being broadcast.

A typical situation is when the device discovers an open WiFi network. If so con�gured,

it will send a broadcast to indicate that e�ect. This broadcast will only include a known

action string that indicates "Open WiFi network found". From within a program, a

broadcast can be initiated by passing an Intent to methods like sendBroadcast(),

sendOrderedBroadcast() or sendStickyBroadcast().

Finally, content providers are not activated by intents but when targeted by a request

from a ContentResolver. Content resolvers are an abstraction between the content

provider and the component that requests the information or action, left for security

reasons. This means that content resolvers work directly with the content provider while

the requesting component works with the ContentResolver object, executing methods

on it. A content provider can be queried by calling query() on a ContentResolver

associated with it.

A.2.4. The Manifest File

Every application must declare various things that it uses, provides and requires to and

from the Android OS. This is done in the application's AndroidManifest.xml �le or the

"manifest" �le, located at the root of the application project directory. The manifest is

an XML �le that has the following functions (this list is not exclusive):

� Identi�cation of any user permissions the application requires, for example, Internet

access, preventing the device from sleeping or access to the user's contacts.

� To declare all of the application's components.

100

QReact A.2. APPLICATION FUNDAMENTALS

� To declare the minimum API Level required, based on which APIs the application

uses.

� To declare hardware and software features used or required by the application

(camera, bluetooth, etc.)

� API libraries the application needs to be linked against, other than the Android

framework APIs, such as the Google Maps library.

� And many more

Following are some typical applications of the manifest �le.

Declaring components

A manifest �le might declare an activity like this:

<?xml version="1.0" encoding="utf -8"?>

<manifest >

<application android:icon="@drawable/app_icon.png" >

<activity android:name="com.example.project.

ExampleActivity"

android:label="@string/example_label" >

</activity >

</application >

</manifest >

In the <application> element, the android:icon attribute points to resources for an

icon that identi�es the application. In the <activity> element, the android:name at-

tribute speci�es the fully quali�ed class name of the Activity subclass whereas android:label

speci�es a string to use as the user-visible label for the activity.

Most of the �le's contents are self-explanatory. We would use:

<activity> to declare activities,

<service> to declare services,

<receiver> for broadcast receivers and

<provider> for content providers.

Declaring activities, services, and content providers in the manifest �le is absolutely

crucial. Any activity, service or content provider which is implemented in the source code

101

QReact A.2. APPLICATION FUNDAMENTALS

but not declared in the manifest can never run. Broadcast receivers on the other hand

can be either declared in the manifest or created dynamically. To use them, we need to

registered them with the system by calling the registerReceiver() method.

Component capabilities and implicit intents

What was described above is the way intents can be used to start activities, services, and

broadcast receivers explicitly. We do that by specifying the target component, using its

class name. But the real power and elegance of intents is clearly seen and appreciated

when using intent actions. Using these is even easier: one has to describe the type of

action sought to perform and, if applicable, the data upon which it is to be preformed

and the system itself �nds a component on the device that can perform the action and

start it. Multiple components can match this search, in which case the user selects

which one to use. The way the system �nds a suitable candidate is by looking at the

intent �lters provided in the application manifests of all applications on the device and

comparing them to the received intent. Declaring a component in the manifest allows one

to include intent �lters if so decided. A component's intent �lter is declared by adding

an <intent-filter> element as a child of the component's declaration element.

As an example, suppose we have an application which needs to send an email. It might

declare an intent �lter in its manifest entry to respond to �send� intents. If we develop

another activity, in the same application or distinct and need to use the same function-

ality, we would create an intent with the �send� action (ACTION_SEND), which the system

matches to the �rst application's �send� activity and would launch it when the intent is

invoked with startActivity().

Declaring application requirements

There are a variety of devices powered by Android and not all of them provide the same

features and capabilities. In order to prevent your application from being installed on

devices that lack features needed by your application, it's important that you clearly

de�ne a pro�le for the types of devices your application supports by declaring device and

software requirements in your manifest �le. Most of these declarations are informational

only and the system does not read them, but external services such as Android Market

do read them in order to provide �ltering for users when they search for applications

from their device.

102

QReact A.2. APPLICATION FUNDAMENTALS

For example, if your application requires a camera and uses APIs introduced in Android

2.1 (API Level 7), you should declare these as requirements in your manifest �le. That

way, devices that do not have a camera and have an Android version lower than 2.1

cannot install your application from Android Market.

However, you can also declare that your application uses the camera, but does not require

it. In that case, your application must perform a check at run time to determine if the

device has a camera and disable any features that use the camera if one is not available.

Two features that have to be carefully considered follow.

� Screen size and density: Android splits devices into categories according to the

physical dimensions of the screen the physical density of the pixels on the screen,

measured in dpi. The screen sizes are: small, normal, large, and extra large whereas

the screen densities are: low density, medium density, high density, and extra high

density. Unless otherwise speci�ed, a new application is compatible with all screen

sizes and densities, given that the Android system makes the appropriate adjust-

ments to the UI layout and image resources. But special layouts for certain screen

sizes should be created and special images for certain densities, using alternative

layout resources. Next, using the <supports-screens> element, we can declare

exactly which screen sizes are supported.

� Input con�gurations: This point refers to the fact that many devices provide di�er-

ent types of user input mechanism. This can be a hardware keyboard, a trackball,

or a �ve-way navigation pad. If a speci�c type of user input device is required, this

can be declared in the manifest with the <uses-configuration> element. This

is an important feature but it is not typical that an application should require a

certain input con�guration.

Other device features and their corresponding manifest elements can be found in [17].

A.2.5. Application Resources

Like most GUI applications today, an Android application not just code�it requires

additional objects, such as images, audio �les and everything else pertaining to the

visual presentation of the application. Animations, menus, UI layout of activity, among

others, are typically de�ned using XML �les. The collection of all these and other objects

used by the application excluding the source code are known as application resources.

They are a convenient way to update various characteristics of an application without

103

QReact A.2. APPLICATION FUNDAMENTALS

modifying code. They also provide a way to prepare and optimize an application for a

variety of device con�gurations, such as di�erent languages and screen sizes.

Every resource included in an Android project receives a unique integer ID, which can be

used to reference it from within the code or from other resources. Resources are presented

to the user as instances of the R class. For additional commodity, descriptive identi�ers

are used in lieu of an integer identi�er. For example, an image �le named logo.png,

which would be saved in the res/drawable/ directory, will receive the resource ID named

R.drawable.logo, which can be later used to insert the image in the UI.

Aside from an easy way to reference images or other �les, another useful application is to

de�ne UI strings in XML, thereby providing translations into other languages. Based on

the language quali�er of the resource directory's name and the user's language setting,

the Android system will �nd the appropriate language strings and build the UI using

them. Still another great feature is creating di�erent layouts. These can depend on

the device's screen orientation and size. If the device screen is in portrait orientation

(tall), a layout with buttons aligned vertically will be more suitable whereas if the

screen is in landscape orientation (wide), horizontal alignment is more appropriate. We

would therefore de�ne two di�erent layouts and apply the appropriate quali�er to each

layout's directory name. Then, the system automatically applies the appropriate layout

depending on the current device orientation.

104

B. Development tools for Google

Android

Writing applications for Android is no more complicated than programming under any

other operating system. Due to the fact that the code will be executed on another ma-

chine, the compiling, transfer and execution are more complicated than usual. For this

purpose Google have provided an elaborate collection of development tools to aid the

development process. This section looks at how to set up the development environment

and start using the tools. Firstly, the system requirements are listed, as well as the neces-

sary steps to set up everything up. Secondly, the �bare-bones� development environment

using command-line tools is considered. The third part describes the most powerful and

convenient way to develop using Eclipse, while the fourth part describes the newcomer to

the market and the new recommended way to develop under Android: Android Studio.

Throughout the discussion the development platform is assumed to be Linux. Any �avour

of Linux will do, provided it contains the necessary libraries and can run Java. Although

the focus of this discussion is the emulator, speci�c mention will be made on how to

develop on a real Android device.

