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Abstract

We consider the optimal portfolio problem where the interest rate is stochastic and the agent
has insider information on its value at a finite terminal time. The agent’s objective is to optimize
the terminal value of her portfolio under a logarithmic utility function. Using techniques of initial
enlargement of filtration, we identify the optimal strategy and compute the value of the information.
The interest rate is first assumed to be an a�ne di↵usion, then more explicit formulas are computed
for the Vasicek interest rate model where the interest rate moves according to an Ornstein-Uhlenbeck
process. We show that when the interest rate process is correlated with the price process of the risky
asset, the value of the information is infinite, as is usually the case for initial-enlargement-type
problems. However since the agent does not know exactly the correlation factor, this may induce
an infinite loss instead of an infinite gain. Finally weakening the information own by the agent, and
assuming that she only knows a lower-bound for the terminal value of the interest rate process, we
show that the value of the information is finite.
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1 Introduction

The mathematical models used to construct optimal portfolio strategies usually assume that investors, or
traders, rationally use at each time all the information at their disposal in order to optimize their future
utility. In the standard setting, the accessible information is given by the historical prices at which the
assets that make up the portfolio have been traded in the past.

However, the information own by an investor could actually be larger than the standard one. For
example, the agent may get additional information on the business underlying the asset, as well as she
may include public information generally accessed by financial publications.

In some specific situations, the trader may access and take advantage of private or privileged infor-
mation, even if this last option is usually considered not legal according to the rules governing the public
stock exchanges. This type of information is of di↵erent nature with respect of the one mentioned above
as, in this case, it anticipates the future trend of the risky asset and may generate arbitrage opportunities.

It is therefore of interest to understand how to introduce anticipative information in the stochastic
models used to construct the optimization strategies and to value the performances of these strategies
with respect to the ones that do not make use of the privileged information. This approach, besides
their intrinsic mathematical interest may furnish a tool to detect irregularities in the markets as well as
to estimate the real value of the favored position of the insider traders.

Continuous-time portfolio selection problems were introduced in Merton [1969], Pliska [1986] an Karatzas
et al. [1987], these treated single-agent consumption/investment problems and constructed an optimal
portfolio for power and logarithm utilities. The portfolio optimization problem in complete market was
originally introduced by Karatzas et al. [1987], who introduced the use of the martingale methodology.
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Then, the portfolio optimization with insider information was first studied by Pikovsky and Karatzas
[1996]. There, the technique of enlargement of filtrations was used to compute the martingale represen-
tation of the price process with respect to the enlarged filtration of the insider trader and, by a standard
application of Itô calculus, the utility maximization problem was solved by getting the insider trader
optimal strategy.

Ever since, many authors have used this approach to study the insider trader problem, such as
in Amendinger et al. [2003], where the financial value of initial information is calculated by modeling the
market as semi-martingales.

Another approach to the problem, di↵ering from the enlargement of filtration, was considered by Bau-
doin [2002]. The author introduces the conditioned stochastic di↵erential equations and defines the con-
cept of weak information, that is, the insider has knowledge of the initial filtration and the law of some
functional of the paste and future price history. Among the latest techniques used in this context we
mention the (generalized) Hida-Malliavin calculus and white noise theory that uses forward stochastic
integration, see for example Kohatsu-Higa and Sulem [2006] and Biagini and Øksendal [2005].

The original contribution of our work is to analyze the case when the additional information is not
directly related with the price process of the risky asset but it concerns the future value of the interest
rate process. In this respect we show that when the driving processes of the price process of the risky
asset and the interest rate process are correlated, the informed agent may take advantage of an arbitrage.

Depending on the type of information the arbitrage may be unbounded. However we show that if
the insider trader uses an inaccurate model, meaning that her estimation of the correlation coe�cient is
not precise, her opportunity can turn into an infinite loss.

Finally we show that when the privileged information is not exact, but it only gives a lower bound
for the future value of the interest process, the value of the information is actually finite.

It is worth to point out that the assumption of an a�ne di↵usion structure for the interest rate
process, leads to explicit and almost handful expressions. This class of models includes, as a special case,
the Ornstein-Uhlenbeck process and therefore it allows to analyze in very detail the well known Vasicek
model, introduced in Vasicek [1977].

The optimal strategy with insider information strongly depends on the privileged information, and
it largely di↵ers form the Merton optimal strategy. It seems reasonable to think that it may lead to the
design of e↵ective tests for fraud detection, similarly to as suggested in Bernard and Vandu↵el [2014]
and in Grorud and Pontier [1998]. However this line of research is not addressed in this paper.

The analysis done in this paper follows and extends the stochastic models for insider trading strategies
studied by Pikovsky and Karatzas [1996], Amendinger et al. [1998] and Baudoin [2002]. Our approach
therefore di↵ers from the one followed in Guasoni [2006], Buckley et al. [2012] and Buckley et al. [2014].
As explicitly mentioned in Buckley et al. [2016], the approach there is the opposite one, starting from a
larger filtration, the one known by the institutional investors, that is then restricted to take into account
the smaller information own by the retail investors. It is remarkable to note that the mean-reverting
process used in Buckley et al. [2016] to model the mispricing and the asymmetric information is again
an Ornstein-Uhlenbeck process.

As explained more in details in the following sections, we look for an optimal strategy that maximizes
the expected logarithmic utility of the terminal wealth of a portfolio made of two assets, one risky and
one riskless:

sup
⇡2AH

E[U(X⇡

T

)] =: E[U(X⇡

⇤

T

)] , (1a)

dX⇡

t

= (1� ⇡
t

)X⇡

t

R
t

dt+ ⇡
t

X⇡

t

(⌘
t

dt+ ⇠
t

dB
t

) . (1b)

In (1b), ⇡
t

is the agent’s strategy, X
t

represents the wealth at time t of her portfolio, R
t

is the
stochastic interest rate and B

t

is a standard Brownian motion. We assume that the agent owns insider
information, and we model this assumption by specializing the filtration H, that determines the class
of adapted policies, AH, among which the optimal strategy must be chosen. In particular we focus on
di↵erent kinds of information that the agent may own about the terminal value of the interest rate
process, and for these cases we obtain the optimal portfolio together with a quantitative estimation for
the value of her insider information.

We start by assuming that the process R = (R
t

, t � 0) belongs to the class of a�ne di↵usion. Then
to make the results more explicit we specialize the computation for the case R is an Ornstein-Uhlenbeck
process, that we denote by Y .

