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Summary:

Curing of epoxy resins with aliphatic diamines at low temperatures deviates from the 4EQ mechanism 
(catalytic and non-catalytic dual path) at relatively low conversions, far from vitrification. Although the 
Horie mechanism relies on a third order reaction it is possible a more realistic approach to epoxy curing 

kinetics if a detailed analysis of auto-acceleration is made. A single parameter dependent only on the 
nature of the amine is proposed.
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Introduction 

The mechanism of cure of an epoxy-amine system can be described by an equation where two 

paths of reaction arc considered: unc:llalFcd and catalyzcd (auto-catalyzed) by the hydroxyl 

groups generated during the course of reaction. This mechanism was initially proposed by 

Horie and coworkcr;/ 1 1 and is in general widely accepted if nu secondary n:actions an: present.

Kamal and Dutta simplified thi, model assuming equal rcacti\ ity Cor tht: primary and secondary 

amine addition rt:actiuns and generalising to an unknown reaction order. The proposed equation 

has been largely used for fitting purposes in many epoxy systems14-'1 and gi\CS good

agreements bet\\ecn theoretical predictions and c.,perimental data in the early stages of the 

L·uring process, but giving place sometimes to unrealistic reaction orders, especially if the 

model is ;.ipplicd to the whole curing process up tu vitrification. Recently. PM-Abuin cl al 1'1

developed a ne\\ rnetlrnd to determine experimentally the reactivity ratio bct\\'een secondary 

,md primary amine elemental rate cunstallls. They found that the application 01· a mechanistic model 

to the curing of epoxy resrns with diamincs al lo\\ temperatures dcyiate, from 

c:-.perimental com·crsiun al relatiH:lv lcrn comcrs1011s, far from g:elation.1"1 The autoacceleration

was c:-,plainccl in terms of reduction of the available \olumc for the remaining reactive groups during 

the curing process. In this work. we have studied the kinetics or DCiEI3A reacting: with different 

aliphatic diamincs. The clen1ental rate constmts were e\aluated 
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simultaneously from the differential rate equations for the reactions of epoxy and primary 

amine. A more realistic approach to epoxy curing kinetics is possible if a detailed analysis of 

auto-acceleration is made. Our proposal is to use a single parameter not dependent on curing 

conditions, just dependent on the nature of the species initially present. 

Theoretical Considerations 

The reaction of epoxy resins with aliphatic amines can be interpreted in terms of a four

equation (4EQ) kinetics mechanism which assumes that cure progresses through a non

catalysed path (k' 1 and k' 2) and an auto-catalysed path (k1 and k2). The subscript I or 2 

indicates the reaction or epoxy groups with primary or secondary amine functionalities 

n.:spcctivcly: 

+OH

A1 + E-k�1 _.0_1_1 ------>i\
2 

+Oil 

Four rate equalions can be established for the variation in epoxy. primary amine, secondary 

amine and tertiary amine groups. If we take into account the mass balances then, aficr some 

algebraic manipulation. equations can be rearranged in two related differential equations. 

e:-.prcsscd in terms of epoxy (a) and primary amine (fl) conversions: 

(I) 

(2)

2

Eo -E a=--
Eo 

B = 2A10 
Eo 

da =� df3 +R{Bf3-a}{i-a}{K; +K1(£Q_+a I} dt 2 dt Eo ) 

I 
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Cu, A1u and E0 are the initial concentrations of catalyst ([OH]), primary amine and epoxy 

groups expressed in mol kg· 1. It should be noted that all the concentrations are referred to 

functional groups, not molecular entities. R is the ratio of rate constants R k/k1 k'2/k' 1 , and 

its value is assumed to be independent of the reaction path. K, - k: x (ErJ)2 and K' 1 � k' 1 x (Eu), 

arc the global rate constants for the auto-catalyzed and non-catalyzed path respectively. The 

constant ratio R can be obtained experimentally following the published method. ·s1 When the 

secondary amine variation with reaction time reaches a rnaximun (d(A2)/dt 0 ). R is evaluated 

as the quotient of amine concentrations, v,ith R�A1 iA2. 