B.1. Android SDK

The heart of Android development is the Android SDK, released by Google as open

source software. The SDK provides Android libraries for the di�erent platform versions,

105

QReact B.1. ANDROID SDK

an emulator, tools and various samples. Its modular structure allows each version to

be individually installed and used. A minimum of one virtual device on which to test is

required, even though one can have as many as necessary. If an Android-enabled terminal

is present, testing can occur directly on it rather than on a virtual device. Additionally,

to aid code development, an IDE can be used.

B.1.1. System requirements

The basic prerequisite to develop under Linux is to have a system which uses GNU C

Library glibc 2.7 or newer. Given that the SDK is written in Java, we also require a

reasonably recent version of JDK. [16] lists JDK 5 or JDK 6 as a prerequisite, explicitly

stating that JRE alone is not su�cient. The o�cial Sun Java JDK is required, as the

GNU Java compiler gcj is not supported.

B.1.2. Installing the Android SDK

Once the system requirements are met, the SDK can be installed. To do this, one must

grab the source code from http://developer.android.com/sdk/index.html

Currently, only .tgz compressed format is available for Linux. Once downloaded, it can

be installed by entering the destination directory and issuing the command

tar xvfz android-sdk_r*.tgz

which will unpack the SDK to a directory called android-sdk-<machine-platform>,

where <machine_platform> speci�es the name of the host hardware platform.

The installed SDK requires approximately 35 MB of disk space for the base SDK, plus

6 MB for the platform-speci�c tools. This, however, is insu�cient to start developing as

we have no usable Android platform installed.

B.1.3. Installing an Android platform and additional source code

Any one of the currently supported Android platforms can be installed on our devel-

opment machine and various platforms can be installed and used side by side. Each

of them needs about 150 MB. Developers can optionally install add-ons and samples.

Each add-on needs about 100 MB and each set of samples needs about 10 MB. O�-line

documentation can also be installed, per platform it needs about 250 MB.

106

QReact B.1. ANDROID SDK

Figure B.1.: Android SDK and AVD Manager run for the �rst time

Fortunately for the developers, the Android SDK provides a program, aptly named An-

droid SDK and AVD Manager, which makes the tedious tasks of managing and down-

loading the source code (and quite a few others) a breeze. This program can be accessed

by entering the tools/ sub-directory of the SDK installation tree and executing

./android

The result for a freshly installed SDK is shown in �gure B.1.

The commands in the left-hand side of the window contain everything we need to set

up a new development environment. This is also the central place from where updates,

if available, can be installed. At this point the SDK contains only the latest version of

the SDK tools, so our next step is to install a platform version. By selecting Available

packages we can browse the repository and install or update components. An example

can be seen in �gure B.2.

There are two repositories by default. The Android Repository contains the following

elements:

� SDK Tools, already installed with the Android SDK, contains everything need for

debugging and testing applications, as well as other utility tools. These are located

in the <sdk>/tools/ directory.

107

QReact B.1. ANDROID SDK

Figure B.2.: Platform and add-ons selection dialogue

� SDK Platform tools�contains additional tools developed alongside the Android

platform. These support the latest features and are updated only when a new

platform becomes available. They are contained in <sdk>/platform-tools/.

� Android platforms. Each platform component includes a fully compliant Android

library and system image, sample code, emulator skins, and version-speci�c tools,

if any. Any production-stage version can be downloaded and deployed on an actual

device or used on a virtual device.

� Samples�contains the sample code and applications available for each Android

development platform. Highly recommended for �rst-time users as it contains nu-

merous projects that illustrate many aspects of Android programming.

� Documentation�contains a local copy of the latest documentation for the Android

framework API.

The Third-party Add-ons, on the other hand, provide components useful when developing

application using a speci�c Android external library (such as the Google Maps library)

or a customized Android system image. Additional add-on repositories can be speci�ed

by clicking Add Add-on Site.

The very basic system consists of the SDK tools, the SDK Platform tools and at least

one SDK platform. This is enough to start developing, however, the recommended de-

108

QReact B.1. ANDROID SDK

velopment system consists of the basic system plus samples and documentation for the

installed SDK platform(s).

Once we have decided on what we want to use, we can install the desired elements by

selecting them and clicking Install Selected. After that, we need to verify and accept any

conditions the components may have. At any later point we may check for updates by

opening the same window and selecting Available components again. By checking the

Display updates only check-box we can install the elements we do not have.

B.1.4. Structure and uses of a virtual device

We can think of a virtual device as a platform on which to develop and test our appli-

cation. Internally, however, it is just a number of con�guration �les for the emulator.

These �les describe the platform, hardware, software, the optional SD card image to be

emulated, etc.

An Android virtual device, or an AVD, consists of the following elements:

� A hardware pro�le, containing the hardware features of the virtual device, such as

the amount of memory, whether or not it has a dialling pad or a physical keyboard,

the screen resolution and size, whether it has a camera1, etc.

� A system image, which de�nes what version of the Android platform will be run on

the virtual device. A choice between the standard Android platform and a system

image packaged with an SDK add-on is o�ered.

� Other options, such as the emulator skin which lets you control the screen dimen-

sions, appearance, etc. You can also specify the emulated SD card to use with the

AVD.

� A dedicated storage area on the development machine, in which the device's user

data (installed applications, settings, contents of standard folders, etc.) and emu-

lated SD card can be stored.

Internally, the AVD manager, GUI version or otherwise, creates one directory for every

AVD and one entry for every �le in this directory so it can �nd them later. It is important

to bear this fact in mind when moving the device from its original directory and always

do this using the manager (see below).

1Unfortunately and inexplicably, the emulator does not emulate the camera in any way

109

QReact B.1. ANDROID SDK

Naturally, as many AVDs as necessary can be created and used. It is recommended to

create many devices which to contain di�erent hardware con�gurations, screen sizes, etc.

to test the application thoroughly.

B.1.5. Formatting and using a virtual SD card

A real-world application is more than likely to use the SD card. For this reason, if we

want a proper test of our application, we should create a virtual image of the SD card.

The program which does the job for us is called mksdcard and is located in the tools/

directory in the SDK tree. The syntax it accepts is

mksdcard [-l label] <size> <file>

where label is the optional name we want to give the card, size is by default measured

in bytes but can be given in kilobytes or megabytes appending K or M to the numerical

value and file is the �le system name. For example, to create a 128MB SD card image

named SDCard contained in the �le mySDCard, one would say

mksdcard -l SDCard 128M mySDCard

The resulting image is in the IMG format and contains no data.

From here on, we need to access and modify the image. The simplest way is to use the

loop-back device capabilities Linux o�ers and to treat the image as a separate drive.

This method o�ers the convenience that modifying the SD card's contents is as simple as

copying or deleting a �le from the Linux �le system and can be done using any graphical

�le manager.

Making any �le image a part of the Linux �le system is called mounting. Since we are

dealing with a �le rather than a physical �le system we need to use a loop device2. Firstly,

we need a directory where to mount the �le. Suppose we call the directory myCard. To

mount the image created above, one would say

sudo mount -o loop mySDCard myCard

and after providing the administrator's password, we open our favourite �le manager and

can access and modify the SD card image as if it were a separate drive. When we �nish

and to make sure the changes are saved, we should unmount the �le saying

umount myCard

2A loop device, also called lo� (loopback �le interface) is a pseudo-device that makes a �le accessible
as a block device. Mounting a �le containing a �le system via such a loop mount makes the �les
within that �le system accessible. This is how one can view the contents of CD ISO images without
burning the CD.

110

QReact B.1. ANDROID SDK

B.1.6. Creating a virtual device

Using AVD Manager

Once AVD Manager is open, one has to click �New� which opens the window shown

in �gure B.3.

Figure B.3.: New AVD options

Most information in this window is self-explanatory. Name sets the name of our AVD,

Target contains a list of all available platforms and allows us to choose one. SD Card

gives the programmer a choice: we can either have a blank SD image, choosing the �rst

option, or a previously created (see section B.1.5 for how to do that) SD image, choosing

the second option. The Snapshot option allows the developer to store the state of the

device, providing a service similar to the hibernate function on most modern laptops.