In Section 2 we introduce in more details the general model with the interest rate process modeled as
an a�ne di↵usion. The end of the section contains a brief summary of the used mathematical notation.
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We analyze the general model under the insider information assumption in Section 3 where we compute
explicitly the optimal strategy. In Section 4 we specialize the model by assuming that the interest rates
follow an Ornstein-Uhlenbeck process. This corresponds to the popular Vasicek model. For this model
we analyze a strong type of insider information, by assuming known the final value of the interest rate
process, and for it we compute the optimal portfolio. Then, in Section 5, we show that this type of
information carries an infinite value, that may be positive or negative according to the accuracy of the
estimated correlation coe�cient. In Section 6 we introduce a weaker type of information assuming that
only a lower bound for the final value of the interest rate process is known and in this case we compute
again the optimal portfolio and the value of the information that in this case turns out to be finite. We
conclude in Section 7 with some concluding remarks.

2 Model and Notation

As a general setup we assume to work in a probability space (⌦,F ,F,P ) where F is the event sigma-
algebra, and F = {F

t

, t � 0} is an augmented filtration that is generated by (or at least contains) the
natural filtration of a bi-dimensional Brownian motion (BR, BS) = ((BR

t

, BS

t

), t � 0), whose components
have constant correlation ⇢.

We assume that the portfolio is made of only two assets, one risky, that we call S = (S
t

, t � 0)
and the other risk-less D = (D

t

, t � 0), and both processes are adapted semi-martingales in the defined
probability space. In particular their dynamics are defined by the following SDEs,

dD
t

= D
t

R
t

dt, (2a)

dS
t

= S
t

�
⌘
t

dt+ ⇠
t

dBS

t

�
(2b)

where R = (R
t

, t � 0) is the instantaneous risk-free interest rate, sometimes also called the short term
rate [Gibson et al., 2010]. The drift and the volatility of the risky asset are given by the processes
⌘ = (⌘

t

2 R, t � 0) and ⇠ = (⇠
t

2 R+, t � 0), respectively. They are assumed to be adapted to the
natural filtration of the process BS with ⌘ and 1/⇠ bounded. The interest rate process R is assumed to
be an a�ne di↵usion, satisfying the following SDE

dR
t

= [a1(t)Rt

+ a2(t)] dt+ b2(t)dB
R

t

, (3)

where the deterministic functions a1, a2, b2 are su�ciently smooth functions. This class of processes
includes as a particular case the Ornstein-Uhlenbeck process, in this paper denoted by Y = (Y

t

, t � 0),
satisfying the well known SDE

dY
t

= k(µ� Y
t

)dt+ �dBR

t

(4)

where k, µ,� are given parameters. This process was proposed for modeling the interest rate in Vasicek
[1977].

Using the above set-up, we are going to assume that an investor can control her portfolio by a given
self-financial strategy ⇡ = (⇡

t

, 0  t  T ), with the aim to optimize her utility function at a finite
terminal time T > 0.

If we denote by X⇡ = (X⇡

t

, 0  t  T ) the wealth of the portfolio of the investor under her strategy
⇡, its dynamics are given by the following stochastic di↵erential equation, for 0  t  T ,

dX⇡

t

X⇡

t

= (1� ⇡
t

)
dD

t

D
t

+ ⇡
t

dS
t

S
t

, X0 = x0 , (5)

that can be reduced, using the expressions in (2), to the following form

dX⇡

t

= (1� ⇡
t

)X⇡

t

R
t

dt+ ⇡
t

X⇡

t

�
⌘
t

dt+ ⇠
t

dBS

t

�
, X0 = x0 . (6)

Usually it is assumed that the strategy ⇡ makes optimal use of all information at disposal of the agent
at each instant, and in general we are going to assume that the agent’s flow of information, modeled by
the filtration H = (H

t

, 0  t  T ), is possibly larger than filtration F, that is F ⇢ H.
Defining by AH all the admissible H adapted processes, we define the optimal portfolio ⇡⇤ = (⇡⇤

t

, 0 
t  T ), as the solution of the following optimization problem,

VH
T

:= sup
⇡2AH

E[U(X⇡

T

)] = E[U(X⇡

⇤

T

)] , (7)
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where VH
T

is defined as the optimal value of the portfolio at time T given the information H, and the
function U : R+ ! R denotes the utility function of the investor. This function is assumed to be
continuous, increasing and concave. For sake of simplicity, following the main trend in the literature —
as it allows to determine the solution in an explicit form —, we assume a logarithmic function for the
utility, that is U(x) = ln(x).

In the following sections we consider two kinds of initial enlargements; a first one, stronger, under
which the investor is assumed to know exactly the future value of the interest process, R

T

, and a second
one, weaker, where the investor knows only the value of a lower/upper bound, {R

T

� c}. The filtration
H in the former case will be denoted by G = (G

t

, 0  t  T ), with

G
t

= F
t

_
�(R

T

) , (8)

and we denote the corresponding strategies in AG, with ⇡̂. In particular we will use the ˆ decoration to
denote all the functions that will make use of the additional information in G. In the latter case the
filtration is denoted by G̃ = (G̃

t

, 0  t  T ) where

G̃
t

= F
t

_
�( {R

T

� c}) , (9)

and we will use the corresponding decoration ,̃ such as in ⇡̃ 2 AG̃. It is immediate to see that the
following inclusions hold

F ⇢ G̃ ⇢ G . (10)

2.1 Additional Notation

Given two random variables X and Y , we write X ⇡ Y to indicate that they have the same distribution.
The notation N (µ,�2) denotes a normal random variable with mean µ and variance �2. �(z) denotes
the cumulative ditribution of a standard Normal random variable. With f

X

(x), we denote the density
function of X evaluated at x and by f

X|Y (x|y) the value of the conditioned density function at x given
{Y = y}. P , E and V denote the probability, the expectation and the variance operators. (fg)(x) is

sometimes used to denote the product f(x)g(x) and f
�⇠ g means that lim

�!0 f(�)/g(�) = 1. We may
omit to explicitly indicate � when it is clear form the context.

3 General Interest Rate

Combining equations (3) and (6) we get the following system of stochastic di↵erential equations,

(
dX⇡

t

= (1� ⇡
t

)X⇡

t

R
t

dt+ ⇡
t

X⇡

t

�
⌘
t

dt+ ⇠
t

dBS

t

�

dR
t

= [a1(t)Rt

+ a2(t)] dt+ b2(t)dB
R

t

(11)

that solved with respect to the filtration F gives the evolution of the interest rate process and the portfolio
wealth, as seen by a non-informed investor.

