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The architecture of many complex systems is well described by multiplex interaction networks,
and their dynamics is often the result of several intertwined processes taking place at different
levels. However only in a few cases can such multi-layered architecture be empirically observed,
as one usually only has experimental access to such structure from an aggregated projection. A
fundamental question is thus to determine whether the hidden underlying architecture of complex
systems is better modelled as a single interaction layer or results from the aggregation and interplay
of multiple layers. Here we show that, by only using local information provided by a random walker
navigating the aggregated network, it is possible to decide in a robust way if the underlying structure
is a multiplex and, in the latter case, to determine the most probable number of layers. The proposed
methodology detects and estimates the optimal architecture capable of reproducing observable non-
Markovian dynamics taking place on networks, with applications ranging from human or animal
mobility to electronic transport or molecular motors. Furthermore, the mathematical theory extends
above and beyond detection of physical layers in networked complex systems, as it provides a general
solution for the optimal decomposition of complex dynamics in a Markov switching combination of
simple (diffusive) dynamics.

Network theory has emerged as a powerful unify-
ing framework for studying the emergence of collective
phenomena in real complex systems from different do-
mains [1, 2], and has allowed us to increase the accuracy
and predictive power of our models of complex dynam-
ics, including epidemic spreading [3], synchronisation [5],
and social dynamics [4] to cite just a few. One of the
most fascinating challenges faced in the last few years
by network science is the need to incorporate and cou-
ple several network structures in order to correctly cap-
ture the inherently multidimensional nature of interac-
tion patterns in real-world systems. As a result, much ef-
fort has been recently devoted to the definition and study
of multilayer and multiplex networks [6–8]. The ubiquity
of such structures in social, biological and technological
systems has required the revision of the several canoni-
cal dynamical models that were previously studied only
on isolated complex networks, including percolation [12–
16], diffusion dynamics [17, 18], navigation [19–21], epi-
demics [22–25], evolutionary games [26–28], synchroniza-
tion [29], or opinion dynamics [30, 31], among several
others. These studies have frequently found that the col-
lective behaviour of systems qualitatively changes when
passing from isolated networks to coupled ones [32], high-
lighting the importance of the multilayer architecture of
real-world systems.
There are two fundamental and indeed dual problems
to face when one introduces multilayer network models
of real world systems. The first one is the necessity
to assess in a systematic way whether a multilayer

network model is adequate to represent the system, and
when such model gives redundant information. This

FIG. 1: A multiplex network with L = 2 layers and N = 7
nodes. A random walker diffusing over this structure gen-
erates a two dimensional time series {[X(t), l(t)]}Nt=1 where
X(t) and l(t) are the vertex and layer locations of the walker
at time t. In many real-world cases, such as for human mo-
bility, the layer indicator l(t) is hidden and one has access
only to {X(t)}Nt=1, i.e. to the series of positions of the walker
on the projected network, shown in the bottom of the figure.
For L > 1 the resulting trajectory is non-Markovian: we rely
on this Markovianity-breaking phenomenon property to de-
tect multiplexity and to provide an estimate of the number of
layers in the system by using only {X(t)}Nt=1.
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problem was first addressed in Ref. [33], and constitutes
nowadays an intense field of research. The dual problem
aims at understanding whether an empirical network
whose multilayer character is not directly observable is
genuinely monolayer or is only an aggregated projection
of a hidden multilayer network (see figure 1 for an
illustration of a multiplex network with L = 2 layers
and its aggregated projection). Such scenario has
received much less attention despite being, for instance,
central for networks arising in natural systems whose
architecture is not directly observable, as in genetic
networks or in brain functional networks where pairs
of nodes modelling different brain areas can interact
according to an a priori unknown range of different
biological pathways [39].

Here we focus on the problem of identifying the hidden
multi-layer structure of a complex system from coarse-
grained measurements of its state. We will show that, by
using only local information extracted from simple ran-
dom walk statistics, it is possible to reveal whether the
underlying structure of the system is actually a single-
layer or a multi-layer network, and in the latter case, to
estimate the number of interacting layers in the system.
Note that methods to infer network topological proper-
ties via random walk statistics have been explored previ-
ously [34]. Here, the method used to check whether the
system consists of one or more layer exploits the breaking
of Markovianity occuring in a multi-layer random walk,
while the estimation of the most probable number of lay-
ers is based on a maximum a-posteriori (MAP) proba-
bilistic criterion which can be implemented via numerical
integration methods, including conventional grid-based
approximations [48] or more sophisticated Monte Carlo
algorithms [47].