The next options are of utmost importance. The Skin option speci�es the screen size

and resolution. It allows the developer to use custom-sized screen (selecting the second

option) or a pre-de�ned screen size (selecting on of the built-in options).

The Hardware option opens a window in which we can choose the hardware elements

with which to work. It contains a list of important options which are detailed in table

B.1.

111

QReact B.1. ANDROID SDK

Characteristic Description

Device ram size
The amount of physical RAM on the device, in
megabytes. Default value is "96".

Trackball support Whether there is a trackball present.

Trackball support
Whether there is a trackball on the device. Default value
is "yes"

Touch-screen support
Whether there is a touch screen or not on the device.
Default value is "yes"

Keyboard support
Whether the device has a QWERTY keyboard. Default
value is "yes"

DPad support
Whether the device has DPad keys. Default value is
"yes"

GSM modem support
Whether there is a GSM modem in the device. Default
value is "yes"

Camera support Whether the device has a camera. Default value is "no"

Maximum horizontal
camera pixels

Default value is "640"

Maximum vertical camera
pixels

Default value is "480"

GPS support
Whether there is a GPS in the device. Default value is
"yes"

Battery support
Whether the device can run on a battery. Default value
is "yes"

Accelerometer
Whether there is an accelerometer in the device. Default
value is "yes"

Audio recording support
Whether the device can record audio. Default value is
"yes"

Audio playback support
Whether the device can play audio. Default value is
"yes"

SD Card support
Whether the device supports insertion/removal of virtual
SD Cards. Default value is "yes"

Cache partition support
Whether we use a /cache partition on the device. Default
value is "yes"

Cache partition size Default value is "66MB"

Abstracted LCD density
Sets the generalized density characteristic used by the
AVDs screen. Default value is "160"

Table B.1.: Hardware options and their default values (taken from http://developer.
android.com/guide/developing/devices/managing-avds.html)

112

QReact B.1. ANDROID SDK

Using command-line tools

If for any reason we wish to create a virtual device using the command line, we need to

provide the same information listed above, what di�ers is the way we would pass it on.

Before we begin, it is a good idea to query the installed platforms on our development

machine. We can do this by going to the <sdk>/tools/ directory and issuing the com-

mand

./android list targets

which will scan <sdk>/platforms/ and <sdk>/add-ons/ for valid system images and

return the names of the platforms. An example run of this program follows:

Available Android targets:

id: 1 or "android -8"

Name: Android 2.2

Type: Platform

API level: 8

Revision: 2

Skins: HVGA , WVGA854 , WVGA800 (default), WQVGA432 , QVGA , WQVGA400

id: 2 or "android -10"

Name: Android 2.3.3

Type: Platform

API level: 10

Revision: 1

Skins: HVGA , WVGA854 , WVGA800 (default), WQVGA432 , QVGA , WQVGA400

id: 3 or "android -Honeycomb"

Name: Android Honeycomb (Preview)

Type: Platform

API level: Honeycomb

Revision: 1

Skins: WXGA (default)

Notice that every di�erent platform installed has an id and a name by which it is refer-

enced internally (the line id: 2 or "android-10").

To manipulate an AVD from the tools/ directory, one must use the familiar command

./android with a sub-command specifying what is to be done. Thus, the basic syntax

to create an AVD is

./android create avd -n <name> -t <targetID>

where targetID is the internal id of the platform. So if we want to create an AVD named

Test which uses the Android 2.3.3 in the above con�guration, we would say

113

QReact B.1. ANDROID SDK

./android create avd -n Test -t 2

The program next asks us if we want to create a custom hardware pro�le. The default

answer is no and if we just hit Enter, the device will have the following default hardware

pro�le:

Abstracted LCD density: 240

Heap size for the virtual machine: 24KB

RAM size for the device: 256MB

If on the other hand our answer is yes, the program will ask us to set values to every one

of the con�guration parameters listed in table B.1, just as if we were doing this from the

GUI.

By default, the program creates the AVD �le in the ~/.android/avd/ directory3. If we

want to specify a di�erent one, we may do so with the -p parameter like so

./android create avd -n Test -t 2 -p /path/to/avd/folder

B.1.7. Renaming, moving, deleting and editing AVDs

The best way to edit an AVDs con�guration is using AVD Manager and choosing the op-

tion Edit. Deleting AVDs is also best done through the GUI, even though the command

android delete avd -n <name>

will easily accomplish the task. When renaming or moving, the best option is to use the

command line tools. The command

android move avd -n <name> -p <path>

will move the AVD to path, while

android move avd -n <name> -r <newName>

will rename <name> to <newName>.

Important note: it is crucial to refrain from performing these actions changing just

the AVDs �le names or deleting them. As we discussed in section B.1.4, the internal

structure of an AVD is complex and is managed by the SDK. Therefore, we are best o�

manipulating the AVDs using the SDK tools.

3As with all Linux distributions, the ~ symbol is a shortcut to the user's home directory

114

QReact B.2. DEVELOPING USING COMMAND-LINE TOOLS AND ADB

B.1.8. Con�guring Android enabled devices

With an Android-powered device, we can develop and debug Android applications just

as we would on the emulator. There are, however, a few things to con�gure before we

can do that.

1. The application must be declared as "debuggable" in the Android Manifest (see

??). We do this by adding android:debuggable="true" to the <application>

element.

2. The "USB Debugging" option must be turned on on the device. This is accom-

plished by going to the home screen, pressing MENU, selecting Applications >

Development, then Enable USB debugging.

3. The last step is to set up the development system to recognize the Android device4.

Developing on Linux, requires us to add a rules �le that contains a USB con�gura-

tion for each type of device to be used for development. Each device manufacturer

uses a di�erent vendor ID. Example rules �les and the vendor IDs can be found

at http://developer.android.com/guide/developing/device.html. Executing

adb devices from the platform-tools/ directory will assure us that the devices

is connected. If everything went correctly, we will see the device name listed as a

�device�.

If using Eclipse (see below), running or debugging happen as usual. A Device Chooser

dialogue will be presented that lists the available emulator(s) and connected device(s).

We then select the device upon which we want to install and run the application. Finally,

if the Android Debug Bridge (adb) is used, commands can be issued with the -d �ag to

target the connected device.

B.2. Developing using command-line tools and adb

Contrary to what it might seem, Android command-line tools are a great and fun way to

develop and run applications. Using them will also provides insight into how the whole

system functions.

The whole developing process revolves around three basic tools. The android tool,

examples of whose use we have presented, is used to create and manipulate the structure

4Funnily enough, the Android Developers Website states regarding this point: �If you're developing on
Mac OS X, it just works�

115

QReact B.2. DEVELOPING USING COMMAND-LINE TOOLS AND ADB

of project �les. Apache Ant5 is the tool which compiles the source code into .apk �le

which is then transferred and executed on the emulator using adb.

B.2.1. Creating projects

To create an Android project, the android tool is used. It generates a project directory

with some default application �les, stub �les, con�guration �les and a build �le. The

syntax to achieve this is as follows:

android create project --target <target_ID> --name <your_project_name> \

--path path/to/your/project --activity <your_activity_name> \

--package <your_package_name-space>

A brief description of this somewhat confusing command line follows.

target is the build target for the application. It corresponds to an Android platform

library (including any add-ons, such as Google APIs), as speci�ed by the android

list targets command (see section B.1.6).

name is the name of our project. It is optional and if provided, will be used for the .apk

�le name when the application is built.

path is the location of the project directory. If the directory does not exist, it will be

created.

activity is the name for the default Activity class and also the .apk �le name if a project

name is not speci�ed.

package is the package name space for the project. It follows the same rules as any Java

package.

Once created, a peek in the project's directory reveals which �les need to be modi�ed

and worked on.