In order to analyze the same processes adapted to the enlarged filtration G defined in (8), following
standard techniques of enlargement of filtrations, we look for the semi-martingale decomposition of the
pair (BR, BS) with respect to a new bi-dimensional G-Brownian motion (WR,WS), whose coordinates
will be shown to share the same correlation ⇢.

We achieve this new representation by expressing the process R, now seen as adapted to the filtration
G, in the following way

dR
t

= û(R
t

, R
T

, t, T )dt+ v̂(R
t

, R
T

, t, T )dWR

t

, (12)

where we compute the functions u and v as the infinitesimal G
t

-conditional mean and variance of the incre-
ment process of R

t

. Similar results could have been achieved by applying Jacod’s theorem [Amendinger
et al., 1998, Jacod, 1985] as shown in Jeanblanc et al. [2009, Theorem 5.9.3.1], however we prefer to
go for a more direct approach that gives, as by-product, the complete distribution of R

t+�

|G
t

, with
0  �  T � t.
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3.1 Analysis of the R process

Assuming integrability for the functions a1, a2, and b2 in (3) it is easy to see [Jeanblanc et al., 2009,
Example 1.5.4.8] by applying Itô’s lemma, that the process R admits the following explicit solution

R
t

=  
t


R0 +

Z
t

0
(a2 

�1)(x) dx+

Z
t

0
(b2 

�1)(x) dBR

x

�
, (13)

where the function  
s,t

= exp
⇣R

t

s

a1(x)dx
⌘
, and we used the simplified notation  (t) =  

t

=  0,t. The

process R is Markov and it is Gaussian when R0 is normal distributed.
To compute the distribution of R

t+�

|G
t

for 0 < � < T � t, we need the following lemma, that besides
its simplicity we state here as reference for the following calculations.

Lemma 1. Let Z
t

be a Markov process adapted to a filtration F, then under the filtration G it holds

f
Zt+�|Zt,ZT

(b | a, c) = f
Zt+�|Zt

(b | a) f
ZT |Zt+�

(c | b)/f
ZT |Zt

(c | a) (14)

f
Zt+�|Gt

(b) = f
Zt+�|Zt,ZT

(b |Z
t

, Z
T

) , (15)

and in particular, EGt [Zt

] = EFt [Zt

|Z
T

].

Proof. Equation (14) follows by a direct application of twice the definition of conditional density function

f
Zt+�|Zt,ZT

(b | a, c) = f
Zt(a) fZt+�|Zt

(b | a) f
ZT |Zt,Zt+�

(c | a, b)
f
Zt(a) fZT |Zt

(c | a)

=
f
Zt+�|Zt

(b | a) f
ZT |Zt+�

(c | b)
f
ZT |Zt

(c | a) ,

where in the second equality, we used the Markov property. Also (15) follows by the Markov property,
i.e. E[f

Zt+� (b)|Gt

] = E[f
Zt+�(b)|Ft

, Z
T

] = E[f
Zt+�(b)|Zt

, Z
T

].

Given that R is a Markov process, by (14) – (15) we reduce our problem to the study of the distribution
of (R

s

|R
u

) for 0  u  s. We can calculate it by conveniently handling the explicit expression in (13) as
we show in the following lemma.

Lemma 2. Let R
t

be the process defined by (3). For 0  u  s, the conditioned random variable (R
s

|R
u

)
has the following distribution

(R
s

|R
u

) ⇡ N
✓
 

u,s

R
u

+ 
s

Z
s

u

�
a2 

�1
�
(x)dx,  2

s

Z
s

u

�
b2 

�1
�2

(x)dx

◆
(16)

Proof. Using equation (13), we can express the value of R
s

in terms of its value at time u in the following
way,

R
s

=  
u

 
u,s

h
R0 +

Z
u

0

�
a2 

�1
�
(x)dx+

Z
s

u

�
a2 

�1
�
(x)dx

+

Z
u

0

�
b2 

�1
�
(x)dBR

x

+

Z
s

u

�
b2 

�1
�
(x)dBR

x

i

=  
u,s

R
u

+ 
s

Z
s

u

�
a2 

�1
�
(x)dx+

Z
s

u

�
b2 

�1
�
(x)dBR

x

�
. (17)

The result then follows by identifying the deterministic and stochastic part of formula (17), the latter
gives the variance by applying the Itô isometry.

Using the above expression we finally can compute the complete distribution of R
t+�

|G
t

as shown in
the following theorem.
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Theorem 3. The conditioned random variable (R
t+�

|R
t

, R
T

) ⇡ (R
t+�

|G
t

) is Gaussian, whose parame-
ters are given by

E[R
t+�

|R
t

, R
T

] =

R
T

t+�

�
b2 �1

�2
(x)dx

R
T

t

(b2 �1)2 (x)dx

"
 

t,t+�

R
t

+ 
t+�

Z
t+�

t

(a2 
�1)(x)dx

#

+

R
t+�

t

(b2 �1)2(x)dx
R
T

t

(b2 �1)2(x)dx

h
R

T

� 
T

R
T

t+�

(a2 �1)(x)dx
i

 
t+�,T

, (18a)

V [R
t+�

|R
t

, R
T

] =

R
T

t+�

�
b2 �1

�2
(x)dx

R
T

t

(b2 �1)2 (x)dx

"
 2

t+�

Z
t+�

t

�
b2 

�1
�2

(x)dx

#
. (18b)

Proof. The proof follows by applying Lemma 1 and Lemma 2 and by rearranging terms in such a way
to eventually identify the density function of a Normal distribution and its parameters. Since the steps
are quite technical we defer the details to the appendix.

3.2 Di↵erential Coe�cients

Known the density of the variable (R
t+�

|R
t

, R
T

), we can compute the first term of the Taylor expansion
in � of its parameters, that allows to compute the functions û and v̂ in (12) by the formulas

E[R
t+�

�R
t

|R
t

, R
T

] = û(R
t

, R
T

, t, T ) � + o(�) , (19a)

E[(R
t+�

�R
t

)2|R
t

, R
T

] = v̂2(R
t

, R
T

, t, T ) � + o(�) . (19b)

Since the quadratic variation does not depend on the filtration, it will follow that v̂(R
t

, R
T

, t, T ) = b2(t).

