
ar
X

iv
:1

40
7.

80
71

v2
 [

st
at

.C
O

]
9

O
ct

 2
01

5
Noname manuscript No.
(will be inserted by the editor)

A simple scheme for the parallelisation of particle

filters and its application to the tracking of complex

stochastic systems

Dan Crisan · Joaqúın Mı́guez ·

Gonzalo Rı́os

Received: date / Accepted: date

Abstract Considerable effort has been devoted to the design of schemes for the
parallel, or distributed, implementation of particle filters. The approaches vary
from the totally heuristic to the mathematically well-principled. However, the
former are largely based on (often loose) approximations that prevent the claim
of any rigorous guarantees of convergence, whereas the latter involve considerable
overhead to ensure the proper interaction of particles, which impairs the efficiency
of the intended parallelisation. In this paper we investigate the use of possibly the
simplest scheme for the parallelisation of the standard particle filter, that consists
in splitting the computational budget into M fully independent particle filters
with N particles each, and then obtaining the desired estimators by averaging
over the M independent outcomes of the filters. This approach minimises the
parallelisation overhead yet displays highly desirable theoretical properties. Under
very mild assumptions, we analyse the mean square error (MSE) of the estimators
of 1-dimensional statistics of the optimal filtering distribution and show explicitly
the effect of parallelisation scheme on the convergence rate. Specifically, we study
the decomposition of the MSE into variance and bias components, to show
that the former decays as 1

MN , i.e., linearly with the total number of particles,
while the latter converges towards 0 as 1

N2 . Parallelisation, therefore, has the
obvious advantage of dividing the running times while preserving the (asymptotic)
performance of the particle filter. Following this lead, we propose a time-error
index to compare schemes with different degrees of parallelisation. Finally, we
provide two numerical examples. The first one deals with the tracking of a Lorenz
63 chaotic system with dynamical noise and partial (noisy) observations, while

Dan Crisan
Department of Mathematics, Imperial College London (UK).
E-mail: d.crisan@imperial.ac.uk

Joaqúın Mı́guez
School of Mathematical Sciences, Queen Mary University of London (UK).
E-mail: j.miguez@qmul.ac.uk

Gonzalo Ŕıos
Department of Signal Theory & Communications, Universidad Carlos III de Madrid (Spain).
E-mail: griosm@tsc.uc3m.es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288498423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1407.8071v2

2 Dan Crisan et al.

the second example involves a dynamical network of modified FitzHugh-Nagumo
(FH-N) stochastic nodes. The latter is a large dimensional system (≈ 3, 000 state
variables in our computer experiments) designed to numerically reproduce typical
electrical phenomena observed in the atria of the human heart. In both examples,
we show how the proposed parallelisation scheme attains the same approximation
accuracy as a centralised particle filter with only a small fraction of the running
time, using a standard multicore computer.

Keywords Particle filtering · Parallelisation · Convergence analysis · Stochastic
FitzHugh-Nagumo · Excitable media

1 Introduction

Over the past decade there has been a continued interest in the design of schemes
for the implementation of particle filtering algorithms using parallel or distributed
hardware of various types, including general purpose devices such as multi-core
CPUs or graphical processing units (GPUs) [18], and application-tailored devices
such as field programmable gate arrays (FPGAs) [3].

A particle filter is a recursive algorithm for the approximation of the sequence
of posterior probability distributions that arise from a stochastic dynamical system
in state-space form (see, e.g., [12,28,8,4,2,22] and references therein for a general
view of the field). A typical particle filter includes three steps that are repeated
sequentially:

– Monte Carlo sampling in the space of the state variables,
– computation of weights for the generated samples and, finally,
– resampling according to the weights.

While at first sight the algorithmmay look straightforward to parallelise (sampling
and weighting can be carried out concurrently without any constraint), the
resampling step involves the interaction of the whole set of Monte Carlo samples.
Several authors have proposed schemes for ‘splitting’ the resampling step into
simpler tasks that can be carried out concurrently. The approaches are diverse
and range from the heuristic [14,24,19] to the mathematically well-principled [31,
30] (see also [3] together with [26,17]). However, the former are largely based on
(often loose) approximations that prevent the claim of any rigorous guarantees
of convergence, whereas the latter involve non-negligible overhead to ensure the
proper interaction of particles. The double bootstrap filter as described in [30], for
example, performs resampling at two levels (involving individual particles and sets
of particles, respectively) and only one of the two admits direct parallelisation.
The distributed resampling scheme of [3,26,17] is similar, as it resamples small
subsets of particles in parallel, but the second level of resampling is substituted
by an exchange of particles among different subsets which are typically assigned
to different processing elements. The idea of exchanging particles is generalized in
the α sequential Monte Carlo (α-SMC) methodology [31], where the resampling
step is parameterised by designing a sequence of maps of interactions among
particles. The higher-level resampling step of [30], the particle exchange of [3] or
the parameterised interaction of [31] imply a computational overhead, i.e., there
are extra computations that have to be performed in exchange for parallelising the
original resampling task.

Title Suppressed Due to Excessive Length 3

In this paper we investigate the use of possibly the simplest scheme for
the parallelisation of the standard particle filter, that consists in splitting the
computational budget into M fully independent particle filters with N particles
each, and then obtaining the desired estimators by averaging over the M
independent outcomes of the filters. This approach minimises the parallelisation
overhead, since there is no interaction at all among the filters, yet displays
desirable theoretical properties. Under mild assumptions, we analyse the mean
square error (MSE) of the estimators of 1-dimensional statistics of the optimal
filtering distribution and show explicitly the effect of parallelisation scheme on
the convergence rate. Specifically, we study the decomposition of the MSE into
variance and bias components, to show that the former decays as 1

MN , i.e., linearly
with the total number of particles, while the latter converges towards 0 as 1

N2 .
Independent parallelisation, therefore, has the obvious advantage of reducing the
running time while preserving the (asymptotic) performance of a centralised filter.
To compare different parallelisation schemes, we introduce a time-error index that
brings together the time complexity (asymptotic order of the running time) and
the estimation accuracy (asymptotic error rates) into a single quantitative figure of
merit that can be used to compare schemes with different degrees of parallelisation.
As a side result, we also show that the expected value of the random probability
measure output by each independent filter converges in total variation distance to
the true posterior with rate of order 1/N (and we note that the average measure
over the M filters is just a sample-mean estimate of this expected measure).

The analysis of the particle filters in this paper is based on very mild
assumptions on the stochastic dynamic model and classic induction arguments.
We do not address uniform convergence over time or impose further assumptions
on the models because our aim is to illuminate the relationship between the
standard (centralised) particle filter and its parallelised versions in the simplest
possible framework. A more sophisticated analysis can obviously be carried out
by imposing additional assumptions on the dynamic models, yet the underlying
argument for the comparison of parallel schemes would be identical. Additional
results concerning the conditions that need to be satisfied to attain uniform
convergence, the relationship with a α sequential Monte Carlo (α-SMC) of [31] and
a central limit theorem can be found in [17]. A study of ensembles of independent
estimators in a machine learning framework, which shares the approach in this
paper to some extent, is presented in [29]. While we have focused here on particle
filters for discrete-time state-space models, the analysis can be similarly done for
continuous-time systems and, indeed, the basic results needed for that case (the
analysis of the approximation) can be found in [16].

The rest of the paper is organised as follows. In Section 2 we present basic
background material and notations to be used through the rest of the paper. The
theoretical results are introduced in Section 3, including the analysis of the bias,
MSE and total variation distance for various particle approximations. Numerical
results for two examples are also presented and discussed, including the tracking
of a stochastic Lorenz 63 system, in Section 4, and a stochastic-network model of
an excitable medium, in Section 5. The latter is a high-dimensional model (with
∼3,000 state variables in our simulations) that consists of a network of modified
stochastic FitzHugh-Nagumo nodes, and displays some of the dynamical features
observed during atrial fibrillation phenomena in the human heart [20]. Finally,
Section 6 contains some concluding remarks.

4 Dan Crisan et al.

2 Background

2.1 Notation and preliminaries

We first introduce some common notations to be used through the paper, broadly
classified by topics. Below, R denotes the real line, while for an integer d ≥ 1,

R
d =

d times
︷ ︸︸ ︷

R× . . .× R

– Functions.
– The supremum norm of a real function f : R

d → R is denoted as
‖f‖∞ = supx∈Rd |f(x)|.

– B(Rd) is the set of bounded real functions over Rd, i.e., f ∈ B(Rd) if, and
only if, ‖f‖∞ < ∞.

– Measures and integrals. Let S ⊆ R
d be a subset of Rd.

– B(S) is the σ-algebra of Borel subsets of S.
– P(S) is the set of probability measures over the measurable space (B(S), S).
– (f, µ) ,

∫
f(x)µ(dx) is the integral of a real function f : S → R with

respect to (w.r.t.) a measure µ ∈ P(S).
– Given a probability measure µ ∈ P(S), a Borel set A ∈ B(S) and the

indicator function

IA(x) =

{
1, if x ∈ A
0, otherwise

,

µ(A) = (IA, µ) =
∫
IA(x)µ(dx) is the probability of A.

– Sequences, vectors and random variables (r.v.).
– We use a subscript notation for sequences, namely xt1:t2 , {xt1 , . . . , xt2}.
– For an element x = (x1, . . . , xd) ∈ R

d of an Euclidean space, its norm is
denoted as ‖x‖ =

√

x2
1 + . . .+ x2

d.

– The Lp norm of a real r.v. Z, with p ≥ 1, is written as ‖Z‖p , E[|Z|p]1/p,
where E[·] denotes expectation w.r.t. the distribution of Z.