B.2.2. Building and running projects

There are two ways to build applications under Android. One is for testing or debugging,

aptly named debug mode and one when building the �nal package for release, called release

mode. No matter which method is used, the application has to be signed before it can

5Apache Ant is a software tool for automating software build processes. It is similar to Make but is
implemented using the Java language, requires the Java platform, and is best suited to building Java
projects. Unlike Make, which uses Make�les, Ant uses XML �les.

116

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

install on an emulator or device�with a debug key when in debug mode and with our

own private key when building in release mode.

The building process happens using the Ant tool, which will create the .apk �le that will

install on an emulator or device. In debug mode, the .apk �le is automatically signed by

the SDK tools with a debug key, so it's instantly ready for installation onto an emulator

or attached development device. An application signed using a debug key cannot be

distributed. In release mode, the resulting .apk �le is unsigned, so it has to be signed

manually with the developer's private key, using Keytool and Jarsigner.

Once we are ready to run our application, we navigate to the root of the project directory

and say

ant debug

If everything goes �ne, the next step is to install the compiled .apk �le onto the emulator

and run it. We navigate to the tools/ directory and issue the command

adb install <path/to/project/bin/subdir>.apk

B.2.3. Debugging applications

While ADB has numerous powerful options to debug any application and change its state

to see how it might respond, a look [?] at its description proves it to be excessively

complicated. In section B.3.5 we describe the recommended way to debug applications.

Notice that ADT uses ADB extensively but it would be infeasible for a user to work

directly with ADB if a good pro�ling and debugging is to be performed in a reasonable

amount of time.

B.3. The tried-and tested way: Eclipse and ADT

As we saw, one can develop under Android using just command-line tools. No IDE is

required but anyone who has developed software consisting of many classes and other

sorts of �les can de�nitely vouch for the usefulness of IDEs. The concept of grouping

all �les an application uses into what is known as a project �le, conveniently visualizing

and editing them as necessary and the ease with which the application can be built and

debugged are all great commodities and time savers. A developer will certainly appreciate

the order IDEs bring to the dozens of classes and thousands of lines of code. Android is

no exception.

117

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

In many programmers minds the phrase �programming IDE� is synonymous with Eclipse.

Highly modular and actively developed, Eclipse is much more than an IDE. Its core is

written mostly in Java. It employs what is known as lightweight component framework

to which is owes its great additional functionality. Except for its small size lightweight

kernel, everything else is structured as a plug-in. This vastly extensible and �exible plug-

in system allows Eclipse to be used to develop in many other programming languages

including Ada, C, C++, COBOL, Perl, PHP, Python, Ruby (including Ruby on Rails

framework), Scala, Clojure, and Scheme. Further, Eclipse can, again using plug-ins,

be used with typesetting languages like LATEX, XML and XSL, networking applications

such as telnet and SSH, and a variety of database management systems. Some of the

most popular extensions include powerful GUI builders and class �ow diagram creators.

Currently, over a thousand plug-ins are in active development [23]. A screen-shot of

Eclipse in action is shown in �gure B.4 [29].

Figure B.4.: Eclipse in action

Eclipse features under heavy development (and very popular these days) include the

Server platform and the Web Tools platform. The former allows for remote server pro-

118

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

gramming, debugging and interaction with applications running on the attached server.

The stunning possibility to install the required server for development directly from the

graphical interface is also o�ered. The latter feature contains tools for developing Web

and Java EE applications. It includes source and graphical editors for a variety of lan-

guages, wizards and built-in applications to simplify development, and tools and APIs to

support deploying, running, and testing web-apps. Last but not least, Eclipse has been

translated into more than a dozen natural languages.

All these plug-ins and added functionality are available to Eclipse users through the use

of repositories, similar to Linux distributions today. Content in these repositories can be

signed or unsigned, coming from trusted or untrusted sources.

As far as Java is concerned, Eclipse has a powerful code completion engine which can

identify to which class objects, functions and methods belong and import said class auto-

matically with a single keystroke. It features the Java Development Tools with a built-in

incremental compiler which allows for substantial reduction in compile time. Because of

this technique, Eclipse can spot syntax errors immediately and suggest possible solutions,

allowing syntax and (some) semantic errors to be corrected with a single keystroke.

All this taken into account, it is not surprising that Google should state Eclipse as their

IDE of choice. Not only that, Google actually recommend developing using Eclipse. For

this reason, the ADT plug-in was created. ADT stands for Android Development Tools.

It greatly simpli�es the initial con�guration, code management, installation, running,

logging and debugging. One can say that every part of the development process can be

completed with the ADT plug-in easily, quickly and without the need to manipulate any

con�guration �les by hand, thus enabling the developer to concentrate on the application

and not on the internals.

This section looks at the tasks already described in section B.2 but done from within

Eclipse. Special attention is paid to the manipulation of the manifest �le and the design

and testing of the GUI. We assume that Eclipse has been installed, for tips on how to do

that you can visit http://www.eclipse.org

B.3.1. Eclipse workspace and perspectives

Eclipse's interface may seem very intimidating at �rst, so before plunging into it, it

might help to clarify two of the basic concepts behind the design of its GUI, namely

work-spaces and perspectives. This will help us later on to understand how to move

between the various processes in the development cycle of the applications.

119

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

One can think of a workspace as a designated area where various projects and their data

�les are stored and manipulated. In the simplest case, this is just a directory, typically

in the user's home folder. Eclipse also supports mounted work-spaces on network drives,

rsync or ftp through the appropriate plug-ins. If so con�gured, Eclipse can work with

multiple work-spaces simultaneously.

In �gure B.4 we can see an example of the user's view of the workspace in Eclipse6.

The three most usual and easily recognizable parts of a workspace are the �le editor

(in the top left-hand side), which is where the editing process happens, the workspace

browser in the top right-hand side which contains the various �les, packages, variables,

class hierarchy, etc. and the console tab in the bottom part of the screen, which contains

tools for debugging, error and/or warning messages, class property editor and javadoc

messages, among others. This is the initial or default workspace that contains everything

one needs to write and correct code.

A perspective on the other hand is an arrangement of tools, options and commands

depending on their use. It is a convenient way to group di�erent parts of Eclipse and make

them visible and usable when necessary. For example, the debug perspective may contain

an editor for variables, stack watch, breakpoints, error messages and program output,

all these in a di�erent screen from the development screen described above. A CSS

perspective might provide tools for colour selection, table, banner and page formatting,

separated from the design of the actual web page it may apply to. In �gure B.5 there

is an example of another very useful perspective. Strictly speaking, the workspace view

described above is just one of the various perspectives, grouping the tools necessary for

editing and running code7 and keeping the rest aside until we need them.

Perspectives can be created by the user. A good tutorial on how to create them and how

they work internally can be be found at http://www.eclipse.org/articles/using-

perspectives/PerspectiveArticle.html

B.3.2. Installing and con�guring the ADT plug-in

System requirements

ADT, as expected, requires a working installation of Eclipse, version 3.5 (Ganymede)

or greater. Given that Eclipse is written in Java, a working installation of JRE, JDK

6Quite possibly your development environment looks di�erent from this screen-shot, the position of the
individual elements varies from one version to the next

7In Eclipse it is called the Java Perspective if the development language is Java or by the name of the
programming language of the project otherwise

120

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

5 or 6 is also a must but these tend to be installed together with Eclipse. Once again,

the Android Development Team explicitly state that the open-source implementation

compiler gcj is not supported and only the o�cial Java packets have to be installed.

Installation process

The easiest way to install ADT is using Eclipse itself. From the Help menu one selects

Install New Software... and clicking Add in the top right-hand corner. The relevant �elds

in the dialogue which follows should be �lled in like this:

Name: ADT Plug-in

Location: https://dl-ssl.google.com/android/eclipse/

After hitting the OK button and when the next screen appears, in the Available Software

dialogue, we select Developer Tools and click Next. Clicking Next in the next window

and accepting the license agreement concludes the installation. If a security warning is

issued, we dismiss it pressing OK. When the installation is complete, Eclipse must be

restarted.