Lemma 4. The û and v̂ terms in the expansions (19) are given by

û(R
t

, R
T

, t, T ) = a1(t)Rt

+ a2(t) + ĝ
t,T

(R
t

, R
T

) , (20a)

v̂(R
t

, R
T

, t, T ) = b2(t) (20b)

where

ĝ
t,T

(R
t

, R
T

) :=
(b2 �1)2(t)

h
R

T

� 
t,T

R
t

� 
T

R
T

t

(a2 �1)(x)dx
i

 
t,T

R
T

t

(b2 �1)2(x)dx
. (21)

Proof. The term in (20a) follows by computing in the expression (18a) the lim
�!0 E[R

t+�

�R
t

|R
t

, R
T

]/�.
The result follows by applying the following estimates

 
t+�

�

Z
t+�

t

(a2 
�1)(x)dx

�⇠ a2(t) ;

1

�

Z
t+�

t

(b2 
�1)2dx

�⇠ (b2 
�1)2(t) ;

1

�

 
 

t,t+�

R
T

t+�

(b2 �1)2 dx
R
T

t

(b2 �1)2 dx
� 1

!
�⇠ a1(t)� (b2 �1)2(t)

R
T

t

(b2 �1)2 dx
.

In the same way, using that E[(R
t+�

�R
t

)2|R
t

, R
T

]
�⇠ V [R

t+�

�R
t

|R
t

, R
T

] we get (20b) from (18b) and

the estimate  2
t

(b2 �1)2(t)
�⇠ [b2(t)]2.

3.3 Optimal Portfolio

The analysis above allows to rewrite the SDE (11) expressed in the filtration F under the filtration G as
shown by the following proposition.

Proposition 5. Under the filtration G the processes X ⇡̂ = (X ⇡̂

t

, 0  t  T ) and R = (R
t

, 0  t  T )
satisfy the following SDE:

8
>>><

>>>:

dX ⇡̂

t

= (1� ⇡̂
t

)X ⇡̂

t

R
t

dt+ ⇡̂
t

X ⇡̂

t

(⌘
t

dt+ ⇠
t

dBS

t

)

dR
t

= ĝ
t,T

(R
t

, R
T

) dt+ [a1(t)Rt

+ a2(t)] dt+ b2(t)dW
R

t

dBS

t

=
⇢

b2(t)
ĝ
t,T

(R
t

, R
T

) dt+ dWS

t

(22)

6



where (WR,WS) = ((WR

t

,WS

t

), 0  t  T ) is a bi-dimensional G-Brownian motion with constant
correlation ⇢.

Proof. Since BR and BS have constant correlation ⇢, we can write

BS

t

= ⇢BR

t

+
p

1� ⇢2 W
t

(23)

where W = (W
t

, 0  t  T ) is an F-Brownian motion independent of BR. By Lemma 4, the semi-
martingale representation of R under H is given by

dR
t

= ĝ
t,T

(R
t

, R
T

) dt+ [a1(t)Rt

+ a2(t)] dt+ b2(t)dW
R

t

(24)

with WR = (WR

t

, 0  t  T ) being a G-Brownian motion. Expressing BR in terms of R and WR we get

dBR

t

=
dR

t

� [a1(t)Rt

+ a2(t)]dt

b2(t)
=

ĝ
t,T

(R
t

, R
T

)

b2(t)
dt+ dWR

t

, (25)

and using (23) we get the H semi-martingale representation of BS as

dBS

t

= ⇢ dBR

t

+
p

1� ⇢2dW
t

=
⇢

b2(t)
ĝ
t,T

(R
t

, R
T

) dt+ ⇢ dWR

t

+
p

1� ⇢2 dW
t

. (26)

To complete the proof, we define the process WS = (WS

t

, 0  t  T ) by setting WS

t

= ⇢WR

t

+p
1� ⇢2 W

t

, that satisfies E[WS

t

WR

t

] = ⇢.

The semi-martingale representation of the wealth process in G allows to solve for the optimal strat-
egy ⇡̂ that maximizes E[ln(X⇡

T

)] along the lines of Karatzas et al. [1987] and Merton [1969]. This is
summarized by the following main result.

Theorem 6. The solution of the optimal portfolio problem

sup
⇡̂2AG

E[ln(X ⇡̂

T

)] ; with G = F
_
�(R

T

) (27)

where (X ⇡̂

t

, 0  t  T ) satisfies (22), is given by

⇡̂⇤
t

=
⌘
t

�R
t

⇠2
t

+
⇢

b2(t) ⇠t

(b2 �1)2(t)
⇣
R

T

� 
t,T

R
t

� 
T

R
T

t

a2 �1(x)dx
⌘

 
t,T

R
T

t

(b2 �1)2(x)dx
. (28)

Proof. Using the expression (22) and applying Ito’s lemma we compute the expected value of lnX ⇡̂

T

as

E


ln

X ⇡̂

t

X0

�
=

Z
T

0
E
⇥
⇠2
t

I
t,T

(⇡̂
t

)
⇤
dt (29)

where

I
t,T

(x) =
R

t

⇠2
t

+

✓
⌘
t

�R
t

⇠2
t

+
⇢

b2(t) ⇠t
ĝ
t,T

(R
t

, R
T

)

◆
x� ⇠2

t

2
x2 . (30)

We immediately get that

sup
⇡̂2AG

E


ln

X ⇡̂

t

X0

�

Z

T

0
E[ sup

⇡̂2AG
I
t,T

(⇡̂
t

)] dt , (31)

and the equality follows from the fact that the optimal strategy that optimizes the right-hand-side
of (31) belongs to AG. To compute it we equate to 0 the first derivative of I

t,T

, obtaining (28). Since
I 00
t,T

(⇡̂⇤
t

) = �⇠2
t

< 0, the solution indeed identifies a maximum.
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4 Ornstein-Uhlenbeck Model

In this section, we consider the case in which the functions a1, a2, b2 are constant. Doing so, the model
of the interest rate is assumed to be an Ornstein-Uhlenbeck process and satisfies the following SDE

dY
t

= k(µ� Y
t

)dt+ �dBY

t

, t � 0, (32)

where µ 2 R and �, k 2 R+. This model was introduced in the financial setting in Vasicek [1977], and in
the previous context, it consists in setting

a1(t) = �k , a2(t) = kµ , b2(t) = � . (33)

By Ito’s lemma, it is easy to verify that (32) admits the following explicit solution,

Y
t

= µ+ (Y0 � µ) e�kt + µ (1� e�kt) + �

Z
t

0
e�k(t�s)dBY

s

, (34)

and it is a Markov process, Gaussian if Y0 is Normal distributed. Given the starting value, its marginal
distribution at time t is given by,

(Y
t

|Y0) ⇡ N �
µ(t, Y0),�

2(t)
�
, (35)

where µ(t, y) := µ+ (y � µ)e�kt and �2(t) := �2 (1� e�2kt)/2k = �2 sinh(kt)e�kt/k.
Proceeding along the lines of Section 3, we rewrite the semi-martingale representation of Y under the

filtration G, that in this case allows for explicit expressions.