RESULTS

Multiplex networks are the most ubiquitous class of
multilayer networks. They are defined by a set of L ≥ 1
interaction layers (networks), all of them having the
same set of K nodes but different topology (edge set),
with the peculiarity that each node has a replica in each
layer (see fig. 1 for an illustration). This structure is
thereby fully described by a set of adjacency matrices
{A(l)}Ll=1. Multiplex networks are a natural model for
online social networks [9], where a given individual can
communicate with others via different platforms (e.g.
Facebook, Twitter, email, etc) or transportation net-
works [10, 11], where a set of locations can be connected
in a multimodal way (e.g. bus, train, underground, etc).
We consider a random walker navigating a multiplex [19]
defined as follows: jumps between layers are governed
by a Markov chain with L × L transition matrix RL

(Rij is the probability to jump from layer i to layer

j) while the dynamics within each individual layer l is
also Markovian and determined by a K × K transition

matrix T(l) (where T
(l)
ij is the probability to walk from

node i to node j at layer l). For the sake of clarity, from
now on we only consider the diffusive dynamics where
at each time step the walker at node i on layer l (i)
remains in the same layer with probability Rll = 1− r or
instantaneously jumps with probability Rll′ = r/(L− 1)
to a different layer l′ and subsequently (ii) diffuses to
one of the neighbours of node i in the chosen layer with
uniform probability. When r � 1 (i.e. when walkers
tend to remain in the same layer) this navigation model
aims at mimicking human mobility in multilayered
transportation networks [40, 41], where multimodality is
minimized to avoid waiting times related to connections
between different modes. Interestingly, this approach
also goes beyond network science and is reminiscent of
the so-called discrete flashing ratchet model [42, 43].
Ratchets are canonical models in statistical physics to
describe the transport of Brownian particles embedded
in periodic, asymmetric energy potentials, a paradigm
originally proposed by Smoluchowski [44] and popular-
ized by Feynman [45] as a possible thermal engine, and
further shown to be a fruitful way of modelling molecular
motors in biophysics. A Brownian particle subject to
a periodic asymmetric potential that is switched ON
and OFF stochastically is formally equivalent to our
random walk navigating over a multiplex with L = 2
cycle graphs with different transition matrices.

The stochastic process defined above is fully described by
an infinite two-dimensional time series {(X(t), l(t))}∞t=1

where X(t) ∈ {1, . . . ,K} and l(t) ∈ {1, . . . , L}. As in
real-world scenarios the multiplex nature of the system
is not always empirically accessible, the layer indicator
l(t) is hidden and the only observable is the sequence of
node locations X(1), X(2), . . .. In other words, we only
have experimental access to partial information of the
process, described by a finite sequence of observations

O = {X(t)}Nt=1 . (1)

This is formally equivalent to observing a dynamical
process on the aggregated (projected) network. Hence
the question: is it possible to discern if the system
is multiplex and in that case, to estimate the most
probable number of layers having only access to O?

Inferring multiplexity. Consider a Markov switch-
ing walker navigating a (multiplex) network from which
we only have access to partial information given by eq.
1. Assuming X(t) is Markov, we can estimate directly
from O the (monoplex) transition matrix Q that would
describe such a Markovian dynamics. Accordingly, we
can define a Markov chain associated to Q and gen-
erate a sample series of N steps {Y (t)}Nt=1, which ef-
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FIG. 2: (Left panel) The normalised Kullback-Leibler divergence D(m) between X(t) and its Markovian surrogate Y (t), in the
case where X(t) shows an induced current, for different values of the switching rate r. The series X(t) records the position of a

walker diffusing over two layers, with transition probabilities in the layers are T
(1)
i,i+1 = 1/3 and T

(2)
i,i+1 = 1/2 respectively, such

that the transition probability in the Markovian surrogate series is Qi,i+1 = 5/12. We correctly find that X(t) is non-Markovian
even for large values of r as D(m > 2) > 0, what suggests an underlying multiplex structure. (Right panel) Finite size analysis
where we compute D(3) (showing the mean and standard deviation over 10 realizations) as a function of the series size N ,
for the multiplex considered in the left panel (r = 0.1, black dots) and a null model with equivalent monoplex dynamics (red
squares) for which D(3) should vanish asymptotically.