Con�guration

Once ADT is safely installed on the computer, the next step is to modify the ADT

preferences in Eclipse to point to the Android SDK directory. We do so by selecting

Window�Preferences and selecting Android from the left panel. A question might be

asked on the next screen if we want to send usage statistics to Google. Whatever our

answer, we cannot continue until we click Proceed.

Next, we click Browse and locate our SDK directory. The con�guration process is com-

pleted by clicking Apply, then OK.

Updates

These are the steps to take when we want to update the plug-in. Firstly, we have to

select Help-Check for Updates. If there are no updates available, a dialogue will inform

you of that. If there are updates, we select Android DDMS, Android Development Tools,

and Android Hierarchy Viewer, and click Next. In the next dialogue, Update Details,

we click Next. The update process is concluded by accepting the license agreement and

clicking Finish. To use the new version, we should restart Eclipse.

121

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

B.3.3. Creating projects

The ADT plug in provides the New Project Wizard with which a new empty project

can be created or we can import existing code. To run the wizard, we select File�New�

Project. After that, we select Android�Android Project, and click Next. We next enter

a name for our project, which is also the name of the folder where it will be stored.

Under Contents, we select Create new project in workspace and select the location of our

workspace. Under Target, we have to select an Android target to be used as the project's

Build Target. This speci�es which Android platform the project will be built against. It

is recommended to select the lowest platform with which our application is compatible.

Note that this setting can be changed at any time by right-clicking the project in the

Package Explorer, selecting Properties�Android and then checking the desired Project

Target.

Under Properties, we �ll in all necessary �elds. Application name is the human-readable

title for the application as it will on the Android device. Package name is the package

name-space, which follows the same rules as any Java package. All our code will reside

in that name-space. Create Activity is optional, but recommended and it can contain the

name for our main Activity class. We need to select a Min SDK Version., indicating the

minimum API Level required for the application to run properly. This automatically sets

the minSdkVersion attribute in the <uses-sdk> of the application's Android Manifest

�le. If in doubt, a good recommendation is to use the API Level listed for the Build

Target in the Target tab. Clicking Finish completes the creation of a new project.

B.3.4. Building and running projects

By default, whether we use an actual device or the emulator, the build process constantly

runs in the background as the project is changed. During this automatic build, Eclipse

enables debugging and signs the .apk �le with a debug key. When the application is run,

Eclipse invokes ADB and installs it to a device or emulator, automatically performing

all the same tasks listed in section B.2.2 so that the programmer does not have to worry

about parameters, commands and syntax and can concentrate on writing code. It is

important to note that if we want to distribute the application, the .apk �le must be

signed with our private key.

122

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

Run con�gurations

The run con�guration is an optional (but useful) set of parameters that specify the

project to run, the Activity to start, the emulator or connected device to use, etc. When

the project is run for the �rst time, a run con�guration will be created. By default, the

default project Activity will be launched and automatic target mode for device selection

will be used. If this is not what we want, we can always modify the run con�guration or

create a new one.

The Run con�guration manager is accessible from the Run menu. After that, we expand

the Android Application item and can create a new con�guration or open an existing one.

There are various settings to be con�gured. The project and activity to be launch are in

the Android tab. The Target tab allows us to choose between Manual or Automatic mode

to select an AVD to run the application on (see next paragraph for a detailed description).

Additionally, parameters can be speci�ed to the emulator via the Additional Emulator

Command Line Options �eld. For example, the -scale 96dpi to scale the AVDs screen

to an accurate size, based on the computer monitor. A full list of emulator options can be

found at http://developer.android.com/guide/developing/tools/emulator.html

Automatic and manual target modes

A run con�guration will by default use the automatic target mode in order to select an

AVD on which to run the application. The following rules apply:

� If there's a device or emulator already running and its AVD con�guration meets

the requirements of the application's build target, the application is installed and

run on it.

� If there's more than one device or emulator running and all of them meet the

requirements of the build target, a dialogue is shown prompting the user to select

which device to use.

� If no devices or emulators are running that meet the requirements of the build

target, ADT looks for a match to the build target in all available AVDs. If one is

found, ADT chooses that AVD.

� If no suitable AVDs are found, the application is not installed and a console error

warning tells us there is no existing AVD that meets the build target requirements.

123

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

If, however, a "preferred AVD" is selected in the run con�guration, the application will

always be deployed to that AVD. A new emulator will be launched if it's not already

running.

The manual mode simply presents a "device chooser" every time the application is run

and we can select on which AVD to install and run it.

Running the application

Running or debugging an application is done by selecting Run�Run or Run�Debug. ADT

automatically creates a default run con�guration for the project (see above) and compile

the project, if there have been changes since the last build. Next, it installs and starts the

application on an emulator or device, depending on the run con�guration. By default,

Android run con�gurations use an "automatic target" mode for selecting a device target

(see above). If the chosen option is Run, Eclipse then installs the application on the

device and launches the main activity. If we chose Debug instead of Run, the application

will start in the Waiting for debugger mode and once it has attached, Eclipse will open

the Debug perspective and will only then start the application's main activity.

If we want to develop on a device, there is no signi�cant di�erence in the steps to take.

However, we must make sure the device has been properly set up as explained in section

B.1.8.

B.3.5. Debugging from within ADT

Debugging is a vital process in application development so it is no surprise that ADT

has excellent tools to that end. A presentation of the two ways to debug an application

follows. The reader will no doubt realize the degree of ease ADT brings in this regard

when compared to the command-line debugger.

Eclipse's Debug perspective

Eclipse provides the possibility to debug any application project using its own built-in

debugger. It can be accessed through Window�Open Perspective�Debug. A screen-shot

is shown in �gure B.5.

Four tabs deserve attention. The Debug tab shows Android applications and their cur-

rently running threads being debugged. Variables displays variable values during code

124

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

Figure B.5.: Eclipse Debug Perspective

execution. Notice that just like any other debugger, this perspective only works prop-

erly when breakpoints have been set. Breakpoints displays a list of the set breakpoints.

LogCat, also available in the DDMS perspective, allows us to view system log messages

in real time.

DDMS perspective

DDMS or Dalvik Debug Monitor Server is a debugger extension shipped with Android.

The main debugger is still adb, DDMS combines various ADB instances and enables

the user to interact with them using DDMS rather than with each one individually.

Additional functionality DDMS brings is screen capture on the device, port forwarding,

radio state information and spoo�ng, threads and heap information and a lot more. This

section describes the most relevant parts of the DDMS perspective and what they can

be used for.

We can get to the DDMS perspective on Eclipse from Window�Open perspective�Other�

DDMS. A screen-shot of an arrangement that contains its most relevant elements is shown

in �gure B.6.

Before we explain the elements in the screen-shot, it may help to examine how the DDMS

works with the debugger. As explained in section A.2, every application on Android runs

125

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

Figure B.6.: DDMS perspective(taken from [22])

in its own virtual machine. A part of this virtual machine is its own copy of ADB which

runs internally and provides a unique external port to which a debugger can attach.

When DDMS starts, it connects to ADB. Every time a new VM (i.e. a new application)

is started or terminated, ADB is noti�ed and it in turn noti�es DDMS, which connects

directly to the VM's pro�ling port and can thus talk directly to the VM's copy of ADB.

This connection and the data transfer thereafter are accomplished through the adbd

daemon.

DDMS assigns a debugging port to each VM on the device, starting (by default) with

port 8600 for the �rst debuggable and incrementing the port number by 1 every time

another instance is run. When a debugger connects to one of these ports, all tra�c is

forwarded to it from the associated VM. Only one debugger can attach to a single port

but DDMS can handle multiple attached debuggers.

Another DDMS port is of importance, number 8700. It is a forwarding port which accepts

tra�c from any VM on the device and forwards it to port 8700, thus enabling all VM's to

be debugged from a single port one at a time. The tra�c is determined by the currently

selected process in the DDMS Devices view (see �gure B.6).

126

QReact B.3. THE TRIED-AND TESTED WAY: ECLIPSE AND ADT

We now describe how to perform some common debugging tasks. A more complete

discussion can be found in [22]. Note that there is no distinction between a physical

device and a virtual device when using DDMS.