4.1 Analysis of the Y process

The Ornstein-Uhlenbeck process has the characteristic property to be the unique Gaussian Markov
process being stationary, as it was firstly shown in Doob [1942]. Stationarity means that (Y

t+�

|F
t

) ⇡
(Y

�

|F0), for t, � > 0, and it leads to a strong simplification of formulas as shown by the following lemma
that details the results of Theorem 3 in this specific case.

Lemma 7. The conditioned random variable (Y
t+�

|Y
t

, Y
T

) ⇡ (Y
t+�

|G
t

) is Gaussian, whose parameters
are given by

E[Y
t+�

|Y
t

, Y
T

] =
�2(�)e�2k(T�t��)

�2(T � t)
µ(t+ � � T, Y

T

) +
�2(T � t� �)

�2(T � t)
µ(�, Y

t

), (36a)

V [Y
t+�

|Y
t

, Y
T

] =
�2(T � t� �)�2(�)

�2(T � t)
. (36b)

Looking at the first order Taylor expansions of the above expressions we get

Proposition 8. The variable (Y
t+�

� Y
t

|G
t

) has the following di↵erential mean and variance

E[Y
t+�

� Y
t

|Y
t

, Y
T

]
�⇠ k(µ� Y

t

) + f̂
t,T

(Y
t

, Y
T

) (37)

V [(Y
t+�

� Y
t

)2|Y
t

, Y
T

]
�⇠ �2 (38)

where

f̂
t,T

(Y
t

, Y
T

) :=
k

sinh(k(T � t))

⇣
(µ� Y

t

) e�k(T�t) � (µ� Y
T

)
⌘

. (39)

4.2 Optimal Portfolio

We are now ready to formulate and solve the optimal portfolio problem for the insider trader under the
assumption that the interest rate follows the model given in (32). We repeat here the dynamics of the
portfolio of the investor given in (11),

(
dX ⇡̂

t

= (1� ⇡̂
t

)X ⇡̂

t

Y
t

dt+ ⇡̂
t

X ⇡̂

t

(⌘
t

dt+ ⇠
t

dBS

t

)

dY
t

= k(µ� Y
t

)dt+ �dBY

t

(40)
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and we remind that the strategy ⇡̂ is looked for in the set AG of G-adapted functions with the aim to
optimize the terminal expected value of the wealth, E[ln(X ⇡̂

T

)]. Since G = F
W
�(Y

T

), the investor is
informed, since the beginning, about the final value of the interest process, Y

T

.
To solve the optimization problem it is useful to rewrite (40) in an equivalent form, because, in the

filtration G, the bi-dimensional process (BR, BS) = ((BR

t

, BS

t

), 0  t  T ) is not anymore a Brownian
motion, but just a semi-martingale. We use the expressions (37) given in Proposition (8) to get its
martingale decomposition in the filtration G, as shown in the following proposition.

Proposition 9. The dynamics of the wealth of the G-adapted portfolio solve the following system of
SDEs 8

>><

>>:

dX ⇡̂

t

= (1� ⇡̂
t

)X ⇡̂

t

Y
t

dt+ ⇡̂
t

X ⇡̂

t

(⌘
t

dt+ ⇠
t

dBS

t

)

dY
t

= f̂
t,T

(Y
t

, Y
T

) dt+ k(µ� Y
t

) dt+ � dWY

t

dBS

t

=
⇢

�
f̂
t,T

(Y
t

, Y
T

) dt+ dWS

t

(41)

where (WY ,WS) = ((WY

t

,WS

t

), 0  t  T ) is a bi-dimensional G-Brownian motion with constant
correlation ⇢.

Proof. The proof follows along the lines of the proof of Proposition 5.

Using the above representation and by applying standard optimization techniques we are finally able
to find the optimal strategy.

Theorem 10. The solution of the optimal portfolio problem

sup
⇡̂2AG

E[ln(X ⇡̂

T

)] ; with G = F
_
�(R

T

) (42)

where (X ⇡̂

t

, 0  t  T ) satisfies (41), is given by

⇡̂⇤
t

=
⌘
t

� Y
t

⇠2
t

+
⇢

� ⇠
t

k

sinh(k(T � t))

⇣
(µ� Y

t

) e�k(T�t) � (µ� Y
T

)
⌘

. (43)

The optimal value of the portfolio is given by

VG
T

=

Z
T

0
E


Y
t

+
(⇠

t

⇡̂⇤
t

)2

2

�
dt . (44)

Proof. The proof follows along the lines of the proof of Theorem 6, by expressing the expected value of
the utility of the terminal wealth in the following form

E


ln

X ⇡̂

t

X0

�
=

Z
T

0
E
⇥
⇠2
t

I
t,T

(⇡̂
t

)
⇤
dt (45)

where

I
t,T

(x) =
Y
t

⇠2
t

+

✓
⌘
t

� Y
t

⇠2
t

+
⇢

� ⇠
t

f̂
t,T

(Y
t

, Y
T

)

◆
x� x2

2
. (46)

Equation (44) follows by substituting the optimal value ⇡̂⇤
t

in (45).

5 The Price of Information

In this section, we calculate the benefit that an insider trader would obtain from the additional informa-
tion on the future value of the interest. We recall formula (7) that given a filtration H containing the
basic or natural information flow F, i.e. F ⇢ H, defines the optimal value of the portfolio as

VH
T

:= sup
⇡2AH

E[ln(X⇡

T

)] = E[ln(X⇡

⇤

T

)] . (47)

This allows to define the advantage of the additional information carried by H as the increment in the
expected value of the optimal portfolio with respect to the one constructed by using only the accessible
information in F.
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Definition 1. The price of the information of a filtration H � F, is given by

�VH
T

= VH
T

� VF
T

(48)

Where the quantities on the right-hand-side are defined in (47).