fectively is a Markovian surrogate of the original pro-
cess. Now, if the underlying network was truly mono-
plex, then X(t) would be actually Markov and X(t) and
Y (t) would then have asymptotically equivalent statis-
tics. For multiplex structures however, by construction
X(t) and Y (t) would share the same joint distributions
only up to blocks of size m = 2, but these would differ for
m > 2. To quantify such difference, we make use of the
(normalized) block Kullback-Leibler divergence of order
m between blocks Xm = (X(t), . . . , X(t + m − 1)) and
Ym = (Y (t), . . . , Y (t+m− 1)):

D(m) :=
KLDm(X||Y )

m
=

1

m

∑
B(m)

P (Xm) log
P (Xm)

P (Ym)

(2)
where B(m) enumerates all the blocks of size m. D(m)
is semi-positive definite and vanishes only when the
joint probabilities coincide [46]. Thus by construction
D(1) = D(2) = 0. The Markovianity criterion finally es-
tablishes that D(m) > 0 for m > 2 implies multiplexity1.

As a proof of concept, we initially consider the simple sce-
nario where a random walker navigates over a two-layer
multiplex ring (each layer is a cycle graph of K nodes),
a model compatible with a discrete flashing ratchet as

1 Even if X(t) is Markov, the matrix Q cannot be computed ex-
actly, but simply estimated from the observations. Similarly, one
can only estimate the probabilities P (Xm).Therefore, in prac-
tical scenarios the decision rule requires to introduce an error
threshold ε > 0 such that D(3) > ε implies multiplexity. This
detection process can be formally described as a statistical test
and error bounds can be obtained under mild assumptions.

commented before. In the first layer, we define a Markov

chain with transition probabilities T
(1)
i+1,i = 2/3; T

(1)
i,i+1 =

1/3 and T
(1)
ij = 0 if j 6= i+1 mod K or j 6= i−1 mod K

. A random walker diffusing in this layer will have an in-
duced current in the direction of decreasing node indices.
In the second layer, we define a different Markov chain

with transition probabilities T
(2)
i+1,i = 1/2; T

(2)
i,i+1 = 1/2

and T
(2)
ij = 0 otherwise, i.e., a reversible Markov chain.

While we can always estimate Q numerically from eq.1,
in this simple case it is easy to derive it analytically:

Qij = T
(1)
ij W1 + T

(2)
ij W2, where W1 (resp., W2) is the

probability of finding the walker in layer l = 1 (resp.,
l = 2). Now, since in this case Rij = Rji = r, the system
is symmetric with respect to the switching process and
the walker spends on average the same amount of time in
each of the two layers hence W1 = W2 = 1/2 and then,

Qij = T
(1)
ij /2+T

(2)
ij /2. For this specific example, we thus

find Qi+1,i = 7/12, Qi,i+1 = 5/12.
In the left panel of Fig.2 we plot D(m) for different
switching rates r. In order to deal with finite size ef-
fects (which increase exponentially with m), we system-
atically increase the size of the walker series under study
as a function of m, taking series of size N(m) = N0 · 2m
data extracted from the original system and from the
corresponding Markovian surrogates (we used N0 = 105

although smaller values yield qualitatively equivalent re-
sults). Results are averaged over 10 realisations and we
also plot as error bars the standard deviation of the en-
semble average. As expected, D(1) = D(2) = 0, mean-
ing that Y (t) is a faithful Markovian surrogate of X(t).
Furthermore D(m > 2) > 0, meaning that X(t) is non-
Markovian and hence the underlying network is correctly
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recognized as a multiplex. This result is robust for a quite
large range of values of r (note that r = 0.5 is a trivial
exception), meaning that the method works even if the
walker makes fast switches between layers. A similar sce-
nario is found if we tune the transition probabilities such
that no net induced current is found (see SI), pointing out
that multiplexity can be unraveled even in that case. In
the right panel of the same figure we plot D(3) for differ-
ent series sizes to showcase how finite size effects vanish
as the series gets larger. Already with a few thousands
data points we can already accurately detect multiplex-
ity.
For completeness, we have considered a range of seven
additional scenarios including (i) layers with increasingly
different and disordered topologies controlled by both
rewiring and edge addition, (ii) Erdos-Renyi graphs and
(iii) similar scenarios on larger graphs. In every case we
find similarly positive results: (i) a correct multiplex-
ity detection and (ii) good scalability (see figures S2-S11
in section I the SI for details) thus concluding that the
methodology is flexible and robust.