Auto-acceleration. J\t a given conversion. kinetics deviate from the model because of auto

acccleration. Our proposal is that. within the scale of reaction times, branching puints (tertiary 

amine nodes) move slower than monumers, forming regions that exclude reactive groups. The 

expcrimenwlly determined reactive mass concentration = n, mr should be substituted by 

an ''effective" cuncentration. defined in terms not of the total mass but of the accessible mass, 

C,"'' n, i 111:icc - The effective mass can he calculated by subtracting from the total mass a 

fraction ufthe tertiary amine fc)rmed according to equation (.3): 

.. .2:i_ 
111 acccs 

(3) 

A1 and MAi are the mass concentration and molar mass of tertiary amine: C, is tlw auto

acceleration factor that should innease with tertiary-amine concentration. The correction factor 

; is necessary to t'xpress the Cracliun uf tertiary amine that remains immobile within the 

reaction time-scale: its value must be constant and comprised between O and I. 1 f; = 1, all the 

tertiary amine groups form, within the rcactiun li1rn:-scak, rigid branching points. Introduction 

of equation (3) into equations (I) and (2) leads to cqw1tions (4) am! (5): 

du Bdfl .r ,.r . IJ ,', -2 . -3r·cu · . .  = 1 · + R , 8 r) - u I ,1 - (}_ 'I K I x 1 a + K I Y ta 
. 
-:--

. 
t (J. c11 - ut , I'. 11 

lr) 
' C 11 \I ( I - 11 i' 1 I I ·, I I K ' '2 K . . 3 I ---,. -JJ\-<J.q 1xla + 1xla -,-. ,jU j'

dt • Er1 1 

(4) 

(5)
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Experimental 

Reactants. The epoxy resin selected was the diglycidyl ether of bisphenol-A (DGEBA), ex 

Aldrich, with a molar mass of 348 g mor 1 • The aliphatic amines, 1,2-ethylcndiamine (EDA), 

l .5-diaminopentane (DAP), 1-methyl- l ,5-diaminopcntane (DAMP), J ,2-trans-

cyelohexyldiamine (t-ChDA) and m-xylendiamine (m-XDA) were all supplied by Aldrich with 

a minimum purity of 98'�;,. Poly(3-aminopropylmethylsiloxane) (PAMS) was synthesized from 

3-aminopropylmethyl-diethoxysilane monomLT (ABCR) by hydrolysis and a condensation 

reaction.1rn1 The liquid oligomcr (Tg -65 °C) was characterized by SEC, VPO (Knauer) and 

NMR speclroscopy (Ciemini). The number-average molar mass measured by VPO was 

1620 er 90 g rnor1 and 1570 g mo1· 1 by 29Si NMR. All reactants were degassed and used with no

further puri tieation. 

Conversion measurements. Stoichiometric DCEl1A/amine mixtures were prepared al room 

temperature and placed in a mould between two glass slides separated by a Teflon sheet. Curing 

temperatures were selected between 40 and 120 °C. Fourier lranslimn near-infrared 

spectroscopy (PT-nlR. Perkin Elmer GX2000)  was used lo obtain concentration data,1111

following the decrease in the area of the oxirane (4530 c111· 1 • S.m11(t)) and primary amine bands

(4940 cm· 1
• S4,,4u(t)), both normalized to a reference C-1 I band (4623 cnf 1

, S4010(t) ). u and 13 

were obtained from the following expressions. Secondary and tertiary amine concentrations 

were obtained by mass balance: 

(X = I- S4rn1(t)/S462}(t)
S453o(O)IS4621(0) 

I/\: l = II-0lf Hr1-1x] 

f:l� I- S494o(t)/S4623(t)
S4910 (0 ) / S4c,21 (0) 

Calculation method. From initial rT-IR data, a, (1, A1 , A2 and A3 were derived. R was 

detcrmi11ed graphically by plolling primary and secondary amine concentration versus time. The 

best fit of the experi111c11tal data to equations ( l )  and (2) was obtained with a Matlab routine by 

sol\ ing simulta11eously both dilTcn.:nlial equations at low conversions, inside a minimizing loop 

for obtaining K 1 and K" 1• Using the value or the global kinetics constants, C was calculated for 

each conversion so as to satisfy equations (4) and (5). A plot or 1/fo versus A, gave c, from the

slnpt' in the linear region. 
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Results and Discussion 

The variations of primary, secondary and tertiar) amine concentration with reaction time are 

presented for DGEBA /m-XDA in Figure L as an example. ;\ maximum in the secondary 

amine concentration is clearly seen. All the systems studied gave similar concentration plots in 

the observed temperature range. From these plots, the constant ratio R \Vas determined, varying 

bct\\CCn 0.2 and 0.4 and being inclcpcnclcnt of temperature. 

2.5 

20 

1.5 

1.0 

05 

00 

time (min) 

Fig. I. C:oncentrati,m uf primar; (A]J, secunclary (A2i and tcrtiar) (/\lJ amine groups ,crsus 
reaction time for the system DCiLll 1\/m-XI).\ cured at 8(J"C 

Simultaneous Jitting lo the values or u. ,md 11 with Matlab using equations (l) and (2) gave 

good fits at lm\ conversions. as can be sct·n from the trend of the residuals in f igu1·e 2. 

The conversion intervals for Jilting were selected along ,1 ith the criterion lo rni11imizc errors. 