In the following we continue to work with the Vasicek model in (32). By Merton [1969], it is known
that the optimal portfolio in the absence of insider information is given by the strategy

⇡⇤
t

=
⌘
t

� Y
t

⇠2
t

, (49)

while, according to the results of Theorem 10, using the insider information, modeled by the enlarged
filtration G, we have that the optimal strategy is given by

⇡̂⇤
t

= ⇡⇤
t

+
⇢

� ⇠
t

k

sinh(k(T � t))

⇣
(Y

T

� µ)� (Y
t

� µ)e�k(T�t)
⌘

. (50)

The results of this section surprisingly show that the information carried by G, even if it refers to the
only interest-rate process, is so strong that implies an infinite value. However since the sign of this value
is shown to strictly depend on the accuracy of the model used by the trader in following her strategy, it
implies that she can incur in an infinite loss when the accuracy is low.

To simplify calculations, we are going to make the following standing assumption

Assumption 1. The processes ⌘ and ⇠ are deterministic.

Hiwever this assumption can be easily relaxed at the price of having more complicated formulas.

Lemma 11. Characterization of the moments of the process ⇡⇤:

lim
t!T

E[⇡̂⇤
t

] < + ,1 (51)

Z
T

0
V [⇡̂⇤

t

]dt = +1 . (52)

Proof. To get (51), by (50) and using the expansion 1/ sinh(x) = 1/x+ o(1), it is enough to prove that

Y
T

� µ� (E[Y
t

|Y0, YT

]� µ)e�k(T�t) = O(T � t) .

Moreover, expanding exp(�k(T � t)), this is equivalent to show that

Y
T

�E[Y
t

|Y0, YT

] = O(T � t).

Using (18a), after some algebraic manipulations, we get

E[Y
t

|Y0, YT

] =
�2(t)

�2(T )
e�2k(T�t)µ(t� T, Y

T

) +
�2(T � t)

�2(T )
µ(t, Y0)

T�t⇠ Y
T

+ (T � t)

✓
k
Y
T

e�kT

sinh(kT )
� k(Y

T

� µ) +
�2

�2(T )
µ(t, Y0)

◆
,

that implies the result. To prove (52) we assume ⇢ > 0, the case ⇢ < 0 follows along similar arguments
by using (51).

Z
T

0
V [⇡̂⇤

t

]dt �
Z

T

0
V [Y

t

|Y0, YT

]

✓
⇢

k

�⇠
t

e�k(T�t)

sinh(k(T � t))

◆2

dt

=

Z
T

0

�2

2k

�
1� e�2k(T�t)

� �
1� e�2kt

�

1� e�2kT

✓
⇢
2k

�⇠
t

e�2k(T�t)

1� e�2k(T�t)

◆2

dt

= ⇢2
4k

1� e�2kT

Z
T

0

�
1� e�2kt

�

⇠2
t

✓
e�4k(T�t)

1� e�2k(T�t)

◆
dt = +1 ,

where in the first step we used the fact that the strategy ⇡̂⇤ can be written as

⇡̂⇤
t

= ⇡̂⇤
t

(Y
t

, Y
T

) = �Y
t

✓
1

⇠2
t

+
k⇢

�⇠
t

e�k(T�t)

sinh(k(T � t))

◆
+ h

t,T

(Y
T

) (53)

for some deterministic function h.

10



Proposition 12. The value of the information, �VG
T

, of the insider trader is infinite.

Proof. To see this, just use E[(⇡⇤
t

)2] = E[⇡⇤
t

]2 + V [⇡⇤
t

] and apply Lemma 11.

Now, we assume that the insider trader does not know the exact value of the correlation ⇢. We denote
her estimation of the correlation by ⇢̄.

Proposition 13. Assuming that the insider trader uses an estimation of the correlacion factor ⇢, say
⇢̄, with ⇢̄ 6= ⇢ the value of her information is still unbounded but it is equal to

�V
T

=

⇢
+1 if ⇢/⇢̄ > 1/2
�1 otherwise

. (54)

Proof. We begin by assuming that the insider trader follows the following strategy, with ⇢̄ 6= ⇢.

⇡̄
t

= ⇡⇤
t

+
⇢̄

� ⇠
t

f̂
t,T

(Y
t

, Y
T

) (55)

therefore the expected terminal utility of her portfolio will be equal to

E[lnX ⇡̄

t

] =

Z
T

0
E


(1� ⇡̄

t

)Y
t

+
⇢̄

� ⇠
t

f̂
t,T

(Y
t

, Y
T

)⇡̄
t

� ⇡̄2
t

⇠2
t

2

�
dt

=

Z
T

0
E
h
Y
t

+
Y 2
t

2⇠2
t

� ⌘2
t

2⇠2
t

+ (⇢� ⇢̄)⌘
t

f̂
t,T

(Y
t

, Y
T

)

�⇠
t

� ⇢Y
t

f̂
t,T

(Y
t

, Y
T

)

�⇠
t

+
1

�

✓
⇢⇢̄� 1

2
⇢̄2
◆⇣

f̂
t,T

(Y
t

, Y
T

)
⌘2i

dt .

Using Lemma 11, all terms are integrable but f̂2
t,T

(Y
t

, Y
T

). Therefore we are left with studying the sign
of ⇢⇢̄� ⇢̄2/2 = ⇢̄2(⇢/⇢̄� 1/2), from which the result follows.

As foretold, Proposition 13 shows that the insider trader is required to estimate with some accuracy
the actual value of the correlation coe�cient ⇢ in order to gain from her privileged knowledge and not
to incur in an infinite loss.

6 Interval-type information

In this section, we assume the insider trader doesn’t know the final value of the interest rate, Y
T

, but
she knows if it will be greater than a given value p. To this aim we introduce the random variable
A = {Y

T

� p}, together with the following filtration

eG = F
_
�(A). (56)

It is obvious that F ⇢ eG ⇢ G. To calculate the optimal portfolio ⇡̃, we will compute the new drift of the
conditioned process adapted to eG. By mimicking the calculations done in Sections 3 and 4, we introduce
the following correction function for the drift of the interest rate

f̃
t,T

(Y
t

, A) = lim
�!0

1

�
E
h
Y
t+�

� Y
t

|eG
t

i
� (k(µ� Y

t

)) = lim
�!0

1

�
E
h
E[Y

t+�

� Y
t

|G
t

]|eG
t

i
� (k(µ� Y

t

))

= E
h
f̂
t,T

(Y
t

, Y
T

)|eG
t

i
. (57)

The next proposition gives the probabilistic interpretation of the above function and a simple expression
to compute it.