FIG. 3: (Outset panel) Posterior probability P (L|{X(t)}Nt=1)
as a function of the number of layers L, computed from a
trajectory of 2× 104 time steps generated using a model with

L = 3 layers and parameters Rii = 1 − r = 0.84, T
(1)
i,i+1 =

0.16, T
(2)
i,i+1 = 0.76 and T

(3)
i,i+1 = 0.24 (see the text and SI

for details). The algorithm easily estimates the correct model
L = 3. (Inset panel) A linear-log plot of the same graph. Note
that the probability for L = 1 is zero up to the computer’s
accuracy, hence this point is not shown in logarithmic scales.

Quantifying multiplexity. Unfortunately, the
Markovianity criterion described above is only a quali-
tative one, and does not provide a quantitative way of
estimating the number of layers of the underlying mul-
tiplex. In order to bridge this gap, we now make use
of statistical inference tools to define a model selection
scheme [37]. We assume that two models are different if
they have a different number of layers. Accordingly, the
number of layers L is now modelled as a random variable
with prior probability mass function (pmf) P0(L). Given
the value of L, the motion of the random walker is deter-

mined by the Markov-switching of layers, with transition
matrix RL, and Markov walks within each layer charac-
terised by TL = {T(l)}Ll=1. Assuming prior probability
density functions (pdf’s) for these parameters p0,R(RL)
and a p0,T (TL), the likelihood of a given model with L
layers conditional on the observed data {X(t)}Nt=1 reads

P ({X(t)}Nt=1|L) =

∫
P ({X(t)}Nt=1|TL,RL)× (3)

×p0,T (TL)p0,R(RL)µ(dTL × dRL),

where µ is a suitable reference measure for TL and RL

(see sections II and III in the SI for technical details). In
general, this multidimensional integral cannot be com-
puted exactly and needs to be approximated numerically.
Then, the number of layers L in the system that gener-
ated the data {X(t)}Nt=1 can be detected using a maxi-
mum a posteriori (MAP) criterion, i.e.,

L̂MAP = arg max
L∈{1,2,...,L+}

P ({X(t)}Nt=1|L)P0(L), (4)

where L̂MAP is the estimate of the actual number of
layers, L+ < ∞ is the (assumed) maximum possible
value of L, and P (L|{X(t)}Nt=1) ∝ P ({X(t)}Nt=1|L)P0(L)
is the a posteriori pmf of L given the observations
{X(t)}Nt=1.

The practical computation of the MAP estimator in Eq.
(4) can be addressed in different ways. The classical lit-
erature on hidden Markov models (HMMs) [57–59] sug-
gests the use of the expectation-maximisation (EM) algo-
rithm (in various forms) to compute approximate max-

imum likelihood (ML) estimators, T̂L and R̂L, of the
parameters and then assume that P ({X(t)}Nt=1|L) ≈
P ({X(t)}Nt=1|T̂L, R̂L) in order to compare the models.
This approach relies on standard techniques but it has
drawbacks. The equation of the model likelihood with
the parameter likelihood easily breaks down when the pa-
rameter estimates are poor (e.g., because of overfitting),
when the parameter likelihood is multimodal (EM algo-
rithms converge locally) or when the parameter dimen-
sion varies significantly for different models. More sophis-
ticated parametric schemes have been proposed (see, e.g.,
[60]) however they are still subject to these fundamental
limitations. The integration in (3) has been favoured the-
oretically but criticised practically because of the compu-
tational cost of approximating P ({X(t)}Nt=1|L) numeri-
cally [59]. However, we have found that state-of-the-art
variational Bayes [61] or adaptive importance sampling
[62] methods can be applied effectively up to moderate
values of L. See Sections II and III in the SI for further
discussion, including examples of using both determin-
istic integration and the adaptive Monte Carlo sampler
from [63].
To showcase the general method of Eq. (4), MAP model
selection, we consider again the system reminiscent of
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the discrete flashing ratchet where the true model is
now formed by L = 3 ring-shaped layers with K = 3
(for other more sophisticated examples, see section III
in the SI, here we consider a simple example for the
sake of illustration). In this true model, the probability
to stay in the same layer is Rll = 1 − r = 0.84 and the
probabilities for the walker to move from node i→ i+ 1

are T
(1)
i,i+1 = 0.16, T

(2)
i,i+1 = 0.76 and T

(3)
i,i+1 = 0.24

respectively (T
(l)
i+1,i = 1− T (l)

i,i+1 for every l, and T
(l)
ij = 0

for any other i and j).
In order to evaluate the likelihood function
P ({X(t)}Nt=1|L), we need to approximate the inte-
gral in (3) for each value L = 1, . . . , 4 (L+ = 4) as
discussed previously. This is achieved in a first place
via numerical integration over a deterministic grid of 19
points on the interval (0, 1) for each unknown parameter.
For the case L = 1 this reduces to a single unknown,