2.2 State-space Markov models in discrete time

Consider two random sequences, {Xt}t≥0 and {Yt}t≥1, taking values in X ⊆ R
dx

and R
dy , respectively. Let Pt be the joint probability measure for the collection of

random variables {X0, Xn, Yn}1≤n≤t.
We refer to the sequence {Xt}t≥0 as the state (or signal) process and we assume

that it is an inhomogeneous Markov chain governed by an initial probability
measure τ0 ∈ P(X) and a sequence of Markov transition kernels τt : B(X)×X →
[0, 1]. To be specific, we define

τ0(A) , P0 {X0 ∈ A} , (1)

τt(A|xt−1) , Pt {Xt ∈ A|Xt−1 = xt−1} , t ≥ 1, (2)

where A ∈ B(X) is a Borel set. The sequence {Yt}t≥1 is termed the observation
process. Each r.v. Yt is assumed to be conditionally independent of other
observations given Xt, namely

Pt {Yt ∈ A|X0:t = x0:t, {Yk = yk}k 6=t} (3)

= Pt {Yt ∈ A|Xt = xt}

Title Suppressed Due to Excessive Length 5

for any A ∈ B(Rdy), and the conditional distribution of the r.v. Yt given Xt = xt

is fully described by the probability density function (pdf) gt(yt|xt) > 0. We often
use gt as a function of xt (i.e., as a likelihood) and we emphasise this by writing
gyt (x) , gt(y|x). The prior τ0, the kernels {τt}t≥1, and the functions {gt}t≥1,
describe a stochastic Markov state-space model in discrete time.

The stochastic filtering problem consists in the computation of the posterior
probability measure of the state Xt given the sequence of observations up to time
t. Specifically, for a given observation record {yt}t≥1, we seek the probability
measures

πt(A) , Pt {Xt ∈ A|Y1:t = y1:t} , t = 0, 1, 2, ...

where A ∈ B(X). For many practical problems, the interest actually lies in the
computation of statistics of πt, e.g., the posterior mean or the posterior variance of
Xt. Such statistics can be written as integrals of the form (f, πt), for some function
f : X → R. Note that, for t = 0, we recover the prior signal measure, i.e., π0 = τ0.

An associated problem is the computation of the one-step-ahead predictive
measure

ξt(A) , Pt {Xt ∈ A|Y1:t−1 = y1:t−1} , t = 1, 2, ...

This measure can be explicitly written in terms of the kernel τt and the filter
πt−1. Indeed, for any integrable function f : X → R, we readily obtain (see, e.g.,
[2, Chapter 10])

(f, ξt) =

∫ ∫

f(x)τt(dx|x′)πt−1(dx
′) (4)

= ((f, τt), πt−1) ,

and we write ξt = τtπt as shorthand.
The filter at time t, πt, can be obtained from the predictive measure, ξt, and the

likelihood, gyt

t , by way of the so-called projective product [2], or Boltzman-Gibbs
transformation [8], πt = gyt

t ⋆ ξt, defined as

(f, gyt

t ⋆ ξt) ,
(fgyt

t , ξt)

(gyt

t , ξt)

for any integrable function f : Rdx → R, which, combined with (4), yields the
recursive formula

πt = gyt

t ⋆ τtπt−1. (5)

It is also useful to keep track of the sequence of non-normalised measures {ρt}t≥0,
where

ρ0 = π0, ρt = gyt

t · τtρt−1 (6)

and, for any integrable function f : X → R and any measure α ∈ P(X), we define

(f, gyt

t · α) , (fgyt

t , α). (7)

We remark that ρt is not a probability measure, but an unnormalised version of
πt, namely

(f, πt) =
(f, ρt)

(1, ρt)
,

where 1(x) = 1 is the constant unit function.

6 Dan Crisan et al.

2.3 Standard particle filter

Assume that a sequence of observations Y1:T = y1:T , for some T < ∞, is given.
Then, the sequences of measures {πt}t≥1, {ξt}t≥1 and {ρt}t≥0 can be numerically
approximated using particle filtering. Particle filters are numerical methods based
on the recursive relationships (5) and (7). The simplest algorithm, often called
‘standard particle filter’ or ‘bootstrap filter’ [15] (see also [11]), can be described
as follows.

Algorithm 1 Bootstrap filter.

1. Initialisation. At time t = 0, draw N i.i.d. samples, x
(i)
0 , i = 1, . . . , N , from the

distribution τ0.
2. Recursive step. Let {x(i)

t−1}1≤i≤N be the particles (samples) generated at time
t− 1. At time t, proceed with the two steps below.

(a) For i = 1, ...,N , draw a sample x̄
(i)
t from the probability distribution

τt(·|x(i)
t−1) and compute the normalised weight

w
(i)
t =

gyt

t (x̄
(i)
t)

∑N
k=1 g

yt

t (x̄
(k)
t)

. (8)

(b) For i = 1, ...,N , let x
(i)
t = x̄

(k)
t with probability w

(k)
t , k ∈ {1, ...,N}.

Step 2.(b) is referred to as resampling or selection. In the form stated here,
it reduces to the so-called multinomial resampling algorithm [13,10] but the
convergence of the filter can be easily proved for various other schemes (see, e.g.,
the treatment of the resampling step in [6]).

Using the sets {x̄(i)
t }1≤i≤N and {x(i)

t }1≤i≤N , we construct random
approximations of ξt, ρt and πt, namely

ξNt =
1

N

N∑

i=1

δ
x̄
(i)
t

, πN
t =

1

N

N∑

i=1

δ
x
(i)
t

, and (9)

ρNt = GN
t πN

t (10)

where δx is the delta unit-measure located at x ∈ R
dx and1

GN
t =

1

N t

t∏

k=1





N∑

j=1

gyk

k (x̄
(j)
k)



 . (11)

1 Note that GN
t is an estimate of the normalising constant for πt (namely, the integral

(1, ρt)) which can be shown to be unbiased under mild assumptions [8]. In Bayesian model
selection this constant is termed “model evidence” while in parameter estimation problems it
is often referred to as the likelihood (of the unknown parameters) [1].

Title Suppressed Due to Excessive Length 7

For any integrable function f on the state space, it is straightforward to
approximate the integrals (f, ξt), (f, πt) and (f, ρt) as

(f, ξt) ≈ (f, ξNt) =
1

N

N∑

i=1

f(x̄
(i)
t),

(f, πt) ≈ (f, πN
t) =

1

N

N∑

i=1

f(x
(i)
t), and

(f, ρt) ≈ (f, ρNt) = GN
t (f, πN

t),

respectively.

The convergence of particle filters has been analysed in a number of different
ways. Here we use simple results for the convergence of the Lp norms (p ≥ 1) of
the approximation errors. For the approximation of integrals w.r.t. ξt and πt we
have the following standard result.

Lemma 1 Assume that the sequence of observations Y1:T = y1:T is fixed (with
T < ∞), gyt

t ∈ B(X) and gyt

t > 0 (in particular, (gyt

t , ξt) > 0) for every
t = 1, 2, ..., T . Then for any f ∈ B(X), any p ≥ 1 and every t = 1, . . . , T ,

∥
∥
∥(f, ξ

N
t)− (f, ξt)

∥
∥
∥
p
≤ c̄t‖f‖∞√

N
and (12)

∥
∥
∥(f, π

N
t)− (f, πt)

∥
∥
∥
p
≤ ct‖f‖∞√

N
, (13)

where c̄t and ct are finite constants independent of N , ‖f‖∞ = supx∈X |f(x)| < ∞
and the expectations are taken over the distributions of the measure-valued random
variables ξNt and πN

t , respectively.

Proof: This result is a special case of, e.g., Lemma 1 in [25]. ✷

Remark 1 The constants c̄t and ct can be easily shown to increase with t. It is
possible to find error rates independent of t by imposing additional assumptions on
the state-space model (related to the stability of the optimal filter) [9,8].

3 Ensembles of independent particle filters

3.1 Overview

Assume we run M independent bootstrap filters (i.e., M independent instances
of Algorithm 1), with N particles each, for the same sequence of observations
{yt}0<t≤T . Each filter yields a random approximation πi,N

t , i = 1, ...,M , from

which we compute the average πM×N
t = 1

M

∑M
i=1 π

i,N
t and adopt the mean square

error (MSE) for bounded real test functions, E

[(

(f, πM×N
t)− (f, πt)

)2
]

, f ∈
B(X), as a performance metric. Since the underlying state-space model is the same

8 Dan Crisan et al.

for all filters and they are run in a completely independent manner, the measured-
valued random variables πi,N

t , i = 1, ...,M , are i.i.d. and it is straightforward to
show (via Lemma 1) that

E

[(

(f, πM×N
t)− (f, πt)

)2
]

≤ c2t‖f‖2∞
MN

, (14)

for some constant t independent of N and M . However, the inequality (14) falls
short of characterising the performance of the parallelisation scheme because it
does not illuminate the effect of the choice of N . In the extreme case of N = 1,
for example, πM×N

t reduces to the outcome of a sequential importance sampling
algorithm, with no resampling, which is known to degenerate quickly in practice.
Instead of (14), we seek a bound for the approximation error that provides some
indication on the trade-off between the number of independent filters, M , and the
number of particles per filter, N .

For this purpose we derive bounds for the approximation

error
(

(f, πM×N
t)− (f, πt)

)2
based on the classical decomposition of the MSE

in variance and bias terms. First, we obtain preliminary results that are needed
for the analysis of the average measure πM×N

t . In particular, we prove that the
random unnormalised measure ρNt produced by the bootstrap filter (Algorithm 1)
is unbiased and attains Lp error rates proportional to 1√

N
, i.e., the same as ξNt

and πN
t . We use these results to derive an upper bound for the bias of πN

t which is
proportional to 1

N . The latter, in turn, enables us to deduce an upper bound for the

MSE of the ensemble approximation πM×N
t consisting of two additive terms that

depend explicitly on M and N . Specifically, we show that the variance component
of the MSE decays linearly with the total number of particles, K = MN , while
the bias term decreases quadratically with the number of particles per filter, i.e.,
with N2.

All the results to be introduced in the rest of Section 3 hold true under the
(mild) assumptions of Lemma 1, which we summarise below for convenience of
presentation.

Assumption 1 The sequence of observations Y1:T = y1:T is arbitrary but fixed,
with T < ∞.

Assumption 2 The likelihood functions are bounded and positive, i.e.,

gyt

t ∈ B(X) and gyt

t > 0 for every t = 1, 2, ..., T.