Proposition 14. The variable (Y
t+�

�Y
t

|G̃
t

) is Gaussian and it has the following di↵erential mean and
variance

E[Y
t+�

� Y
t

|Y
t

, A]
�⇠ k(µ� Y

t

) + f̃
t,T

(Y
t

, A) (58)

V [(Y
t+�

� Y
t

)2|Y
t

, A]
�⇠ �2 (59)

where

f̃
t,T

(y, a) = �2e�k(T�t) f
YT (p |Yt

= y)

(1� a) + (2a� 1)P (Y
T

� p|Y
t

= y)
, (60)

with a 2 {0, 1} and y 2 R.
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Proof. Applying the definition of the conditioned expectation to (57), we can compute the drift of the
interest rate process, for example when the condition {Y

T

� p} is satisfied, as follows

E[ {Y
T

� p}f̃
t,T

(Y
t

, 1)] = E
h

{Y
T

� p}f̂
t,T

(Y
t

, Y
T

)
i
.

This formula allows to compute the value of f̃
t,T

(Y
t

, 1) as in equation (61a) below. Equation (61b)
follows along similar arguments.

f̃
t,T

(y, 1) =

R
{YT�p} f̂t,T (y, u) dPT�t

(u|y)
P (Y

T

� p |Y
t

= y)
(61a)

f̃
t,T

(y, 0) =

R
{YT<p} f̂t,T (y, u) dPT�t

(u|y)
P (Y

T

� p |Y
t

= y)
, (61b)

where P
T�t

(· | y) is the distribution of (Y
T�t

|Y0 = y). Substituting in (61a) the explicit expression of f̂ ,
given in (39), the numerator can be written in the following form

Z 1

p

f̂
t,T

dP
T�t

=

Z 1

p

k

sinh(k(T � t))
(u� µ(T � t, y)) dP

T�t

(u|y)

=
k

sinh(k(T � t))
E[ {Y

T

� p}(Y
T

� µ(T � t, y)) | Y
t

= y]

=
k

sinh(k(T � t))
�2(T � t)f

YT (p | Y
t

= y) ,

with µ(t, y) and �2(t) defined below equation (35), and where, in the last step, we used the obvious fact
that if Z ⇠

d

N(µ,�2), then E[ {Z � c}(Z � µ)] = �2f
Z

(c).
Substituting back in (61a) we finally get,

f̃
t,T

(y, 1) = �2e�k(T�t) f
YT (p |Yt

= y)

P (Y
T

� p|Y
t

= y)
,

and repeating the same procedure for (61b) we get the result.

Since eG ⇢ G, the G-Brownian motion (WR,WS) is also a eG-Brownian motion, and we can write the
process Y

t

as the solution of the following SDE

dY
t

= f̃
t,T

(Y
t

, A)dt+ k(µ� Y
t

)dt+ �dWY

t

.

The above expression together with the arguments of Subsection 3.3, allows to write the dynamics of the
portfolio under the strategy of the insider trader under the information flow eG.

Proposition 15. The dynamics of the wealth of the eG-adapted portfolio solve the following system of
SDEs 8

>><

>>:

dX ⇡̃

t

= (1� ⇡̃
t

)X ⇡̃

t

Y
t

dt+ ⇡̃
t

X ⇡̃

t

(⌘
t

dt+ ⇠
t

dBS

t

)

dY
t

= f̃
t,T

(Y
t

, A)dt+ k(µ� Y
t

)dt+ �dWY

t

dBS

t

=
⇢

�
f̃
t,T

(Y
t

, A)dt+ dWS

t

(62)

where (WY ,WS) = ((WY

t

,WS

t

), 0  t  T ) is a bi-dimensional eG-Brownian motion with constant
correlation ⇢. In particular, the optimal portfolio in the market is given by:

⇡̃⇤
t

= ⇡̃⇤
t

(Y
t

, A) =
⌘
t

� Y
t

⇠2
t

+
⇢

� ⇠
t

f̃
t,T

(Y
t

, A) . (63)

We are now ready to state the main result of this section.

Theorem 16. The value of the information, �VG̃
T

, of the insider trader is finite.
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Proof. Proceeding as in formula (44) and using the expression in (63) we can compute the value of the
information as

VG̃
T

=

Z
T

0
E


Y
t

+
(⇠

t

⇡̃⇤
t

)2

2

�
dt

=

Z
T

0
E

"
Y
t

+
1

2

✓
⌘
t

� Y
t

⇠2
t

+
⇢

� ⇠
t

f̃
t,T

(Y
t

, A)

◆2
#
dt . (64)

The mean and variance of Y
t

are integrable,

Z
T

0
E[Y

t

]dt =

Z
T

0
µ+ (Y0 � µ)e�ktdt = µT +

(Y0 � µ)

k
(1� e�kT ) < +1 ,

Z
T

0
V [Y

t

]dt =

Z
T

0

�2

2k
(1� e�2kt)dt =

�2

2k
T � �2

4k2
(1� e�2kT ) < +1 .

A repeated application of the inequality (a + b)2  2(a2 + b2) implies that to have a finite value of the
information we are left with proving that E[(f̃

t,T

(Y
t

, A))2] is integrable in [0, T ]. By rewriting

E

⇣
f̃
t,T

(Y
t

, A)
⌘2�

= E

⇣
f̃
t,T

(Y
t

, 0)
⌘2

P (A = 0|Y
t

) +
⇣
f̃
t,T

(Y
t

, 1)
⌘2

P (A = 1|Y
t

)

�

and using the following definitions

u(z, t) =
�4e�2k(T�t)

�2(T � t)

✓
1

�̄(�z)
+

1

�̄(z)

◆
(�0(�z)

2
(65)

z(y) = (µ(T � t, y)� p)/�(T � t) (66)

we have

E

⇣
f̃
t,T

(Y
t

, A)
⌘2�

= E[u(z(Y
t

), t)] =
1

�(t)

Z 1

�1
u(z(y), t)�0

✓
y � µ(t, Y0)

�(t)

◆
dy .