To work with an emulator or device's �le system, one turns to the File Explorer

tab which contains commands to view, copy, and delete �les on the device. This can

come handy when we need to examine �les created by the application or if we want to

transfer �les to and from the device. To copy a �le from the device, we locate the

�le and click the Pull �le button. To copy a �le to the device, we click the Push �le.

To view the log messages an application issues using the Log class or other logged

system messages such as stack traces, we turn to the LogCat feature. The various types of

messages can be �ltered choosing their type or creating more complex �lters, for example

warning and error messages �ltered by process id.

To emulate phone operations and location, one turns to the Emulator control

tab, where options to simulate a phone's voice and data network status can be found.

This helps to test an application's robustness in di�ering network environments. The

Telephony Status section of the Emulator controls tab manages di�erent aspects of the

phone's networks status, speed and latency. Changes to these are e�ective immediately.

To spoof calls and messages, the Telephony Actions section of the Emulator controls

tab is of help. This is useful for testing an application's robustness in responding to

incoming calls and messages.

To set a (mock) location, one turns to the Location Control tab. This is useful for

testing di�erent aspects of the application's location speci�c features without physically

moving. A variety of geolocation data types are available.

For further information on Eclipse, the www.eclipse.org website is the best source. As

for ADT, there is not much documentation to be consulted and so probably the best way

to learn it and to see what it can do to simplify a programmer's life is to experiment

with its features.

127

QReact
B.4. THE NEWCOMER AND GOOGLE'S RECOMMENDATION: ANDROID

STUDIO

B.4. The newcomer and Google's recommendation: Android

Studio

Android Studio (https://developer.android.com/tools/studio/index.html) is the

newest contender in the �eld. Built by Google on top of IntelliJ IDEA, it is the o�cial

IDE for Android development [2]. Its �rst preview version, 0.1, was available in May

2013 while the �rst stable version, 1.0, was released in December 2014.

This section will brie�y describe the new features and a few of the di�erences that can

be found with ADT. It does not mean to provide a full and complete description given

that a lot of what was said about ADT is still applicable, the di�erences are mostly

�cosmetic�.

B.4.1. Build framework: Gradle

Instead of Apache Ant, Android Studio uses Gradle as its building framework. Gradle is

a build automation tool which supports substantial multi-project builds. A distinctive

feature is its incremental build, which Gradle accomplishes by adaptively determining

which parts of the build tree need to be updated, thus speeding up build process by not

re-building the whole tree. Instead of the XML description of the project tree favoured by

Apache Ant, Gradle uses a Groovy-based domain-speci�c language [5] for this purpose.

B.4.2. Android-speci�c quick �xes

Given that this IDE was speci�cally written for Android, code refactoring and quick �xes

are speci�c to Android and arguably much more useful. Code refactoring is an important

tool for making the code more legible, more compact and therefore, easier to maintain; all

this without having any impact on the code's external behaviour. An excellent treatment

of commonly used refactoring techniques can be found in [14]. For a Java-speci�c take

on the same topic, [10] is an excellent source.

Quick �xes aim to o�er ways to correct frequently made coding mistakes, once those

are spotted by the IDE. For example, if a programmer attempts to use a class without

including its parent package, a quick �x will be suggested which will include said package;

where there is more than one package possible, a list will be presented so the developer

can choose which one to include. Another frequently encountered mistake is trying to

use a function which throws an exception without a try and catch block; in this case,

128

QReact
B.4. THE NEWCOMER AND GOOGLE'S RECOMMENDATION: ANDROID

STUDIO

a quick �x will be suggested which will surround the code with a try-catch block or

alternatively, the function which this code is a part of will be declared to throw this

exception. The idea is to correct these mistakes so that the compiler will be able to go

through the code without any problems, thereby speeding up the whole process.

B.4.3. Lint tools

In programmer lingo, lint refers to certain pieces of code which, without being syntac-

tically incorrect, are likely to cause bug-like behaviour. For example, using a variable

without declaring it �rst or using constants in conditional blocks which make the condi-

tion constant, possibly leading to unintended in�nite loops. Lint tools are very common

in all IDEs and those included in Android Studio detect performance, language and

API-compatibility issues, among others.

B.4.4. GUI layout editor

Creating a GUI is a much more straightforward process with Android Studio, thanks in

no small part to the fact that di�erent orientations, resolutions and screen sizes can be

easily visualised. In addition, the XML editor that came standard in ADT is included and

within easier reach. A screen shot of this feature, taken from http://www.filehorse.

com, is shown in �gure B.7. A related feature is the wizard-like interface to create common

Android components, views and designs. Last but not least, the drag-and-drop features

of ADT are expanded upon and more components are readily available.

B.4.5. Other features

There are many other additions to Android Studio as compared to Eclipse and ADT.

Among those worth mentioning are:

� support for the Android Wear platform

� o�-the-shelf support for Google Cloud, enabling integration with apps hosted on

Google Cloud

� built-in signing capabilities using ProGuard. While ADT also o�ered this function-

ality, Android Studio provides it seamlessly as a part of the deployment process

� improvements to the visual coding interface and real-time app rendering

129

QReact
B.4. THE NEWCOMER AND GOOGLE'S RECOMMENDATION: ANDROID

STUDIO

Figure B.7.: Android Studio's GUI layout editor

� easier-to-set-up run con�gurations

� more straightforward handling of virtual devices

� improvements in the debugging process and console, both using virtual and physical

devices

As a conclusion, this appendix provided a somewhat historical account of the ways to

develop under Android. All four basic ways were used at di�erent points in the devel-

opment process for this project which is why it was deemed necessary to include all of

them, however outdated some might seem nowadays, in this appendix.

130

C. ZXing internals

The following sections describe ZXing from a programmer's perspective, focusing on more

�exotic� features such as its installation from source and using it to generate QR codes.

Some some code snippets showing its usage form within the application are shown.

C.1. Installing the ZXing library on Android

There are two basic ways to do that. One can download the .zip archive, build it and

install it onto the phone. The alternative and recommended way is to install Barcode

Scanner directly, either via the .apk package provided or from Android Market.

Building ZXing

To do this, aside from the source code for the library, one must also have ProGuard

present on their computer. By default, it should be a part of the Android SDK but in

case it is not there, it should be installed. ProGuard shrinks, optimizes, and obfuscates

Java code by removing unused code and renaming classes, �elds, and methods with

semantically obscure names. The result is a smaller sized .apk �le that is more di�cult

to reverse engineer. It should be used when the application uses features that are sensitive

to security.

To build ZXing, the �rst step is to grab the .zip archive from the project website,

http://code.google.com/p/zxing/. Next, we edit the build.properties �le at the

131

QReact C.2. OBTAINING AN IMAGE OR A PREVIEW FROM A CAMERA

top level of the project, changing the android-home property to point to where our SDK

is installed. Also, we should set the proguard-jar property to the full path, �le name

included, of the ProGuard library. Having done this, we can start the building process.

ZXing is built without debugging symbols to prevent con�ict between ProGuard and the

Android tool chain. We have to navigate to the unpacked directory and say

cd core

ant clean build-no-debug

Next, we build the Android code issuing the commands

cd ../android

ant

With the device connected and set up for installation as described in section B.1.8, we

navigate to bin/ and �nd the BarcodeScanner-debug.apk �le. We install it by saying

adb install

Our library is now installed on the phone and can be used to scan codes as described in

sections C.3 and C.4.

Installing the package �le

This is the recommended way to install ZXing as it takes away the complexity of the build

and install process. The easiest way is to �nd the Barcode Scanner application in Android

market and install it from there. Alternatively, one can grab the BarcodeScanner.apk

�le and install it by simply saying

adb install BarcodeScanner.apk

C.2. Obtaining an image or a preview from a camera

QR codes rely on images, so naturally, some attention must be paid on how we can obtain

an image from the device's camera.