Remark 2 Note that Assumptions 1 and 2 imply that

– (gyt

t , α) > 0, for any α ∈ P(X), and
–
∏T

k=1 g
yt

t ≤ ∏T
k=1 ‖g

yt

t ‖∞ < ∞,

for every t = 1, 2, ..., T .

Remark 3 We seek simple convergence results for a fixed time horizon T < ∞,
similar to Lemma 1. Therefore, no further assumptions related to the stability of
the optimal filter for the state-space model [9,8] are needed. If such assumptions are
imposed then stronger (time uniform) asymptotic convergence rates can be found.
See [17] for some additional results that apply to the independent filters πi,N

t and
the ensemble πM×N

t .

Title Suppressed Due to Excessive Length 9

3.2 Bias and error rates

Our analysis relies on some properties of the particle approximations of the non-
normalised measures ρt, t ≥ 1. We first show that the estimate ρNt in Eq. (9) and
(10) is unbiased.

Lemma 2 If Assumptions 1 and 2 hold, then

E
[

(f, ρNt)
]

= (f, ρt)

for any f ∈ B(X) and every t = 1, 2, ..., T .

Proof: See Appendix A. ✷

Combining Lemma 2 with the standard result of Lemma 1 leads to an explicit
convergence rate for the Lp norms of the approximation errors (f, ρNt) − (f, ρt).
This is formally stated below.

Lemma 3 If Assumptions 1 and 2 hold, then, for any f ∈ B(X), any p ≥ 1 and
every t = 1, 2, ..., T , we have the inequality

‖(f, ρNt)− (f, ρt)‖p ≤ c̃t‖f‖∞√
N

, (15)

where c̃t < ∞ is a constant independent of N .

Proof: See Appendix B. ✷

Finally, Lemmas 2 and 3 together enable the calculation of explicit
rates for the bias of the particle approximation of (f, πt). This is the first
contribution of this paper and a key result for the decomposition of the MSE

E

[(

(f, πM×N
t), (f, πt)

)2
]

into variance and bias terms. To be specific, we can

prove the following theorem.

Theorem 1 If 0 < (1, ρt) < ∞ for t = 1, 2, ..., T and Assumptions 1 and 2 hold,
then, for any f ∈ B(X) and every 0 ≤ t ≤ T , we obtain

∣
∣
∣E
[

(f, πN
t)− (f, πt)

]∣
∣
∣ ≤ ĉt‖f‖∞

N
,

where ĉt < ∞ is a constant independent of N .

Proof: Let us first note that (f, πt) = (f, ρt)/(1, ρt) and

(f, πN
t) =

(f, ρNt)

GN
t

(16)

=
(f, ρNt)

GN
t (1, πN

t)
(17)

=
(f, ρNt)

(1, ρNt)
, (18)

10 Dan Crisan et al.

where (16) follows from the construction of ρNt , (17) holds because (1, πN
t) = 1

and (18) is, again, a consequence of the definition of ρNt . Therefore, the difference
(f, πN

t)− (f, πt) can be written as

(f, πN
t)− (f, πt) =

(f, ρNt)

(1, ρNt)
− (f, ρt)

(1, ρt)

and, since (f, ρt) = E[(f, ρNt)] (from Lemma 2), the bias can be expressed as

E
[

(f, πN
t)− (f, πt)

]

= E

[
(f, ρNt)

(1, ρNt)
− (f, ρNt)

(1, ρt)

]

. (19)

Some elementary manipulations on (19) yield the equality

E
[

(f, πN
t)− (f, πt)

]

= E

[

(f, πN
t)

(1, ρt)−(1, ρNt)

(1, ρt)

]

. (20)

If we realise that E[(1, ρt) − (1, ρNt)] = 0 (again, a consequence of Lemma 2)
and move the factor (1, ρt)

−1 out of the expectation, then we easily rewrite Eq.
(20) as

E
[

(f, πN
t)− (f, πt)

]

=
1

(1, ρt)
E
[

(f, πN
t)
(

(1, ρt)− (1, ρNt)
)]

− (f, πt)

(1, ρt)
E
[

(1, ρt)− (1, ρNt)
]

=
1

(1, ρt)
E
[(

(f, πN
t)− (f, πt)

)(

(1, ρt)− (1, ρNt)
)]

≤ 1

(1, ρt)

√

E
[(
(f, πN

t)− (f, πt)
)2
]

×
√

E
[(
(1, ρt)− (1, ρNt)

)2
]

(21)

≤ 1

(1, ρt)

(
ct‖f‖∞

N
× c̃t

N

)

=
ĉt‖f‖∞

N
, (22)

where we have applied the Cauchy-Schwartz inequality to obtain (21), (22)
follows from Lemmas 1 and 3 and the constant

ĉt =
ctc̃t‖f‖∞
(1, ρt)

< ∞

is independent of N . ✷
For any f ∈ B(X), let EN

t (f) denote the approximation difference, i.e.,

EN
t (f) , (f, πN

t)− (f, πt).

This is a random variable whose second order moment yields the MSE of (f, πN
t).

It is straightforward to obtain a bound for the MSE from Lemma 1 and, by
subsequently using Theorem 1, one also readily finds a similar bound for the
variance of EN

t (f), denoted Var[EN
t (f)]. These results are explicitly stated by the

corollary below.

Title Suppressed Due to Excessive Length 11

Corollary 1 If 0 < (1, ρt) < ∞ for t = 1, 2, ..., T and Assumptions 1 and 2 hold,
then, for any f ∈ B(X) and any 0 ≤ t ≤ T , we obtain

E

[(

EN
t (f)

)2
]

≤ c2t‖f‖2∞
N

and (23)

Var
[

EN
t (f)

]

≤ (cvt)
2 ‖f‖2∞
N

, (24)

where ct and cvt are finite constants independent of N .

Proof: The inequality (23) for the MSE is a straightforward consequence of
Lemma 1. Moreover, we can write the MSE in terms of the variance and the
square of the bias, which yields

E

[(

EN
t (f)

)2
]

= Var
[

EN
t (f)

]

+ E2
[

EN
t

]

≤ c2t‖f‖2∞
N

. (25)

Since Theorem 1 ensures that |E[EN
t]| ≤ ĉt‖f‖∞

N , then the inequality (25) implies
that there exists a constant cvt < ∞ such that (24) holds. ✷

3.3 Error rate for the ensemble approximation

Let us run M independent particle filters with the same (fixed) sequence of
observations Y1:T = y1:T , T < ∞, and N particles each. The random measures
output by the m-th filter are denoted ξm,N

t , πm,N
t and ρm,N

t , with m = 1, 2, ...,M .
Obviously, all the theoretical properties established in Section 3.2, as well as the
basic Lemma 1, hold for each one of the M independent filters.

Definition 1 The ensemble approximation of πt with M independent filters is the
discrete random measure πM×N

t constructed as the average

πM×N
t =

1

M

M∑

m=1

πm,N
t .

It is apparent that similar ensemble approximations can be given for ξt and ρt.
Moreover, the statistical independence of the particle filters yields the following
corollary as a straightforward consequence of Theorem 1 and Corollary 1.

Corollary 2 If 0 < (1, ρt) < ∞ for t = 1, 2, ..., T and Assumptions 1 and 2 hold,
then, for any f ∈ B(X) and any 0 ≤ t ≤ T , the inequality

E

[(

(f, πM×N
t)− (f, πt)

)2
]

≤ (cvt)
2‖f‖2∞
MN

+
ĉ2t‖f‖2∞

N2
(26)

holds for some constants cvt and ĉt independent of N and M .

12 Dan Crisan et al.

Proof: Let us denote

EM×N
t (f) = (f, πM×N

t)− (f, πt) and

Em,N
t (f) = (f, πm,N

t)− (f, πt)

for m = 1, 2, ...,M . Since πM×N
t is a linear combination of i.i.d. random measures,

we easily obtain that

∣
∣
∣E
[

EM×N
t (f)

]∣
∣
∣

2
=

∣
∣
∣
∣
∣

1

M

M∑

m=1

E
[

Em,N
t (f)

]
∣
∣
∣
∣
∣

2

=
∣
∣
∣E
[

Em,N
t (f)

]∣
∣
∣

2

≤ ĉt‖f‖∞
N

, for any m ≤ M, (27)

where the inequality follows from Theorem 1. Moreover, again because of the
independence of the random measures, we readily calculate a bound for the
variance of EM×N

t (f),

Var
[

EM×N
t (f)

]

=
1

M
Var

[

Em,N
t (f)

]

≤ (cvt)
2‖f‖2∞
MN

, (28)

where the inequality follows from Corollary 1. Since E[(EM×N
t)2] = Var[EM×N

t] +
∣
∣
∣E[EM×N

t]
∣
∣
∣

2
, combining (28) and (27) yields (26) and concludes the proof. ✷

The inequality in Corollary 2 is the main theoretical result in this paper and
it admits several interpretations. Assume that some “computational budget” is
given, i.e., that we have the resources to generate and update over time a fixed
number K of particles. If we run Algorithm 1 with K particles, then, according to
Lemma 1, the MSE E[(EK

t)2] vanishes asymptotically with rateO(1/K). The same
result is obtained via Corollary 2: a centralised particle filter with K particles is
the degenerate case of the ensemble approximation in Definition 1 with M = 1 and
N = K, hence Corollary 2 also states that the MSE decreases with rate O(1/K).
However, Corollary 2 also yields the same MSE rate when a proper ensemble is
constructed, with some M > 1 and N = K/M , which is the property that turns
out relevant for parallelisation.

Remark 4 Some key features of the proposed scheme become apparent from
Corollary 2:

1. If the total number of particles K is fixed, then the ensemble approximation
πM×N
t with K = MN and the standard (bootstrap filter) approximation

with K particles, πK
t , yield the same MSE rate O(1/K). Since the ensemble

approximation is obtained by averaging over M independent particle filters, the
interactions among particles are strictly constrained to be local (within the M
subsets of size N assigned to the independent particle filters). This implies that
if the M particle filters are run in parallel, there is no parallelisation overhead
in terms of interaction among the parallel processing units.