T
(1)
i,i+1, and for L > 1 there are L + 1 unknowns: r

and T
(l)
i,i+1 for l = 1, . . . , L. Note that the particular

choice of transition probabilities was taken to make
the problem more challenging, as these values are not
commensurate with the integration grid points (for
other values we find similar results). The prior pdf
p0,R(RL) reduces to a uniform pdf on (0, 1) for the
unknown parameter r, while the prior p0,T (TL) is used
to penalise system configurations with two or more
identical layers2. For this particular experiment we have

chosen p0,T (TL) ∝ min(l,l′) |T
(l)
i,i+1 − T

(l′)
i,i+1|, i.e., the

prior pdf of a given configuration TL is proportional to
the minimum distance between any pair of matrices T(l)

and T(l′).
We have confirmed that, without penalisation (i.e.,
with uniform prior p0,T ), we obtain multiple equivalent
solutions involving layers with identical values of the
estimated parameters. Results are summarised in Fig.
3, that shows that the true model is easily detected (i.e.,
L̂MAP = 3) with the proposed scheme, as the posterior
probability emphatically peaks at L = 3. Additionally,
we have verified that the maximum of the posterior
probability density P ({X(t)}Nt=1|TL, r)p0,T (TL) (i.e.,
the integrand of Eq. (3) with uniform prior for r) is
indeed attained at the true value of T3 (see SI), meaning
that our model selection scheme correctly estimates not
only the number of layers but also the transition prob-
abilities within each layer. We have also checked that
the posterior probability density is smooth close to its
maximum as perturbations T̃3 = T3 +δT systematically
yield a smaller posterior pdf for sufficiently large N (see
figure S12).
Finally, it is well known that direct, grid-based de-

2 Note that a multiplex with L = 2 and T(1) = T(2) = T is
equivalent to a monoplex with transition matrix T.

terministic integration of the posterior probability is
intuitive but computationally inefficient. Accordingly,
we have further considered alternative approximations
of the integral in (3) using a nonlinear population Monte
Carlo algorithm [63], and effectively reduced the runtime
by a factor close to 102 on the same computer (see SI
for technical details) for the example of Fig. 3.

DISCUSSION

In this work we have introduced a method to detect and
estimate multiplexity in the hidden underlying structure
of a networked system by only having access to local
and partial statistics of a random walker. Our working
hypothesis (prior) is that there is a hidden multiplex
where walkers diffuse, switching layers stochastically and
diffusing over each layer. Under these circumstances,
any random walker for which we only see a projection of
such trajectory in the aggregated network is necessarily
non-Markovian, if the number of layers is larger than
one. Hence our algorithm for multiplexity detection
is based on detecting such breaking of Markovianity.
We have illustrated the validity and scalability of this
first part by addressing several synthetic systems of
varying complexity, as depicted in the main part of the
manuscript and the SI. Here we have focused in the
specific case of multiplex networks, where each layer has
the same number of nodes. Actually, in a multiplex one
can even have the same topology in each layer, where
only transition weights differ. On the other hand, in
a generic multi-layer network each layer will have in
general different number of nodes and different topology.
This latter situation can be reinterpreted as having
a multiplex where in each layer we can have isolated
nodes which are never reached by a walker, or forbidden
transitions. Accordingly, we envisage that layers in a
multiplex will be in general harder to distinguish via our
method than layers in a generic multi-layer network, and
as such we expect this method to be easily generalizable
to the multi-layer case.