From within an application

Before we start, our application has to declare its intentions to use the camera and set

the correct permissions. This is done in the Android Manifest �le, in particularly the

following three lines.

132

QReact C.2. OBTAINING AN IMAGE OR A PREVIEW FROM A CAMERA

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature android:name="android.hardware.camera" />

<uses-feature android:name="android.hardware.camera.autofocus" />

Auto-focus has to be enabled for the camera to �nd the QR code properly. It also helps

if we try and �t only the QR code in the view�nder.

To access the camera, we need to:

1. Instantiate the Camera class �rst. We can do that by calling the open() method.

This will return an object whose parameters we might have to set.

2. We check the returned settings with getParameters(). If necessary, they can be

modi�ed using the Camera.Parameters object. To set the new parameters, we call

setParameters(Camera.Parameters).

3. If desired, we can set the display orientation using setDisplayOrientation(int).

4. The camera needs a fully con�gured SurfaceHolder to start the preview. We can

do this by calling setPreviewDisplay(SurfaceHolder).

5. Preview must be started before we can take a picture. startPreview() keeps

updating the preview surface.

6. When we see �t, takePicture(Camera.ShutterCallback, Camera.PictureCallback,

Camera.PictureCallback, Camera.PictureCallback) will capture a photo.

7. After taking the picture, preview would have stopped. We have to wait for the

callbacks to provide the actual image data.

8. If we wish to take more photos, startPreview()must be called again �rst. stopPreview()

will stop updating the preview surface.

9. When �nished, it is important to call release() to allow the camera to be used

by other applications.

This is just the orientative list of actions that need to be taken in order to take a picture

from within our application. These steps are recommended by the Android Developers.

There is, however, a far less complicated way to do that.

Using an intent

As [24] suggests, using an intent provided by MediaStore is the standard way to obtain a

picture from the camera. This method uses a temporary �le to store the photo and then

133

QReact C.2. OBTAINING AN IMAGE OR A PREVIEW FROM A CAMERA

it is just read from there when the intent ends. The following code snippet, taken from

[24] illustrates this idea. Note that this code should be run from within an Activity.

private static final int TAKE_PHOTO_CODE = 1;

private void takePhoto (){

final Intent intent = new Intent(MediaStore.

ACTION_IMAGE_CAPTURE);

intent.putExtra(MediaStore.EXTRA_OUTPUT , Uri.fromFile(

getTempFile(this)));

startActivityForResult(intent , TAKE_PHOTO_CODE);

}

private File getTempFile(Context context){

//this returns /sdcard/image.tmp

final File path = new File(Environment.

getExternalStorageDirectory (), context.getPackageName ()

);

if(!path.exists ()){

path.mkdir();

}

return new File(path , "image.tmp");

}

protected void onActivityResult(int requestCode , int

resultCode , Intent data) {

if (resultCode == RESULT_OK) {

switch(requestCode){

134

QReact C.3. CALLING ZXING FROM WITHIN A PROGRAM

case TAKE_PHOTO_CODE:

final File file = getTempFile(this);

try {

Bitmap captureBmp = Media.getBitmap(

getContentResolver (), Uri.fromFile(file));

// here the image can be manipulated as necessary

// (resized , converted to greyscale , etc.)

// we don't care about the exceptions , so just

// catch them and ignore them

} catch (FileNotFoundException e) {

e.printStackTrace ();

} catch (IOException e) {

e.printStackTrace ();

}

break;

}

}

}

C.3. Calling ZXing from within a program

Calling ZXing in a program requires an instance of com.google.zxing.Reader. An

implementation that can detect all formats the library reads can be used. In this case,

we would proceed like so:

Reader reader = new MultiFormatReader();

Alternatively, if we know exactly the kind of code we are reading, we can instantiate

an implementation that only understands this particular kind of code. This is the more

e�cient method. So, for QR Codes,

Reader reader = new QRCodeReader();

135

QReact C.4. DECODING VIA INTENT

The next step is the image to decode. Readers receive as parameters instances of

com.google.zxing.MonochromeBitmapSource. These are just abstractions on top of

various classes representing images, presenting them as a monochrome image to be de-

coded. There is an implementation for instances of java.awt.BufferedImage:

BufferedImage myImage = getImageFromCamera(); // dummy procedure

LuminanceSource source = new BufferedImageLuminanceSource(myImage);

BinaryBitmap bitmap = new BinaryBitmap(new HybridBinarizer(source));

And now, to decode,

Result result = reader.decode(bitmap);

com.google.zxing.Result has a number of methods that give access to the raw bytes

or text encoded by the barcode found. It will also reveal key points in the image related

to the barcode that was found, such as the three �nder patterns in a QR Code and the

bottom-right alignment pattern. The following code snippet illustrates some of these,

with self-explanatory variable names:

String text = result.getText();

byte[] rawBytes = result.getRawBytes();

BarcodeFormat format = result.getBarcodeFormat();

ResultPoint[] points = result.getResultPoints();

Finally, the decoders support a system of "hints" that help the decoder work more e�-

ciently, or trade o� accuracy for speed when appropriate. For example, the "TRY_HARDER"

hint asks the decoders to spend much more time searching for a barcode:

Hashtable<DecodeHintType, Object> hints = new Hashtable<DecodeHintType, Object>();

hints.put(DecodeHintType.TRY_HARDER, Boolean.TRUE);

Result result = reader.decode(bitmap, hints);

C.4. Decoding via Intent

Intents are a convenient way to call certain functions from programs already installed

on the platform. If an intent is provided, it could be called from any program just as

if it was a part of it rather than a module in another package. Therefore, because of

its simplicity, this is the recommended way to scan codes when only BarcodeScanner is

136

QReact C.4. DECODING VIA INTENT

installed as opposed to ZXing package. The following code snippet shows how to scan a

code via and intent. It assumes there is a button and when it is pressed, the intent is

activated.

public Button.OnClickListener mScan = new Button.

OnClickListener () {

public void onClick(View v) {

Intent intent = new Intent("com.google.zxing.client.

android.SCAN");

intent.setPackage("com.google.zxing.client.android");

intent.putExtra("SCAN_MODE", "QR_CODE_MODE");

/* Optionally , this is where one would put the hints.

* For example , to insert a TRY_HARDER hint , one

would say

* intent.putExtra (" DecodeHintType.TRY_HARDER", "true

");

*/

startActivityForResult(intent , 0);

}

};

public void onActivityResult(int requestCode , int resultCode ,

Intent intent) {

if (requestCode == 0) {

if (resultCode == RESULT_OK) {

String contents = intent.getStringExtra("

SCAN_RESULT");

String format = intent.getStringExtra("

SCAN_RESULT_FORMAT");

// Scan successful , proceed

} else if (resultCode == RESULT_CANCELED) {

// Cancelled , proceed

}

}

}

137

QReact C.5. DECODING CODES FROM A WEB PAGE

C.5. Decoding codes from a web page

Starting with version 3.3, BarcodeScanner can be instructed to scan from a web page

and have the result returned to your site via a callback URL. This is done by linking to

a URL and properly escaping the parameter's value. For example,

http://zxing.appspot.com/scan?ret=http://foo.com/products/{CODE}

/description&SCAN_FORMATS=QR

The ret parameter speci�es the URL to call back with the scan result. {CODE} may

appear anywhere and will be replaced with the scanned barcode contents. SCAN_FORMATS

may be optionally used to supply a comma-separated list of format names.

This option is handy when we develop software which has to scan QR codes from web-

pages and an Internet connection is present. The alternative is to have our application

scan through the HTML source code and decode each image �le individually, thus calling

ZXing on the phone and using up battery. The server call back method uses the Internet

connection and does not place any strain on our device's processor.

C.6. Using ZXing to create QR codes

There is a web-based interface to the ZXing library that can be used to create QR

codes. It is located at http://zxing.appspot.com/generator/ and features some of

the preferred formats of information QR codes can store. After the information is input

and we hit Generate, the resulting code appears in a new page and can be downloaded

and used as required.

For a more automatic way of generating these codes, it is suggested to turn to Google

Chart Tools1, which has special modules to create QR codes.