2. According to the inequality (26), the bias of the estimator (f, πM×N
t) is

controlled by the number of particles per subset, N , and converges quadratically,
while, for fixed N , the variance decays linearly with M . The MSE rate is

O
(

1
MN

)
as long as N ≥ M . Otherwise, the term

ĉ2
t
‖f‖2

∞

N2 becomes dominant
and the resulting asymptotic error bound turns out higher.

Title Suppressed Due to Excessive Length 13

Remark 5 While the convergence results presented here have been proved for the
standard bootstrap filter, it is straightforward to extend them to other classes
of particle filters for which Lemmas 1 and 2 hold. This includes most standard
algorithms, including the auxiliary particle filter [27] for which numerical results
are reported in Section 5.

3.4 Comparison of parallelisation schemes via time–error indices

The advantage of parallel computation is the drastic reduction of the time needed
to run the particle filter. Let the running time for a particle filter with K
particles be of order T (K), where T : N → (0,∞) is some strictly increasing
function of K. The quantity T (K) includes the time needed to generate new
particles, weight them and perform resampling. The latter step is the bottleneck
for parallelisation, as it requires the interaction of all K particles. Also, a
“straightforward” implementation of the resampling step leads to an execution
time T (K) = K log(K), although efficient algorithms exist that achieve to a
linear time complexity, T (K) = K. We can combine the MSE rate and the time
complexity to propose a a time–error performance metric.

Definition 2 We define the time–error index of a particle filtering algorithm with
running time of order T and asymptotic MSE rate R as C , T ×R.

The smaller the index C for an algorithm, the more (asymptotically) efficient
its implementation. For the standard (centralised) particle filter with K particles,
the running time is of order T (K) = K and the MSE rate is of orderR(K) = K−1,
hence the time–error index becomes

Cspf (K) = T (K)×R(K) = 1.

For the computation of the ensemble approximation πM×N
t we can run M

independent particle filters in parallel, with N = K/M particles each and no
interaction among them. Hence, the execution time becomes of order T (M,N) =
N . Since the error rate for the ensemble approximation is of order R(M,N) =
(

1
MN + 1

N2

)
, the time–error index of the ensemble approximation is

Cipf (M,N) = T (M,N)×R(M,n) =
1

M
+

1

N

and hence it vanishes with M,N → ∞. In particular, since we have to choose
N ≥ M to ensure a rate of order 1

MN , then limM→∞ Cipf = 0. In any case,
whenever N > 1 it is apparent that Cipf < Cspf . Similar comparisons can be
carried out for other parallel particle filtering schemes as long as it is possible to
identify the effect of the overhead in the running time T (M,N).

3.5 Expectation of the approximate filter

Besides the computational view of Sections 3.3 and 3.4, Theorem 1 can also
be exploited to assess the ensemble approximation πM×N

t in terms of the total
variation distance defined as follows.

14 Dan Crisan et al.

Definition 3 Let α, β ∈ P(X) be two probability measures. The total variation
distance (TVD) between α and β is usually defined as

dTV (α, β) , sup
A∈B(X)

|(IA, α)− (IA, β)|,

where IA is the indicator function

IA(x) =

{
1, if x ∈ A,
0, otherwise.

If we regard the measures πm,N
t as i.i.d. realisations of the measure-valued

r.v. πN
t (which is the random outcome of a bootstrap filter with N particles),

then the ensemble πM×N
t = 1

M

∑M
m=1 π

m,N
t can be interpreted as a sample mean

approximation of the expectation of πN
t . Indeed, if we introduce

π̂N
t , E[πN

t] = E[πm,N
t] for every m,

then it is apparent that, for any f ∈ B(X),

E
[

(f, πN
t)− (f, πt)

]

= (f, π̂N
t)− (f, πt),

and (f, πM×N
t) = 1

M

∑M
m=1(f, π

m,N
t) is the sample-mean approximation of

(f, π̂N
t). Theorem 1 can be re-stated immediately as follows.

Corollary 3 If 0 < (1, ρt) < ∞ for t = 1, 2, ..., T and Assumptions 1 and 2 hold,
then, for every 0 ≤ t ≤ T , we obtain that

dTV

(

π̂N
t , πt

)

≤ ĉt
N

,

where ĉt < ∞ is a constant independent of N .

Proof: From the definition of total variation distance,

dTV

(

π̂N
t , πt

)

= sup
A∈B(X)

∣
∣
∣(IA, π̂

N
t)− (IA, πt)

∣
∣
∣

≤ sup
f∈B(X):‖f‖∞≤1

∣
∣
∣(f, π̂

N
t)− (f, πt)

∣
∣
∣ , (29)

since IA ∈ B(X) and ‖IA‖∞ = 1 for every Borel set A. However, (f, π̂N
t)−(f, πt) =

E
[
(f, πN

t)− (f, πt)
]
, hence a straightforward application of Theorem 1 completes

the proof. ✷

Title Suppressed Due to Excessive Length 15

4 Example: Stochastic Lorenz 63 model

4.1 The 3-dimensional Lorenz system

Let us illustrate the numerical performance of the proposed independent
parallelisation scheme by means of some computer simulations. First, we consider
the problem of tracking the state of a 3-dimensional Lorenz system [23] with
additive dynamical noise and partial observations [5]. To be specific, consider a 3-
dimensional stochastic process {X(s)}s∈(0,∞) (s denotes continuous time) taking

values on R
3, whose dynamics is described by the system of stochastic differential

equations

dX1 = −s(X1 − Y1) + dW1,

dX2 = rX1 −X2 −X1X3 + dW2,

dX3 = X1X2 − bX3 + dW3,

where {Wi(s)}s∈(0,∞), i = 1, 2, 3, are independent 1-dimensional Wiener processes
and

(s, r, b) =

(

10, 28,
8

3

)

are static model parameters2 (which yield chaotic dynamics). A discrete-time
version of the latter system using Euler’s method with integration step Td = 10−3

is straightforward to obtain and yields the model

X1,n = X1,n−1 − Tds(X1,n−1 −X2,n−1)

+
√

TdU1,n, (30)

X2,n = X2,n−1 + Td(rX1,n−1 −X2,n−1 −X1,n−1X3,n−1)

+
√

TdU2,n, (31)

X3,n = X3,n−1 + Td(X1,n−1X2,n−1 − bX3,n−1)

+
√

TdU3,n, (32)

where {Ui,n}n=0,1,..., i = 1, 2, 3, are independent sequences of i.i.d. normal random
variables with 0 mean and variance 1. System (30)-(32) is partially observed every
100 discrete-time steps. Specifically, we collect a sequence of scalar observations
{Yt}t=1,2,..., of the form

Yt = X1,100t + Vt, (33)

where {Vt}t=1,2,... is a sequence of i.i.d. normal random variables with zero mean
and variance σ2 = 1

2 .

Let Xn = (X1,n, X2,n, X3,n) ∈ R
3 be the state vector at discrete time n. The

dynamic model given by Eqs. (30)–(32) yields the family of kernels τn,θ(dx|xn−1)
and the observation model of Eq. (33) yields the likelihood function

gyt

t,θ(x100t) ∝ exp

{

− 1

2σ2
(yt − x1,100t)

2

}

,

2 Note the difference in notation between the continuous time s and the parameter s.

16 Dan Crisan et al.

both in a straightforward manner. The goal is to track the sequence of joint
posterior probability measures πt, t = 1, 2, ..., for {X̂t}t=1,..., where X̂t = X100t.
Note that one can draw a sample X̂t = x̂t conditional on X̂t−1 = x̂t−1 by
successively simulating

x̃n ∼ τn,θ(dx|x̃n−1), n = 100(t− 1) + 1, ..., 100t,

where x̃100(t−1) = x̂t−1 and x̂t = x̃100t. The prior measure for the state variables
is normal, namely

X0 ∼ N (x∗, v
2
0I3),

where x∗ = (−10.2410;−1.3984;−23.6752) is the mean3 and v20I3 is the covariance
matrix, with v20 = 10 and I3 the 3-dimensional identity matrix.

4.2 Simulation setup

We aim at illustrating the gain in relative performance, taking into account both
estimation errors and running time, that can be attained using ensembles of
independent particle filters. With this purpose, we have applied

– the standard bootstrap filter (Algorithm 1), termed BF in the sequel,
– the double bootstrap method as described in [30], and
– the ensemble of independent bootstrap filters (BFs) that we have investigated

in Section 3

to track the sequence of probability measures πt generated by the 3-dimensional
Lorenz model described in Section 4.1. We have generated a sequence of 200
synthetic observations, {yt; t = 1, ...,200}, spread over an interval of 20 continuous
time units, corresponding to 2×104 discrete time steps in the Euler scheme (hence,
one observation every 100 steps). The same observation sequence has been used
for all the simulations.

The ensemble of independent particle filters consists of M filters with N
particles each, abiding by the notation in Section 3, with resampling for every
t = 1, 2, ..., i.e., every time an observation is collected and processed to obtain
importance weights. Since the time scale of the Euler approximation of Eqs. (30)–
(32) is n = 100t, a resampling step is taken every 100 steps of the underlying
discrete-time system. Similarly, the double bootstrap algorithm consists of M
subsets of particles (particle islands, in the terminology of [30]) with N particles
per subset. Within each subset, the N particles are resampled for every t = 1, 2, ...,
while the subsets are resampled for t = 5k, k = 1, 2, The local resampling (of
the particles in the same subset) can be carried out in parallel for the M islands.
The standard bootstrap filter runs with K particles, where K = MN (unless
explicitly stated) for a fair comparison, and resampling for t = 1, 2,

We have coded the three algorithms in Matlab (version 7.11.0.584 [R2010b]
with the parallel computing toolbox) and run the experiments using a pool of
identical multi-processor machines, each one having 8 cores at 3.16 GHz and 32 GB
of RAM memory. The standard (centralised) BF is run with K = NM particles in
a single core. For the ensemble of independent particle filters we allow the parallel

3 Chosen from a typical trajectory of the deterministic Lorenz 63 model.

Title Suppressed Due to Excessive Length 17

computing toolbox to allocate all available cores per server in order to run all
BFs concurrently. For the double BF method, we allow to run the separate BFs
in parallel up to the subset-level resampling steps.