In a second step, we have introduced a probabilistic
scheme to estimate the most probable number of layers
composing the hidden multiplex. Note that probabilistic
model selection is not new in network inference, for
instance in [38] a similar concept is used to estimate
the most probable combination of basic block models
that accounts for a certain network topology (see also
[35, 36]), whereas in [37] a probabilistic framework was
developed to estimate the most probable number of
communities in a single-layer network. In our case, the
posterior probabilities quantify the likelihood of having
a hidden multiplex with L layers. We were able to
showcase the validity of this second part in synthetic
networks up to L = 10 layers. The model selection
protocol can be seen as a multidimensional Bayesian



6

inference problem, and these schemes –similarly to
HMMs and other methods in statistical inference– suffer
from poor scalability: essentially the computation of the
model posterior probability explodes with the number
of unknowns. This is a limitation of the method, and
its optimization is therefore an open problem for future
work. As a matter of fact, a simple and intuitive
(although inefficient) way to estimate these posteriors
is to use a (deterministic) grid integration scheme.
In an effort to improve scalability and optimize such
calculations we have proposed a nonlinear population
Monte Carlo algorithm which reduces the computer
runtime by a factor close to 102, without performance
loss, for all the examples where we had previously used
deterministic integration. This is described in detail in
the SI.

Interpretation. The methodology proposed here
actually extends above and beyond the reconstruction of
(hidden) physical multiplex architectures using walkers
with partial information. As a matter of fact, a similar
approach can be considered even when the architecture
is truly single-layered, however in this latter scenario
one needs to switch the interpretation of the results.
Suppose for instance that the observed series is truly
the result of a complex (i.e., non-Markovian) dynamics
running on a physical single-layered network. In that
case, our multiplex reconstruction method would still
provide the most probable multiplex model, with L > 1
due to lack of walker’s Markovianity. The key difference
is that now layers in the hidden multiplex would be
effective instead of physical, and we would be providing
the most probable multiplex with Markovian intralayer
dynamics that would yield such complex dynamics.
Note that this type of effective model is precisely what
we have when we look for community structure in a
single-layered network: finding the optimal number
of effective groups of nodes which maximize a certain
likelihood function [37].
In even more general terms, our methodology provides a
mathematically sound solution for the optimal projection
of any complex dynamics onto a base of simple dynamics
modes. This sort of harmonic analysis interpretation
by which non-Markovian processes (i.e. processes with
infinite memory) can be projected into an appropriate
Markov-switching finite basis of Markovian dynamics
is remarkable as it is hugely reducing the complexity
of the generative model, and clearly deserves further
investigation.

Applications. As discussed above, our methodological
framework is general and, as such, enjoys a broad range
of potential applications in various fields of science
and technology. Consider, to begin with, the general
study of human and animal mobility [49–51]. This
type of dynamical process has been explored almost

exclusively from the perspective of single-layer networks,
and interestingly, has been found to display several
degrees of non-Markovianity [52, 53]. According to
the effective layer interpretation discussed above, we
wonder whether such lack of Markovianity can also be
interpreted as being the result of a Markovian dynamics
taking place on a hidden multiplex network? Surely,
in the case where mobility takes place across (hidden)
multimodal transportation systems (as when we collect
GPS traces of urban mobility), layers could be physical
(underground, bus, car, etc). On the other hand, animal
foraging dynamics are clearly different and alternate
during day and night [54]. In a similar vein, human mo-
bility patterns change when switching from work/leisure
styles [55]: these would be cases where layers would be
effective, rather than physical.
There are a large variety of problems involving the
aforementioned scenarios which could be amenable to
our approach. To guarantee computational efficiency, we
would only require the network over which the agents
move not to be too large, something that in the general
case can be achieved by coarse-graining the network via
community detection [56].
Another potentially interesting development is the more
in-depth exploration of the relation between multiplex
random walks and discrete flashing ratchets in discrete
potential fields, which might constitute an unexpected
contribution of network science to condensed matter
physics and molecular biology. To be more concrete,
it is well known that RNA polymerase (RNAP) are
enzymes whose location spatially fluctuates inside the
cell by switching (stochastically) between two different
dynamical regimes: an active state (elongation) and
a passive state (backtracking). While in elongation,
RNAP’s dynamics are closer to a ballistic motion or
at least to a diffusion process with a net drift, whereas
in backtracking regime RNAP is passively fluctuating
due to several types of noise (thermal, chemical) and
its movement is less biased. As RNAP traces inside the
cell are rather noisy, it is a challenging task to identify
the transition from elongation to backtracking and the
general estimation of these dynamics from single particle
trajectories. Under our approach, RNAP is akin to a
molecular motor producing non-Markovian dynamics
which can be effectively mapped into a Markov switch-
ing random walk dynamics in a multiplex with L = 2
layers (corresponding to elongation and backtracking
respectively).
Finally, electronic transport in semiconductors can be
modeled again as ratchets under the effect of electric
potentials of several states. All these are just a few
examples of realistic applications which can be addressed
via our methodology, which will be at the core of further
investigations.
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