The introduction of the primary amine rnmersion intu the fitting equations is rc\Jti1cl) unusual 

in the literature. We have confirmed that sensibly clil"li.:renl results arc obtained if kinetics 

parameters are obiaincd on!:, 1vith cpuxy com ersion. 
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!· ig. 2. a and p as functions of curing time for DGU3A / m-XDJ\ at (iO "C. Curves: ills to eqs
( l )  and (2). Lklow: weighted residuals calculated as

0( t i) - C( t i) 
r( t i ) = --. --�--- -

JO( l j) 

were O(t,) :111d C(t,) arc the observed and calculated values or (L (or fl) respectively. 

Frum Arrhcnius plots, the activation energies and pre-exponential factors were obtained for all 

the DGI-LlA:amine systems studied. They arc presented in Table I. From inspection of the 

tabk. mnst of the systems pn.;senl, as expected, a high activation energy for the non-catalyzcd 

path. For luw molar-mass aliphatic amines as l�DA. DAI' and DAMI', La has the same value for 

both paths within the experimental error. The catalytic effect in these systems is not clear, 

probably due to the very fast reaction rates at the curing temperatures selected. 
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Table 1 .  Activation energies, pre-exponential factors (A) and correction factor, �-

EDA 13.1± 0.3 8.5 x l 07 0.44± 0.02 
rn-XDA 1 1.5::::0.7 5.9 X] 06 14. 1±1.4 0.63± 0.04 

DAI' 1 1.9-'=l.8 1.4 X 1 0 7 11.6"'4. I 5.6 X I 0 5 0.45±0.04 
DAMP 13.0ll.O 4. 1 xl0 7 1 1.5± 0.8 5.6 x l 0 5 0.48±0.04
t-ChDA 9.6_L2.2 2.9 x !O' 1 1 . 9+ 3.6 2.4 x l 05 0 .44:!: 0. 0 2

The use of  equations ( I) and (2) a t  high curing times gives systematic deviations to  lower 

conversions than those observed experimentally, as shown in Fig. 3, except for the last stages of 

the reactions, when the systems vitrify. 
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Fig. 3. Comparison between prcdictt:d conversions using equation (I) and (2) and experimental 
data, for the system DCEBA/PJ\MS, cured at 6 0  "C. 

With the known kinetics constants, experimental data were fitted to equations (4) and (5) and 

the filling factor t;, was obtained for each conversion. Using equation (3 ), the inverse, I/(,, was 
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plotted against the tertiary amine concentration and a linear fit was observed, as shown in 

Figure 4 .  Good linear fits were obtained for all the systems over a wide range of J\3 

concentrations .  This fact, in principle, validates our a priori supposition concerning the relation 

between auto-acceleration and tertiary amine concentration. Only when the system reaches 

vitri tication does t;; apparently decrease because the reaction becomes diffus ion controlled. 

1 . 2 

1 .1 

I I  

4-
(\) 1 0 I I  

0 , 9  D 

I I  

0.8 

0.0 0 .5  1 , 0 

[AJ / m o l  kg - 1

1- ig. 4. Representation of the inverse of the fitting factor (f,,) versus tertiary am ine concentration
for the system DGEBJ\/EDA cured al 50"C. 

.\ssuming the mass of the tertiary amine is the sum of the masses of the branched segments, a 

single parameter ; is obtained from the slope and is presented in table l ltir each epoxy/am ine 

system. This parameter estimates the mass fraction of tertiary amine species that remains 

immobik within the reaction time scale and it should be expected that the more rigid systems 

1A ill lead to more rigid branches and, therefore, /; should be higher. The highest value of /; was 

obtained fi.ir the most rigid amine, rn-XDA, and the lowest value of /; was obtained for the very 

llexible siloxane-chain PAMS . Small differences amongst the simple aliphatic amines were 

obtained. from the values oC /;, a rigidity scale ean be established as follows PAMS<El)J\;,;t

ChD:\<DAP<DAMP<<rn-XDA. The exception seems to be t-ChDA, for which a more rigid 

branching point should be expected. 
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Conclusions 

lhe curing kinetics of DC,f":B:\ \\ ith six di fferent aliphatic diarnines has been analysed in terms 

of the 4EQ kinetic model (Horie model) over a wide temperature range. The auto-acceleration 

effect was observed in all cases and it has been interpreted to be a consequence of the formation 

or immobile species that can be associated 11 ith tertiary amines. 

A model for auto-acceleration has been propos\:d in L\:rms of a single parameter. �. that 

estimates the mass fraction of tertiary amine species that excludes reacti1 e groups on the 

reaction time-scale. This parameter seems to be independent of temperature within the error of 

its determination, at least over the temperature range studied. It seems also that for the rigid 

amine system (m-XDA) the parameter is highest and for the most f1exiblc system (PAMSJ i t  

has the lcl\\ est I al ue. that the initial hypothesis o!' thc model is curn:ct. 
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