To assess the approximation errors, we have computed empirical MSEs for
the approximation of the posterior mean, E[X̂t|Y1:t] = (I, πt), where I(x) = x is
the identity function, for the three algorithms at the last update step, t = 200.
Note, however, that the integral (I, πt) cannot be computed in closed form for this
system. Therefore, we have used the “expensive” estimate

(I, πt) ≈ (I, πJ
t), with J = 105 particles,

computed via the standard BF, as a proxy of the true value.

4.3 Numerical results

Figure 1 (left) displays the empirical MSE, averaged over 100 independent
simulation runs, attained by the parallel schemes when the number of filters
(respectively, particle islands for the double BF method) is fixed, M = 20, and the
number of particles per filter (particle island) ranges from N = 100 to N = 1000.
The outcome of the centralised BF with K = MN particles, hence ranging from
K = 20 × 100 to K = 20 × 1000, is also shown for comparison. We observe that
proposed ensemble of independent BFs achieves a poor performance when the
number of particles per filter, N , is relatively low (N = 100), while for moderate
values (N ≥ 400) it nearly matches the MSE of the centralised BF. The double
BF method is more accurate than the independent ensemble for N = 100, 200,
as it takes advantage of the interaction among the particle islands, but displays
a slightly worse MSE than the centralised BF and the independent ensemble for
N ≥ 400.

100 200 400 800 1000
10−4

10−3

10−2

10−1

100

101

M
SE

 (e
m

pi
ric

al
 m

ea
n)

N

BF with K=20N particles
Independent BFs, M=20
Double BF, M=20

100 200 400 800 1000
10−8

10−6

10−4

10−2

100

102

M
SE

 (e
m

pi
ric

al
 v

ar
ia

nc
e)

N

BF with K=20N particles
Independent BFs, M=20
Double BF, M=20

Fig. 1: Empirical mean (left) and variance (right) of the MSE for the centralised
BF, the independent ensemble of BFs and the double BF method with M = 20
constant and N = 100,200, 400,800, 1000. All curves have been obtained from a
set of 100 independent simulation trials.

The empirical variance of the MSE for the same set of 100 simulation trials
is displayed in Figure 1 (right). The results show, again, that the double BF

18 Dan Crisan et al.

algorithm makes an efficient use of the island resampling step when N is low, so
that the M islands remain balanced and the overall filter works properly, but falls
short of the independent ensemble scheme for larger values of N .

Finally, we look into the relationship between the MSE and the running time
for the three algorithms. With the number of filters (correspondingly, particle
islands) M = 20 fixed, we have run 100 independent simulation trials for each
value N = 100, 200, 400,800 and 1000, and computed the empirical MSE and the
average running time for the two parallel schemes and each combination of M and
N . Correspondingly, we have also run the centralised BF with K = MN particles,
hence for K = 2× 103, 4× 103, 8× 103, 16× 103 and 20× 103.

Figure 2 (left) displays the resulting empirical MSE versus the running time
for the three methods. If we qualify an algorithm as more efficient than another
one when it is capable of attaining a lower MSE in the same amount of time,
then this set of simulations shows that the independent ensemble scheme is more
efficient than both the centralised BF and the double BF method. Indeed, a close
look at Figure 2 (left) reveals that the ensemble of M = 20 independent BFs
with N = 1000 particles per filter achieves an empirical MSE of ≈ 6 × 10−4

with a running time of ≈ 2.9 seconds, while the centralised BF attains the same
performance with K = 20 × 800 particles and a running time of ≈ 27.2 seconds
(as shown by the dashed horizontal line in the plot). The double BF method falls
short of this MSE value even with M = 20 and N = 1000. Figure 2 (right) shows
the empirical variance of the MSE, versus the running time, for the same set of
computer simulations4.

5 Example: A stochastic dynamical network

5.1 State space model

As a second example we have studied a dynamical complex model consisting of
a network of modified stochastic FitzHugh-Nagumo (FH-N) nodes. This model
is designed to mimic some of the dynamical patterns that can be observed in the
electrical activity of the human heart during atrial fibrillation episodes (see [20] for
a survey of the topic). Let us consider a 2-dimensional rectangular grid consisting
of J × J nodes, where each node is a stochastic dynamical subsystem that can be
described by the classical FitzHugh-Nagumo equations [20] plus

– a stochastic (additive noise) term,
– a random stimulus, and
– a coupling term that determines the interaction with the neighbour nodes.

4 These results show that a straightforward implementation of the double BF in Matlab, to
be run on a multicore server, is not particularly efficient, because of the overhead due to the
subset-level resampling. We do not imply that other implementations of this algorithm (e.g.,
using GPUs, FPGAs or simply a different programming language) should be equally inefficient.

Title Suppressed Due to Excessive Length 19

2.8999 27.2185
10−4

10−3

10−2

10−1

100

101

102
M

SE
 (e

m
pi

ric
al

 m
ea

n)

Time (secs.)

BF with K=20N particles
Indep. BFs, M=20 and N=100, 200, 400, 800, 1000
Double BF, M=20 and N=100, 200, 400, 800, 1000

2.8999 27.2185
10−8

10−6

10−4

10−2

100

102

104

M
SE

 (e
m

pi
ric

al
 v

ar
ia

nc
e)

Time (secs.)

BF with K=20N particles
Indep. BFs, M=20 and N=100, 200, 400, 800, 1000
Double BF, M=20 and N=100, 200, 400, 800, 1000

Fig. 2: Empirical mean (left) and variance (right) of the MSE versus the running
time for the centralised BF, the independent ensemble of BFs and the double
BF method. The two parallel schemes are run with M = 20 constant and
N = 100, 200,400, 600,800 and 1000. The centralised BF is run with K = 20N
particles, where N takes values in the same way as for the parallel algorithms.
The dashed horizontal lines indicate where the mean (left) and variance (right)
of the MSE match for the independent ensemble and the centralised BF. The
running times for the two algorithms at that MSE level are shown as labels on the
horizontal axis.

To be specific, the continuous-time dynamics of the node in the (i, j) position of
the grid, with 1 ≤ i ≤ J and 1 ≤ j ≤ J , follows the stochastic differential equation

dUi,j =



p3(Ui,j)− Vi,j +
1

D

∑

(l,r)∈Ni,j

Ul,r



 dt

+(mi,jF + Ψi,j) dt+ σ̃dBi,j , (34)

where:

– the continuous-time stochastic process {Ui,j(s)}s≥0 usually represents an
action potential (or any other voltage-related signal) in biological models [20];

– p3(u) =
∑3

r=0 αru
r is a polynomial of order 3 with known fixed coefficients

αr, r = 0, 1, 2, 3;
– {Vi,j(s)}s≥0 is the so-called recovery process, that evolves according to the

differential equation

dVi,j = β0Ui,j + β1Vi,j + β2ds (35)

with known parameters βr, r = 0, 1, 2;
– the set Ni,j ⊂ {1, ..., J}×{1, ..., J} contains the neighbours, in the grid, of the

(i, j)-th node;
– the coupling coefficient D > 0 is known and fixed;
– F (s) : (0,∞) → R

+ is a known, typically periodic, forcing signal;
– mi,j ∈ {0, 1} is a (known and fixed) binary indicator that determines which

nodes are excited by the forcing signal F (s);

20 Dan Crisan et al.

– Ψi,j(s) is a random stimulus that can be applied to nodes which are returning
to a state of quiescence5, and

– {Bi,j(s)}s≥0 are standard and independent Wiener processes and the scale
parameter σ̃ is assumed known.

For the simulations in this section we have obtained simple discrete-time
versions of (34) and (35) using Euler’s method with an integration time step Td,
which yields

Ui,j,t = Ui,j,t−1 + Td (p3(Ui,j,t−1)− Vi,j,t−1)

+Td




1

D

∑

(l,r)∈Ni,j

Ul,r,t−1 +mi,jFt + Ψi,j,t





+σ̃
√

TdBi,j,t, (36)

Vi,j,t = Vi,j,t−1 + Td (β0Ui,j,t−1 + β1Vi,j,t−1 + β2) , (37)

where t = 1, 2, ... denotes discrete time, {Ui,j,t}t=0,1,... is the signal sequence
at the (i, j)-th node, {Vi,j,t}t=0,1,... is the recovery sequence at the same node,
{Ψi,j,t}t=1,2,... is a sequence of random stimuli and {Bi,j,t : 1 ≤ i ≤ J, 1 ≤ j ≤
J, t ≥ 0} is a set of i.i.d. Gaussian random variables with zero mean and unit
variance.

The interest in this model is to study dynamical patterns in the network
described by Eqs. (36)-(37), which are caused by the sequence of random stimuli
Ψt = {Ψi,j,t : 1 ≤ i ≤ j, 1 ≤ j ≤ J}t≥0. It is known that when a sufficiently strong
stimulus (in the form of a positive shift of the voltage signal Ui,j,t) is applied to
the network in a region that had been recently excited by the periodic forcing,
the propagation of this stimulus can lead to a re-entrant wavefront that becomes
stable and can prevail over the excitations caused by the forcing signal F (s) (see,
e.g., [21] for models related to cardiac tissue).

We consider the following model for the sequence Ψt. For each t ≥ 1 and a
pair of given thresholds u− < u+, we identify the stimulation region

St :=
{

(i, j) ∈ {1, ..., J}2 : u− < Ur,k,t−1 < u
+

for some (r, k) ∈ {(i, j)} ∪ Ni,j} , (38)

i.e., St consists of the nodes (i, j) such that the state of the node at time t − 1
lies between the thresholds, Ui,j,t−1 ∈ (u−, u+), or the state of some neighbour
at time t − 1, (r, k) ∈ Ni,j , lies between the thresholds, Ur,k,t−1 ∈ (u−, u+). At
each time step, a new stimulus is applied to a group of neighbour nodes in the
activation region St with (a small) probability ǫ ≥ 0. To be specific, let

B
ǫ
t ∼ Bernoulli(ǫ), t = 1, 2, ..., (39)

be a sequence of i.i.d. Bernoulli random variables with parameter 0 ≤ ǫ < 1 and,
for each (i, j) ∈ {1, ..., J}2, let

(i∗t , j
∗
t) ∼ Uniform(St) (40)

5 The specific random procedure producing this stimulus is described in Section 5.2. The
goal is to allow the model to generate re-entries of excitation waves which, in turn, lead to
stable and self-sustained dynamical patterns of different classes.