1It can be found at http://code.google.com/apis/chart/

138

Bibliography

[1] About QR codes. Online. http://www.denso-wave.com/qrcode/aboutqr-e.html.

[2] Android Studio Overview. Online. https://developer.android.

com/tools/studio/index.html.

[3] Android Wear - Android Apps on GoogGoogle. Online. https://play.google.

com/store/apps/details?id=com.google.android.wearable.app.

[4] Code 39 overview. Online. http://www.racoindustries.

com/barcodegenerator/1d/code-39.aspx.

[5] Gradle website. Online. https://gradle.org.

[6] IntelliJ IDEA. Online. https://www.jetbrains.com/idea/.

[7] Just 720,000 Android Wear smartwatches shipped last year. Online. http://www.

engadget.com/2015/02/11/android-wear-2014-shipments/.

[8] Oracle documentation for Java. Online. https://docs.oracle.

com/javase/7/docs/technotes/guides/jni/.

[9] Q1 2014: QR Code Trends. Online. http://www.qrstuff.

com/blog/2014/04/02/q1-2014-qr-code-trends.

[10] Refactoring Java code. Online. http://www.methodsandtools.

com/archive/archive.php?id=4.

[11] Symbol versions for QR codes. Online. http://www.denso-wave.

com/qrcode/qrgene2-e.html.

[12] "Tu Salario" website. Online. http://www.tusalario.es.

[13] Using Camera API - Marakana. Online. http://marakana.

com/forums/android/examples/39.html.

[14] What is Refactoring? Online. http://c2.com/cgi/wiki?WhatIsRefactoring.

[15] Android Developers. Installing the SDK. Online. http://developer.android.

com/sdk/installing.html.

139

QReact Bibliography

[16] Android Developers. System Requirements. Online. http://developer.android.

com/sdk/requirements.html.

[17] Android Developpers. Application Fundamentals. Online. http://developer.

android.com/guide/topics/fundamentals.html.

[18] AppBrain. Free vs. paid Android apps. Online. http://www.appbrain.

com/stats/free-and-paid-android-applications.

[19] AppBrain. Number of Android applications. Online. http://www.appbrain.

com/stats/number-of-android-apps.

[20] Bulgarian Tourist Association. The 100 National Tourist Sites (in Bulgarian). On-

line. http://100nto.org.

[21] Adams Communications. Speci�cations For Popular 2D Bar Codes. Online. http:

//www.adams1.com/stack.html.

[22] Android Developers. Using DDMS. Online. http://developer.android.

com/guide/developing/debugging/ddms.

[23] Eclipse Team. Eclipse Marketplace homepage. Online. http://marketplace.

eclipse.org/.

[24] Tutorial for Android Website. Take pictures in Android with AC-

TION_IMAGE_CAPTURE. Online. http://www.tutorialforandroid.

com/2010/10/take-picture-in-android-with.html.

[25] Margalit Fox. Alan Haberman, who ushered in the bar code, dies at 81. The New

York Times, June 2011.

[26] Gartner.com. Gartner Says Smartphone Sales Surpassed One Billion Units in 2014,

2015. www.gartner.com.

[27] Prince McLean. Canalys: iPhone outsold all Windows mo-

bile phones in Q2 2009. Online. http://www.appleinsider.

com/articles/09/08/21/canalys_iphone_outsold_all_windows_mobile_phones_in_q2_2009.

html.

[28] Steve Ranger. "iOS versus Android. Apple App Store versus Google

Play: Here comes the next battle in the app wars". Online. http:

//www.zdnet.com/article/ios-versus-android-apple-app-store-versus-

google-play-here-comes-the-next-battle-in-the-app-wars/.

140

QReact Bibliography

[29] Alex Ryazastev. Eclipse 3.6 Helios Preview Screenshot. Online. http://upload.

wikimedia.org/wikipedia/commons/a/a2/Eclipse_3.6_Helios.jpg.

[30] Martin Schoeberl. Hardware Support for Embedded Java. Online.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.1436&rep=

rep1&type=pdf.

[31] The Eclipse Development Team. Using Perspectives in the Eclipse UI. Online. http:

//www.eclipse.org/articles/using-perspectives/PerspectiveArticle.html.

[32] Wikipedia. Android version history. Online. https://en.wikipedia.

org/wiki/Android_version_history.

[33] Wikipedia. Data Matrix. Online. http://en.wikipedia.org/wiki/Data_Matrix.

141

Nomenclature

ASCII American Standard Code for Information Interchange

AVD Android Virtual Device

CAS Computer Algebra System

cross-compilation the process of creating executable code for a platform other than the

one on which the compiler is running

DDMS Dalvik Debug Monitor Server

ESSID Extended Service Set Identi�cation, used in infrastructure-based wireless net-

works. Also referred to as SSID, it is the identi�er of the wireless network

GUI Graphical User Interface

HTML Hyper Text Markup Language

IDE Integrated Development Environment

ISBN International Standard Book Number

ISO International Organization for Standardization

ISSN International Standard Serial Number

JDK Java Development Kit

JIT Just-In-time

JNI Java Native Interface

JRE Java Runtime Environment

NFC Near-�eld communitcation

142

QReact Bibliography

OCR Optical Caracter Recognition

OS Operating System

RFID Radio Frequency Identi�cation

SDK Software Development Kit

symbol In optical(scannable) codes, a symbol is the graphical representation of the en-

coded information.

UI User Interface

URI Uniform Resource Identi�er

URL Uniform Resourse Locator

VAT Value Added Tax

VAT Value Added Tax

VM Virtual Machine

VoIP Voice over IP

VPN Virtual Private Network

XML Extensible Markup Language

143

Index

2D codes, 8

Code 49, 9

Data Matrix, 10

PDF 417, 9

ShotCode, 11

Android

activating components, 99

activities, 97

Android Auto, 95

Android TV, 94

Android Wear, 94, 129

application components, 97

application fundamentals, 95

broadcast receivers, 98

content providers, 98

intent action, 102

intent �lter, 102

intents, 99

manifest, 100

services, 98

UI layout, 103

versions, 88

Android SDK

installing, 106

repository, 107

samples, 106

system requirements, 106

tools, 107

AVD, 109

bar code, 6

bloatware, 23

code lint, 129

code refactoring, 128

code refactoring and quick �xes, 128

conclusions

objective, 81

cost

hardware, 79

personnel, 77

software, 79

total, 80

DDMS

Dalvik Debug Monitor Server, 125

Digital Audio Tape (DAT), 15

Digital Video Disk (DVD), 15

electronic badge, 3

Error-correcting codes

BK codes, 15

Reed-Solomon codes, 14

ESSID, 4

future development, 83

144

QReact Index

Google Cloud, 129

Gradle, 128

Groovy, 128

hardware used, 79

HTML, 138

IDEs for Android

Android Studio, 128

Eclipse, 117

ISBN, 18

ISO, 10

ISSN, 18

JIT compiler, 91

JNI, 85

layout editor, 129

Linear codes, 7

mksdcard, 110

Object hyper-linking, 20

Obtaining images from a camera, 132

OCR, 18

personal conclusions, 82

ProGuard, 129

QR codes, 11

calculating the area of a symbol, 17

capacity, 13

copyright, 16

Micro QR Code, 16

speci�cations, 12

usage statistics, 20

uses, 18

QReact

con�guring formats, 60, 66

format de�nitions, 59

list-like functions, 59

main module, 64

no sanity checks, 60

porting, 62, 66

QR format design, 53

tailor-made exceptions, 63

YAML I/O, 63

RFID, 7, 20

ROT 25, 53, 61

sandbox, 96

Secure Digital (storage card), 109, 110

software used, 79

tamper-proof chip, 3

URI, 100

VAT, 79

VCAL, 21

VCARD, 20

VoIP, 91

YAML, 49, 55, 63

ZXing, 27

building ZXing, 131

decoding from web pages, 138

installing on Android, 131

using as an intent, 136

using form a program, 135

145