Applying the change of variable in (66) with

y(z) = µ+ (p� µ)ek(T�t) + z �(T � t) ek(T�t)

a(z) =
y(z)� µ(t, Y0)

�(t)
=

ek(T�t)

�(t)

�
z �(T � t) + (p� µ)� (Y0 � µ)e�kT

�

we have

E[u(z(Y
t

), t)] =
�4e�k(T�t)

�(t)�(T � t)

Z 1

�1

✓
1

�̄(z)
+

1

�̄(�z)

◆
(�0(�z))

2
�0(a(z)) dz

 1p
2⇡

�4e�k(T�t)

�(t)�(T � t)

Z 1

�1

✓
1

�̄(z)
+

1

�̄(�z)

◆
(�0(�z))

2
dz

=
1p
2⇡

 (t) I

where we used that �0(z)  1/
p
2⇡ and we made the following definition:

 (t) :=
�4e�k(T�t)

�(t)�(T � t)
(67)

I :=

Z 1

�1

✓
1

�̄(z)
+

1

�̄(�z)

◆
(�0(�z))

2
dz . (68)

By Lemma 17 and Lemma 18 in the Appendix, I is bounded by a constant, and the function  (t) is
integrable in [0, T ]. Therefore

Z
T

0
E

⇣
f̃
t,T

(Y
t

, A)
⌘2�

dt =

Z
T

0
E[u(z(Y

t

), t] dt < 1 (69)

and the value of the information is finite.
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7 Conclusions

In this paper, we showed how it is possible to include privileged information about the interest rate
process in a portfolio, and how to determine the modified optimal strategy. If the information about the
future is very precise, giving the value of the interest rate process at a terminal time T , we showed that
an arbitrage opportunity of infinite value is created.

At first sight, it may sound counter intuitive the fact that an insider information on the future value
of the interest rate has an infinite value. However to understand why this is true, it is important to
remember that the driving processes for the interest rate and the stock asset are correlated. When the
time approaches the terminal epoch T , the interest rate process behaves like a Gaussian bridge and
therefore exhibits an unbounded drift that, by correlation, it is passed to the risky asset. It is by taking
advantage of this drift explosion that the insider trader is able to generate infinite profits.

We also showed that the arbitrage opportunity may lead to an unbounded gain as well as an infinite
loss depending on the accuracy of the correlation coe�cient of the model with respect to the true value.

Finally we showed that if the privileged information is not very accurate, for example it gives only
a lower bound for the terminal value of the interest rate process, then the value of such information is
finite, and we give a methodology about how to compute it.
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A Appendix

Proof. Proof of Theorem 3 We need to plug into (15) of Lemma 1 the expression obtained from (16) in
Lemma 2 and than to match the coe�cients of the following Gaussian form,

f
Rt+�|Rt,RT

(b |R
t

, R
T

) =
1p

2⇡ �2
exp

✓
� (b� µ)2

2�2

◆
.

By combining the three factors in (15) and the one of the expression above it is easy to check that the
only possible candidate for � is given by the following expression

�2 =  2
t+�

R
t+�

t

(b2 �1)2(x)dx
R
T

t+�

(b2 �1)2(x)dx
R
T

t

(b2 �1)2(x)dx
=  2

t+�

4t+�

t

4T

t+�

4T

t

, (70)

where in the second equality we used the notation 4s

u

:=
R
s

u

(b2 �1)2(x)dx. For the following computa-
tions it will be useful to introduce also the notation 5s

u

:=
R
s

u

a2 �1(x)dx.
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The candidate for µ has to satisfy the following equality

(b�R
t

 
t,t+�

�5t+�

t

 
t+�

)2

4t+�

t

 2
t+�

+
(R

T

� b 
t+�,T

�5T

t+�

 
T

)2

4T

t+�

 2
T

� (R
T

�R
t

 
t,T

�5T

t

)2 
T

4T

t

 2
T

=
(b� µ)2

�2

Multiplying the expression for �2 given in (70) to both members of the equality above we get

4T

t+�

4T

t

�
b�R

t

 
t,t+�

�5t+�

t

 
t+�

�2
+

4t+�

t

4T
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 2
t+�

 2
T

�
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t+�,T

�5T
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T

�2

� 4t+�

t

4T

t+�

(4T

t

)2
 2

t+�

 2
T

�
R

T

�R
t

 
t,T

�5T

t

 
T

�2
= (b� µ)2 (71)

It is left to equate the terms in b2,�2b1 and b0 of both sides of (71) are the same.

Quadratic Term:

4T

t+�

4T

t

+
4t+�

t

4T

t

 2
t+�

 2
t+�,T

 2
T

=
4T

t+�

4T

t

+
4t+�

t

4T

t

 2
T

 2
T

=
4T

t+�

+4t+�

t

4T

t

=
4T

t

4T

t

= 1 (72)

Linear Term: (divided by �2).

4T

t+�

4T

t

[R
t

 
t,t+�

+5t+�

t

 
t+�

] +
4t+�

t

4T

t
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T

[R
T

�5T

t+�

 
T

] = µ (73)

that gives a candidate for µ. In the LHS of (73) we used that  
t+�

 
t+�,T

=  
T

.

Constant Term:

We are finally left with checking that the constant term in the LHS of (71), and shown below, is equal
to µ2 with µ given in (73).
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By writing 5T

t

= 5t+�

t

+5T

t+�

, and  
T

=  
t+�

 
t+�,T

, we can expand last term in (74) in the following
way
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Finally we substitute (75) in (74) and compare the factors of (R
t

 
t,t+�

+5t+�

t

 
t+�

)2 in (74) and the
square of (73)
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We do the same with the factors of (R
T
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and finally with the factors of the double product 2(R
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Since they all coincide, the expressions (73) and (70) are the right parameters given in (18a) and (18b).
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Lemma 17. Z 1

�1

✓
1

�̄(z)
+

1

�̄(�z)

◆
(�0(�z))

2
�0(a

t

(z))dz < 1 (76)

Proof. Using the definition of I in (68) we have

I 
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✓
1

�̄(z)
+
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2
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.

As for the other term, since 1/�̄(z) = ez
2
/2O(z) and �0(z) = e�z

2
/2O(1) we have

�0(z)

�̄(z)
= O(z) (77)

and the result follows because |z| is integrable with respect to d�(z).

Lemma 18. Z
T

0

�4e�k(T�t)
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 1 (78)

Proof. Having

�2(t) =
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it follows that

1/�(t) = O(1/
p
t)

1/�(T � t) = O(1/
p
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and the result follows.
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