Title Suppressed Due to Excessive Length 21

be a single pair of indices drawn from the uniform distribution with support on
the stimulus region St. Then, we can generate a random indicator Qǫ

i,j,t of the
form

Qǫ
i,j,t =

{
0, if (i, j) /∈ {(i∗t , j∗t)} ∪ Ni∗t ,j

∗

t

Bǫ
t if (i, j) ∈ {(i∗t , j∗t)} ∪ Ni∗t ,j

∗

t

(41)

which selects a set of neighbouring nodes where a new stimulus is to be applied at
time t. Then, the sequence of stimuli in the (i, j) node can be written as

Ψi,j,t = F̃ max

{

1,

ℓ0−1∑

l=0

Qǫ
i,j,t−l

}

, (42)

where F̃ is the amplitude of each single stimulus, which is sustained during ℓ0
consecutive discrete-time steps.

Let us denote

Xi,j,t = (Ui,j,t, Vi,j,t, Qi,j,t−ℓ0+1:t) ∈ R
2+ℓ0 and

Xt = (X1,1,t, . . . , X1,J,t, . . . , XJ,J,t) ∈ R
(2+ℓ0)J

2

.

The (2 + ℓ0)J
2-dimensional sequence {Xt}t≥0 is a Markov process in discrete

time. We do not attempt to write down the associated transition kernel τt(dx|xt−1)
explicitly, yet it is straightforward to generate a sample Xt conditional on Xt−1 =
xt−1 using Eqs. (38)–(42), (36) and (37), in this particular order, over the set of
indices {(i, j) : 1 ≤ i ≤ J, 1 ≤ j ≤ J}.

To complete the state-space model description, we assume the ability to observe
the signal (voltage) variables, Ui,j,t, in a subset of the nodes of the grid. To be
specific, at time t we collect the measurements

Yi,j,t = Ui,j,t + σ̄B̄i,j,t, (i, j) ∈ Sy, (43)

where Sy ⊂ {1, ..., J}×{1, ..., J} is the set of observed nodes, {B̄i,j,t : (i, j) ∈ Sy} is
a set of i.i.d. standard Gaussian random variables (centred and with unit variance)
and σ̄2 is a known scale parameter. The full observation at time t is denoted

Yt = {Yi,j,t : (i, j) ∈ Sy} ∈ R
|Sy|.

The likelihood function is Gaussian, namely

gyt

t (xt) ∝ exp






− 1

2σ̄2

∑

(i,j)∈Sy

(yi,j,t − ui,j,t)
2






.

Equations (38)–(42), (36), (37) and (43) describe a Markov state–space model
in discrete time, with conditionally independent observations. We aim at tracking
the sequence of probability measures

πt(A) = P{Xt ∈ A|Y1:t = y1:t}, t = 1, 2, ..., T,

where A ∈ B(X) and y1:T is a given sequence of observations.

22 Dan Crisan et al.

5.2 Simulation setup

We have run simulations for a network of J2 = 322 = 1, 024 modified stochastic
FH-N nodes, interconnected in a regular square grid. Therefore, for an “inner”
node (i, j) ∈ {1, ..., J}2 with 1 < i, j < J the set of neighbours is

Ni,j =
{

(r, l) ∈ {1, ..., J}2 : r = i± 1, l = j ± 1
}

,

whereas for the nodes in the “corners” of the grid the sets of neighbours are

N1,1 = {(1,2), (2, 1)},
N1,J = {(1, J − 1), (2, J)},
NJ,1 = {(J,2), (J − 1, 1)},
NJ,J = {(J − 1, J), (J, J − 1)},

and for the nodes on the “sides” of the grid

N1,j = {(1, j ± 1), (2, j)},
Nj,1 = {(j ± 1, 1), (j, 2)},
Nj,J = {(j ± 1, J), (j, J − 1)},
NJ,j = {(J, j ± 1), (J − 1, j)},

where 1 < j < J in all cases. The time discretisation period is Td = 5 × 10−3

continuous-time units and the coupling constant, that sets the “strength” of the
links between neighbours, is 1

D = 4.5× 10−3.
The dynamics of the FH-N system is highly dependent on the choice of the

polynomial p3(u) in Eq. (36), which for this set of simulations is selected as

p3(u) = u

(

u+

√

18

5

)(

u−
√

18

5

)

,

and the forcing signal F (s), which hereafter consists of a periodic sequence of
pulses of the form

F (s) =

∞∑

k=0

⊓(s− kS⊓),

where ⊓(s) is the square waveform

⊓(s) =
{

F̃ if 0 ≤ s ≤ S⊓
0 otherwise

,

the period of F (s) is S⊓ = 20 time units and the amplitude of the pulses is
F̃ = 200. The discrete-time forcing signal is Ft = F (s = tTd).

To construct the stimulus region St given by Eq. (38) we use the thresholds

u− = −1.8 and u
+ = −1.6,

which correspond to the back tail of a wave propagating over the network. The
parameter of the Bernoulli distribution in (39) is ǫ = 10−3, the amplitude of the
stimulus in (42) is F̃ = 200 and it is sustained for ℓ0 = 25 discrete time steps.

Title Suppressed Due to Excessive Length 23

The variance of the noise term in Eq. (36) is σ̃2 = 1
2 and the specification of the

dynamics is complete with the parameters (β0, β1, β2) = (2.1,−0.6,0.6) in Eq.
(37).

The observations are collected at a grid of 5×5 equally-spaced zones, each zone
consisting of four nodes forming a 2× 2 square, as shown in Figure 3. Therefore,
we collect observations from 5 × 5 × 2 × 2 = 100 nodes out of J2 = 1, 024 in
the network. For each observed node, say in the position (r, l), we obtain the
measurement specified by Eq. (43), where the noise variance is σ̄2 = 1

2 .

Fig. 3: Location of the observations within the 32×32 grid of stochastic FH-N nodes
with random stimuli. The blue squares represent the nodes in the network, each
one following the dynamics specified by Eqs. (38)–(42), (36) and (37). Observed
nodes are displayed in green. Each observation zone includes four nodes, forming
a 2 × 2 square. The set Sy in (43) contains exactly the green-coloured nodes in
this figure.

5.3 Numerical results

We have run computer simulations for this model using Matlab version R2012b
(32 bits), with the parallel computing toolbox enabled, on an a multicore Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80GHz server. All the results reported here are
based on a set of 20 independent forward simulations of the stochastic FH-N
network model described in Sections 5.1 and 5.2. The state trajectories for these

24 Dan Crisan et al.

simulations have been recorded and synthetic observations have been generated
from them according to (43).

Figure 4 (top) displays the actual variables Ui,j,t for i, j = 1, ...,32 (i.e., the
complete network) at different time steps for one of the simulations. This is a
typical realisation of the process Ut, with a wave propagating over the network
and occasional stimuli appearing behind the wave. The random stimulus in frame
9 is strong enough to start a wavefront that propagates over the network and
moves the system away from the periodic behaviour that would be induced by the
forcing signal Ft alone.

In order to track Ut (or, indeed, the whole state Xt) we have applied an
ensemble of independent auxiliary particle filters [27], which are labeled AIPF
in Figure 4 (bottom). In particular, we have run M = 10 independent filters with
N = 5, 000 particles each and the figure shows how the algorithm successfully
detects the first stimulus, follows the resulting wavefront and, later, detects the
various random stimuli (in frames 7, 8, 9 and 13) and also tracks the wave started
by the stimulus in frame 9.

Figure 5 (left) shows the empirical MSE per node of the state estimates
generated by different ensembles of auxiliary particle filters, namely M = 10
independent filters with the number of particles per filter varying from N = 100
to N = 5, 000. The same MSE for the centralised auxiliary particle filters with
K = MN particles (i.e., with K = 1, 000, . . . , 50, 000) is also plotted for reference.
The same as for the Lorenz 63 example, we observe that the relative performance
of the ensemble of independent filters is poor for smaller values of N , yet for
N ≥ 2, 000 it nearly matches the MSE of the centralised particle filter. The results
have been averaged over the 20 independent data sets described at the beginning
of this Section. The empirical variance of the MSE per node for the same set of
simulations is depicted in Figure 5 (right).

Finally, Figure 6 (left) displays the empirical MSE (per node) versus the
running time (per discrete time step) for an ensemble of M = 10 independent
auxiliary particle filters and for the centralised auxiliary particle filter with
K = MN particles. For the ensemble of independent filters, each point in the curve
corresponds to a different value of N (particles per filter), and for the centralised
filter, each point corresponds to a different value of K = 10N , the total number of
particles. In particular, we have obtained results for N = 100,500, 1000,2000 and
5000. A close look at the figure shows that the ensemble of M = 10 independent
filters with N = 5, 000 particles each achieves an empirical MSE of ≈ 0.1813 with
a running time of ≈ 12.56 seconds, while the centralised particle filter attains the
same MSE with K = 10× 2, 000 particles and a running time of ≈ 28.67 seconds
(no improvement is observed for K = 10× 5, 000 particles, while the running time
scales up to ≈ 73 seconds). Therefore, the ensemble of independent filters turns
out more efficient than the centralised algorithm for this example as well.

6 Discussion

We have addressed the problem of parallelising the standard particle filtering
algorithm6 by splitting the total number of particlesK intoM subsets, running one

6 While we have restricted the research to the standard (bootstrap) filter for simplicity
of presentation, the analysis, and the whole argument about parallelisation by means of

Title Suppressed Due to Excessive Length 25

Frame: 1
10 20 30

5

10

15

20

25

30

Frame: 2
10 20 30

5

10

15

20

25

30

Frame: 3
10 20 30

5

10

15

20

25

30

Frame: 4
10 20 30

5

10

15

20

25

30

Frame: 5
10 20 30

5

10

15

20

25

30

Frame: 6
10 20 30

5

10

15

20

25

30

Frame: 7
10 20 30

5

10

15

20

25

30

Frame: 8
10 20 30

5

10

15

20

25

30

Frame: 9
10 20 30

5

10

15

20

25

30

Frame: 10
10 20 30

5

10

15

20

25

30

Frame: 11
10 20 30

5

10

15

20

25

30

Frame: 12
10 20 30

5

10

15

20

25

30

Frame: 13
10 20 30

5

10

15

20

25

30

Frame: 14
10 20 30

5

10

15

20

25

30

Frame: 15
10 20 30

5

10

15

20

25

30

Frame: 16
10 20 30

5

10

15

20

25

30

Frame: 1

AIPF − 5000

10 20 30

10

20

30

Frame: 2

AIPF − 5000

10 20 30

10

20

30

Frame: 3

AIPF − 5000

10 20 30

10

20

30

Frame: 4

AIPF − 5000

10 20 30

10

20

30

Frame: 5

AIPF − 5000

10 20 30

10

20

30

Frame: 6

AIPF − 5000

10 20 30

10

20

30

Frame: 7

AIPF − 5000

10 20 30

10

20

30

Frame: 8

AIPF − 5000

10 20 30

10

20

30

Frame: 9

AIPF − 5000

10 20 30

10

20

30

Frame: 10

AIPF − 5000

10 20 30

10

20

30

Frame: 11

AIPF − 5000

10 20 30

10

20

30

Frame: 12

AIPF − 5000

10 20 30

10

20

30

Frame: 13

AIPF − 5000

10 20 30

10

20

30

Frame: 14

AIPF − 5000

10 20 30

10

20

30

Frame: 15

AIPF − 5000

10 20 30

10

20

30

Frame: 16

AIPF − 5000

10 20 30

10

20

30

Fig. 4: Top: Example of a wave propagating over the 32x32 grid, where hotter
colours describe higher action potential Ui,j,t values while colder ones represent
nodes at their rest state. A stimulus is applied in the first frame and then
propagates through the network creating a wave. Random stimuli behind this wave
appear in frames 7, 8, 9 and 13. The stimulus that appears in frame 9 is strong
enough to initiate another wavefront that propagates from that location, hence
disorganising the periodic behaviour induced by the forcing signal Ft. Bottom:

Posterior-mean estimation of the process Ut using an ensemble of M = 10
independent auxiliary particle filters (labeled AIPF) with N = 5, 000 particles
each. The filter detects the initial stimulus and tracks the resulting wave. It also
“catches” the random stimuli in frames 7, 8, 9 and 13, and tracks the wavefront
initiated by the stimulus in frame 9.

independent particle filter per subset, and then building an average filter measure
using the ensemble of i.i.d. random approximations produced by the filters. This
approach avoids all dependences among the filters, an idea which goes against
recent approaches to the problem [3,31,30,26,17] and, to some extent, against
the intuition that a certain interaction is needed to make the M filters, with N
particle each, work together with the same performance as a centralised filter with
K = MN particles.

The rationale to advocate the averaging of independent particle filters
instead of the (algorithmically more sophisticated) schemes based on controlled
interactions, such as [3,31,30], relies on both theoretical and practical arguments.
Theoretically, the simple analysis in this paper shows that the parallelisation
based on independent filters has the same asymptotic performance as a centralised

independent filters, extends in an almost straightforward manner to more sophisticated
algorithms that may use tailored importance functions and/or auxiliary variables for the
generation of particles.

26 Dan Crisan et al.

100 500 1000 2000 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
M

SE
 (e

m
pi

ric
al

 m
ea

n)

N

APF with K=10N particles
Independent APFs, M=10

100 500 1000 2000 5000

10−3

10−2

M
SE

 (e
m

pi
ric

al
 v

ar
)

N

APF with K=10N particles
Independent APFs, M=10

Fig. 5: Left: Empirical MSE (per node) versus the number of particles per
independent filter, N , averaged over 20 independent simulation runs. The results
correspond to an ensemble ofM = 10 independent auxiliary particle filters.Right:

Empirical variance of the MSE (per node) versus the number of particles per
independent filter, N . The performance of the centralised auxiliary particle filter
with K = MN particles is also plotted, for reference, in the two plots.

0 10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
SE

 (e
m

pi
ric

al
 m

ea
n)

Iteration Time (seconds)

APF with K = 10N particles
Indep. APFs, M=10 and N=1, 5, 10, 20, 50 x100

0 10 20 30 40 50 60 70 80
10−4

10−3

10−2

10−1

M
SE

 (e
m

pi
ric

al
 v

ar
)

Iteration Time (seconds)

APF with K = 10N particles
Indep. APFs, M=10 and N=1, 5, 10, 20, 50 x100

Fig. 6: Left: Empirical MSE (per node) versus running time (per discrete time
step), averaged over 20 independent simulation runs. Each point in the curves
corresponds to a different value of N , namely N = 100,500, 1000,2000 and 5000.
The centralised auxiliary particle filter is run with K = 10×N particles, for the
same values of N . Right: Empirical variance of the MSE (per node) versus the
running time (per discrete time step) for the same set of simulations.

particle filter. We have obtained this result by looking at the mean square
approximation error for integrals of bounded functions w.r.t. the filter measure,
decomposed into variance and bias terms. The bounds we have obtained depend
explicitly on M (the number of filters) and N (the number of particles per
filter), and show that there is no asymptotic performance loss for schemes with
N ≥ M . This result is actually aligned with recent contributions in the field of
machine learning regarding the statistical properties of averages of independent
estimators (including classifiers and regressors) [29]. We have also utilized the
asymptotic convergence rates to propose a time–error index that enables a
quantitative comparison of centralised and parallel particle filtering scheme in
terms of asymptotic accuracy and running time. These analytical results can

Title Suppressed Due to Excessive Length 27

be extended to account for stronger forms of convergence (under additional
assumptions on the model, see [17]) and adapted to continuous-time state-space
systems (see [16] for the analysis of the bias and the MSE in this context).

From a practical perspective, we have shown that the averaging of independent
filters should be preferred when N , the number of particles per independent filter,
is sufficiently large. Indeed, our computer simulations suggest that if we seek a
scheme with a large number of parallel filters (M) and a relatively small number of
particles per filter (N) then parallelisation schemes that exploit a certain degree of
interaction between filters should be preferred –at the expense of a computational
overhead to implement such interaction. On the other hand, if N is large enough
to make the parallel filters work (even roughly), then our simulations show that
interaction is not needed anymore and independence can be fully exploited both
in terms of accuracy and running time.

The interest in designing particle filtering schemes that can have fast
implementations using massively parallel hardware has followed the surge of
several problems in science (geophysics, biochemistry or systems medicine) and
engineering (sensor networks, multi target tracking) where the fundamental task
is the tracking of a complex, high-dimensional dynamical system. In this paper we
have investigated an example where the system of interest is a network of 1,024
stochastic FitzHugh-Nagumo nodes with random stimuli, interconnected through
a 2-dimensional regular grid. This kind of complex stochastic network is a good
representative of models commonly used for excitable media in ecology or medicine
[20] and illustrates the kind of models for which parallel particle filters are needed.

Acknowledgements The work of J. M. and G. R. was partially supported by Ministerio de
Economı́a y Competitividad of Spain (project TEC2012-38883-C02-01 COMPREHENSION)
and the Office of Naval Research Global (award no. N62909- 15-1-2011. D. C. and J. M. would
also like to acknowledge the support of the Isaac Newton Institute through the program “Monte
Carlo Inference for High-Dimensional Statistical Models”. The authors would like to thank Dr.
Katrin Achutegui for her valuable assistance in obtaining the numerical results displayed in
Section 4.

A Proof of Lemma 2

We proceed by induction in the time index t. For t = 0, ρ0 = τ0 = π0 and, since x
(i)
0 ,

i = 1, ...,N , are drawn from π0, the equality E[(f, ρN0)] = (f, ρ0) is straightforward.
Let us assume that

E
[

(f, ρNt−1)
]

= (f, ρt−1) (44)

for some t > 0 and any f ∈ B(X). If we use F̄t to denote the σ-algebra generated by the set

of random variables {x
(i)
0:t−1, x̄

(i)
1:t : 1 ≤ i ≤ N} then we readily find that

E
[

(f, ρNt)|F̄t

]

= E
[

GN
t (f, πN

t)|F̄t

]

= GN
t (f, π̄N

t), (45)

since GN
t is measurable w.r.t. F̄t and E[(f, πN

t)|F̄t] = (f, π̄N
t). Moreover, if we recall that

(f, π̄N
t) =

N
∑

i=1

w
(i)
t f(x̄

(i)
t) =

N
∑

i=1

g
yt
t (x̄

(i)
t)f(x̄

(i)
t)

∑N
j=1 g

yt
t (x̄

(j)
t)

=
(fgytt , ξNt)

(gytt , ξNt)

then it is apparent from the definition of GN
t in (11) that

GN
t (f, π̄N

t) = GN
t−1(fg

yt
t , ξNt). (46)

28 Dan Crisan et al.

Taking together (45) and (46) we have

E
[

(f, ρNt)|F̄t

]

= GN
t−1(fg

yt
t , ξNt). (47)

Let Ft−1 be the σ-algebra generated by the set of variables {x
(i)
0:t−1, x̄

(i)
0:t−1 : 1 ≤ i ≤ N}.

Since Ft−1 ⊆ F̄t, Eq. (47) yields

E
[

(f, ρNt)|Ft−1

]

= E
[

GN
t−1(fg

yt
t , ξNt)|Ft−1

]

= GN
t−1E

[

(fgytt , ξNt)|Ft−1

]

, (48)

since GN
t−1 is measurable w.r.t. Ft−1. Moreover, for any h ∈ B(X), it is straightforward to

show that
E[(h, ξNt)|Ft−1] = (h, τtπ

N
t−1) =

(

(h, τt), π
N
t−1

)

,

hence, as fg
yt
t ∈ B(X), we readily obtain

E
[

(fgytt , ξNt)|Ft−1

]

=
(

(fgytt , τt), π
N
t−1

)

. (49)

Substituting (49) into (48) we arrive at

E
[

(f, ρNt)|Ft−1

]

= GN
t−1

(

(fgytt , τt), π
N
t−1

)

=
(

(fgytt , τt), ρ
N
t−1

)

, (50)

where (50) follows from the definition of the estimate of ρt−1, namely ρNt−1 = GN
t−1π

N
t−1. If

we take unconditional expectations on both sides of Eq. (50), we obtain

E
[

(f, ρNt)
]

= E
[(

(fgytt , τt), ρ
N
t−1

)]

=
(

(fgytt , τt), ρt−1
)

(51)

= (f, gytt · τtρt−1) (52)

= (f, ρt), (53)

where equality (51) follows from the induction hypothesis (44), (52) is obtained by simply
re-ordering (51) and Eq. (53) follows from the recursive definition of ρt in (6).

B Proof of Lemma 3

For t = 0, ρN0 = πN
0 , hence the result follows from Lemma 1. At any time t > 0, since

ρNt = GN
t πN

t , we readily have

E
[
∣

∣

∣
(f, ρNt)− (f, ρt)

∣

∣

∣

p]

= E

[
∣

∣

∣

∣

∣

1

N

N
∑

i=1

GN
t f(x

(i)
t)− (f, ρt)

∣

∣

∣

∣

∣

p]

= E

[
∣

∣

∣

∣

∣

1

N

N
∑

i=1

Z
(i)
t

∣

∣

∣

∣

∣

p]

, (54)

where Z
(i)
t = GN

t f(x
(i)
t) − (f, ρt), i = 1, ...,N . It is apparent that the random variables

Z
(i)
t , i = 1, ...,N , are conditionally independent given the σ-algebra F̄t generated by the set

{x
(j)
0:t−1, x̄

(j)
0:t : 1 ≤ j ≤ N}. It can also be proved that every Z

(i)
t is centred and bounded, as

explicitly shown in the sequel.

To see that Z
(i)
t has zero mean, let us note first that

E
[

GN
t f(x

(i)
t)|F̄t

]

= GN
t (f, π̄N

t),

Title Suppressed Due to Excessive Length 29

since GN
t is measurable w.r.t. F̄t. Moreover, by the same argument as in the proof of Lemma

2, one can show that GN
t (f, π̄N

t) = GN
t−1(fg

yt
t , ξNt) and, therefore,

E
[

GN
t f(x

(i)
t)|Ft−1

]

= E
[

GN
t−1(fg

yt
t , ξNt)|Ft−1

]

= GN
t−1

(

(fgytt , τt), π
N
t−1

)

, (55)

where we have used the fact that, for any h ∈ B(X), E[(h, ξNt)|Ft−1] = ((h, τt), πN
t−1).

However, since ρNt−1 = GN
t−1π

N
t−1, Eq. (55) amounts to

E
[

GN
t f(x

(i)
t)|Ft−1

]

=
(

(fgytt , τt), ρ
N
t−1

)

and taking (unconditional) expectations on both sides of the equation above yields

E
[

GN
t f(x

(i)
t)

]

= E
[(

(fgytt , τt), ρ
N
t−1

)]

=
(

(fgytt , τt), ρt−1

)

(56)

= (f, ρt), (57)

where (56) follows from Lemma 2 (i.e., ρNt−1 is unbiased) and (57) is a straightforward

consequence of the definition of ρt in (6). Equation (57) states that E[Z
(i)
t] = E[GN

t f(x
(i)
t)−

(f, ρt)] = 0.

To see that (every) Z
(i)
t is bounded, note that, for any finite t,

GN
t ≤

t
∏

k=1

‖g
yk
k ‖∞ < ∞, (58)

whereas

(f, ρt) = ((fgytt , τt), ρt−1)

= ((((fgytt , τt)g
yt−1
t−1 , τt−1)g

yt−2
t−2 , ..., τ1), π0)

≤ ‖f‖∞
t

∏

k=1

‖g
yk
k ‖∞ < ∞. (59)

Taking (58) and (59) together we arrive at

|Z
(i)
t | ≤ 2‖f‖∞

t
∏

k=1

‖g
yk
k ‖∞ (60)

which is finite for any finite t (indeed, for every t ≤ T).

Since the variables Z
(i)
t , i = 1, ...,N , in (54) are bounded, with zero mean and conditionally

independent given F̄t, it is not difficult to show (see, e.g., [7, Lemma A.1]) that

E
[
∣

∣

∣
(f, ρNt)− (f, ρt)

∣

∣

∣

p]

≤
2pc̆pt ‖f‖

p
∞

∏t
k=1 ‖g

yk
k ‖p∞

N
p
2

, (61)

where the constant c̆t is finite and independent of N . From (61) we easily obtain the inequality
(15) in the statement of Lemma 3, with c̃t = 2c̆t‖f‖∞

∏t
k=1 ‖g

yk
k ‖∞ < ∞ for any t ≤ T < ∞.

References

1. C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society B, 72:269–342, 2010.

2. A. Bain and D. Crisan. Fundamentals of Stochastic Filtering. Springer, 2008.

30 Dan Crisan et al.

3. M. Bolić, P. M. Djurić, and S. Hong. Resampling algorithms and architectures for
distributed particle filters. IEEE Transactions Signal Processing, 53(7):2442–2450, July
2005.

4. O. Cappé, S. J. Godsill, and E. Moulines. An overview of existing methods and recent
advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5):899–924, 2007.

5. A. J. Chorin and P. Krause. Dimensional reduction for a Bayesian filter. PNAS,
101(42):15013–15017, October 2004.

6. D. Crisan. Particle filters - a theoretical perspective. In A. Doucet, N. de Freitas, and
N. Gordon, editors, Sequential Monte Carlo Methods in Practice, chapter 2, pages 17–42.
Springer, 2001.

7. D. Crisan and J. Miguez. Particle-kernel estimation of the filter density in state-space
models. Bernoulli, (in press) (arXiv:1111.5866v5 [stat.CO]), 2013.

8. P. Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems
with Applications. Springer, 2004.

9. P. Del Moral and A. Guionnet. On the stability of interacting processes with applications
to filtering and genetic algorithms. Annales de l’Institut Henri Poincaré (B) Probability
and Statistics, 37(2):155–194, 2001.

10. R. Douc, O. Cappé, and E. Moulines. Comparison of resampling schemes for particle
filtering. In Proceedings of the 4th International Symposium on Image and Signal
Processing and Analysis, pages 64–69, September 2005.

11. A. Doucet, N. de Freitas, and N. Gordon. An introduction to sequential Monte Carlo
methods. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo
Methods in Practice, chapter 1, pages 4–14. Springer, 2001.

12. A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in
Practice. Springer, New York (USA), 2001.

13. A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo Sampling methods for
Bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.

14. A. Gelencsér-Horváth, G. Tornai, A. Horváth, and G. Cserey. Fast, parallel
implementation of particle filtering on the gpu architecture. EURASIP Journal on
Advances in Signal Processing, 2013(1):1–16, 2013.

15. N. Gordon, D. Salmond, and A. F. M. Smith. Novel approach to nonlinear and non-
Gaussian Bayesian state estimation. IEE Proceedings-F, 140(2):107–113, 1993.

16. W. Han. On the Numerical Solution of the Filtering Problem. Ph.D. Thesis. Department
of Mathematics, Imperial College London, 2013.

17. K. Heine and N. Whiteley. Fluctuations, stability and instability of a distributed particle
filter with local exchange. arXiv, 1505.02390v1 [stat.ME], 2015.

18. G. Hendeby, R. Karlsson, and F. Gustafsson. Particle filtering: the need for speed.
EURASIP Journal on Advances in Signal processing, 2010:22, 2010.

19. O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, and M. Rupp. Likelihood consensus and
its application to distributed particle filtering. IEEE Transactions on Signal Processing,
60(8):4334–4349, 2012.

20. J. P. Keener and J. Sneyd. Mathematical Physiology: I: Cellular Physiology, volume 1.
Springer Verlag, 2008.

21. J. P. Keener and J. Sneyd. Mathematical Physiology: II: Systems Physiology, volume 1.
Springer Verlag, 2008.

22. H. R. Künsch. Particle filters. Bernoulli, 19(4):1391–1403, 2013.
23. E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130–

141, 1963.
24. J. Mı́guez. Analysis of selection methods for cost-reference particle filtering with

applications to maneuvering target tracking and dynamic optimization. Digital Signal
Processing, 17:787–807, 2007.

25. J. Mı́guez, D. Crisan, and P. M. Djurić. On the convergence of two sequential Monte Carlo
methods for maximum a posteriori sequence estimation and stochastic global optimization.
Statistics and Computing, 23(1):91–107, 2013.

26. J. Mı́guez and M. A. Vázquez. A proof of uniform convergence over time for a distributed
particle filter. arXiv, 1504.01079v1 [stat.CO], 2015.

27. M. K. Pitt and N. Shephard. Auxiliary variable based particle filters. In A. Doucet,
N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in Practice,
chapter 13, pages 273–293. Springer, 2001.

28. B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter: Particle Filters
for Tracking Applications. Artech House, Boston, 2004.

Title Suppressed Due to Excessive Length 31

29. J. Rosenblatt and B. Nadler. On the optimality of averaging in distributed statistical
learning. arxiv:1407.2724 [stat.ML] [stat.ML], 2014.

30. C. Vergé, C. Dubarry, P. Del Moral, and E. Moulines. On parallel implementation of
sequential monte carlo methods: the island particle model. Statistics and Computing,
pages 1–18, 2013.

31. N. Whiteley, A. Lee, and K. Heine. On the role of interaction in sequential monte carlo
algorithms. arXiv:1309.2918 [stat.CO], 2013.

	1 Introduction
	2 Background
	3 Ensembles of independent particle filters
	4 Example: Stochastic Lorenz 63 model
	5 Example: A stochastic dynamical network
	6 Discussion
	A Proof of Lemma ??
	B Proof of Lemma ??

